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Towards a potential-based conjugate gradient algorithm for orderN self-consistent
total energy calculations
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The determination of the total energy within density-functional theory can be formulated as a minimization
problem in a space of trial self-consistent potentials. In order to apply a conjugate-gradient algorithm to this
problem, a formula for the computation of the gradient of the energy with respect to the self-consistent
potential is proposed. The second derivative of the energy with respect to potential changes is also analyzed,
in order to obtain an efficient preconditioning operator. The wave functions do not appear explicitly in this
approach, so that ordét-algorithms could take advantage of it. The results of preliminary tests are reported.
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Recently, algorithms for the computation of the electronicwhere the indices andj run on the occupied orbitalgon-
energy of simple(non-self-consistettight-binding model,  strained to be orthonormalthe number of which is equal to
scaling linearly with the system size, have been propdsed. half the number of electron,. The spin degeneracy, is
Also for the much more accurag initio density-functional  equal to 2. The corresponding noninteracting kinetic energy

theory (DFT), in the case ofixed potentials, it was shown and density are evaluated for the orbitals that minimize Eq.
that the same scalirf@(N) where N is a measure of the size (1):

of the systerh can be achieveti® This is a considerable
advance, since usual algorithms scale likéN@) in the
large-size limit*=5
Going one step further, Annéthas investigated the scal-
ing of self-consistenDFT algorithms, based on the minimi-
zation of the energy either with respect to trial localized or-
bitals, or with respect to trial self-consistent potentials,and
showing that the self-consistency requirement could destroy
the QNN) scaling. In the present paper, | will concentrate on
the minimization with respect to trial self-consistent poten- n[ul(r)=2 s¢f(r)¢y(r). ()]
tials. The basic underlying ideas were already proposed by '
Bendt and Zunger more than ten years &gdendt and
Zunger, as well as Annett, give formulas for calculating the  Using the Lagrange-Euler equations associated with the
gradient of the electronic energy versus the trial self-minimization procedure in Eq1), one finds than[u](r) is
consistent potential, in which either the wave functions orthe gradient of the energgN*qu] with respect to the po-
the independent-particle polarizability are explicitly used. Iftential u(r):
Bendt and Zunger were not worried by this féittey wanted
to compute these wave functions anyhow, and were not look-
ing after an @N) method, Annett points out that the fast _ SENqu]
potential-based M) methods proposed until now do not nful(r)= su(r) (4)
allow an easy computation of wave functions or the
independent-particle polarizability.
In the present paper, it is shown how to obtain the gradi- Thus, the kinetic energy can be written
ent of the energy with respect to the self-consistent potential
by using ingredients that are produced by non-self-consistent
O(N) methods. This opens the way for potential-based con- Tlu]= ENSC[u]—f
jugate gradient(CG) algorithms for self-consistent total-
energy calculations. Preconditioning operators are also ex-
amined, and preliminary results are presented. Equations(4) and (5) are orbital-free expressions giving the
Supposing that a system of noninteracting electrons iglensity and kinetic energy. In what follows, it is supposed
placed in the fixed potential(r), its energy, functional of that these quantities, as well as the endEjyJ u], can be

T[u]=2i (il T| i), 2

SENSqu]

3u(r) u(r)dr. (5)

the potentialu, is given by obtained with a fast QN) algorithm. No knowledge of the
orbitals will be assumed.
ENSQu]= min [2 s( | T+ U|¢i>]. In the DFT, the potential that the noninteracting electrons
{; such that(;|¢)=5;} 1 ! feel has to be determined self-consistently. It includes the

1 bare external potential and contributions from the Hartree
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and the exchange-correlation terms, which are functionals of In search for a practical CG algoritifhto be applied to
the density. In an orbital-based formulation, one defines th&q. (8), one needs an efficient way to compute the gradient
self-consistent energy by the following minimization proce-of E"@[y ,,;u] with respect tai(r). Equation(11) is not the

dure: answer to this requirement, because it is not clear how to
compute efficientlysn[u](r’)/su(r). Also, the gradient for-
ES _ min s( | Tl mul_a of Bendt and ZungdiEq. (9) of_Ref. 8].makes use of
Tveud {; such that<¢i¢j>=5ij}{ 2.: (4ilTlg0 orbitals (valence as well as conduction orbitals

Actually, sn[u](r")/éu(r) is not explicitly needed. This
quantity, that is equal to the independent-particle polarizabil-
+ f S vedr)dr+ EHXC[n[{d’}]]] ' ity of the systemt! yo(r,r’), is also the second derivative of
the non-self-consistent energy with respect to change of po-
®)  tentials inr andr’, or the derivative of the density atr
with respect to the potential atr’,

where the density is given by

snful(r’)  S2ENSqu] snfu](r)
n ry=_2, s (r)ei(r). 7 = = = —
[{AH() =2 s (r)¢i(r) ) su)~ sumsa 0= 5w
(13
andE,J n] is the sum of Hartree and exchange-correlationinserting this result in Eq11) gives
energies. The latter part must be approximated, since the
exact exchange-correlation functional is not knawn. ial
Instead of this formulation, relying on orbitals, one can SE™[veq;u]l [ on[u](r) )t SEnxd N]
obtain the same value of the energy and density by an un- du(r) N du(r’) Vex on(r') |nfu]
constrained minimization procedure in the space of trial self-
H H 5,7,8
consistent potentialg(r), as follows: —u(r’)|dr, (14)
EST v exd =minE"[v e, U], 8
u which is nothing more than the linear rate of change of the

density due to a change in trial potential by
{vex(r’) +[SEpd )/ oN(r' ) npuy—u(r’)}. In a finite-

i trial . : _
where the trial energfE"*vey;u], a functional of theex difference approach, fax small enough,

ternal potentialv,; and the trialself-consistenpotentialu,
can be expressed‘as
. SE"[vequ] 1
E"'a'[vext;UJ=T[U]+f NLUJ(r)vex(r)dr+E ped n[ull, suiry  a|"
9

5Ech[n]

+
u+a on

(r)

VextT

_u)
nfu]

—n[U](r)]. (15)

or equivalently as
Neither the wave functions, nor the independent-particle po-

. larizability appear in Eq(15). Since the density is one of the
trial . —_ NS _
E™[vex;u]=E C[UHJ NLUl(r)[vex(r) —u(r)Jdr output of the fast CN) non-self-consistent calculation, while
the computation of this finite-difference formula relies only
+E pxd nLull. (100 on the differences of densities, the(ND character of the

underlying non-self-consistent algorithm is maintained. So,
this formula provides an efficient way to evaluate the gradi-
ent of the energy with respect to change of self-consistent

The gradient ofE"@[v;u] with respect tou(r), ob-
tained by the differentiation of Eq10), and using Eq(4), is

potential.
trial . , However, the knowledge of the gradient is not the only
i LELS Zf ontulter) (vext(f’)+ (SELC[,n] ingredient needed for an efficient CG algorithm. A good pre-
du(r) ou(r) on(r’) |nfu] conditioning operator can prove crucfdlindeed, the rate of
convergence of a CG algorithm depends mainly on the ratio
—u(r’))dr’. (11 of extremal eigenvalues of the Hessian matiix\When this

ratio is close to 1, the convergence is extremely fast, while a
larger ratio leads to a slower convergence. In this last case,
applying a preconditioner operatiirthat mimicks as closely
as possible the inverse of the Hessian matrix will improve
the rate of convergence, since it is then governed by the
eigenvalues oKH.

=vgs(r). (12 In our case, the Hessian matrix at the minimumu y, is
N[Upmin] exactly

At the minimum of the trial energy, the gradient EG21)
vanishes, and the trial self-consistent potentiabecomes
equal to the Kohn-Sham potential:

_ OEpxd N]
Umin(1) =vexdr) + on(r)
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SEM [y U] _ SPENST upin] J j 52ENSC{Um n] S Epnd ] S*EN T upinl drdr"
su(rysu(r’) su(rysu(r’) Su(ryau(r”) on(r")an(r") fn=nfuy,) su(r")ou(r’)
_ f 52ENSC{um|n] ( S(r"—=r' j 52Ech[n] 52ENSC{umin] dr” |dr”
= | Sumeu | 2T | S enr | e ot qou(rou(ry o
—fXo(r,r”)ee(r”,r’)dr”, (16)

where e, is the electron dielectric response functidrithe  behavior of the non-self-consistent algorithms cannot be
ratio of extremal eigenvalues of this Hessian unfortunatelymaintained without a better preconditioning method: one ob-
increases with the system size. tains an @N“*?) scaling’

If we take K=H™*=—(xoe.) ", and apply this(bes} A preconditioned CG algorithm based on E@$5) and
preconditioner operator to minus the gradient direction Eq(18), was implemented and tested on crystalline siliémith
(14), the independent-particle polarizabilify, disappears  two atoms per unit cell'® Instead of using an @) algo-

The preconditioned change of potential is rithm, the non-self-consistent energy and density were ob-
SE tained by simple diagonalization of a plane wave pseudopo-
N I P ) e NLUTT tential Hamiltoniar?, with a six Hartree kinetic energy cutoff,
Au(r) € (I vexr’)+ u(r’) |dr’. ; o ) : -
on(r’) and two special points in the irreducible part of the Brillouin

17 zone. The LDA exchange-correlation functional of Ceperley

Supposing that we are close to the minim(and thus in the ~and AldeP was used. First, the validity of E¢L5) was care-
quadratic region of the energy functiopakthis formula  fully checked. Then a preconditioned CG minimization run
would give the change of potential needed to reach the selfvas performed. The starting potential was the bare electron-
consistency in one step only, independently of the size of théon potential, without self-consistent screening. The initial
system. error on the energy, compared with a fully converged value,

However, the inverse dielectric functics, ' needed in  was 10 Ha/cell. After four line minimizations, this error
Eq.(17) is not knowna priori. In order to bypass this lack of was decreased to 18° Ha/cell. Each line minimization
knowledge, one can either use a mo@glproximatgdielec- needed three non-self-consistent calculations at most.
tric function, or decide that the preconditioning brought by  Actually there are different ways to implement a CG al-
the mverse of the independent-particle polarizability,gorithm, and the purpose of this preliminary test was to dem-
K=—xo", is good enough. In this case, the preconditionecbnstrate the feasibility of the idea, not to obtain the best

change of potential is given by possible efficiency. For this reason, the details of the imple-
mentation are not described in this paper.
AU(F)= SEndn[ul] In this test case, the ratio of extremal eigenvalues of the
u(r)— ext(r)+ ( ) (18) e . . . .
on(r) preconditioned Hessian matrix, for the fluctuations of density

compatible with the periodic boundary conditions and the
symmetry, was rather small, about 1.5, so that the replace-
ment of Eq.(17) by Eq. (18) does not spoil the efficiency.
For larger silicon cells, the ratio will raise to about 13, in

Neither the wave functions, nor the independent-particle po-
larizability x, appear in Eq(18).

With K= —)(51, giving Eq. (18), the eigenvalues of the
modified(preconditionegiHessian are those of the electronic © .. e
dielectric response functiog.. In a cell calculation, the only which case a better' prec_:ondmomng WOU|d. pe gdvantageous.
fluctuations of density that are allowed are those commensuy-, | NOW discuss briefly improved preconditioning schemes.
rate with the cell geometry, so that not all eigenvalues of>INCe the preconditioning operator should be easy to apply,
€. will influence the rate of convergené®ln the limit of ~ ©ON€ aims at an approximation of the inverse dielectric re-
very large supercells, however, nearly all the eigenvalue§PONse function that is either diagonal in reciprocal space, or
will be sampled. For a system with a gé&polecule or insu- diagonal in real space, or separable, or a multiplicate
lator), it is expected that the eigenvalues are distributed beadditive combination of such forms. In the limit of long
tween a value close to 1 and a finite positive valae the ~ Wave length fluctuations, the inverse dielectric matrix tends
order of the macroscopic dielectric constant for an insulator{o be diagonal in reciprocal space: The local field effects are
see the analysis of the dielectric band structure in Ref. 13ysually corrections on the order of a few percents to the
and Fig. 1b) of Ref. 11]. For such a system, when the size of macroscopic dielectric constant of silicon and other
the cell is increased, the ratio of extremal eigenvalues wilinsulators'* Levine and Loui&® have proposed a model di-
reach a plateau after an eventual initial growth, due to thelectric function that is diagonal in reciprocal space, and that
increase of the allowed fluctuations wavelength: Tharge relies only on two adjustable parameters. These could be
sloshingproblem will affect the rate of convergence, but not fixed by sum-rule requirements, or by performing their ad-
the QN) scaling!* So, a better preconditioning is not man- justement in the course of the computer run. Other models
datory to keep the same(N) scaling of the overall algo- are discussed in Ref. 13. So, | tend to believe that all-purpose
rithm in that case. For metals, this is not true, and tii)O improved preconditioners can be designed.
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In conclusion, in the present paper, some elements leadingdjtioning scheme is certainly possible, but should keep the
to a self-consistent potential-based conjugate-gradi¢Nf) O same desirable features. Finally, a potential-based CG algo-
algorithm were proposed and analyzed. Neither the wavéithm could also be combined with non-self-consistent
functions, nor the independent-particle polarizability appea©(N®) schemes that are suited for small or medium size
in Egs. (15), (17), or (18). Preliminary results showing the calculations. lIts efficiency should be compared with the
feasibility of these ideas have been presented. A conjugafeand-by-band conjugate-gradient algorithnas well as
gradient algorithm has the advantage of robustness and r8foyden or Anderson method.

duced memory needs over most other algorithms, while its
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