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The wave-vector dependence of superconducting order parameters and the corresponding transition tem-
perature in three-dimensional layered metals are investigated. It includes planar anisswapilike as well
asd-wave-like pairing contributions, but for simplicity only intralayer pairing of electrons has been considered
for tetragonal and orthorhombic crystal structures, relevant to fijghaterials. It is shown that for the
orthorhombic case order parameters are likely to have mixed symmetry, whereas in tetragonal structures it is
possible to have only planai-wave-like symmetry with a possible correction term with an additional wave-
vector dependence in the direction perpendicular to the reciprocal layer ph163-182006)02530-1

Recent Josephson-coupling experimé&ritsprobing the  plicit expressions are given here for systems with one con-
symmetry of the order parameter in high-superconductors ducting layer per unit cell or, whenever possible, fdr
have provided strong evidence for a plarduwwave-like  equivalent layers per unit cell.

(de2_2-type) pairing in contrast to an almost isotropic  Following our previous work;'® for intralayer spin-
Xy

s-wave-like pairing found in most conventional supercon-smglet paringT, is determined by the simplified equation

ductors. There are still other experiments which support an-
isotropic s-wave-like pairing** Based on the Hubbard ) L - tanh &y (K')/2KeT,]
model and spin-fluctuation exchange mechanism for pairing, A;(k)=— Z Vi (k,k")Aj (k") =
Pines was one of the first to argue for thewave-like su- 'K 2£5(k")
perconductivity in high¥, materials. For a review of more @
recent work on d-wave-like superconductivity, see .
Scalapind Most of these investigations, however, do notwhere &;/(k’) is the single-particle electron energy in the
consider explicitly the three-dimensional layer structurelayerJ’ as measured from the Fermi energy. The interaction
present in these systems. On the other hand, vewe al- Parameter V,y(k,k') stands for the matrix element
ready developed a general microscopic framework for deVj 5 (K,K') describing the scattering of two electrons in
scribing spin-singlet pairing theory of superconductivity in the states I',k’'1), (3',—k’]) to (J,k7), (J,—k]), and
layered systems which included both intralayer and interA,(k) stands for the intralayer order parameteyy(k) for
layer pairing interactions. But while deriving expressions forthe layerJ. In our earlier calculatioris® for an isotropic
T. and the corresponding order parameters, in our earligt-wave-like pairing in the plane, we assumégly (k,k’) to
work we focused only on the completely isotropivave- ~ depend only ork, andk; . Several author$®**have al-
like order parameters in the layer plan@sdependent ok,  ready constructed a plandrwave-like intralayer pairing in-
andk,), depending only ork,. Herek is a wave vector of ~teractionV;, to discuss superconductivity in highs materi-
the electron and the layer plane in the reciprocal space is trs with a single layer per unit cell. More generally, we
(ke.k,) plane. Explicit dependence @f, on the number of include here both intralayer and interlayer interactivhy
interacting conducting layers per unit cell was obtained tovhich depend ok andk’. We obtain the general form of the
show its saturation property’ interaction by following the proceduteof expanding it in
In this paper, we will consider the dependence of the ordattice Fourier series i, k;, ky,ky, andk, k;. There is no
der parameters also of,{,k,), which includes planas- and  need to expand the resulting truncated sefle=eping the
d-wave-like pairing contributions, restricting ourselves for first few termg for k andk’ to lie near the Fermi surface.
simplicity to only intralayer pairing of the electrons. We will However, in what follows we make this additional approxi-
examine scenarios in which pure isotrogiavave-like, an- mation only for the sake of illustration. By going over to the
isotropic s-wave-like, and pural-wave-like pairings in the energy representation with variable; (¢,k,) where ¢, k,
layer plane may occur individually, or in combinations, for are the usual cylindrical coordinates, and performing&fie
tetragonal and orthorhombic crystal structures. We also givéntegration near the Fermi surface open in Kjedirection,
expressions foll . and the nature of the order parametées we obtain the following equation to determiifie and the
dependengen each case. For simplicity of presentation, ex-symmetry of the order parameters:

0163-1829/96/5#)/4331(5)/$10.00 54 4331 © 1996 The American Physical Society



4332 A. K. RAJAGOPAL AND SUDHANSHU S. JHA 54
- 2 dgp’ (2md dk] for the orthorhombic unit cell symmetry. Here, for the sake
15T A (ky)=— >, o of illustration we have kept only cogRand cos2’ terms
7 T Jo (27/d)

XNyy (ks b kDA ('K, (2

where
Ay(dk) =[N, (0) 1M T HT)A K pky), 3
134T, = ij dé’ wzm(ueﬁm/kgc)
—10, '3
(4)
and
Moy (DK, 5 Ky =[N3 (0) ¥V 5 (pky; b’ ké)[Ny(O)]”(zs)

Hered is the lattice constant in tredirection(c axis), 7},

corresponding to only one typ@ll(i,kZ) of planard-wave-
like symmetry and have omitted simby2and sin 2’ types of
terms corresponding tdkxky-type symmetry. Similar results
follow for the dkxky symmetry. For tetragonal systems, for
which we have the invariance required by the symmetry,
(p—p+m/2) and (¢'— ' +7/2), we havexgj“?Zd equal to
zero. In this equation, as far as tkg,k, dependence in the
reciprocal layer plane is concerned, the first ter J,OS rep-
resents an isotropis-wave-like pairing interaction, the sec-
ond and third terms with coefficients,s)"* andx'%)?® rep-
resent a purely anisotropis-wave-like pairing interaction,
and the last two terms with coefficienss)™® and A (%)
give the purelyd-wave-like pairing interactions. With Egs.
(6) and(7) in Eq. (2), we find the order parametér;( ok,)

is the effective energy cutoff associated with the pairing in-to be of the general form

teraction, and\;(0) is the density of states in thith layer at

the Fermi surface. To leading orders near the Fermi surface,

we find
Mo (bkzi ' KD =N (B0 ) A5 (856" )coskd cosk,d
FAS3(919") (cokd+oodgd), (O

where, fora=0,1,2,
N9 (hi ) =N %%+ N9 cosapcosap’ + 1\ (3)*(cos4p

+cos4p’)+ Aﬁﬁ?ldcosz;b cos2p’

+1(3%!(cos2p+cos2p’) )
R R
N (13835 + 5A50) BN
s| DEE (o A
Y N N N
)\S%)IZd 0 %?\SZJ),Zd
i 7\\(]?])/2d 0 %)\313),2(1
I Agg)os'
A\(](?)ls
X AS%)OS =0
Ag%)ls :
A
- Aglr)d-

Ay pk,) = A0+ AO15cos4p+ A (D OScogk,d
+A M Scos4p cok,d+ AP cos2p

+AM9cos2p cok,d. 8

ForN layers per unit cell{=1,2, ... N), the coefficients in

the above form of the general order parameter are then de-
termined by a set of @ simultaneous homogeneous linear
equations and'; is determined by the vanishing of the cor-
responding 61X 6N determinant. In a compact matrix no-
tion the set of linear equations can be written as

S T A2
I 0 0
N N N
(13853 +5N55%°) 0 0
0 (13855 + 3291 I\
0 %)‘(Jﬁ)'ld (IJ‘SJJ’J’_%)\S:S)/]-(’)

9
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We will now discuss the various scenarios. The actuall . and the corresponding order parameters will
Case(A). For the orthorhombic unit cell symmetry, the be governed by the solution of the above equations which
form of the coupling constants given by Eg$) and (7)  yields the largest value fof. In the nearest-layer interac-
leads to order parameters with completely mixed symmetryion approximation for the case ™ equivalent layers per
as determined by the one out of six solutions of the f¢8n  unit cell, if in each of the above cases we assume that the
which gives maximunT .. However, for tetragonal unit cell, corresponding intralayer coupling constam‘ﬁ)ﬂ\ﬁ?&a and
with M{92¢=0, @=0,1,2, we find that thel-wave-like order  interlayer coupling constants}?..; =\{f,, T as a function
parameters split off from the rest, except for an additionaPf N is then determined by the relation

term depending ok, . In this case, the solutions are of the
form Te=1.138Wexd — 1/g\"'1,

Ay= A%+ AP Scosap+ A cosk,d O\ = — Nt 2N {ghicod 7/ (N+1)], (19)

+AP1cos4p cok,d (100  obtained earlief-'° Here ®“=40"/kz>T, is the cutoff
temperature for the corresponding pairing interaction {3,
or is negative(attractivg, there is superconducting transition
~ (0)d (1d even in the absence of the interlayer coupling, but interlayer
A;=Ay""cos2p+ Ay cosZp cok,d. (1) coupling always enhancég . The saturation value G, is
governed byg (), .=—\ +2]\ (2] This implies that our
earlier calculations of . as a function olN are still correct
even if the symmetry of the order parameters is the planar
d-wave like or the anisotropis-wave like.
> {[15(Te) 83y + I AL+ N P1A DD =, Case(C). The neglect of all the terms containing linear
J forms, cok,d+cok)d, etc., as discussed in cad), may not
be good for a realistic system with tetragonal or orthorhom-
E {%A(Z)ldAS(?)de[IJ(TC) 5JJ,+%)\(1>1d]A(ﬁ)d}—0 bic symmetry. A better approximation is to neglect all cross
7

W W ’ terms involving the coefficients (", A{2%%, A {2, and

(12) )\g‘j?Zd for a=1,2. In other words, one may assume

In the latter caseT . is determined by the relevant solution of
the set of homogeneous equations

which gives maximunT .

Case (B). If we can neglect all the terms with  \;;=\3%+\ () °cos4p cosap’
Ny (h,¢") and A% A (9% (a=0,1), i.e., when we can
drop all terms containing linear forms like cog2cos 2p/,
cos 4p+cos¢’, and cos,d+cosk.d, then we note that there (0)1d /Ly (0)2d /
is no mixing of the terms with different symmetries in Eq. TAgy7 €02 COSBT Ny (oS + cOS')
EJE;) for the order parameter. In such a cabgjs determined +)\(Jlj),oscoizdcosk;dJr)\(JZJ),OS(coskZdJrcosk;d).

0)2
+\\0?%(cos4p+ cos4p’)

(20

(0)0sy _
Detl5(Te) 035+ 25571=0 (13 In this case, valid for orthorhombic symmetry, the general
for the purely isotropics-wave-like order parametex (%, solutions for the order parameters have the form

Defl5(To) 85y +A01=0 (14) A=A+ AOcos4p+ AP %cosk,d+ AV %os2p,
(21
for the purely anisotropics-wave-like order parameter
Ago)ls cos 4p, involving mixing of different symmetries. For the tetragonal
system in which\(929=0, one finds that one can have pure
DelI,(T.) 8y +)\<Jﬁ),°5]:0 (15)  planard-wave-like symmetry which is not mixed with other

symmetries. In this case, one has
for the order parametek (V% cosk,d,

Ky=APo0s2p, Detl (Te) 85y + A0 =0. (22

Defl5(To) 65y +A1=0 (16)
1)1s In the nearest-layer interaction approximatidn,as a func-

for the order parametex {*° cos 4p coskd, tion of N is again given by the same form as in Ef23),

De[lj(Tc) 5\]‘]/"‘)\5(?]),1(1]:0 (17) 1

_ o T.=1.130 exg — —|,
for the purelyd-wave-like order parameter(®) cos 2p, and N
finally . .
On= Mg + 2N garlcog m/(N+ D)) (23)

Defl5(Ty) 8,y + 229 =0 (18)
SR I The other possible solutions involve mixing of pure isotropic

for the order parametek (M cos2p cosk,d. s-wave-like and anisotropis-wave-like symmetries with
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TABLE |. Pairing interaction functiona j; 33 (@K, ,¢'k;) =N\ ;35 (¢k,,¢'k;) and corresponding possible solutions for intralayer order
parameters\ j;( pk,)=A;(pk,), for orthohombic and tetragonal unit cell structures withayers per unit cell {=1,2,...N).

Ny (Pkz . d'ky)

SolutionsA ;(¢,k,)

General cas€A):

(i) Orthorhombic ()
NO(h,8")+1 (¢, ¢ coskd coid A1-A6:
+1 2 (¢, ¢")(coscd+coskd), with A (054 A (cosap

N9(p,8") =100+ \ (9 cosap cosap’
+ )\33“225(0054;5+ cos4p’)
+2\{9%cos2p coszp’

+AH%cogk,d+ A (M1Scos4p cok,d
+AM9cos2p+A Pdcos2p cok,d

+\{2%Y(cos2p+cos2p’)
«a=0,1,2
(i) Tetragonal (i)
Same as ir(i) above, but withhg‘jzzd=0 AT1-AT4:
A Q04 A (150544
+AM%cod,d+ A Peosap cok,d
AT5 and AT6

Case(B):
Orthorhombic or tetragonal
€]

)\gc;)(qs,qs )+)\JJ,(¢,¢ )cos<zdcoskzd, with

A=A+ \cosap cosap’
+1 9052 cos2p’, a=0,1

A©Pdcos2p+A Mdcos2p cosk,d

B1: A0S
B2: A(Dcos4p
B3: A(M%cok,d
B4: A{MScos4p cok,d
B5: A(Mdcos2p
B6: A(Mdcos2p cok,d

Case(C):
(i) Orthorhombic (0
N0\ D' cosap cosap’ c1_ca:
+2\925(cos4p + cosap’) + 10 cos2p cosap’ A )05 A (O)15¢0545

+11929(cosap+cosap’) + 1) coded codd
+112%(cosd+cod,d)
(i) Tetragonal

©2d_

Same as ir(i), but with 57,

+A P %cogk,d+ A (P%o0s2p

(i)
CT1-CT3:
A (0054 A (D1cos4p+ A (NOScogk,d
CT4: A{M9cos2p

Case(D):
(i) Orthorhombic 0]
AS%)'OS+ )\g%),lscosék]ﬁ cosdp’ D1: A{M%cosk,d
+119%%(cos4p+cosap’) + 10 cos2p cos2p’ D2-Da:
+7 1929 (cos2p+cosap’) + 1\ () P cogd codd A %+ A (P15cosap+A cos2p
(i) Tetragonal (ii)

Same as irfi) above, but with\ {9?*=0.

DT1: A{V%cok,d
DT2: A (V054 A Dscos4ph
DT4: A9cos2p

A;=AP%+APcosap+ AP %cosk,d.

For one layer per unit cell, the correspondig is deter-

mined by that solution of the equation

[1(Te)+ NP0 (To) + MOS0 (To)+ 30 0%]

—3(NOZ)2[1(Te) + 3A 0]
— %()\(2)05)2“ (To)+ %)\(0)13] =0,

which gives maximunil;. This can also be generalized to

the case oN equivalent layers per unit cell.

(25

Case(D). The situation discussed in the cd€® simpli-
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fies further if the last term in Eq14) involving the coeffi- [1(Te)+NO0S][1(T,) + 1 \O@15]— 1 (\(025)2—,
cients)\gzj),oS is negligible. In other words, for the orthorhom- (31
bic case we assume which gives its maximum value.
(0)0s | « (0)1s , All the results discussed above are collected together in
Ny =Nyy N,y cosdp cosdp Table I, where only significantly different and distinct types

of solutions are displayed. It should be emphasized that the
layer structure adds extra features to the purely two-
dimensional discussions of tlse andd-wave-like solutions

for the order parameters. In general, for orthorhombic crystal
(26) symmetry one can obtain mixed-wave-like, isotropic
s-wave-type, and anisotropgwave-type of solutions. For a
tetragonal crystal symmetry, thbwave-like order param-
X,=AM%cosk,d, Detl,(Te) 8,y + %)\g?oﬂ -0 eters do not mix with either the isotropsewave-like or the

anisotropics-wave-like order parameters.

+\\0%%(cos4p+ cosap’ ) + xgg),ldcoszﬁ cos2p’

+1\9%%(cos2p+cos2p’) + A | %cosk,dcosk, d.

Now, one finds that one can either have the pure solution

@7 In summary, our theoretical analysis shows that in
or the composite solution of the form high-T. materials with orthorhombic unit cell structure,
_ d-wave-like order parameters are likely to have an admixture
K= AP+ AP cosap+ AP cos2p, (28)  of s-wave-like symmetries. In the case of tetragonal systems,

one can either havd-wave-like symmetry ors-wave-like
symmetry, without any mixing. For both symmetries of the
unit cell, in general there are correction terms which take
into account the additional variation of the order parameters
with k, , the wave vector in the direction perpendicular to the
reciprocal layer planes. We hope that these results are taken
into account while making any careful analygisf experi-
mental results. We plan to consider later a more general for-
mulation of the problem without making the expansionKor
andk’ to lie near the Fermi surface.

in which there is a complete mixing of the isotropic planar
s-wave-like, the anisotropic-wave-like, and thed-wave-
like symmetries.

For the tetragonal system in WhiNﬁ%’,Zd:O, apart from
the solution of the fornt21), the mixing ofd-wave-like sym-
metry with other symmetries in Eq22) is removed. One
then finds the possibility of either putkwave-like symme-
try, with

K,=40%0s26, Defly(To) 8y + N0 =0, (29
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as in Egs.(16) and (17), or the mixed isotropic and aniso-
tropic s-wave-like solutions

B,= AP0 A@15c054p, (30
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