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The determination of the total energy within density-functional theory can be formulated as a minimization
problem in a space of trial self-consistent potentials. In order to apply a conjugate-gradient algorithm to this
problem, a formula for the computation of the gradient of the energy with respect to the self-consistent
potential is proposed. The second derivative of the energy with respect to potential changes is also analyzed,
in order to obtain an efficient preconditioning operator. The wave functions do not appear explicitly in this
approach, so that order-N algorithms could take advantage of it. The results of preliminary tests are reported.
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Recently, algorithms for the computation of the electronic
energy of simple~non-self-consistent! tight-binding model,
scaling linearly with the system size, have been proposed.1,2

Also for the much more accurateab initio density-functional
theory ~DFT!, in the case offixed potentials, it was shown
that the same scaling@O~N! where N is a measure of the size
of the system# can be achieved.2,3 This is a considerable
advance, since usual algorithms scale like O~N3) in the
large-size limit.4–6

Going one step further, Annett7 has investigated the scal-
ing of self-consistentDFT algorithms, based on the minimi-
zation of the energy either with respect to trial localized or-
bitals, or with respect to trial self-consistent potentials,
showing that the self-consistency requirement could destroy
the O~N! scaling. In the present paper, I will concentrate on
the minimization with respect to trial self-consistent poten-
tials. The basic underlying ideas were already proposed by
Bendt and Zunger more than ten years ago.8 Bendt and
Zunger, as well as Annett, give formulas for calculating the
gradient of the electronic energy versus the trial self-
consistent potential, in which either the wave functions or
the independent-particle polarizability are explicitly used. If
Bendt and Zunger were not worried by this fact@they wanted
to compute these wave functions anyhow, and were not look-
ing after an O~N! method#, Annett points out that the fast
potential-based O~N! methods proposed until now do not
allow an easy computation of wave functions or the
independent-particle polarizability.

In the present paper, it is shown how to obtain the gradi-
ent of the energy with respect to the self-consistent potential
by using ingredients that are produced by non-self-consistent
O~N! methods. This opens the way for potential-based con-
jugate gradient~CG! algorithms for self-consistent total-
energy calculations. Preconditioning operators are also ex-
amined, and preliminary results are presented.

Supposing that a system of noninteracting electrons is
placed in the fixed potentialu(r ), its energy, functional of
the potentialu, is given by

ENSC@u#5 min
$f i such that ^f i uf j &5d i j %

H(
i
s^f i uT1uuf i&J ,

~1!

where the indicesi and j run on the occupied orbitals~con-
strained to be orthonormal!, the number of which is equal to
half the number of electronsNe . The spin degeneracy,s, is
equal to 2. The corresponding noninteracting kinetic energy
and density are evaluated for the orbitals that minimize Eq.
~1!:

T@u#5(
i
s^f i uTuf i&, ~2!

and

n@u#~r !5(
i
sf i* ~r !f i~r !. ~3!

Using the Lagrange-Euler equations associated with the
minimization procedure in Eq.~1!, one finds thatn@u#(r ) is
the gradient of the energyENSC@u# with respect to the po-
tentialu(r ):

n@u#~r !5
dENSC@u#

du~r !
. ~4!

Thus, the kinetic energy can be written

T@u#5ENSC@u#2E dENSC@u#

du~r !
u~r !dr . ~5!

Equations~4! and ~5! are orbital-free expressions giving the
density and kinetic energy. In what follows, it is supposed
that these quantities, as well as the energyENSC@u#, can be
obtained with a fast O~N! algorithm. No knowledge of the
orbitals will be assumed.

In the DFT, the potential that the noninteracting electrons
feel has to be determined self-consistently. It includes the
bare external potential and contributions from the Hartree
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and the exchange-correlation terms, which are functionals of
the density. In an orbital-based formulation, one defines the
self-consistent energy by the following minimization proce-
dure:

ESC@vext#5 min
$f i such that ^f i uf j &5d i j %

H(
i
s^f i uTuf i&

1E n@$f%#~r !vext~r !dr1EHxc@n@$f%##J ,
~6!

where the density is given by

n@$f%#~r !5(
i
sf i* ~r !f i~r !. ~7!

andEHxc@n# is the sum of Hartree and exchange-correlation
energies. The latter part must be approximated, since the
exact exchange-correlation functional is not known.5

Instead of this formulation, relying on orbitals, one can
obtain the same value of the energy and density by an un-
constrained minimization procedure in the space of trial self-
consistent potentialsu(r ), as follows:5,7,8

ESC@vext#5min
u
Etrial@vext;u#, ~8!

where the trial energyEtrial@vext;u#, a functional of theex-
ternal potentialvext and the trialself-consistentpotentialu,
can be expressed as9

Etrial@vext;u#5T@u#1E n@u#~r !vext~r !dr1E Hxc@n@u##,

~9!

or equivalently as

Etrial@vext;u#5ENSC@u#1E n@u#~r !@vext~r !2u~r !#dr

1E Hxc@n@u##. ~10!

The gradient ofEtrial@vext;u# with respect tou(r ), ob-
tained by the differentiation of Eq.~10!, and using Eq.~4!, is

dEtrial@vext;u#

du~r !
5E dn@u#~r 8!

du~r ! S vext~r 8!1
dEHxc@n#

dn~r 8!
U
n@u#

2u~r 8! Ddr 8. ~11!

At the minimum of the trial energy, the gradient Eq.~11!
vanishes, and the trial self-consistent potentialu becomes
equal to the Kohn-Sham potential:

umin~r !5vext~r !1
dEHxc@n#

dn~r ! U
n@umin#

5vKS~r !. ~12!

In search for a practical CG algorithm10 to be applied to
Eq. ~8!, one needs an efficient way to compute the gradient
of Etrial@vext;u# with respect tou(r ). Equation~11! is not the
answer to this requirement, because it is not clear how to
compute efficientlydn@u#(r 8)/du(r ). Also, the gradient for-
mula of Bendt and Zunger@Eq. ~9! of Ref. 8# makes use of
orbitals ~valence as well as conduction orbitals!.

Actually, dn@u#(r 8)/du(r ) is not explicitly needed. This
quantity, that is equal to the independent-particle polarizabil-
ity of the system,11 x0(r ,r 8), is also the second derivative of
the non-self-consistent energy with respect to change of po-
tentials in r and r 8, or the derivative of the densityn at r
with respect to the potentialu at r 8,

dn@u#~r 8!

du~r !
5

d2ENSC@u#

du~r !du~r 8!
5x0~r ,r 8!5

dn@u#~r !

du~r 8!
.

~13!

Inserting this result in Eq.~11! gives

dEtrial@vext;u#

du~r !
5E dn@u#~r !

du~r 8! S vext~r 8!1
dEHxc@n#

dn~r 8!
U
n@u#

2u~r 8! Ddr 8, ~14!

which is nothing more than the linear rate of change of the
density due to a change in trial potentialu by
$vext(r 8)1@dEHxc@n#/dn(r 8)#un@u#2u(r 8)%. In a finite-
difference approach, forl small enough,

dEtrial@vext;u#

du~r !
'
1

l H nFu1lS vext1 dEHxc@n#

dn U
n@u#

2uD G~r !
2n@u#~r !J . ~15!

Neither the wave functions, nor the independent-particle po-
larizability appear in Eq.~15!. Since the density is one of the
output of the fast O~N! non-self-consistent calculation, while
the computation of this finite-difference formula relies only
on the differences of densities, the O~N! character of the
underlying non-self-consistent algorithm is maintained. So,
this formula provides an efficient way to evaluate the gradi-
ent of the energy with respect to change of self-consistent
potential.

However, the knowledge of the gradient is not the only
ingredient needed for an efficient CG algorithm. A good pre-
conditioning operator can prove crucial.6,7 Indeed, the rate of
convergence of a CG algorithm depends mainly on the ratio
of extremal eigenvalues of the Hessian matrixH: When this
ratio is close to 1, the convergence is extremely fast, while a
larger ratio leads to a slower convergence. In this last case,
applying a preconditioner operatorK that mimicks as closely
as possible the inverse of the Hessian matrix will improve
the rate of convergence, since it is then governed by the
eigenvalues ofKH.

In our case, the Hessian matrix at the minimumu5umin is
exactly
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d2Etrial@vext;umin#
du~r !du~r 8!

52
d2ENSC@umin#

du~r !du~r 8!
1E E d2ENSC@umin#

du~r !du~r 9!

d2EHxc@n#

dn~r 9!dn~r-!
U
n5n@umin#

d2ENSC@umin#

du~r-!du~r 8!
dr 9dr-

52E d2ENSC@umin#

du~r !du~r 9! S d~r 92r 8!2E d2EHxc@n#

dn~r 9!dn~r-!
U
n5n@umin#

d2ENSC@umin#

du~r-!du~r 8!
dr-Ddr 9

52E x0~r ,r 9!ee~r 9,r 8!dr 9, ~16!

whereee is the electron dielectric response function.11 The
ratio of extremal eigenvalues of this Hessian unfortunately
increases with the system size.7

If we take K5H2152(x0ee)
21, and apply this~best!

preconditioner operator to minus the gradient direction Eq.
~14!, the independent-particle polarizabilityx0 disappears.
The preconditioned change of potential is

Du~r !5E ee
21~r ,r 8!S vext~r 8!1

dEHxc@n@u##

dn~r 8!
2u~r 8! Ddr 8.

~17!

Supposing that we are close to the minimum~and thus in the
quadratic region of the energy functional!, this formula
would give the change of potential needed to reach the self-
consistency in one step only, independently of the size of the
system.

However, the inverse dielectric functionee
21 needed in

Eq. ~17! is not knowna priori. In order to bypass this lack of
knowledge, one can either use a model~approximate! dielec-
tric function, or decide that the preconditioning brought by
the inverse of the independent-particle polarizability,
K52x0

21, is good enough. In this case, the preconditioned
change of potential is given by

Du~r !5vext~r !1
dEHxc@n@u##

dn~r !
2u~r !. ~18!

Neither the wave functions, nor the independent-particle po-
larizability x0 appear in Eq.~18!.

With K52x0
21, giving Eq. ~18!, the eigenvalues of the

modified~preconditioned! Hessian are those of the electronic
dielectric response functionee . In a cell calculation, the only
fluctuations of density that are allowed are those commensu-
rate with the cell geometry, so that not all eigenvalues of
ee will influence the rate of convergence.12 In the limit of
very large supercells, however, nearly all the eigenvalues
will be sampled. For a system with a gap~molecule or insu-
lator!, it is expected that the eigenvalues are distributed be-
tween a value close to 1 and a finite positive value@on the
order of the macroscopic dielectric constant for an insulator,
see the analysis of the dielectric band structure in Ref. 13,
and Fig. 1~b! of Ref. 11#. For such a system, when the size of
the cell is increased, the ratio of extremal eigenvalues will
reach a plateau after an eventual initial growth, due to the
increase of the allowed fluctuations wavelength: Thecharge
sloshingproblem will affect the rate of convergence, but not
the O~N! scaling.14 So, a better preconditioning is not man-
datory to keep the same O~N! scaling of the overall algo-
rithm in that case. For metals, this is not true, and the O~N!

behavior of the non-self-consistent algorithms cannot be
maintained without a better preconditioning method: one ob-
tains an O~N4/3) scaling.7

A preconditioned CG algorithm based on Eqs.~15! and
~18!, was implemented and tested on crystalline silicon~with
two atoms per unit cell!.10 Instead of using an O~N! algo-
rithm, the non-self-consistent energy and density were ob-
tained by simple diagonalization of a plane wave pseudopo-
tential Hamiltonian,5 with a six Hartree kinetic energy cutoff,
and two special points in the irreducible part of the Brillouin
zone. The LDA exchange-correlation functional of Ceperley
and Alder5 was used. First, the validity of Eq.~15! was care-
fully checked. Then a preconditioned CG minimization run
was performed. The starting potential was the bare electron-
ion potential, without self-consistent screening. The initial
error on the energy, compared with a fully converged value,
was 1021 Ha/cell. After four line minimizations, this error
was decreased to 10210 Ha/cell. Each line minimization
needed three non-self-consistent calculations at most.

Actually there are different ways to implement a CG al-
gorithm, and the purpose of this preliminary test was to dem-
onstrate the feasibility of the idea, not to obtain the best
possible efficiency. For this reason, the details of the imple-
mentation are not described in this paper.

In this test case, the ratio of extremal eigenvalues of the
preconditioned Hessian matrix, for the fluctuations of density
compatible with the periodic boundary conditions and the
symmetry, was rather small, about 1.5, so that the replace-
ment of Eq.~17! by Eq. ~18! does not spoil the efficiency.
For larger silicon cells, the ratio will raise to about 13, in
which case a better preconditioning would be advantageous.

I now discuss briefly improved preconditioning schemes.
Since the preconditioning operator should be easy to apply,
one aims at an approximation of the inverse dielectric re-
sponse function that is either diagonal in reciprocal space, or
diagonal in real space, or separable, or a multiplicative~or
additive! combination of such forms. In the limit of long
wave length fluctuations, the inverse dielectric matrix tends
to be diagonal in reciprocal space: The local field effects are
usually corrections on the order of a few percents to the
macroscopic dielectric constant of silicon and other
insulators.11 Levine and Louie15 have proposed a model di-
electric function that is diagonal in reciprocal space, and that
relies only on two adjustable parameters. These could be
fixed by sum-rule requirements, or by performing their ad-
justement in the course of the computer run. Other models
are discussed in Ref. 13. So, I tend to believe that all-purpose
improved preconditioners can be designed.
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In conclusion, in the present paper, some elements leading
to a self-consistent potential-based conjugate-gradient O~N!
algorithm were proposed and analyzed. Neither the wave
functions, nor the independent-particle polarizability appear
in Eqs. ~15!, ~17!, or ~18!. Preliminary results showing the
feasibility of these ideas have been presented. A conjugate
gradient algorithm has the advantage of robustness and re-
duced memory needs over most other algorithms, while its
efficiency is excellent. With the simple preconditioning op-
eratorK52x0

21 used here, no parameter that ought to be
tuned for each different problem is present. A better precon-

ditioning scheme is certainly possible, but should keep the
same desirable features. Finally, a potential-based CG algo-
rithm could also be combined with non-self-consistent
O~N3) schemes that are suited for small or medium size
calculations. Its efficiency should be compared with the
band-by-band conjugate-gradient algorithm,6 as well as
Broyden or Anderson methods.16
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