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A microscopic model of nonreciprocal optical effects in antiferromagnets is developed by considering the
case of Cr2O3 where such effects have been observed. These effects are due to adirect coupling between light
and the antiferromagnetic order parameter. This coupling is mediated by the spin-orbit interaction and involves
an interplay between the breaking of inversion symmetry due to the antiferromagnetic order parameter and the
trigonal field contribution to the ligand field at the magnetic ion. We evaluate the matrix elements relevant for
the nonreciprocal second harmonic generation and gyrotropic birefringence.@S0163-1829~96!05322-2#

I. INTRODUCTION

The study of optical phenomena in magnetic substances
has always been an interesting area of research. Optical ef-
fects exhibited by magnetic substances can be classified
broadly into two categories, reciprocal and nonreciprocal.1

Reciprocal optical phenomena are those that cannot distin-
guish between magnetic states that are related to one another
by time reversal. Typical examples of such phenomena are
those that involve scattering of light by magnetic excitations.
Nonreciprocal phenomena, on the other hand, can distinguish
between two magnetic states that are related to each other by
time reversal. A classic example of such a phenomenon is
the Faraday effect discovered by Faraday in the last century.
The Faraday effect in ferromagnets, for instance, appears as
a rotation of the plane of polarization of light which is inci-
dent along the axis of magnetization. This rotation is nonre-
ciprocal in the sense that it changes sign on reversing the
direction of magnetization~which is equivalent to time re-
versal!. Such an effect can be understood in terms of an
interaction between the internal molecular field of the ferro-
magnet and the incident electromagnetic radiation mediated
by the spin-orbit coupling.2 Clearly, such an effect would not
only be exhibited by ferromagnets but by any substance that
has a net~nonzero! magnetic moment such as ferrimagnets
or paramagnets where a magnetic moment is induced by the
application of an external field.

It is then but natural to ask what happens in the case of
antiferromagnets. At first sight, it would seem that it is im-
possible for light to distinguish between states that are re-
lated by time reversal as, in this case, there is no net mag-
netic moment~i.e., the total molecular field is zero unlike in
ferromagnets!. However, this is not true. In fact, it has been
known for a long time from symmetry arguments that certain
classes of antiferromagnets can show a variety of nonrecip-
rocal phenomena,3,4 although till recently, there have been no
reports of experimental observations of such phenomena.
The utility of such experiments, where possible, can hardly
be overemphasized since experiments such as Raman scat-
tering, etc., only probe the antiferromagnetic structureindi-
rectly by coupling to the magnetic excitations rather than the
magnetic ordering itself.5

In this context therefore, the discovery of nonreciprocal
optical effects below the Ne´el temperatureTN in optical ex-

periments on Cr2O3 ~Refs. 6 and 7! comes as a breakthrough
in the study of antiferromagnetic ordering by light.
Krichevtsovet al.6 reported the experimental observation of
spontaneous nonreciprocal rotation and circular dichroism
below the Ne´el temperature of Cr2O3 . Fiebig et al.

7 found
that antiferromagnetic domains could be observeddirectlyby
nonreciprocal second-harmonic generation~SHG!, leading to
photographs of antiferromagnetic domains.8,9 These experi-
ments show that light can indeed couple directly to the anti-
ferromagnetic order parameter, thereby leading to nonrecip-
rocal effects. As mentioned earlier, though such a coupling
was anticipated from symmetry considerations, no micro-
scopic mechanism has been presented so far.

In this paper, we present, in detail, a microscopic mecha-
nism that describes all nonreciprocal optical effects by con-
sidering the case of Cr2O3 where such effects have been
observed experimentally. In an earlier paper,10 we showed
that all nonreciprocal effects in Cr2O3 can be explained by
the fact that electric dipole transitions are allowed in
Cr2O3 below the Ne´el temperature. Here we highlight the
actual evaluation of the matrix elements relevant for the non-
reciprocal nonlinear susceptibilities. The evaluation of the
matrix elements is performed within a cluster model for
Cr2O3 , which contains the full crystal symmetry of Cr2O3

and which allows the orders of magnitude of all matrix ele-
ments contributing to the nonreciprocal phenomena in
Cr2O3 to be predicted. We apply the microscopic model to
the observed phenomenon of SHG~Ref. 7! and explain how
antiferromagnetic domains can be distinguished experimen-
tally. We also apply our model to another nonreciprocal ef-
fect seen experimentally in Cr2O3 viz., gyrotropic
birefringence6 and solve the long-standing question regard-
ing its magnitude. Our model can also be used to describe
nonreciprocal optical effects in other antiferromagnets where
inversion symmetry is broken belowTN .

The paper is organized as follows. In Sec. II, we illustrate
how symmetry arguments can be used to study nonreciprocal
effects by considering the macroscopic theory of SHG in
Cr2O3 . In Sec. III, we present the microscopic theory of
SHG which allows us to obtain all polarization selection
rules and magnitudes of the nonlinear susceptibilities. In Sec.
IV, we use our microscopic model to explain the phenom-
enon of gyrotropic birefringence and the associated magne-
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toelectric effect. A summary of our results and conclusions
are presented in Sec. V.

II. MACROSCOPIC THEORY

A clue to the origin of nonreciprocal effects can be ob-
tained from macroscopic~symmetry! considerations of the
susceptibility tensors. The optical properties of a medium are
characterized by linear and nonlinear susceptibility tensors.
If the susceptibility tensors are known for a given medium
up to a certain ordern, then, at least in principle, the
nth-order nonlinear optical effects in the medium can be pre-
dicted from Maxwell’s equations. Physically, the susceptibil-
ity is related to the microscopic structure of the medium and
can be properly evaluated only by doing a full quantum-
mechanical calculation as we will show in the next section.
Nevertheless, one can get some information about the sus-
ceptibilities just from symmetry considerations as dictated by
Neumann’s principle, which states11 that any symmetry
which is exhibited by the point group of the crystal is pos-
sessed by every physical property of the crystal. Then, to
investigate the effect of crystal symmetry on the components
of the susceptibility tensors, it is necessary to enforce the
requirement that the tensor be invariant under all the permis-
sible symmetry operators appropriate to the particular crystal
class. Accordingly, some tensor elements are zero or are re-
lated to others, thereby reducing the total number of indepen-
dent tensor elements. The application of Neumann’s prin-
ciple to four-dimensional space time remains valid only for
static properties. For dynamic processes, like nonreciprocal
SHG, where there is a preferred direction of time, one con-
siders only those symmetry operations that do not include
time reversal in classifying the allowed tensors, i.e., only the
spatial symmetry is used to simplify the form of the suscep-
tibility tensors. Though one can still classify the tensors as
i andc ~time-symmetric/antisymmetric! tensors, one cannot
use this classification to obtain those that are allowed. To
illustrate these notions, let us now consider the macroscopic
theory of SHG in Cr2O3 .

7 We shall consider in detail the
case where the spins are oriented parallel to the crystallo-
graphicz axis and laser light propagates along thez direction
and then we shall generalize to the case of arbitrary direction
for the orientation of the spins and for the propagation of the
laser light.

A. Spins and laser light parallel to thez axis

Above the Ne´el temperature,TN.307 K, Cr2O3 crystal-
lizes in the centrosymmetric point groupD3d . The four
Cr31 ions in the unit cell occupy equivalentc positions
along the 3z ~optic! axis. Since this structure has a center of
inversion, parity considerations forbid electric dipole transi-
tions in SHG. Magnetic dipole transitions that are related to
the existence of an axial tensor of odd rank, or electric quad-
rupole transitions related to the existence of a polar tensor of
even rank are however allowed. BelowTN , the spins of the
Cr31 ions orient along thez axis. The spin ordering breaks
time-reversal symmetryR and as SHG is a dynamic process,
only symmetry operations of the crystal that do not include
Rmay be used to classify the allowed tensors for the suscep-
tibilities. For Cr2O3 , the remaining invariant subgroup is

D3 . New tensors are allowed in this point group, for in-
stance, a polar tensor of odd rank, that allow electric dipole
transitions in SHG.

From Maxwell’s equations, the source term correspond-
ing to SHG can be derived by considering the contributions
to ~nonlinear! magnetization,M (2v)5e0cg (2v):E(v)E(v) and
polarization, P(2v)5e0x

(2v):E(v)E(v), in the point group
D3 . In general, one should also consider contributions to
nonlinear susceptibilities related to electric quadrupole tran-
sitions, viz.,Q(2v)5(2 ice0/2v)x̃ (2v):E(v)E(v). Since the
basic physics associated with such transitions is not different
from the magnetic dipole transitions, we will in the follow-
ing concentrate on the electric and magnetic dipole contribu-
tions to the nonlinear susceptibilities. If we assume that laser
light propagates along the optic axis, there is only one inde-
pendent component gm[gyyy52gyxx52gxyx
52gxxy of the nonlinear magnetic susceptibility~axial ten-
sor of third rank! and analogously for the nonlinear electric
susceptibility ~polar tensor of third rank!,
xe[xyyy52xyxx52xxyx52xxxy . The source term
S(r ,t) in the wave equation,

@¹3~¹3 !1~1/c2!]2/]t2#E~r ,t !52S~r ,t !, ~1!

can be written in a dipole expansion as12

S~r ,t !5m0S ]2P~r ,t !

]t2
1¹3

]M ~r ,t !

]t
2¹

]2Q~r ,t !

]t2
1 . . . D .

~2!

If we now assume thatE, P, andM can be decomposed in a
set of plane waves and consider a circular basis with
E5E1ê11E2ê21Ezêz , whereê65(1/A2)(êx6 i êy), one
obtains~note the different basis choice with respect to Refs.
7 and 10!,

S5S S1

S2

Sz
D 5

4A2v2

c2 S ~gm2 ixe!E2
2

~gm1 ixe!E1
2

0
D , ~3!

where\v is the energy of the incoming light beam. Note
that incoming right circularly polarized light (E1) leads to
left circularly polarized light (E2) and vice versa in SHG.
Above TN , the electric dipole contributions disappear
(xe[0) and therefore the SHG intensitiesI6 are identical,
while below TN , (xeÞ0) and the intensities I6

}ugm6 ixeu2E7
4 are different for right and left circularly po-

larized light, as observed experimentally.7 As the tensorx
appears only belowTN , it is natural to assume that it is
proportional toD(T), the antiferromagnetic order parameter.
Nonreciprocal SHG can then be understood as arising from
an interference betweengm andxe .

B. Spins and laser light in arbitrary directions

An extended study of SHG in Cr2O3 can be carried out
by considering the propagation of light and the orientation of
the spins in the crystal to be arbitrary, the motivation of such
a study being the fact that application of an external mag-
netic field causes the spins to orient along different direc-
tions. The spin-flop phase which occurs in Cr2O3 when a
static magnetic field is applied along thez direction can be

434 54V. N. MUTHUKUMAR, ROSER VALENTÍ, AND CLAUDIUS GROS



studied using these results. In Table I, we present the results
of the macroscopic symmetry analysis belowTN for light
propagating along thez, y, and x directions and for spins
oriented parallel toz, y, andx axis. The three components of
the source term are indicated for the various cases. Note that,
in the first row which corresponds to the case that the spins
are aligned parallel to thez axis, the interference effect oc-
curring for light propagating along thez direction is absent
when light propagates along they and x directions, as has
been verified experimentally.13

When the spins are aligned along thez, y, andx direc-
tions the invariant point subgroups of crystal symmetries are
D3 , C1h , andC2 , respectively. Table I contains the results
for the source term components for all three possibilities.
Table II contains the components of the source term corre-
sponding to electric quadrupole transitions for light propa-
gating along thez, y, and x directions and spins aligned
parallel to thez axis.

III. MICROSCOPIC THEORY OF SECOND
HARMONIC GENERATION

The macroscopic theory discussed so far is based purely
on symmetry considerations. It can neither provide magni-

tudes of the components of the magnetic (g) and electric
(x) susceptibilities nor can it specify the details of the inter-
action and the origin of the coupling between light and the
antiferromagnetic order parameter. Both these can be ob-
tained only from a microscopic approach which is described
below. In what follows, we consider in detail the case when
the spins are aligned parallel to thez axis and light propa-
gates along the same direction. This is the most representa-
tive case for the observation of nonreciprocal phenomena in
Cr2O3 . Elsewhere, we have shown that nonreciprocal ef-
fects can be understood by the fact that electric dipole tran-
sitions are allowed belowTN .

10 We use this in calculating
the nonlinear susceptibilities of Cr2O3 . The method of cal-
culating nonlinear susceptibilities of dielectric media was de-
veloped by Armstrong and co-workers.14 In this approach,
the current density induced in the system by incident elec-
tromagnetic radiation is calculated using semiclassical per-
turbation theory.

Let us consider the electromagnetic field to be a superpo-
sition of three harmonic waves whose frequenciesv i ,
i51,2,3, satisfy the conditionv35v11v2 . We choose the
vector potential of this field to be

TABLE I. Predictions for the components of the source termS from macroscopic symmetry considerations. A constant term 4v2/c2 has
here been omitted for simplicity. The three columns are the predictions for light incident inz, y, andx directions, respectively. The three
rows are for the moment of the Cr31 spins aligned parallel to the crystallographicz, y, andx axis, respectively.g i ( i5m,m1 ,m2,1) and
x i ( i5e,e1 ,e2 ,a,a1 ,a2 ,b,b1 ,b2,1,2,3,. . . ,10) correspond to the remaining independent components for the magnetic and electric suscep-
tibilities, respectively. See the appendix for an explicit account of these components.

Direction of incident light
z y x

z S gm~Ex
22Ey

2!22xeExEy

2xe~Ex
22Ey

2!22gmExEy

0
D S 0

2~xa1xb!ExEz2xeExEx

0
D S~xa1xb!EyEz

xeEy
2

gmEy
2

D
y S~x31gm2!Ex

21~x42gm1!Ey
2

2~x42gm2!ExEy

x5Ex
21x6Ey

2
D Sx3Ex

21x7Ez
212x5ExEz

0

x5Ex
21x8Ez

212x7ExEz
D S x4Ey

21x7Ez
2

2~x92g1!EyEz

~x91gm1!Ey
21~x81g1!Ez

2
D

x S gm2Ex
22gm1Ey

222xe2ExEy

2xe2Ex
21xe1Ey

222gm2ExEy

~x101x2!ExEy

D S 0

2xe2
Ex
21x1Ez

21~xa1
1xb1

!ExEz

0
D S 2~xa2

1xb2
!EyEz

xe1
Ey
21x1Ez

222g1EyEz

gm1
Ey
21g1Ez

212x1EyEz

D

TABLE II. Electric quadrupole contributions to the source term,S. The constant 4v2/c2 has been omitted for simplicity. The three
columns are the predictions for light incident, inz, y, andx directions, respectively and for the Cr31 spins aligned parallel to thez axis.
x̃ i ( i51,2,3,4) correspond to the remaining independent components.~See the appendix.!

Direction of incident light
z y x

z Sx̃4~Ex
22Ey

2!

22x̃4ExEy

x̃3~Ex
21Ey

2!
D S 0

x̃1Ex
21x̃2Ez

2

0
D Sx̃2Ez

21x̃1Ey
2

22x̃4EyEz

2x̃4Ey
2

D
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A~r ,t !5(
i
âiqiexpi ~k•r2v i t !1H.c.,

whereâi is a unit polarization vector andqi determines the
strength of the electric field,Ei5qiv i /2 ~where the Coulomb
gauge is being assumed!. The perturbation is then described
by the usual form of the interaction Hamiltonian

H int5(
j

2e

me
A j•pj1

e2

2me
A j•A j .

Assuming for simplicity that the ground state wave function
F is a product of one-electron wave functions,F5Pnfn ,
the induced current density is given in the interaction repre-
sentation by

(
n

^fnuevufn&5(
n

^fnup2eAufn&
e

me
.

Nonlinear susceptibilities are now calculated to the desired
order in field strengths. We are, in particular, interested in
terms that are quadratic in fields and the source term at
v35v11v2 . Thus we only consider those terms in the per-
turbation expansion for the current density that are propor-
tional toq1q2 , viz., proportional toE1E2 and with time de-
pendence exp(6iv3t) and write

^ev~v3!&5^ev~1 !~v3!exp~ iv3t !&

1^ev~2 !~v3!exp~2 iv3t !&.

By multiplying the terms proportional to exp(6iv3t) by

exp(7ik3•r ) and then taking the expectation value, we get
the induced current density corresponding to the source term
at v3 and atk11k25k3 as

^J~k3 ,v3!&5^Fuev~2 !~v3!expi ~k3•r2v3t !uF&. ~4!

One can now obtain the expression for the nonlinear suscep-
tibilities by using the relationJ5m0]P/]t as also the defin-
ing relations for the susceptibilities that relate, for example,
P andE.

We now turn our attention to the specific case of
Cr2O3 . As explained in the previous section, we are inter-
ested in the nonlinear polarizationP(2v) and the magnetiza-
tion M (2v). The nonlinear susceptibilityx is only allowed
below the Ne´el temperature where spatial inversion symme-
try of the crystal is broken by antiferromagnetic ordering. In
an earlier paper,10 we have shown that this leads to electric
dipole transitions between the4A2 and 4T2 levels of
Cr2O3 . Thus, belowTN , one can use the electric dipole
approximation with the interaction Hamiltonian of the form

H52e(
i
Ei•r .

A simple calculation now yields the result for the induced
current,

^J~k3 ,v3!&5
e2

2\2 (
um&,un&

F ^FuJ~k3 ,v3!um&^muEmrmun&^nuEnr nuF&
~vm22v!~vn2v!

1
^FuEmrmum&^muJ~k3 ,v3!un&^nuEnr nuF&

~vm1v!~vn2v!

1
^FuEmrmum&^muEnr nun&^nuJ~k3 ,v3!uF&

~vn12v!~vm1v! G , ~5!

whereEm are the components of the incident electric fields
and definition~4! is to be used. In the above expression we
have also taken~as in SHG! v15v25v andv352v. All
factors exp(ik•r ) have been set to unity~electric dipole ap-
proximation!. The problem now reduces to that of evaluating
the appropriate transition matrix elements in the above ex-
pression with the Cr31 wave functions. To do this, we con-
sider a cluster model that has the correct symmetry of
Cr2O3 , viz.,D3d . This model

10 contains only two Cr ions in
a magnetic unit cell whereas in the actual structure of
Cr2O3 there are four. While this would lead to quantitative
differences, the basic physics remains the same.

The ground-state wave function of the magnetic ion can
be written as10 uF&5ut2

(1) ,t2
(2) ,t2

(3)& and the excited states
ue&5ue(1)&,ue(2)&, where

t2
~1!52ud3z22r2&1h1upz&,

t2
~2!5321/2@A2udx22y2&1udzx&]1h2upx&,

t2
~3!52321/2@A2udxy&1udyz&]1h2upy&, ~6!

e~1!5321/2@ udxy&2A2udyz&]1h3upy&,

e~2!5321/2@ udx22y2&1A2udzx&]1h3upx&,

Here theud& andup& states are the Cr 3d and Cr 4p orbitals,
respectively. In deriving the above wave functions, we have
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chosen the axis of quantization to be parallel to the crystal-
lographic z direction. The following convention for thed
orbitals is chosen:

dxy52
R~r !

r 2 S 154p D 1/2xy,
dyz5

R~r !

r 2 S 154p D 1/2yz,
dzx52

R~r !

r 2 S 154p D 1/2xz,
dx22y25

R~r !

r 2 S 15

16p D 1/2~x22y2!,

d3z22r25
R~r !

r 2 S 5

16p D 1/2~3z22r 2!.

Here theR(r ) are the appropriate radial functions for 3d
orbitals. Spin quantum numbers in~6! have been suppressed
for clarity. We also note that the expression~6! only includes
the effect of the hemihedral part of the trigonal distortion
which is the most dominant interaction. This interaction is of
the formhz and leads to a mixing of Cr 3d states and Cr
4p states (px ,py ,pz) with coefficientsh1 , h2 , andh3 being
proportional toh, the trigonal field. In addition to this mix-
ing, the spin-orbit coupling also causes a mixing of thet2
ande orbitals. As explained in our previous paper, it is this
interplay between the trigonal distortion and the spin-orbit
coupling that leads to electric dipole transitions belowTN .
Consequently, we focus our attention on those transition ma-
trix elements in~5! that are proportional toboth the spin-
orbit interaction and the trigonal field. It is easy to see that
such matrix elements are of the form

^t2uLzSzue&^eur um&^muEmrmun&^nuEnr nut2&, ~7!

where we have used̂mupun&52 ime(vn2vm)^mur un&, etc.
Let us now consider the case when the incident light is
right circularly polarized,7 viz., E5Eê1 where
ê651/A2(êx6 i êy). The relevant transition matrix element
is now given by

(
i52,3
j51,2

^t2
~ i !uLzSzue~ j !&^e~ j !ur ue~ j !&^e~ j !ur1un&^nur1ut2

~ i !&,

where the statesun& are higher-energy orbitals of odd sym-
metry. Let us now consider that part of the transition matrix
element given above which corresponds to the emission of
the second harmonic, viz.,

^t2
~ i !uLzSzue~ j !&^e~ j !ur ue~ j !&.

Since the excited state Cr orbitalue( j )& is a mixture of the Cr
3d and 4p states, the emission matrix element has contribu-
tions of the form

h^t2
~ i !uLzSzue~ j !&^p~ j !ur ue~ j !&, ~8!

whereh is the appropriate admixture of thep andd orbitals
determined by~6!. Equation~8! describes the contribution to

the electric dipole~ED! matrix element of a single Cr ion.
The response of the crystal is given by the coherent summa-
tion over the contributions of each ion. In Cr2O3 there are
two pairs of sites in the unit cell, theA/B and theA8/B8 sites
related by inversion symmetry. Since they give identical con-
tributions we need to consider only one of the pairs. The
contribution of a given unit cell to the ED matrix element is
then proportional to

l~hA^Sz&A1hB^Sz&B!, ~9!

wherel is the spin-orbit coupling constant~see Ref. 10! and
hA andhB are proportional to the respective local trigonal
fields. Inversion symmetry demands that2hB5hA[h.15

The total contribution to the ED matrix element is then pro-
portional to

(
all unit cells

lh~^Sz&A2^Sz&B!const[lhD~T!,

whereD(T) is the antiferromagnetic order parameter. One
can use the explicit form of the orbitals given by~6! and
evaluate the desired matrix elements. For example, the con-
tribution to SHG by exciting the electron in the orbitalt2

(2) is
proportional to

lhD~T!@^d~x22y2!uLzudxy&^dxyuxupy&^pyuzudyz&

3^dyzu~E•r !2udzx&#.

A similar expression can be written for the contribution aris-
ing from t2

(3) . From our results we find that~a! the t2
(1) or-

bital does not contribute to SHG. This is not surprising as
our mechanism of SHG is mediated through the diagonal
part of the spin-orbit interaction andLzt2

(1)50. ~b! The elec-
tric field of the emitted radiation at frequency 2v is along
the x̂2 i ŷ direction, i.e., incoming right circularly polarized
light generates the second harmonic with opposite polariza-
tion. Likewise, it can be verified that left circularly polarized
light generates a second harmonic that is right circularly po-
larized. Thus our microscopic results reproduce the selection
rules that are given by macroscopic theory. This is because
the expression~6! for the Cr31 orbitals has been obtained by
incorporating the full crystal symmetry of Cr2O3 .

The constructive interference in emission of the contribu-
tions to the ED matrix elements belowTN , as given by Eq.
~9!, is a consequence of the symmetry of the spin ordering in
Cr2O3 . We reemphasize that this is because our mechanism
is a one-ion mechanism that invokes thediagonalpart of the
spin-orbit interaction. Photons absorbed by a certain ion are,
in this mechanism, reemitted by the same ion. The phase of
the emitted electromagnetic wave then depends on the rela-
tive direction of the spin-ordering with respect to the direc-
tion of the trigonal distortion at the given site~9!. The co-
herent interference of the waves emitted by all ions may then
interfere constructively. The effect is nonreciprocal since the
direction of the local trigonal distortion is invariant under
time reversal, whereas the spin order is not.
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Let us now consider the caseT.TN . Now, inversion is a
good symmetry of the crystal and the electric dipole transi-
tions vanish identically. In this case, one has to consider the

nonvanishing term of the lowest order in the multipole ex-
pansion of exp(2ik3•r ). This is, of course, the magnetic
dipole term which can be written as

^J~k3 ,v3!&5
ie3k3
4me

3\2q1q2 (
um&,un&

^FuL um&^muexp~2 ik1•r !a1mpmun&^nuexp~2 ik2•r !a2npnuF&

3
exp~ iv3t !

~vm2vn1v1!~vn1v2!
1•••. ~10!

The calculation of transition matrix elements in this case
is much simpler as now the dominant contributions contain
neither the spin-orbit interaction nor the trigonal distortion. It
is easy to verify that one only has to consider contributions
to the transition matrix elements that are of the form

(
i51,2,3

(
j51,2

^t2
~ i !uL ue~ j !&^e~ j !ur1un&^nur1ut2

~ i !&, ~11!

at any given Cr site.~Here again we have assumed that the
incoming light is right circularly polarized.! The contribu-
tions from different sites can be added up coherently. As in
the previous case of the ED transition, we have also verified
using ~6! that the correct polarization selection rules are re-
produced by the above expression below and aboveTN .

The microscopic expression for the dynamical current op-
erator together with the Cr ion wave functions~6! enables us
to estimate the magnitudes of the nonlinear susceptibilities.
Since we do not have the correct wave functions of theex-
citedstates, our estimates are approximate, correct only to an
order of magnitude. In particular one may also include con-
tributions from the O 2p orbitals in~6!. Such a contribution
would not alter the mechanism for the ED transition ex-
plained above but would lead to certain quantitative correc-
tions. From expressions~2! and~5!, as also the definition of
the macroscopic susceptibilityx we obtain the order of mag-
nitude ofx (2v) as approximately

ux~2v!u.
8n0e

3

e0
S a0
2\v D 2l0

a0

\

mc

l

Ee2Et2

h

Ep2Ed
D~T!.

~12!

Here, l0'5000 Å is the wavelength of the emitted light,
a0'0.69 Å is the radius of Cr31, n0 is the density of Cr ions
in Cr2O3 (.3.331028m23), l'100 cm21 is the spin-orbit
interaction,16,17Ee2Et2

'8000 cm21 is the difference in en-

ergy between thet2 and thee orbitals,h'350 cm21 is the
trigonal field,17 Ep2Ed'83104 cm21 is the difference in
energy between thed and thep orbitals that are mixed by the
trigonal distortion andD(T) is the antiferromagnetic order
parameter. The temperature dependence ofx is solely
through that of the antiferromagnetic order parameter and
consequentlyx vanishes aboveTN . At temperatures much
lower thanTN we find thatux (2v)u.8.7310216 C N21.

Similarly, we find that the magnitude ofg (2v) is approxi-
mately

ug~2v!u.
4n0e

3

e0
S a0
2\v D 2 \

4mc
. ~13!

As explained earlier, this is the magnetic dipole~MD! con-
tribution to SHG which depends neither on the trigonal dis-
tortion nor the spin-orbit interaction. It is also independent of
temperature and we estimate it to be of the order of
11310216 C N21. The contributions toJ from the nonlinear
susceptibilitiesx andg can produce interference effects in
SHG only if the first two terms in the right-hand side of
equation ~2! are of the same order of magnitude, viz.,
uxu.ugu. From our estimates ofx andg above we find that
this is indeed satisfied thereby leading to an interference ef-
fect in SHG which is nonreciprocal and which vanishes
aboveTN .

IV. GYROTROPIC BIREFRINGENCE AND THE OPTICAL
MAGNETOELECTRIC EFFECT

The ED transition in the optical region that is allowed
below TN in Cr2O3 can also be seen in one-photon experi-
ments. In this section, we consider the phenomena of gyro-
tropic birefringence~GB! and the associated optical magne-
toelectric effect that are one-photon processes in contrast to
SHG which is a two-photon process.

GB is a nonreciprocal optical effect that appears as a shift
in the principal optical axis along with a change in the ve-
locity of propagation of light. The possibility of observing
this effect in Cr2O3 and using it to distinguish between an-
tiferromagnetic domains was first pointed out by Brown and
co-workers.4 Their analysis of the problem was purely mac-
roscopic and they showed that GB appears in the form of a
polar c tensor~one that changes sign under both space and
time inversion! belowTN . Later, Hornreich and Shtrikman

18

presented the first quantum-mechanical treatment of this
problem. They showed that the gyrotropic birefringence ten-
sor can be described in terms of electric quadrupole and
magnetoelectric effects. From their results, they estimated
that at optical frequencies, the induced rotation of the prin-
cipal optical axes of Cr2O3 would be of the order of
102821026 rad and the magnetoelectric susceptibility
would be of the order of 1028 ~in dimensionless units!. This
phenomenon was also analyzed by Graham and Raab19 using
a multipole theory of wave propagation.

Recently however, Krichevtsovet al.6 observed spontane-
ous nonreciprocal rotation of the optical axes in Cr2O3 .
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They found that the observed rotation and the magnetoelec-
tric susceptibility were four orders of magnitude larger than
those predicted by Hornreich and Shtrikman. They also
found that the observed temperature dependence of these
nonreciprocal effects corresponds roughly to that of the an-
tiferromagnetic order parameter, something that does not fol-
low obviously from previous calculations.18 The intensity of
these effects and the temperature dependence led them to
speculate that these effects were attributable to ED transi-
tions in the optical range. We now show that this is indeed
the case and the mechanism we discussed earlier does lead to
effects that are of the same order of magnitude as those ob-
served.

To see this, we calculate the magnetoelectric susceptibil-
ity in the optical region, allowing for an ED transition below
TN . The calculation is in many ways similar to that pre-
sented earlier for the nonlinear susceptibilities. The magne-
toelectric susceptibility is defined asM (v)5a:E(v) and we
estimate it by calculating directly, the quantity
^M &5gmB^L12S& in perturbation theory. Since in this case
we are only interested in temperatures below the Ne´el tem-
perature, we use the electric dipole approximation and con-
sider the linear response of the system. It is easy to verify
that the induced magnetization is given by

^M &5
e

\
ReF(

um&
^FuM um&

^muE•r uF&
~v2vm!

exp~2 iv t!

1^FuM um&
^muE•r uF&
~v1vm!

exp~1 iv t!G ,
where we have assumed the electric field to be of the form
E5E0cos(k•r2vt). Choosing~as in the experiment6! the
incident light along thex̂ direction and the electric field
Ei ẑ , it is easy to see that a typical matrix element that would
contribute to the magnetoelectric susceptibility is of the
form,

^t2uLzue&^euLzSzut2&^t2uzEzut2&.

Note that^t2uzEzut2& would be proportional to the trigonal
mixing of the 3d and the 4p orbitals. A straightforward cal-
culation using~6! to evaluate appropriate transition matrix
elements gives us the expression for the magnetoelectric sus-
ceptibility,

axx;4m0ce
gmB

\~v2vm!

l

Ee2Et2

h

Ep2Ed
n0D~T!, ~14!

in dimensionless units. Here,n0 is the density of Cr ions in
Cr2O3 (.3.331028 m23) and \(v2vn);0.5 eV in the
region of experimental interest. Thus by evaluating the above
expression, we estimateaxx;0.231024 which is of the
same order of magnitude as that observed experimentally.
This also means that the nonreciprocal rotation would be
;1024 rad. Since the ED process that we consider couples
light to the order parameter, the observed temperature depen-
dence follows naturally from our theory.

V. SUMMARY AND CONCLUSIONS

In this paper we have developed a microscopic theory of
nonreciprocal optical effects observed belowTN in Cr2O3 .
We have shown that these effects can be explained by an
electric dipole process that arises from an interplay between
the spin-orbit coupling and the trigonal distortion of the
ligand field. Such a process couples light directly to the an-
tiferromagnetic order parameter. In contrast to other ED
mechanisms that have been considered in the literature so
far,20 our mechanism is a one-ion mechanism that couples
light to the sublattice magnetization rather than any magnetic
excitations. Photons absorbed by a certain Cr31 ion are also
emitted by the same ion. The coupling to the antiferromag-
netic order parameter then occurs through constructive inter-
ference of the photons emitted by different Cr ions.

It might seem that our mechanism leads to effects that are
weak as they involve the trigonal distortion and spin-orbit
interaction, both weak effects by themselves. However their
interplay leads to an electric dipole transition whose oscilla-
tor strength is large in the optical region. Consequently, ob-
served effects are strong. Though we have used this mecha-
nism to explain successfully the phenomena of second-
harmonic generation, gyrotropic birefringence, and the
optical magnetoelectric effect that have been observed ex-
perimentally in Cr2O3 , our theory can be generalized to all
materials where~i! the magnetic ion is not at a center of
inversion and~ii ! inversion is still a macroscopic symmetry
aboveTN but is broken belowTN due to the ordering of the
magnetic ions. Thus, nonreciprocal effects should be observ-
able, for example, in the cuprate Gd2CuO4 below the order-
ing temperature of the gadolinium magnetic subsystem,
TN~Gd!56.5 K,21 when inversion symmetry is broken as also
in V 2O3 and MnTiO3 .
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APPENDIX

The components for the nonlinear susceptibilities (x) and
(g) in Table I are as follows:

xe[xyyy52xyxx52xxyx52xxxy ,

xe1
[xyyy ,

xe2
[2xyxx52xxyx52xxxy ,

xa[xyxz52xxyz,

xa1
[xyxz,

xa2
[2xxyz,

xb[xyzx52xxzy,
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xb1
[xyzx,

xb2
[2xxzy,

x1[xzzy5xzyz5xyzz,

x2[xzyx,

x3[xxxx ,

x4[xxyy5xyyx5xyxy ,

x5[xzxx5xxxz5xxzx,

x6[xzyy5xyzy5xyyz,

x7[xzzx5xzxz5xxzz,

x8[xzzz,

x9[xyyz5xyzy5xzyy,

x10[xzxy,

gm[gyyy52gyxx52gxyx52gxxy ,

gm1
[gyyy ,

gm2
[2gxxy52gxyx52gyxx ,

g1[gzzy5gzyz5gyzz.

Above the Ne´el temperature allx ’s and g1 vanish ~and
gm1

5gm2
[gm). It is then reasonable to assume that below

TN g1 is much smaller than all other matrix elements since it
is of magnetic dipole character and only allowed due to the
breaking of inversion symmetry below the Ne´el temperature.
The components of the electric quadrupole susceptibilities in
Table II are as follows:

x̃1[x̃xxyy5x̃yyxx,

x̃2[x̃xxzz5x̃yyzz,

x̃3[x̃zzxx5x̃zzyy,

x̃4[2x̃zxyy5x̃zxxx52x̃zyxy52x̃zyyx52x̃xyzy

52x̃xyyz52x̃xzyy.

1For a discussion of reciprocity in optics, see A. L. Shelankov and
G. E. Pinkus, Phys. Rev. B46, 3326~1992!.

2P. N. Argyres, Phys. Rev.97, 334 ~1955!.
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