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Plane-chain coupling in YBgCu30-: Impurity effect on the critical temperature
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We have studied the effect of impurities on the critical temperature for a model of Y-Ba-Cu-O involving
pairing both in the Cu@ planes and in the CuO chains. In this model pairing in the planes is due to phonons,
while Coulomb repulsion induces in the chains an order parameter with opposite sign. Due to the anticrossing
produced by hybridization between planes and chains, the order parameter changes sign on a single sheet of the
Fermi surface, resulting in nodes in the gap. We find that, in our model, the critical temperature is much less
sensitive to impurities than in standaddwave models. One reason is that impurities produce essentially
plane-plane and chain-chain scattering, which does not affect the critical tempefatusereduced by the
scattering between parts of the Fermi surface which have opposite signs for the order parameter, just as in
standardd-wave models. In our model this is due to plane-chain scattering. We have found that this scattering,
whatever its origin, will be smaller by a factor of ordgEg (that is, hybridization coupling over the Fermi
energy compared to plane-plane and chain-chain scattering. Accordingly the sensitivitytefimpurities in
our model is reduced by a similar factor, compared todiveave situation. In the specific case which we have
studied in detail and which reduces to the two-band model, we have found a further reduction of the sensitivity
of T, to impurities with a behavior which can vary continuously freawavelike tod-wavelike depending on
the parameters. We expect a similar behavior and reduction to occur in the general case.
[S0163-182696)04730-3

[. INTRODUCTION favor of ad-wave symmetry. Many experiments, including
tunneling, NMR, Raman scattering, photoemission, and pen-

The mechanism responsible for high-superconductivity ~etration deptt, have shown the existence of low-energy ex-
is still highly controversial. While a large part of the theo- cited states. Actually these experiments are compatible with
retical effort is based on the hypothesis that Cooper pairs ar@ strongly anisotropis-wave order parameter. Or more sim-
formed in highT, compounds, there is no agreement on theply one may look for extrinsic effects and wonder if these
physical origin of the pairing interaction or on the symmetrystates do not arise from surface effects or defects, which
of the pair wave function. These two guestions are actuallyvould provide quasinormal regions. However, the existence
intimately related. Indeed repulsive interactions, such as proaf a linear T dependence of the penetration depth over a
duced by spin fluctuatiorfs,require an order parameter large range of temperature, simultaneously in crystals and
which changes sign on the Fermi surface in order to producéims, with the same slopemakes an extrinsic interpretation
pairs. This leads, in the simplest hypothesis, to pairing witHfor all these experiments unlikevhile this kind of expla-
d-wave symmetry if we assume singlet pairing. On the othenation may very well be valid for some of thgnMoreover
hand purely attractive interactions lead to pairing withsome experiments specifically designed to check if the order
s-wave symmetry since any change of sign is unfavorable ipparameter changes sign over the Fermi surface have given
this case. Therefore an experimental determination of thgositive answers. These are the corner superconducting
order parameter symmetry should greatly help to identify thequantum interference devig&QUID) experiment® which
physical interaction responsible for pair formation: Althoughgive a clear indication for a change of sign of the order
it would not be enough to provide a unique identification, itparameter between tleeandb axes, and the observation of
would strongly narrow the remaining possibilities. For thisa spontaneous magnetization corresponding to a half mag-
reason a large part of the recent experimental work has beeretic flux quantum in three grain-boundary Josephson
aimed toward providing a clear signature for the symmetryjunctions which implies an shift, in clear agreement with
of the order parameter. d-wave symmetry.

Quite surprisingly recent experiments on YEa;0, On the other hand thé-wave interpretation is not free of
(YBCO) designed with this purpose of identifying the sym- problems. For example recent experiments show that some
metry have given clear-cut, but contradictory answelrs.  thermodynamical superconducting properties are markedly
deed the observation of a sizable Josephson cdriena  anisotropic(the a- and b-axis results are differentindeed
c-axis tunneling junction between YB&u3;O; and Pb is the penetration depth in good YBCO crystals displays a
quite difficult to reconcile with a purel-wave symmetry strong anisotropy of the penetration deptnd the specific
while it is in full agreement withs-wave symmetry. Simi- heat anomaly af . of the parent compound LUuB&usO-
larly the fact that there is no angular dependence in the crititwith sameT. as YBCQO has a marked anisotropy as a func-
cal current of YBCO-YBCO grain boundary junctions in the tion of the orientation of an applied magnetic fiéldt is
a-b plané goes clearly in the direction of astwave inter- difficult to ascribe these anisotropies to the weak orthorhom-
pretation. On the other hand a number of experiments are ihic distortion, and it is more likely that the CuO chains play
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a significant role in the superconducting properties. One ofion between plane and chain help each other, there is no
the most conspicuous problems of tih@vave interpretation problem in explaining the high value of the critical tempera-
is the weak sensitivity of the critical temperature of ture of YBa,Cuz0-.2! Naturally our model is specific of
YBa,Cuz0- to the presence of impurities. Indeed any kind YBa;Cu3O,, but we can think that it can be
of impurities, whether magnetic or not, producesdiwvave  generalized to other compounds where the role of the chains
superconductot$~*2an effect analogous to pair breaking by ¢an be played by other parts of the structure, such as the BiO
magnetic impurities in standarstwave superconductofs. ~ Planes in Bi-Sr-Ca-Cu-O. On the other hand there is no pos-
In particular the critical temperatufe' decreases rapidly Sibility of this kind in La-Sr-Cu-O and accordingly we do not
with increasing impurity concentration following the €XPect experiments to display in this compound the same
Abrikosov-Gor'kov (AG) law,!® and superconductivity dis- Physical features as in YBCO. _
appears at a critical concentration. In contrast all samples of Our model has common features with many other models.
YBa,Cus0, seem to have & around 90 K. Itis difficultto AS & two-band model it is quite similar to the two-band
believe that all sampleéncluding the earlier ongsare clean  Models introduced by Suhl, Matthias, and Walker and
enough to affect only weakly the critical temperature,Other§ . _t(.)_descrlbe.superconductw[ty in transition metals.
whereas all microscopic studies show that there are alwayhe possibility of an interband repulsive interaction in two-
more structural defects than what is generally admittedb@nd models was already introduced by Kofitia/ore re-
Moreover, iod* or electrof® irradiation experiments have Cently a two-band superconducting—normal-met&N)
shown a rather weak sensitivity of the critical temperature offodel has been introduced by Abrikosov and Kle%_ﬁmo
YBa,Cus0- on the inverse lifetime deduced from resistivity account for Raman scattering data. The.|dea of an interband
measurement¥. Actually Zn impurities are knowlii’ to  repulsion has been put forward by various grotipS re-
have a depressing effect @i, but this can be interpreted as cently in the context of hlg_ﬁ'-C su_perconduct|V|ty in Qrder to
a standard pair-breaking effect since the environment of a zhow that experiments displaying a change of sign of the
impurity, located in the Cu@ planes, is known to be order pgrameter did not_ necessgn_ly imply a spin fluctuation
magneticté, mechanism. Our model is also similar to the one proposed by
In order to solve these contradictions we have proposeé\b”kOSOV?Z where there are attractive and repulsive inter-

recently® for YBa,Cu;0; a model which mixes-wave and actions within a single band, leading to a change of sign of
d-wave features. In our model, in addition to the GuO the order parameter within this band. Finally, as noted above,

planes, the CuO chains play an essential role. The pairin hain-plane hybridization is a standard featyre of band struc-
interaction within the planes is attractivié can be, for ex- Ure Ca'CH'at'On@ and there have been various suggestions
ample, produced by phonon©n the other hand the pairing ©f the importance of the chains in the physics of
interaction between planes and chains is repuléivean be YBaZCUggg’ whether for intrinsic or for extrinsic
produced by the Coulomb interactiorn this way the order reasons; °these models allowing for the electron to jump
parameter has opposite signs on the planes and on the chaiR§tWeen planes and chains. , .

Moreover, we include the hybridization between planes and !N this paper we consider the effect of impurities on the
chains, which corresponds physically to taking into accoungritical temperature in o_ur_model_. We will actually restrict
the possibility for an electron to jump from planes to chainsCUrselves to nonmagnetic impurities. Indeed magnetic impu-
or vice versa. Naturally the coupling responsible for this hy-ftiés are easily included, but they will naturally lead to pair
bridization is fairly small, but it is a well-known feature of Préaking and produce® following the AG law as in other

all band structure calculatio?®.It is of importance only —Models. Hence magnetic impurities cannot discriminate be-
when the plane and the chain band intersect. In this case f{veéen various models and we ignore them for simplicity.
leads to an anticrossing in the dispersion relations, and similNe conclusion of our study is that, in our model, for generic
larly to an anticrossing of the Fermi surfaces, wherever tharameters, the_crmcal temperature is much less sensitive to
(uncoupledl pieces of the Fermi surface related to plane andmpurities than in standard-wave models. Therefore we
chain cross. As a result, when we move on a given sheet dpight say that, with respect to the sensitivity of the critical
the Fermi surface, we go from a part which corresponddemperature to nonmagnetic mpurmes, our modgl behaves
physically to a plane electron, to a part which correspond&s & “weak” d-wave model. This happens for two indepen-
physically to a chain electron. Since the order parameter hadent reasons. First the reduction@f is due to plane-chain
opposite signs for plane and chain electrons, this implies thaicattering, which is weak compared to plane-plane scatter-
the order parameter changes sign on a given sheet of tHed- Next the fact that we have a two-band model provides
Fermi surface and therefore has nodes on this sheet by cofurther possibilities for a weak impurity sensitivity. In Sec. Il
tinuity. Therefore our model provides an order parametee present our model and we calculate the critical tempera-
which is quite analogous todwave order parameter and it ture of the clean superconductor as a first step toward the
can in this way explaitf all the experiments in favor of palculatlon o_f the impurity .dependence, which is Qealt V\{|th
d-wave symmetry. On the other hand it does not have & Se(;. Ill. Finally Sec. IV is devoted to'a comparison with
d-wave symmetry since the nodes, which occur at the interéXPerimental results and to our conclusion.

section between plane and chain bands, have no reason to

satisfyk, = k,, and the average of the order parameter has Il. MODEL

no symmetry reason to be zero. Hence there is, for example,

no problem with the nonzero Josephson current in Letus first define specifically our model. We will describe
YBa,Cus05-Pb junctions along the axis® Moreover, since  the motion of an electron in planes and chains by the follow-
the attractive in-plane interaction and the repulsive interacing Hamiltonian:
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between plane and chain. A natural physical origin for this
HOZEK skclck+§ 8'kdldk+2k tikdi+H.c, (1) term is the Coulomb repulsion, since screening is certainly

not very efficient in YBCO because it is a weak metal. More-
wherec] andd) are creation operators in the plane and in theover, screening is probably very ineffective along theli-
chain band, respectively. The first term corresponds to afection since hopping in this direction is small. We note,
isolated plane with dispersion relatieq, the second one to however, that hopping is physically necessary in order to
isolated chains with dispersion relatiap, and the last term have a pairing term between planes and chains. Finally there
describes hopping between planes and chains. Actually thi§ little experimental evidence for an attractive pairing inter-
independent electron Hamiltonian does not correspond preiction in the chains. However, we will assume its existence
cisely to the situation found in YB#us;O,. Indeed for the sake of generallt_y. We include also the standard in-
YBa,Cuz0- is built by stacking up sets made of two traband Coulomb repulsion.
CuO, planes and one CuO chains plane. Therefore a better Let us first consider the critical temperature of the clean

description is obtained by the Hamiltonian superconductor. In a first step we ignore the hopping term
ty. The Eliashberg equations at the critical temperature are

_ t t t
Ho=2 ecl Cint X eC) Cont > tp(Cl ContH.C)
n n n

AZ:WTE)\ ﬂ_ﬂ.‘r §ﬂ_7ﬂ'k§ﬂ
nen n rl7m|“’m| H n |wm| n |wm|
+>) e'dld,+ > te(cld,+H.c) (4)
n n
2 t d H 2 A,m < A,m
+ 2 to(Capdn+1+H.C), ) A Z =T N o — T’ Yy —=
n n || n|on|

where all quantities are understood to depenckpandk,, “c A
and summations run also ovég,. The indices 1 and 2 — Tk Y, —. 5
number the Cu@ planes and the indax numbers the stacks. 7 | @nl
Introducing the even and odd plane band operatarsby
c1, = (cy = c_)/y2, and taking the Fourier transform in Here A, andZ, are the order parameter and the renormal-
the z direction, we obtain ization function at the Matsubara frequenay,. Primed
quantities refer to the chains while unprimed ones corre-
spond to the planes;, and A/ are the effective frequency-
HO:; (8+tp)ci,kc+,k+zk (S_tp)d,kc—,k dependent interactions due to phonon exchange wgile
p’ andk, k' are the intraband and interband Coulomb repul-
, sion with cutoff . of order of the Fermi energy. While the
+ ; & dldk"' EK t+(cl,kdk+ H.c) interactions that we consider here have certainly a wave vec-
tor dependence in the real superconductor, we have no pre-
cise idea of what they are and we do not have any physical
reason to believe that this dependence is strong. Therefore,
for the sake of simplicity and clarity, we have taken isotropic
where a dependence and summationkgris now under- interactions within planes and chains. We can now proceed
stood, andt, =t.j2coskc/2) andt_=t.y2sinfk,c/2), with  to the usual reduction of the cutoff from, to a frequency
¢ being the size of the unit cell along tlzedirection. Band wp a few times a typical phonon frequency. For
structure calculatior8 give a crossing of the chain band , > wp, the order parameters, and A/ become con-
Fermi surface with the odd plane band Fermi surfacestantsA, and A, while Z,,, Z! ~ 1. These constants are
whereas there is no crossing with the even plane bangbtained from Eqgs(4) and(5) as
Therefore the even plane band will not play an interesting
physical role in our model and we will forget it for simplic- o A o A
ity, but it should clearly be retained in a very realistic calcu- o Sm 2m
lation. This leads us back to the Hamiltonian, Et), where (1 uAxtkrd’.= WTM};‘ |l WTk; |wm
the plane band is actually the odd plane band. The hopping (6)
term has &, dependence as given by . However, if the
even plane band happens to cross the chain band, we would

+; t_(ch de+H.c), 3

haV(_a no problem. in extending our model. This would be(1+,u,’r)A’w+k’rAw=—wT,uJED ﬂ—wTk’ED ﬂ
particularly easy in the two extreme cases where the even v | o v | ol

and odd plane bands are nearly degeneriyte<(t;) or well (7)
separated tf, > t;) since we would be led again to the

Hamiltonian, Eq.(1). wherer=In (wJ/wp). When these results are carried into

With respect to pairing interactions, as we have alreadyEqgs.(4) and(5), one obtains the same equations, except that
indicated, we take an attractive pairing interaction in thethe cutoff is nowwp and u, u’ andk, k' are replaced by
plane which can be, for example, due to phonon exchangeenormalized Coulomb interactions*, u’'* and k*, k’'*

On the other hand we assume a repulsive pairing interactiogiven by
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. uF ('’ —kk)r diagonalizes the Hamiltonian intd, = 3 € 7 7 where
KT+ ) (1 p'r)—KK'r2’ we have set for conveniencg =c andc, =d. The energies
e, and e, of the hybridized bands are given bg;% = €
. k + € = [(e—€)? + 4t? Y2 anday; = a, = [(e;—€')/
AT AN a ) —kk 2 ®  (e1-e)]" = cosh, an=—ai, = [(e1—e)/(e1—e)]"

= sing, with again thek dependence understood everywhere.

and similar expressions fou'* andk’* obtained by ex-  \yhen we carry out this transformation in the mean field
changing primed and unprimed quantities. Naturally one reHamiltonian

covers the standard Coulomb pseudopotential when there Is

no interband interaction. It seems safe to assume

up' —kk'>0; otherwise we would have pairing from an H=Hq+A> cic! +A'> did" +Hc., (14
“s-wave” Coulomb interaction alonéwhen pairing from k k

the Coulomb interaction is considered, this is usually for ) o o

higher “angular momenta). In this case renormalization We Will obtain interband pairing terms, such sy ;v 2.
does not change the sign of the various quantities. We se@oupling the hybridized bands. However, we will consider
that, in addition to its direct effect, the interband interactionthatt, is large enough so that these bands are well separated.
decreases the effective intraband repulsion, leading to an irspecifically this means that we assume
crease of the critical temperature, as it shoflth the fol-  wp <t, (otherwise we should make a much more careful
lowing we will restrict ourselves to the weak-coupling limit strong-coupling treatment, which would probably not bring
whereA,, andA] can be taken as constants and mass renomnything new qualitatively In this case the above pairing
malization is negligible. Indeed, as will be clear in the fol- terms will be negligible because we cannot have two elec-
lowing, we do not expect strong-coupling effects to modifytrons (k,1) and (—k,2) at the Fermi surface with opposite
qualitatively our conclusions. In this ca3g depends only wave vectors, but belonging to different bar@de will jus-

on the combinations* = \y—u* and\'* = A\g—pu'*, in tify more specifically this approximation in the next secjion
addition tok* and k’*. From now on we will omit the as- Therefore the transformation, E(L3), gives

terisk for all the renormalized coupling constants. Then, if

we letx = In (Q / T.) where() is a typical phonon fre-

quency(or rather 1/4 of a typical phonon frequefBy Tis ~ H=Ho+ X, S1¥i¥h k> Sax¥ar¥s kTHC. (19
obtained from k K

(x =N (x"t=\")=kk, (99 with 83 = A cog6 + A’ sirPf and 5, = A st
+ A’ cogé,. Naturally this band-diagonal expression for the
é—|amiltonian is obvious once the interband pairing terms are

isotope effect, this is not obvious from Eq8) and(9). This neglec.ted, e}nd.we could have writt_en it ir_nmediately. OL.”
has been shown to be true by Kokflon some limiting essential point is that, starting from isotropic interactions in

cases. We show in the Appendix that this property holdd!@nes and chains, we obtain a specific anisotropy for the
quite generally. order parameted;, and o,y . In particular we obtain nodes
As a preliminary to the calculation with impurities, let us at the Fermi surface since we have managed to Raead
finally consider how the above calculation of the critical tem-A’ with opposite signs, and cé% goes from 0 to 1 when we
perature is modified when we take into account the hybridmove at the Fermi surface of a given band. Therefore we
izationt, between planes and chains. As indicated above, whave an order parameter whichdswave like, although we
take isotropic interactions and order parameters in the plandsve assumed an attractive pairing in the planes.
and in the chains. Corresponding to the effective interaction We have then as usualy_;y;)= —(45,/2e;) tanh(@Be/2).

which is the standard two-band restfitAlthough one ex-
pects physically that the Coulomb interaction reduces th

Hamiltonian From Egs.(11), (12), and(193) this leads to
H; :_92 CTrCT_ /C_kCx Tt KE dT,di ,C_ka'f‘H.C. . _ . 51,k ,Belvk
nt KK’ k k KK’ k k A—; (gco§0k KS|n20k)Fl’ktan >
A7 T4t S e
g 2 G Ao d-i (10 + (gsir 6 — Ko 6,) >—=tan Beax , (16
kk 2e5, 2
the order parameter satisfies
r_ i 51,k IBel,k
AZ_Q% (C—ka>+K§k: (d_idy), (11) A _; (g'si’6 KCOSZG'()Zetham‘( 2 )
’ . 52,k BeZ,k
A,:K; (C—ka)—g’; (d_dy). (12 +(g cos’-&k—Ksmzek)—ZeZthan)‘( 5] D

However, because of the hybridization, the plane and chaiffince the bands are well separated,kreimmations will be

operatorsc, andd, do not correspond to the eigenstates ofaround the Fermi surface of each band with cuioff for
Ho. The unitary transformation € k- The integration perpendicular to the Fermi surface will

give the standard factor = In (1.138wp) and we are left
Ci=a;j 7 (13 with summations along the Fermi surface:
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we will rather come back to this point after we have obtained

AZXEK (gcoS 6~ Ksir? 6y) 81 (1) the effect of intraplane and intrachain scattering. We will
also take an isotropic scattering within planes and chains,
+ (gsirf 6, — Kcog 6y) 8218(€24), (18 consistently with what we have done for the interactions.

This leads us to the following impurity potential:

A'=x2, (g'sirP6—Kcogby) 81 8(ey ) . .
k V=U12/ Cl,kcl,k’+U22 CZ,kCZ,k" (20)
+ (g’ cog O — Ksint6,) 8,,8(e2) (19 ok ok
where the order parametér , should not be confused with
the Dirac functiond(e). For ey, = 0 we have co9

= €'l(e + €') and codd = €l(e + €') for e, = 0. More-
over, for most of the Fermi surface we have< €’ or €’

< ¢, leading to co® = 0 or 1. This corresponds merely to

the result one obtains without hybridization. Subtracting Within the Born approximation and after impurity aver-

from Egs.(18) and(19) their counterpart without hybridiza- aging, only contributions to the self-energy corresponding to

tion, we are left with summations over quantities which are ; ) . ; ; .
: : . : ! ~scattering twice on the same impurity are retaiffe8ince
essentially nonzero only in the anticrossing region. In this

S 4 . ! the potential, Eq(20), does not scatter electrons from plane
small region it is convenient to take, at fixkd, € ande’ as . . " o

: . ; to chain, the impurities contribution to the self-energy has
new variables instead dk, and k,. The Jacobian of the only components within planes or chains. They are given
transformation isJ=d(e,e’)/d(ky ,ky)=| v,XVv, | where X P P ' y 9

vp andv, are the Fermi velocities of the plane and chain
band at the crossing point. We are then led to evaluate

, f(e,e’) ,
fdsds m[5(el)+5(ez)—5(8)—5(8 )1

We treat this potential within the Born approximation since,
for the calculation of the critical temperature, making use of
the T-matrix approximation is merely equivalent to renor-
malizing the scattering potential. There is, however, another
effect produced by going beyond the Born approximation,
which will be considered at the end of this section.

zi:niUiZEk 73Giji T3, (21

wheren; andn, are the number of impurities per unit vol-
with f(e,e’) = € or €'? or —ee'. This is easily done by ume in the planes and in the chainsare the Pauli matrices
taking e/t  and €'/t  as new variables and extending the in Nambu space, an@ is the temperature Green’s function
boundaries of the integrals to infinity. The result is the samen plane-chain representation. The Green'’s function is related
for the three integrals, namely; =|t,|. When this result is to the self-energy by
carried into Eqs(18) and (19) we find naturally the first-
order correction to the coupling constars = Nyg, \’ Gflzeal—z, (22)
= Ncg',k=NcK, andk’=NyK, whereN, and N. are the
total density of states of th@ncoupled plane and chain whereG, is the Green’s function in the absence of the im-
bands. The hybridization changes these coupling constantpurity self-energy. Explicitly we set
respectively, into A—Ny(g+K), N —Ny(g’'+K),

k—N(g+K), andk’ —N; (g’ +K). HereN; is an effective Gﬁlz(iﬁi_girg_ziq-l)(s”_t7-3gxyij , (23
density of states due to the hybridization and given by
N.=t/(mJc), where t is the average oft,| overk, (we Goj=(iw—8;75— A1) &) —trso; (24)

have taken into account that there are four crossings in the
Brillouin zone. Naturally since we havél;<Ny, Ncinour  wherew=(2n+1)=#T is the Matsubara frequendye omit

model these changes are small. systematically for clarity the inder in the Matsubara fre-
quency and all frequency-dependent quantifies, is the

. IMPURITY EFFECT Pauli matrix in plane-chain space, andis the off-diagonal
ON THE CRITICAL TEMPERATURE self-energy due to the pairing interactiowe have sete;

. . = eande, = €'). In order to invertG ! it is convenient to
. We. ponS|der now the effect on the.crmcal temperature (.)fgo the hybridized band representation, or more precisely to
impurities located in the planes and in the chains. We will

. . . """make the transformation which diagonalizZ8s* when the
assume that the impurity potential scatters electrons within . ~ . 1
the planes or within the chains, but that it does not scattep/T-diagonal parta; of the self-energy is zero. Fa, - the
them from plane to chain. Our physical motivation is natu-transformation matrix is jusa;; 7o whereay; is the transfor-
rally that planes and chains are physically well separateon1at|0n considered in the preceding sectl_on..ln the present
which corresponds to the fact that the hopping tegis case we hgve merely to .formaIIy. generall_ze it by replacing
small. Therefore the potential for scattering from plane to€i by €—i€;_for the particle-particle part in Nambu space
chain is reduced by a factor of ordgr/t, compared to the and by +i); in the hole-hole part. We keep the same
intraplane or intrachain scatterifigyheret, is a typical hop- notation for this transformation, but th!ﬁ are now complex.
ping term within planes or chainsThis physical point is The complete transformation matrix is no#; = (&;
essential for the validity of our result. Including this small + &) 7o /2 + (a;;—af) 753 /2 . Actually we haveX , A
plane-chain scattering does not make any problem, but fot, since we assume that the hybridized bands are well sepa-
sake of clarity and simplicity we will not do it explicitly and rated ¢ or A are typically of the same order of magnitude in
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the important cases as it will be clear beJowloreover, as the Fermi surface we have <e, or €,<e¢,, leading toa
usual we will be only concerned with Matsubara frequencies= 0 or 1. This corresponds to the result without hybr|d|za-
o at most of orde, andA and therefore negligible com- tion, which is

pared tot. This implies that, when it multiplies a quantity of

order % or A, we can take fora;; its zero order value, 0 _ A
namely, the real value found in the preceding section. This =T irosgnw— —=—7;
leads to the expressiagi * = ‘A G~ A for the full Green’s |
function in the hybridized representatioii\(is the transpose whereTl';=7n;N,; U with N; = N, andN, = N.. When

: (30

of A): we calculateS; 20 we are left Wlth summations over non-
. R o - zero quantities only in the anticrossing region. We take then
g =~ zl(e—¢ ) ot (e+e ) 73] —akAak1, (e;—€,)/t and (e; + €,)/2t as new variables and extend the

(25  boundaries of the integrals to infinity. The resulting expres-
sion simplifies under exchanging and e,. We obtain that
the diagonal parts oE; and >0 are equal, which implies

28, =1+ .~ (014 Q) ) = o + I'y sgnw. On the other hand we find from the
’ off-diagonal part

where

+[ (81— ,—iQy+iQ,)2+4t2]Y2

2e,,~2i % (26)  A;=A,+T 3, i, Zfl du
~ e — 21 =
1,2 W12 1 1 1|Ql| 1N1 p W
and we have set v X
(1+u) Ai+(1—u )AZ 1
——u}- (31
G laronrawe, MY | Q]

23 5= 0y + 0yt 27

2 27172+
[(e1782)"+4t] whereu=(€;— €,)/[ (1~ €2)?+4t?]¥? and a similar result
Now the dominant contributions to the summations®f for A, .
over the wave vectok will come from the vicinity of the This equation displays explicitly an essential point for our
Fermi surface of the hybridized bands. In this case eitheresult: The correction to the self-energy due to hybridization
‘e, is large and all the other matrix elementsgof* are small  is small, of ordem, / N, ,, compared to the self-energy in
(of order A typically), or'g, is large and the other elements the absence of hybridization. This correction corresponds
are small. It is then easy to see that wr@nis large, we physically to the scattering from plane to chain induced by
obtaing by simply inverting the(1,1) block of g~*; that is,  hybridization. However, without hybridization, we are in the
we haveg;; ~ [0 ]t 6y 8,1. The other terms of stahdards-wave situation and impurities dq not change the
g;; are smaller by a factor of ordeér over energy separation critical temperature. The only effect ofy will come from
of the hybridized bandgor fixed k), that is, a factor of order the correction due to hybridization. Since this correction is
A/t or less. We have a similar result when is large. Taken ~Small, we expect the change bf to be small with respect to

together this means that we can take as block diagonal, what one would get with a simplé-wave order parameter.

that is,g;; = g &, with Al'ghough the integration in Eq31) can pe perfc_)rmed ana-
Iytically in the general case, the result is not simple. There-
SR fore, in order to obtain reasonably simple calculations, we
_ 1 . : will continue our quantitative investigation only in the par-
gi=—x= 5 & (28) 5 -0

ticular case wheré¢’; = I'; = I', which impliesQ; = Q,
= () . Actually this equality is always valid when the Mat-

Whereﬁé = a2 A], that is, explicitly 51 = Al colp Subara frequency is large enough compared 0, and
i Az sirf9 and 52 = A, sir?o + Az co<0. I',. This is in particular always valid when the impurity con-

We can now calculate the impurity self-ener8y Since centration is small enough so thBi ,<T.. Therefore the

gjj is block diagonal, we havg;; = aizj gjj - When we carry case W? consider is qung reasonable. o
this result into Eq(21), we can perform the integration per- !N this case the equations fan andA; simplify to
pendicularly to the Fermi surfadthat is, integrate oves; or

eﬁéf + 5|2

e,) since it converges within an energy range of _order K1=A1+F A~ F& A2 Al, (32)
We are then left with summations along the Fermi surface, |Q)| N |Q|
just as in the calculation of the critical temperature in the
preceding section. This leads to _ A, N, Al Az
B Ta— O IQI N2 |Q]
S =—mn,UZ> a? 5(6.)M (29)
' A L @] We have finally to calculate from Eq$12) and (13) the

_ self-energies\; and A, due to the pairing interactions. We
where we have taken into account tha&w; since we are have already obtained the off-diagonal part of the Green’s
only interested in the calculation of the critical temperature function, and the calculation is essentially the same as for the
We can then proceed as in the preceding section: For most off-diagonal part of the impurity self-energy. One finds
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However, these equations merely mean that we have to cal-
culate the critical temperature with the coupling constants
modified by the hybridization, as we have found at the end of
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that the corresponding effective inverse scattering time
v = y; + 7v5 is strongly reduced, compared to plane-plane
or chain-chain scattering, because the hybridization is small.
We note also that, in the general case, our Bd) does not
reduce to a simple two-band model, although we expect the
physics to be similar.

Let us briefly review the existing literatfefor the con-
sequences of Eq$40) and (41) for the critical temperature,
and add some results for the case which is of interest for us,
namely, the general situation with repulsive interactions.
From Egs.(40) and(41) one gets an equation ferwhich is
more conveniently rewritten as

_ (X=Xo)(X—Xy)
B X— Xy '

K(p) (42

the preceding section. With these coupling constants, Ed${ere x, andx; are the solutions of Eq9). More precisely

(34) and (35) take the simple form

A A,

A=\7TQ, = —kaTQ, —, 36
T T @ %
A, A,

Ay=\N"aT2, ——k'aT), —. 3
N T 47

From Egs.(32) and(33) we have
A, A Ay—A
T1:_1 Y1(A2 1) , 38)
19] ol |ol(|o]+y1+ o)
A, A A—A
2 A2 y2(A1—Ay) (39)

@_W lo|(|o|+y1+72)

where we have sey;=TN,/N; and y,=T'N;/N,. As ex-

Eg. (99 has two physically relevant solutions when
AN >kK'. The lower onexy, gives the physical critical tem-
perature. The higher ong;, corresponds to an unstable su-
perconducting state where the order parameter has the same
sign in the two bands, and therefore the interband coupling
decreases the critical temperature with respect to the un-
coupled situation instead of increasingiih the uncoupled
limit xo = 1/\ andx; = 1/\’; we assume, for example,
A>N' (Ref. 4)]. When\\' <kk’, the interband coupling is
too strong for the state with the ill-chosen signs of the order
parameter to exist and the unstable solution disapfésese

is still a mathematical solution witlk; < 0 but it must be
rejected physically because it does not satisfy the weak-
coupling condition x>1 anymorg¢. Finally we have

(M —KkK )xo=(Nk+ Nk’ +2kk")/(k+Kk") in Eq. (42). It

is easy to see that one has always< x, < x; for A\’
>kk’, while x; < X, < Xq is satisfied foia\" <kk’. Now

for fixed y, K(p) is a positive, increasing function of

pected the inverse lifetimE due to scattering within planes . - L -

and chains has disappeared from the equations, and only are Iln (7//“)D),f with K(p) o 0 for x——o and K(p) . X |
left v, andy, which describe physically the scattering from j; n (y afD) for X _]: - _%n Itis casy tg sge grzap Icaily
plane to chain due to hybridization. When this is carried intoi[ at, starting fromx, for y = 0, x as given by Eq(42) is an

. increasing function ofy. Therefore, in all possible cases, the
Egs. (36) and (37) _and the summations on the MatSUbaracritical temperature decreases when the impurity concentra-
frequency are carried out, one finds

tion increases.

Kk ForA\’ >Kkk' the increase of saturates at,, leading to
A=\ A1x+(A2—A1)WK(p)} a large concentration limiT; for the critical temperature
given, as found by Kusakalsé by
k/
—k A2X+(A1—Az)mK(p)}, (40 i 11300 _ 2KK AKENK 3
N T OO —kK) (kK
k/
A,=N"| Aox+ (Al—Az)m K(p)} This saturation corresponds physically to the situation where

strong impurity scattering has made the order parameter
completely isotropicA; = A,, while (A;—A,)K(p) takes

an independent nonzero value. The result, @), is then
easily rederived directly from Eq$40) and (41). Therefore
wherex= In (1.13wp/T,) and K(p)=(1/2+p)—(1/2), in this case the superconducting state survives very strong
with p = (y; + v,)/(27T.), and we have used the fact that impurity scattering by becoming isotropic. This situation is
in our casek/k’ =y, /vy,. Equationg40) and(41) are essen- analogous to the fate of very dirty anisotropgswave
tially what one obtains for the effect of the impurities in a superconductof§ and naturally quite different from the stan-
two-band modef® This is easy to understand physically dard behavior of @-wave superconductor. We note inciden-
since, because of hybridization, the in-plane scattering poterially that, when one goes from the pure system to the very
tial allows effectively an electron to scatter from plane todirty one, one goes from; A, < 0to A; A, > 0, which
chain, for example. However, our essential point isimplies that, if A +k’'>\'+k, for example, the chains be-

—K’'

k
A1x+<A2—Al>WK<p>} (4
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1 e —— characterize the sensitivity df, to impurities, we have also
i to look at the initial slope found for low impurity concentra-
0.8 [ tion.
i ] In this regime we have from E@42)
° 0.6 A
&’ i ] 1- Te ™y X0~ X
= o4 . Te 4 TIX—x
’ : 7oyl A—N")(k—k')+4kk'
0.2 - ] A ( )(k—K") |
4Te|2 2(k+k')VN=N")2+4KK
0 I & TN N R R S 46
0 1 4 5 (46)

2 .3
L which is the result of Moskalenko and Palistrahids they

indicated, &q— X»)/(Xo—X;) goes from O to 1, which implies

9 that the decrease of . is always less than for the pure
d-wave case. Thel-wave result is obtained in the limiting
caseh—\'=k—k' or k’—=0. On the other hand fck—0
(and fixedk'), the critical temperature does not depend any-
more on the impurity concentratidrhis result is actually

| _ t ific | . _ valid whatever thg ir_np_u.rity concgntration as it_can pe seen
Egnme %Zﬁlgiﬁz froom a S;;ge S&%;' ¢ g?]zunt{ﬁ;)ncentra from Eq. (42)]. This limiting case is not unphysical since it

K(p)=(k+ k,)/()\}\,_kk’) and X:()\,+k)/()\)\,_kk,)]. Corresponds to a situation where the denSity of StBItLem

However this casa\’>kk' requires not too small coupling ghe cha|tns Wogld be ver){ Sm.etl::‘ xVe Woﬂcld. still rzjaveda
constants. and\’ in both bands. In YBCO it is not clear at ¢"WaVve-lyp€ order parameter with change ot sign and nodes,

all that the CuO chains alone have a superconducting terﬁ-m the critical temperatur_e would be_ completely controlled
dency. If we have.’ ~ 0, the conditio\’>kk’ cannot be y the planes and the chains would simply follow. Therefore
satisfiéd ' we have the surprising result of a superconducting phase

For A\’ <kk' there is no saturation in the increasexof with ad-wave-type order parameter which has a critical tem-

and the critical temperature goes to zero when the impurmger?turzmsensmv_f.toflmpturltles %ﬁst assagvavetsupercton— h
concentration is increased, as found by Kusalihdow- uctor. However, 1L 1S fair to say that we do not expect suc

ever when we substitute in E¢42) the largex behavior of a limiting situation to occur in YBCO. Hence we believe that
K(p), we obtain in our case Eq(46) leads to a sensitivity to impurities which

is always somewhat reduced with respect to the standard

d-wave case, but not by a large factor. An example of the
0 _ 0 '

x—x0=|nE= (%o XZ)In(l'lgy/Tg) , (44  general behavior of . / T¢ as a function of our scattering

Te  Xp=x=In(1.13y/T¢) rate y is given in Fig. 1 where we have chosen the param-

0 - » ) ) . etersh=1,\"=0, andk’ =0.5, andk takes the values 0.01,

where T; is the critical tempera_tgre _W|tho_ut impurities. 0.1,0.2, 0.5, 1.5, and k& 1.5 gives exactly an Abrikosov-

ThereforeT, goes to zero for a critical impurity concentra- Gorkoy law).

tion and we find in this case a behavior similar to the stan- | grder to conclude this section, let us now come back to

dardd-wave result. The corresponding critical valyg for  the various terms we have omitted from the beginning. We

FIG. 1. Relative variation of the critical temperature from E
(42) as a function of our reduced effective relaxation rat§2 for
the parametera = 1, \'=0, andk’=0.5, and fork taking the
values 0.01, 0.1, 0.2, 0.5, 1.5, and I6<(1.5 gives exactly an AG
law).

y is given by did not take into account direct plane-chain scattering by
impurities. As we mentionned, we expect physically this
|n1-13)’c:X o 1 SN AKK scattering to be reduced by a factdf/N, . compared to
T 2 M1 2(kk' —AN) plane-plane or chain-chain scattering which we have treated.

Including this plane-chain term is just what is done in the
standard two-band model when the effect of impurities on
T. is calculated. Since we have shown that our calculation
leads us to the two-band model, including direct plane-chain
The right-hand sidéRHS) of Eq. (45) is positive and it goes  scattering would just give us an additional term of the same
from zero (for A—\'=k—k’ or k'=0) to infinity (for  order as the one we have foufilwould appear as an addi-
A" =KkkK’). Therefore the lowest possible value gfis the  tional term inX ). Therefore our conclusions with respect to
standardd-wave resultyc=0.88T2 but it can easily be much the sensitivity of T, to impurities are unchanged. We have
higher since it is given by the exponential of the rhs of Eq.also omitted mixed plane-chain terms, for the order pa-
(45). From this, one would conclude that, for a givgnour  rameter. This is justified by our finding that, when the hy-
model is much less sensitive to impurities than standhrd bridized bands are well separated, the dominant contribu-
waves. However, when one looks at the behaviof ghs a  tions ofg come from the block diagonal partg; andg,,.
function of y, one sees that this large valuegfis obtained Hence we have, for exampl&,=2a;19118,11 a15022825.

at the end of a long tail where the valueTgfis already quite However, the productsi;a,; and aj.a,, are significantly
small, as can be seen in Fig. 1. Therefore, in order to fullydifferent from zero only in the anticrossing region. When we

_(A—)\’)(k—k’)+4kk’}

K+ K’ 43
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calculate the off-diagonal self-energy, we have to €Gp 100
overk. Accordingly the result\ ;, will be smaller by a factor ciq 1
of orderN; /N, . compared ta\; andA,, which justifies our 80 P ex ]
approximation. Finally we note that going beyond the Born i y‘. ]
approximation will not only renormalize the impurity cross  _ go [ 7 y ]
section. It will also introduce plane-chain terrds, in the X r °. e ]
impurity self-energy because, after scattering on a plane im- -° a0 [ o v B
purity, an electron can go to the chains through, and C 1
scatter on a chain impurity. But we have just seen that, after o0 L v b
summation ofG,, over k, one obtains a result which is - O
smaller by a factoN;/N, .. This leads to & ;, which is . 0 I e
Z?E:aéller than3; or 3, by the same factor and hence negli- 0 200 400 600 800 1000

’ p {pQ cm)

IV. DISCUSSION FIG. 2. Experimental results for the variation of the critical tem-

perature of YBCO, due to Zn impurities, as a function of the re-

The conclusion of our study is that, in our model, thesjdual resistivity. The solid circles are the results of Ref. 17, the
critical temperature is much less sensitive to impurities thampen squares, the crosses, the solid diamonds, and the solid tri-
it is in standardd-wave models. One basic reason is that weangles are, respectively, the results for the batches 2, 3, 4, and 6 of
expect physically impurities to produce essentially planeRef. 18.
plane and chain-chain scattering. Just as-Wmave supercon-
ductors, this scattering does not affect the critical temperaRefs. 17 and 18 for the critical temperature as a function of
ture. On the other hand, is reduced by scattering between the residual resistivity. This is done in Fig. 2. It can be seen
parts of the Fermi surface which have opposite signs for thénhat the behavior of some of our results found in Fig. 1 is
order parameter, just as in standatdvave case. In our quite similar to the experimental resulte assume natu-
model this is due to plane-chain scattering. We have foundally that the residual resistivity is proportional to the scat-
that this scattering, whatever its origin, will be smaller by atering rate due to impuriti@gsWe have naturally enough ad-
factor of ordert/Eg (that is, hybridization coupling over justable parameters to fit them nicely. However, such a fit
Fermi energycompared to plane-plane and chain-chain scatwould be rather meaningless because, in addition to the mag-
tering. From the band structure calculations we expect thigetic problem, the scatter in the data is rather important at
factor to be typically somewhere between 0.1 and 0.3. Therdow impurity content and the interpretation of the data for
fore the sensitivity ofT to impurities in our model is re- larger concentration is uncertaftocalization effects which
duced by a similar factor, compared to tthavave situation. are not taken into account in our theory might play a signifi-
In the specific case which we have studied in detail andcant rolg.
which reduces to the two-band model, we have found a fur- If we turn to irradiation experiments, whether by electrons
ther reduction of the sensitivity of . to impurities with a  or by light ions, the interpretation is also not an easy one. It
behavior which can vary continuously fromwave like to  is known that highf, compounds have a critical temperature
d-wave like depending on the parameters. From our discusnuch more sensitive to irradiation than standard supercon-
sion of its physical origin, we expect a similar behavior andducting materials. However, although it is likely that most of
reduction to occur in the general case. the created defects do not have a magnetic character, we can

It is unfortunately not possible to make a quantitativenot eliminate, from our knowledge on substitutional impuri-
comparison with experiments. Indeed it seems surprisinglyies, the possibility that some are magnetic. The experimental
quite difficult'® to avoid a magnetic character for substitu- evidence is controversial in this respétihen there is some
tional impurities in YBCO. Naturally this occurs when the evidence that localization effects might be important since a
isolated impurity atom itself has a magnetic moment. Butmetal-insulator transition is observed in YBCO under light
this happens also when a nonmagnetic impurity acquires @n irradiation, and there is no intermediate normal phase
magnetic moment due to its interaction with the environ-between the superconducting phase and the insulating*one.
ment, as is the case for Zn, for examfieNaturally an im-  This sensitivity to localization is easy to understand because
purity with a magnetic character will produce pair breaking,of the two-dimensional nature of the Cu@lanes. Localiza-
leading to an Abrikosov-Gor'kov like law in any model, in tion effects are not included in our theoretical study. It is also
agreement with what is observed experimentally. Henceot clear at all that the created disorder can be considered as
these kind of experiments cannot be used directly to elimihomogeneous since the resistivity measurements do not al-
nate theoretical models. Nevertheless, after these words efays display a sharp drop at the critical temperature. Simi-
caution with respect to a simple-minded interpretation of im-larly one might expect that the defects created by irradiation
purity experimental results, we note that the reduction ofare randomly distributed at the microscopic scale, but it is
T. down to 13 K for 8% Zn is obtained by an increase of theactually quite likely that the chains are more sensitive to
residual resistivit}? by a factor of order 10. The correspond- irradiation than the planes. There is finally the obvious prob-
ing /7 should be then of order 20, (see below. This is  lem of having an experimental determination of the quasipar-
much more than what is necessary to destroy supercondutiele lifetime produced by disorder. Measuring the increase
tivity within a d-wave model according to the Abrikosov- in resistivity appears the best way to dtt ilthough it is far
Gor’kov law. Moreover, it is useful to plot the results of from perfect since, for example, it measures at best a trans-
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port lifetime which we expect to be somewhat larger thanrespect to this problem of the effect of impurities on the
guasiparticle lifetime. critical temperature, it would be much better to have experi-

Notwithstanding the above problems let us try to interpretments providing stronger constraints on theoretical models,
the irradiation experiments with our theoretical model, just tobut this might prove difficult to achieve.
see what comes out. From Drude’s law, with a typical resis-
tivity of 100 ) cm atT. and a plasma frequency of 1.1 ACKNOWLEDGMENTS
eV,'® we have a typical inverse lifetimé/r ~2T,. Since
superconductivity disappears in tldewave case when the
inverse lifetime due to impurities is of ordeir2we would
expect that an increase of resistivity of 100) cm leads to
the suppression of;.'! This corresponds roughly to a de-
crease ofT. of 1 K per uQ) cm (the AG law is essentially
linean. The experlmental results_ (_)f_Ref._ 15 give a linear | et ys vary Eq(9) with respect to the phonon frequencies
decrease of ; with respec'g to resistivity with a slope 0.3 K/ wp and Q. We assume, for exampledr = — Swp/
nf) cm. In Ref. 14 there is an upward curvature at low re-;, — _ 50/0<0. The variation of Eq(9) gives
sistivity with a maximal initial slope of 0.1 K/} cm. Since
in our model a reduction by a typical factor 1/10 with respect SY(2y—AN* = N"*)=8(K*K'*) = Su* (y—N\'"*)
to thed-wave result corresponds to a typical choice of our

i i —op'*(y—N\¥), (A1)

parameters, we see that this last experimental result agrees

with our eXpeCtation. But the result of Ref. 14 could eaSilywhereyzxfl_ The isotope effect is reduced if we show that

be explained, for example, by a larger value of the hybrid-sy < 0. We setD 1= (1+ ur)(1+ x'r)—kk'r2 We have

ization energy or by a suitable choice of the other parameterg(k*k’+)=2k*k’* sD/D, and Su*=u* SD/D+D(up’

of our two-band model. Quite generally we have enough_kk’)sr> u* SD/D (we assumeup’ —kk’'>0, which im-

parameters to vary in our model and so we can easily g9&{lies u* u'* —k*k'*>0). Since we havey>\* and

agreement with these various experimental results. Howevey,~ )\ '* and sD>0, it is enough to prove that

it must also be kept in mind that, as discussed above, there

are other possible physical processes which we have not 2k*K'* —pu* (y=N"*)—u'*(y=A*)<0. (A2)

taken into account and which will add up to produce afastetl_he left-hand side is zero when the varialgiés equal to

decrease of the critical temperature with the resistivity. AY_ DREK™ 4 i N+ N (4 %) W f'qd h

clear example of this is found in Ref. 14 where a more rapid =( FHHINTH p AT (e + p7). We find that

decrease is found for a set of samples and attributed to e>¥—1<Y<y0’ since we have

trinsic effects, while good samples show an average d(_acreasgﬂ* F )Y =N )Y = N*) =K K * ]

of 0.03 K/uQ) cm. Therefore we can consider an experimen-

tal result as an upper bound for our theoretical result, but it =—K*k'*[X\* —\"* 4+ u* — " *P=(u*u* —K*K'*)

may quite well be larger than what we find. Clearly it is more , ,

difficult to explain in ad-wave model the slow dependence XL =\")+4k"K'*]<0, (A3)

of T, on resistivity found in Ref. 14 than it is in our model to wherey, =1/ xo andy; =1/ x;. Since we havg>y,>Y,

explain the somewhat stronger dependence found in Ref. 1k&q. (A2) is satisfied and the isotope effect is indeed reduced.
In conclusion we have seen that our model is quite coherThere is no reduction only in the limiting cageu’ =kk’

ent with the present experimental evidence. Naturally, withand\* + u*=\"*+pu'*.

We are extremely grateful to N. Bontemps, P. Monod,
and J. Lesueur for very useful discussions on the experimen-
tal situation.
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