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The wave-vector dependence of superconducting order parameters and the corresponding transition tem-
perature in three-dimensional layered metals are investigated. It includes planar anisotropics-wave-like as well
asd-wave-like pairing contributions, but for simplicity only intralayer pairing of electrons has been considered
for tetragonal and orthorhombic crystal structures, relevant to high-Tc materials. It is shown that for the
orthorhombic case order parameters are likely to have mixed symmetry, whereas in tetragonal structures it is
possible to have only planard-wave-like symmetry with a possible correction term with an additional wave-
vector dependence in the direction perpendicular to the reciprocal layer plane.@S0163-1829~96!02530-1#

Recent Josephson-coupling experiments1–3 probing the
symmetry of the order parameter in high-Tc superconductors
have provided strong evidence for a planard-wave-like
(dk

x
22k

y
2-type! pairing in contrast to an almost isotropic

s-wave-like pairing found in most conventional supercon-
ductors. There are still other experiments which support an-
isotropic s-wave-like pairing.3,4 Based on the Hubbard
model and spin-fluctuation exchange mechanism for pairing,
Pines5 was one of the first to argue for thed-wave-like su-
perconductivity in high-Tc materials. For a review of more
recent work on d-wave-like superconductivity, see
Scalapino.6 Most of these investigations, however, do not
consider explicitly the three-dimensional layer structure
present in these systems. On the other hand, we7 have al-
ready developed a general microscopic framework for de-
scribing spin-singlet pairing theory of superconductivity in
layered systems which included both intralayer and inter-
layer pairing interactions. But while deriving expressions for
Tc and the corresponding order parameters, in our earlier
work we focused only on the completely isotropics-wave-
like order parameters in the layer planes~independent ofkx
andky!, depending only onkz . Herek

W is a wave vector of
the electron and the layer plane in the reciprocal space is the
(kx ,ky) plane. Explicit dependence ofTc on the number of
interacting conducting layers per unit cell was obtained to
show its saturation property.8,9

In this paper, we will consider the dependence of the or-
der parameters also on (kx ,ky), which includes planars- and
d-wave-like pairing contributions, restricting ourselves for
simplicity to only intralayer pairing of the electrons. We will
examine scenarios in which pure isotropics-wave-like, an-
isotropic s-wave-like, and pured-wave-like pairings in the
layer plane may occur individually, or in combinations, for
tetragonal and orthorhombic crystal structures. We also give
expressions forTc and the nature of the order parameters~kW

dependence! in each case. For simplicity of presentation, ex-

plicit expressions are given here for systems with one con-
ducting layer per unit cell or, whenever possible, forN
equivalent layers per unit cell.

Following our previous work,7,10 for intralayer spin-
singlet paringTc is determined by the simplified equation

DJ~kW !52 (
J8,kW8

VJJ8~k
W ,kW8!DJ8~k

W8!
tanh@jJ8~k

W8!/2kBTc#

2jJ8~k
W8!

,

~1!

where jJ8(k
W8) is the single-particle electron energy in the

layerJ8 as measured from the Fermi energy. The interaction
parameter VJJ8(k

W ,kW8) stands for the matrix element
VJJ,J8J8~k

W ,kW8! describing the scattering of two electrons in
the states (J8,kW8↑), (J8,2kW8↓) to (J,kW↑), (J,2kW↓), and
DJ(k

W ) stands for the intralayer order parameterDJJ(k
W ) for

the layerJ. In our earlier calculations7–9 for an isotropic
s-wave-like pairing in the plane, we assumedVJJ8(k

W ,kW8) to
depend only onkz and kz8 . Several authors

5,6,10,11have al-
ready constructed a planard-wave-like intralayer pairing in-
teractionVJJ to discuss superconductivity in high-Tc materi-
als with a single layer per unit cell. More generally, we
include here both intralayer and interlayer interactionsVJJ8
which depend onkW andkW8. We obtain the general form of the
interaction by following the procedure7 of expanding it in
lattice Fourier series inkx ,kx8, ky ,ky8, andkz ,kz8. There is no
need to expand the resulting truncated series~keeping the
first few terms! for kW and kW8 to lie near the Fermi surface.
However, in what follows we make this additional approxi-
mation only for the sake of illustration. By going over to the
energy representation with variables (jJ ,f,kz) wheref, kz
are the usual cylindrical coordinates, and performing thejJ8
integration near the Fermi surface open in thekz8 direction,
we obtain the following equation to determineTc and the
symmetry of the order parameters:
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I J~Tc!D̃J~fkz!52(
J8

E
0

2p df8

2p E
0

2p/d dkz8

~2p/d!

3lJJ8~fkz ;f8kz8!D̃J8~f8kz8!, ~2!

where

D̃J~fkz!5@NJ~0!#1/2I J
21~Tc!DJ~fkz!, ~3!

I J
21~Tc!5E

2\VJ

\VJ
dj8

tanh~j8/2kBTc!

2j8
[ ln~1.13\VJ /kBTc!

~4!

and

lJJ8~fkz ;f8kz8!5@NJ~0!#1/2VJJ8~fkz ;f8kz8!@NJ8~0!#1/2.
~5!

Hered is the lattice constant in thez direction~c axis!, \VJ
is the effective energy cutoff associated with the pairing in-
teraction, andNJ~0! is the density of states in theJth layer at
the Fermi surface. To leading orders near the Fermi surface,
we find

lJJ8~fkz ;f8kz8!.lJJ8
~0!

~f;f8!1lJJ8
~1!

~f;f8!coskzd coskz8d

1lJJ8
~2!

~f;f8!~coskzd1coskz8d!, ~6!

where, fora50,1,2,

lJJ8
~a!

~f;f8!5lJJ8
~a!0s

1lJJ8
~a!1scos4fcos4f81lJJ8

~a!2s
~cos4f

1cos4f8!1lJJ8
~a!1dcos2f cos2f8

1lJJ8
~a!2d

~cos2f1cos2f8! ~7!

for the orthorhombic unit cell symmetry. Here, for the sake
of illustration we have kept only cos2f and cos2f8 terms
corresponding to only one type (dk

x
22k

y
2) of planard-wave-

like symmetry and have omitted sin 2f and sin 2f8 types of
terms corresponding todkxky-type symmetry. Similar results

follow for the dkxky symmetry. For tetragonal systems, for
which we have the invariance required by the symmetry,
~f→f1p/2! and ~f8→f81p/2!, we havelJJ8

(a)2d equal to
zero. In this equation, as far as thekx ,ky dependence in the
reciprocal layer plane is concerned, the first termlJJ8

(a)0s rep-
resents an isotropics-wave-like pairing interaction, the sec-
ond and third terms with coefficientslJJ8

(a)1s andlJJ8
(a)2s rep-

resent a purely anisotropics-wave-like pairing interaction,
and the last two terms with coefficientslJJ8

(a)1d and lJJ8
(a)2d

give the purelyd-wave-like pairing interactions. With Eqs.
~6! and ~7! in Eq. ~2!, we find the order parameterD̃J(fkz)
to be of the general form

D̃J~fkz!5DJ
~0!0s1DJ

~0!1scos4f1DJ
~1!0scoskzd

1DJ
~1!1scos4f coskzd1DJ

~0!dcos2f

1DJ
~1!dcos2f coskzd. ~8!

ForN layers per unit cell (J51,2, . . . ,N), the coefficients in
the above form of the general order parameter are then de-
termined by a set of 6N simultaneous homogeneous linear
equations andTc is determined by the vanishing of the cor-
responding 6N36N determinant. In a compact matrix no-
tion the set of linear equations can be written as

(
J8 3

~ I JdJJ81lJJ8
~0!0s

!

lJJ8
~0!2s

lJJ8
~2!0s

lJJ8
~2!2s

lJJ8
~0!2d

lJJ8
~2!2d

1
2lJJ8

~0!2s

~ I JdJJ81
1
2lJJ8

~0!1s
!

1
2lJJ8

~2!2s

1
2lJJ8

~2!1s

0

0

1
2lJJ8

~2!0s

1
2lJJ8

~2!2s

~ I JdJJ81
1
2lJJ8

~1!0s
!

1
2lJJ8

~1!2s

1
2lJJ8

~2!2d

1
2lJJ8

~1!2d

lJJ8
~2!2s

1
4lJJ8

~2!1s

1
4lJJ8

~1!2s

~ I JdJJ81
1
4lJJ8

~1!1s
!

0

0

1
2lJJ8

~1!2d

0

1
2lJJ8

~2!2d

0

~ I JdJJ81
1
2lJJ8

~0!1d
!

1
2lJJ8

~2!1d

lJJ8
~2!2d

0

1
4lJJ8

~1!2d

0

1
4lJJ8

~2!1d

~ I JdJJ81
1
4lJJ8

~1!1d
!

4
33

DJ8
~0!0s

DJ8
~0!1s

DJ8
~1!0s

DJ8
~1!1s

DJ8
~0!d

DJ8
~1!d

4 50. ~9!
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We will now discuss the various scenarios.
Case~A!. For the orthorhombic unit cell symmetry, the

form of the coupling constants given by Eqs.~6! and ~7!
leads to order parameters with completely mixed symmetry
as determined by the one out of six solutions of the form~8!
which gives maximumTc . However, for tetragonal unit cell,
with lJJ8

(a)2d
50, a50,1,2, we find that thed-wave-like order

parameters split off from the rest, except for an additional
term depending onkz . In this case, the solutions are of the
form

D̃J5DJ
~0!0s1DJ

~0!1scos4f1DJ
~1!0scoskzd

1DJ
~1!1scos4f coskzd ~10!

or

D̃J5DJ
~0!dcos2f1DJ

~1!dcos2f coskzd. ~11!

In the latter case,Tc is determined by the relevant solution of
the set of homogeneous equations

(
J8

$@ I J~Tc!dJJ81
1
2lJJ8

~0!1d
#DJ8

~0!d
1 1

4lJJ8
~2!1dDJ8

~1!d%50,

(
J8

$ 1
2lJJ8

~2!1dDJ8
~0!d

1@ I J~Tc!dJJ81
1
4lJJ8

~1!1d
#DJ8

~1!d%50,

~12!

which gives maximumTc .
Case ~B!. If we can neglect all the terms with

lJJ8
2 (f,f8) and lJJ8

(a)2s ,lJJ8
(a)2d ~a50,1!, i.e., when we can

drop all terms containing linear forms like cos 2f1cos 2f8,
cos 4f1cosf8, and coskzd1coskz8d, then we note that there
is no mixing of the terms with different symmetries in Eq.
~8! for the order parameter. In such a case,Tc is determined
by

Det@ I J~Tc!dJJ81lJJ8
~0!0s

#50 ~13!

for the purely isotropics-wave-like order parameterD J
(0)0s,

Det@ I J~Tc!dJJ81lJJ8
~0!1s

#50 ~14!

for the purely anisotropics-wave-like order parameter
D J
(0)1s cos 4f,

Det@ I J~Tc!dJJ81lJJ8
~1!0s

#50 ~15!

for the order parameterD J
(1)0s coskzd,

Det@ I J~Tc!dJJ81lJJ8
~1!1s

#50 ~16!

for the order parameterD J
(1)1s cos 4f coskzd,

Det@ I J~Tc!dJJ81lJJ8
~0!1d

#50 ~17!

for the purelyd-wave-like order parameterD J
(0)d cos 2f, and

finally

Det@ I J~Tc!dJJ81lJJ8
~1!d

#50 ~18!

for the order parameterD J
(1)d cos2f coskzd.

The actualTc and the corresponding order parameters will
be governed by the solution of the above equations which
yields the largest value forTc . In the nearest-layer interac-
tion approximation for the case ofN equivalent layers per
unit cell, if in each of the above cases we assume that the
corresponding intralayer coupling constantsl JJ

(a)5l intra
~a! and

interlayer coupling constantsl J,J61
(a) 5l inter

~a! , Tc as a function
of N is then determined by the relation

Tc51.13Q~a!exp@21/gN
~a!#,

gN
~a!52l intra

~a! 12ul inter
~a! ucos@p/~N11!#, ~19!

obtained earlier.8–10 Here Q~a!5\V~a!/kB@Tc is the cutoff
temperature for the corresponding pairing interaction. Ifl intra

~a!

is negative~attractive!, there is superconducting transition
even in the absence of the interlayer coupling, but interlayer
coupling always enhancesTc . The saturation value ofTc is
governed bygN→`

(a) 52l intra
~a! 12ul inter

~a! u. This implies that our
earlier calculations ofTc as a function ofN are still correct
even if the symmetry of the order parameters is the planar
d-wave like or the anisotropics-wave like.

Case~C!. The neglect of all the terms containing linear
forms, coskzd1coskz8d, etc., as discussed in case~B!, may not
be good for a realistic system with tetragonal or orthorhom-
bic symmetry. A better approximation is to neglect all cross
terms involving the coefficientslJJ8

(a)1s , lJJ8
(a)2s , lJJ8

(a)1d , and

lJJ8
(a)2d for a51,2. In other words, one may assume

lJJ85lJJ8
~0!0s

1lJJ8
~0!1scos4f cos4f8

1lJJ8
~0!2s

~cos4f1cos4f8!

1lJJ8
~0!1dcos2f cos2f81lJJ8

~0!2d
~cos2f1cos2f8!

1lJJ8
~1!0scoskzdcoskz8d1lJJ8

~2!0s
~coskzd1coskz8d!.

~20!

In this case, valid for orthorhombic symmetry, the general
solutions for the order parameters have the form

D̃J5DJ
~0!0s1DJ

~0!1scos4f1DJ
~1!0scoskzd1DJ

~0!dcos2f,
~21!

involving mixing of different symmetries. For the tetragonal
system in whichl(0)2d50, one finds that one can have pure
planard-wave-like symmetry which is not mixed with other
symmetries. In this case, one has

D̃J5DJ
~0!dcos2f, DetuI J~Tc!dJJ81

1
2lJJ8

~0!1du50. ~22!

In the nearest-layer interaction approximation,Tc as a func-
tion of N is again given by the same form as in Eq.~13!,

Tc51.13Q~0!1d expF2
1

gN
G ,

gN52l intra
~0!1d12ul inter

~0!1ducos@p/~N11!#. ~23!

The other possible solutions involve mixing of pure isotropic
s-wave-like and anisotropics-wave-like symmetries with

54 4333ANISOTROPIC ORDER PARAMETERS WITHs- AND d- . . .



D̃J5DJ
~0!0s1DJ

~0!1scos4f1DJ
~1!0scoskzd. ~24!

For one layer per unit cell, the correspondingTc is deter-
mined by that solution of the equation

@ I ~Tc!1 1
2l~1!0s#@ I ~Tc!1l~0!0s#@ I ~Tc!1 1

2l~0!1s#

2 1
2 ~l~0!2s!2@ I ~Tc!1 1

2l~1!0s#

2 1
2 ~l~2!0s!2@ I ~Tc!1 1

2l~0!1s#50, ~25!

which gives maximumTc . This can also be generalized to
the case ofN equivalent layers per unit cell.

Case~D!. The situation discussed in the case~C! simpli-

TABLE I. Pairing interaction functionslJJ,J8J8(fkz ,f8kz8)[lJJ8(fkz ,f8kz8) and corresponding possible solutions for intralayer order
parametersD̃JJ(fkz)[D̃J(fkz), for orthohombic and tetragonal unit cell structures withN layers per unit cell (J51,2,...,N).

lJJ8(fkz ,f8kz8) SolutionsD̃J(f,kz)

General case~A!:
~i! Orthorhombic ~i!

lJJ8
(0) (f,f8)1lJJ8

(1) (f,f8)coskzd coskz8d A1–A6:

1lJJ8
(2) (f,f8)(coskzd1coskz8d), with D J

(0)0s1D J
(0)1scos4f

lJJ8
(a)(f,f8)5lJJ8

(a)0s
1lJJ8

(a)1scos4f cos4f8 1DJ
(1)0scoskzd1D J

(1)1scos4f coskzd

1lJJ8
(a)2s(cos4f1cos4f8) 1DJ

(0)dcos2f1DJ
(1)dcos2f coskzd

1lJJ8
(a)1dcos2f cos2f8

1lJJ8
(a)2d(cos2f1cos2f8)

a50,1,2

~ii ! Tetragonal ~ii !

Same as in~i! above, but withlJJ8
(a)2d

50 AT1–AT4:

D J
(0)0s1D J

(0)1scos4f

1DJ
(1)0scoskzd1D J

(1)cos4f coskzd

AT5 and AT6

DJ
(0)dcos2f1DJ

(1)dcos2f coskzd

Case~B!:

Orthorhombic or tetragonal

l
JJ

(0)(f,f8)1l
JJ8
(1)

(f,f8)coskzdcoskz8d , with
B1: DJ

(0)0s

B2: DJ
(0)1scos4f

LJJ8
(a).LJJ8

(a)0s
1lJJ8

(a)1scos4f cos4f8 B3: DJ
(1)0scoskzd

1lJJ8
(a)1dcos2f cos2f8, a50,1 B4: DJ

(1)1scos4f coskzd

B5: DJ
(0)dcos2f

B6: DJ
(1)dcos2f coskzd

Case~C!:

~i! Orthorhombic ~i!

lJJ8
(0)0s

1lJJ8
(0)1scos4f cos4f8 C1–C4:

1lJJ8
(0)2s(cos4f1cos4f8)1lJJ8

(0)1dcos2f cos2f8 D J
(0)0s1D J

(0)1scos4f

1lJJ8
(0)2d(cos2f1cos2f8)1lJJ8

(1)0scoskzd coskz8d 1DJ
(1)0scoskzd1D J

(0)dcos2f

1lJJ8
(2)0s(coskzd1coskz8d)

~ii ! Tetragonal ~ii !

Same as in~i!, but with lJJ8
(0)2d

50. CT1–CT3:

D J
(0)0s1D J

(0)1scos4f1DJ
(1)0scoskzd

CT4: DJ
(0)dcos2f

Case~D!:

~i! Orthorhombic ~i!

LJJ8
(0)0s

1lJJ8
(0)1scos4f cos4f8 D1: DJ

(1)0scoskzd

1lJJ8
(0)2s(cos4f1cos4f8)1lJJ8

(0)1dcos2f cos2f8 D2–D4:

1lJJ8
(0)2d(cos2f1cos2f8)1lJJ8

(1)0scoskzd coskz8d D J
(0)0s1D J

(01scos4f1DJ
(0)dcos2f

~ii ! Tetragonal ~ii !

Same as in~i! above, but withlJJ8
(0)2d

50. DT1: DJ
(1)0scoskzd

DT2: D J
(0)0s1D J

(0)1scos4f

DT4: DJ
(0)dcos2f
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fies further if the last term in Eq.~14! involving the coeffi-
cientslJJ8

(2)0s is negligible. In other words, for the orthorhom-
bic case we assume

lJJ85lJJ8
~0!0s

1lJJ8
~0!1scos4f cos4f8

1lJJ8
~0!2s

~cos4f1cos4f8!1lJJ8
~0!1dcos2f cos2f8

1lJJ8
~0!2d

~cos2f1cos2f8!1lJJ8
~1!0scoskzdcoskz8d.

~26!

Now, one finds that one can either have the pure solution

D̃J5DJ
~1!0scoskzd, DetuI J~Tc!dJJ81

1
2lJJ8

~1!0su50
~27!

or the composite solution of the form

D̃J5DJ
~0!0s1DJ

~0!1scos4f1DJ
~0!dcos2f, ~28!

in which there is a complete mixing of the isotropic planar
s-wave-like, the anisotropics-wave-like, and thed-wave-
like symmetries.

For the tetragonal system in whichlJJ8
(0)2d

50, apart from
the solution of the form~21!, the mixing ofd-wave-like sym-
metry with other symmetries in Eq.~22! is removed. One
then finds the possibility of either pured-wave-like symme-
try, with

D̃J5DJ
~0!dcos2f, DetuI J~Tc!dJJ81

1
2lJJ8

~0!1du50, ~29!

as in Eqs.~16! and ~17!, or the mixed isotropic and aniso-
tropic s-wave-like solutions

D̃J5DJ
~0!0s1DJ

~0!1scos4f. ~30!

For one layer per unit cell,Tc in the latter case is determined
by the solution of the equation

@ I ~Tc!1l~0!0s#@ I ~Tc!1 1
2 l~0!1s#2 1

2 ~l~0!2s!250,
~31!

which gives its maximum value.
All the results discussed above are collected together in

Table I, where only significantly different and distinct types
of solutions are displayed. It should be emphasized that the
layer structure adds extra features to the purely two-
dimensional discussions of thes- andd-wave-like solutions
for the order parameters. In general, for orthorhombic crystal
symmetry one can obtain mixedd-wave-like, isotropic
s-wave-type, and anisotropics-wave-type of solutions. For a
tetragonal crystal symmetry, thed-wave-like order param-
eters do not mix with either the isotropics-wave-like or the
anisotropics-wave-like order parameters.

In summary, our theoretical analysis shows that in
high-Tc materials with orthorhombic unit cell structure,
d-wave-like order parameters are likely to have an admixture
of s-wave-like symmetries. In the case of tetragonal systems,
one can either haved-wave-like symmetry ors-wave-like
symmetry, without any mixing. For both symmetries of the
unit cell, in general there are correction terms which take
into account the additional variation of the order parameters
with kz , the wave vector in the direction perpendicular to the
reciprocal layer planes. We hope that these results are taken
into account while making any careful analysis12 of experi-
mental results. We plan to consider later a more general for-
mulation of the problem without making the expansion forkW

andkW8 to lie near the Fermi surface.
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