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We have studied the effect of impurities on the critical temperature for a model of Y-Ba-Cu-O involving
pairing both in the CuO2 planes and in the CuO chains. In this model pairing in the planes is due to phonons,
while Coulomb repulsion induces in the chains an order parameter with opposite sign. Due to the anticrossing
produced by hybridization between planes and chains, the order parameter changes sign on a single sheet of the
Fermi surface, resulting in nodes in the gap. We find that, in our model, the critical temperature is much less
sensitive to impurities than in standardd-wave models. One reason is that impurities produce essentially
plane-plane and chain-chain scattering, which does not affect the critical temperature.Tc is reduced by the
scattering between parts of the Fermi surface which have opposite signs for the order parameter, just as in
standardd-wave models. In our model this is due to plane-chain scattering. We have found that this scattering,
whatever its origin, will be smaller by a factor of ordert/EF ~that is, hybridization coupling over the Fermi
energy! compared to plane-plane and chain-chain scattering. Accordingly the sensitivity ofTc to impurities in
our model is reduced by a similar factor, compared to thed-wave situation. In the specific case which we have
studied in detail and which reduces to the two-band model, we have found a further reduction of the sensitivity
of Tc to impurities with a behavior which can vary continuously froms-wavelike tod-wavelike depending on
the parameters. We expect a similar behavior and reduction to occur in the general case.
@S0163-1829~96!04730-3#

I. INTRODUCTION

The mechanism responsible for high-Tc superconductivity
is still highly controversial.1 While a large part of the theo-
retical effort is based on the hypothesis that Cooper pairs are
formed in high-Tc compounds, there is no agreement on the
physical origin of the pairing interaction or on the symmetry
of the pair wave function. These two questions are actually
intimately related. Indeed repulsive interactions, such as pro-
duced by spin fluctuations,2 require an order parameter
which changes sign on the Fermi surface in order to produce
pairs. This leads, in the simplest hypothesis, to pairing with
d-wave symmetry if we assume singlet pairing. On the other
hand purely attractive interactions lead to pairing with
s-wave symmetry since any change of sign is unfavorable in
this case. Therefore an experimental determination of the
order parameter symmetry should greatly help to identify the
physical interaction responsible for pair formation: Although
it would not be enough to provide a unique identification, it
would strongly narrow the remaining possibilities. For this
reason a large part of the recent experimental work has been
aimed toward providing a clear signature for the symmetry
of the order parameter.

Quite surprisingly recent experiments on YBa2Cu3O7
~YBCO! designed with this purpose of identifying the sym-
metry have given clear-cut, but contradictory answers.1 In-
deed the observation of a sizable Josephson current3 in a
c-axis tunneling junction between YBa2Cu3O7 and Pb is
quite difficult to reconcile with a pured-wave symmetry
while it is in full agreement withs-wave symmetry. Simi-
larly the fact that there is no angular dependence in the criti-
cal current of YBCO-YBCO grain boundary junctions in the
a-b plane4 goes clearly in the direction of ans-wave inter-
pretation. On the other hand a number of experiments are in

favor of ad-wave symmetry. Many experiments, including
tunneling, NMR, Raman scattering, photoemission, and pen-
etration depth,1 have shown the existence of low-energy ex-
cited states. Actually these experiments are compatible with
a strongly anisotropics-wave order parameter. Or more sim-
ply one may look for extrinsic effects and wonder if these
states do not arise from surface effects or defects, which
would provide quasinormal regions. However, the existence
of a linear T dependence of the penetration depth over a
large range of temperature, simultaneously in crystals and
films, with the same slope,5 makes an extrinsic interpretation
for all these experiments unlikely~while this kind of expla-
nation may very well be valid for some of them!. Moreover
some experiments specifically designed to check if the order
parameter changes sign over the Fermi surface have given
positive answers. These are the corner superconducting
quantum interference device~SQUID! experiments6 which
give a clear indication for a change of sign of the order
parameter between thea andb axes, and the observation of
a spontaneous magnetization corresponding to a half mag-
netic flux quantum in three grain-boundary Josephson
junctions7 which implies ap shift, in clear agreement with
d-wave symmetry.

On the other hand thed-wave interpretation is not free of
problems. For example recent experiments show that some
thermodynamical superconducting properties are markedly
anisotropic~the a- and b-axis results are different!. Indeed
the penetration depth in good YBCO crystals displays a
strong anisotropy of the penetration depth,8 and the specific
heat anomaly atTc of the parent compound LuBa2Cu3O7
~with sameTc as YBCO! has a marked anisotropy as a func-
tion of the orientation of an applied magnetic field.9 It is
difficult to ascribe these anisotropies to the weak orthorhom-
bic distortion, and it is more likely that the CuO chains play
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a significant role in the superconducting properties. One of
the most conspicuous problems of thed-wave interpretation
is the weak sensitivity of the critical temperature of
YBa2Cu3O7 to the presence of impurities. Indeed any kind
of impurities, whether magnetic or not, produces ind-wave
superconductors10–12an effect analogous to pair breaking by
magnetic impurities in standards-wave superconductors.13

In particular the critical temperature10,11 decreases rapidly
with increasing impurity concentration following the
Abrikosov-Gor’kov ~AG! law,13 and superconductivity dis-
appears at a critical concentration. In contrast all samples of
YBa2Cu3O7 seem to have aTc around 90 K. It is difficult to
believe that all samples~including the earlier ones! are clean
enough to affect only weakly the critical temperature,
whereas all microscopic studies show that there are always
more structural defects than what is generally admitted.
Moreover, ion14 or electron15 irradiation experiments have
shown a rather weak sensitivity of the critical temperature of
YBa2Cu3O7 on the inverse lifetime deduced from resistivity
measurements.11 Actually Zn impurities are known16,17 to
have a depressing effect onTc , but this can be interpreted as
a standard pair-breaking effect since the environment of a Zn
impurity, located in the CuO2 planes, is known to be
magnetic.18.

In order to solve these contradictions we have proposed
recently19 for YBa2Cu3O7 a model which mixess-wave and
d-wave features. In our model, in addition to the CuO2
planes, the CuO chains play an essential role. The pairing
interaction within the planes is attractive~it can be, for ex-
ample, produced by phonons!. On the other hand the pairing
interaction between planes and chains is repulsive~it can be
produced by the Coulomb interaction!. In this way the order
parameter has opposite signs on the planes and on the chains.
Moreover, we include the hybridization between planes and
chains, which corresponds physically to taking into account
the possibility for an electron to jump from planes to chains
or vice versa. Naturally the coupling responsible for this hy-
bridization is fairly small, but it is a well-known feature of
all band structure calculations.20 It is of importance only
when the plane and the chain band intersect. In this case it
leads to an anticrossing in the dispersion relations, and simi-
larly to an anticrossing of the Fermi surfaces, wherever the
~uncoupled! pieces of the Fermi surface related to plane and
chain cross. As a result, when we move on a given sheet of
the Fermi surface, we go from a part which corresponds
physically to a plane electron, to a part which corresponds
physically to a chain electron. Since the order parameter has
opposite signs for plane and chain electrons, this implies that
the order parameter changes sign on a given sheet of the
Fermi surface and therefore has nodes on this sheet by con-
tinuity. Therefore our model provides an order parameter
which is quite analogous to ad-wave order parameter and it
can in this way explain19 all the experiments in favor of
d-wave symmetry. On the other hand it does not have a
d-wave symmetry since the nodes, which occur at the inter-
section between plane and chain bands, have no reason to
satisfykx 5 ky , and the average of the order parameter has
no symmetry reason to be zero. Hence there is, for example,
no problem with the nonzero Josephson current in
YBa2Cu3O7-Pb junctions along thec axis.

3 Moreover, since
the attractive in-plane interaction and the repulsive interac-

tion between plane and chain help each other, there is no
problem in explaining the high value of the critical tempera-
ture of YBa2Cu3O7.

21 Naturally our model is specific of
YBa2Cu3O7, but we can think that it can be
generalized to other compounds where the role of the chains
can be played by other parts of the structure, such as the BiO
planes in Bi-Sr-Ca-Cu-O. On the other hand there is no pos-
sibility of this kind in La-Sr-Cu-O and accordingly we do not
expect experiments to display in this compound the same
physical features as in YBCO.

Our model has common features with many other models.
As a two-band model it is quite similar to the two-band
models introduced by Suhl, Matthias, and Walker and
others22–26to describe superconductivity in transition metals.
The possibility of an interband repulsive interaction in two-
band models was already introduced by Kondo.24 More re-
cently a two-band superconducting–normal-metal~SN!
model has been introduced by Abrikosov and Klemm27 to
account for Raman scattering data. The idea of an interband
repulsion has been put forward by various groups28–31 re-
cently in the context of high-Tc superconductivity in order to
show that experiments displaying a change of sign of the
order parameter did not necessarily imply a spin fluctuation
mechanism. Our model is also similar to the one proposed by
Abrikosov,32 where there are attractive and repulsive inter-
actions within a single band, leading to a change of sign of
the order parameter within this band. Finally, as noted above,
chain-plane hybridization is a standard feature of band struc-
ture calculations20 and there have been various suggestions
of the importance of the chains in the physics of
YBa2Cu3O7, whether for intrinsic or for extrinsic
reasons,33–35 these models allowing for the electron to jump
between planes and chains.

In this paper we consider the effect of impurities on the
critical temperature in our model. We will actually restrict
ourselves to nonmagnetic impurities. Indeed magnetic impu-
rities are easily included, but they will naturally lead to pair
breaking and produce aTc following the AG law as in other
models. Hence magnetic impurities cannot discriminate be-
tween various models and we ignore them for simplicity.
The conclusion of our study is that, in our model, for generic
parameters, the critical temperature is much less sensitive to
impurities than in standardd-wave models. Therefore we
might say that, with respect to the sensitivity of the critical
temperature to nonmagnetic impurities, our model behaves
as a ‘‘weak’’ d-wave model. This happens for two indepen-
dent reasons. First the reduction ofTc is due to plane-chain
scattering, which is weak compared to plane-plane scatter-
ing. Next the fact that we have a two-band model provides
further possibilities for a weak impurity sensitivity. In Sec. II
we present our model and we calculate the critical tempera-
ture of the clean superconductor as a first step toward the
calculation of the impurity dependence, which is dealt with
in Sec. III. Finally Sec. IV is devoted to a comparison with
experimental results and to our conclusion.

II. MODEL

Let us first define specifically our model. We will describe
the motion of an electron in planes and chains by the follow-
ing Hamiltonian:
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H05(
k

«kck
†ck1(

k
«8kdk

†dk1(
k
tkck

†dk1H.c., ~1!

whereck
† anddk

† are creation operators in the plane and in the
chain band, respectively. The first term corresponds to an
isolated plane with dispersion relationek , the second one to
isolated chains with dispersion relationek8 , and the last term
describes hopping between planes and chains. Actually this
independent electron Hamiltonian does not correspond pre-
cisely to the situation found in YBa2Cu3O7. Indeed
YBa2Cu3O7 is built by stacking up sets made of two
CuO2 planes and one CuO chains plane. Therefore a better
description is obtained by the Hamiltonian

H05(
n

«c1,n
† c1,n1(

n
«c2,n

† c2,n1(
n

tp~c1,n
† c2,n1H.c.!

1(
n

«8dn
†dn1(

n
tc~c1,n

† dn1H.c.!

1(
n

tc~c2,n
† dn111H.c.!, ~2!

where all quantities are understood to depend onkx andky
and summations run also overkx,y . The indices 1 and 2
number the CuO2 planes and the indexn numbers the stacks.
Introducing the even and odd plane band operatorsc6 by
c1,2 5 (c1 6 c2)/A2, and taking the Fourier transform in
the z direction, we obtain

H05(
k

~«1tp!c1,k
† c1,k1(

k
~«2tp!c2,k

† c2,k

1(
k

«8dk
†dk1(

k
t1~c1,k

† dk1H.c.!

1(
k
t2~c2,k

† dk1H.c.!, ~3!

where a dependence and summation onkz is now under-
stood, andt15tcA2cos(kzc/2) and t25tcA2sin(kzc/2), with
c being the size of the unit cell along thez direction. Band
structure calculations20 give a crossing of the chain band
Fermi surface with the odd plane band Fermi surface,
whereas there is no crossing with the even plane band.
Therefore the even plane band will not play an interesting
physical role in our model and we will forget it for simplic-
ity, but it should clearly be retained in a very realistic calcu-
lation. This leads us back to the Hamiltonian, Eq.~1!, where
the plane band is actually the odd plane band. The hopping
term has akz dependence as given byt2 . However, if the
even plane band happens to cross the chain band, we would
have no problem in extending our model. This would be
particularly easy in the two extreme cases where the even
and odd plane bands are nearly degenerate (tp ! tc) or well
separated (tp @ tc) since we would be led again to the
Hamiltonian, Eq.~1!.

With respect to pairing interactions, as we have already
indicated, we take an attractive pairing interaction in the
plane which can be, for example, due to phonon exchange.
On the other hand we assume a repulsive pairing interaction

between plane and chain. A natural physical origin for this
term is the Coulomb repulsion, since screening is certainly
not very efficient in YBCO because it is a weak metal. More-
over, screening is probably very ineffective along thez di-
rection since hopping in this direction is small. We note,
however, that hopping is physically necessary in order to
have a pairing term between planes and chains. Finally there
is little experimental evidence for an attractive pairing inter-
action in the chains. However, we will assume its existence
for the sake of generality. We include also the standard in-
traband Coulomb repulsion.

Let us first consider the critical temperature of the clean
superconductor. In a first step we ignore the hopping term
tk . The Eliashberg equations at the critical temperature are

DnZn5pT(
n

ln2m

Dm

uvmu
2pTm(

n

vc Dm

uvmu
2pTk(

n

vc D8m
uvmu

,

~4!

D8nZ8n5pT(
n

l8n2m

D8m
uvmu

2pTm8(
n

vc D8m
uvmu

2pTk8(
n

vc Dm

uvmu
. ~5!

HereDn andZn are the order parameter and the renormal-
ization function at the Matsubara frequencyvn . Primed
quantities refer to the chains while unprimed ones corre-
spond to the planes;ln andln8 are the effective frequency-
dependent interactions due to phonon exchange whilem,
m8 andk, k8 are the intraband and interband Coulomb repul-
sion with cutoffvc of order of the Fermi energy. While the
interactions that we consider here have certainly a wave vec-
tor dependence in the real superconductor, we have no pre-
cise idea of what they are and we do not have any physical
reason to believe that this dependence is strong. Therefore,
for the sake of simplicity and clarity, we have taken isotropic
interactions within planes and chains. We can now proceed
to the usual reduction of the cutoff fromvc to a frequency
vD a few times a typical phonon frequency. For
vn . vD , the order parametersDn and Dn8 become con-
stantsD` andD 8̀ while Zn , Zn8 ' 1. These constants are
obtained from Eqs.~4! and ~5! as

~11mr !D`1krD8`52pTm(
n

vD Dm

uvmu
2pTk(

n

vD D8m
uvmu

,

~6!

~11m8r !D8`1k8rD`52pTm8(
n

vD D8m
uvmu

2pTk8(
n

vD Dm

uvmu
,

~7!

where r5 ln (vc/vD). When these results are carried into
Eqs.~4! and~5!, one obtains the same equations, except that
the cutoff is nowvD andm, m8 andk, k8 are replaced by
renormalized Coulomb interactionsm* , m8* and k*, k8*
given by
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m*5
m1~mm82kk8!r

~11mr !~11m8r !2kk8r 2
,

k*5
k

~11mr !~11m8r !2kk8r 2
, ~8!

and similar expressions form8* and k8* obtained by ex-
changing primed and unprimed quantities. Naturally one re-
covers the standard Coulomb pseudopotential when there is
no interband interaction. It seems safe to assume
mm82kk8.0; otherwise we would have pairing from an
‘‘ s-wave’’ Coulomb interaction alone~when pairing from
the Coulomb interaction is considered, this is usually for
higher ‘‘angular momenta’’!. In this case renormalization
does not change the sign of the various quantities. We see
that, in addition to its direct effect, the interband interaction
decreases the effective intraband repulsion, leading to an in-
crease of the critical temperature, as it should.36 In the fol-
lowing we will restrict ourselves to the weak-coupling limit
whereDn andDn8 can be taken as constants and mass renor-
malization is negligible. Indeed, as will be clear in the fol-
lowing, we do not expect strong-coupling effects to modify
qualitatively our conclusions. In this caseTc depends only
on the combinationsl* [ l02m* andl8* [ l082m8* , in
addition tok* and k8*. From now on we will omit the as-
terisk for all the renormalized coupling constants. Then, if
we let x 5 ln (V / Tc) whereV is a typical phonon fre-
quency~or rather 1/4 of a typical phonon frequency37!, Tc is
obtained from

~x212l!~x212l8!5kk8, ~9!

which is the standard two-band result.22 Although one ex-
pects physically that the Coulomb interaction reduces the
isotope effect, this is not obvious from Eqs.~8! and~9!. This
has been shown to be true by Kondo24 in some limiting
cases. We show in the Appendix that this property holds
quite generally.

As a preliminary to the calculation with impurities, let us
finally consider how the above calculation of the critical tem-
perature is modified when we take into account the hybrid-
ization tk between planes and chains. As indicated above, we
take isotropic interactions and order parameters in the planes
and in the chains. Corresponding to the effective interaction
Hamiltonian

H int52g(
k,k8

ck8
† c2k8

† c2kck1K(
k,k8

dk8
† d2k8

† c2kck1H.c.

2g8(
k,k8

dk8
† d2k8

† d2kdk , ~10!

the order parameter satisfies

D52g(
k

^c2kck&1K(
k

^d2kdk&, ~11!

D85K(
k

^c2kck&2g8(
k

^d2kdk&. ~12!

However, because of the hybridization, the plane and chain
operatorsck anddk do not correspond to the eigenstates of
H0 . The unitary transformation

ci5ai jg j ~13!

diagonalizes the Hamiltonian intoH0 5 S ei g i
† g i where

we have set for conveniencec1 [c andc2 [d. The energies
e1 and e2 of the hybridized bands are given by 2e1,2 5 e
1 e8 6 @(e2e8)2 1 4 t2 ] 1/2 anda11 5 a22 5 @(e12e8)/
(e12e2)#

1/2 [ cosu, a2152a12 5 @(e12e)/(e12e2)#
1/2

[ sinu, with again thek dependence understood everywhere.
When we carry out this transformation in the mean field
Hamiltonian

H5H01D(
k
ck
†c2k

† 1D8(
k
dk
†d2k

† 1H.c., ~14!

we will obtain interband pairing terms, such asg2k,1gk,2 ,
coupling the hybridized bands. However, we will consider
that tk is large enough so that these bands are well separated.
Specifically this means that we assume
vD !tk ~otherwise we should make a much more careful
strong-coupling treatment, which would probably not bring
anything new qualitatively!. In this case the above pairing
terms will be negligible because we cannot have two elec-
trons (k,1) and (2k,2) at the Fermi surface with opposite
wave vectors, but belonging to different bands~we will jus-
tify more specifically this approximation in the next section!.
Therefore the transformation, Eq.~13!, gives

H5H01(
k

d1,kg1,k
† g1,2k

† 1(
k

d2,kg2,k
† g2,2k

† 1H.c. ~15!

with d1,k 5 D cos2uk 1 D8 sin2uk and d2,k 5 D sin2uk
1 D8 cos2uk . Naturally this band-diagonal expression for the
Hamiltonian is obvious once the interband pairing terms are
neglected, and we could have written it immediately. Our
essential point is that, starting from isotropic interactions in
planes and chains, we obtain a specific anisotropy for the
order parameterd1,k andd2,k . In particular we obtain nodes
at the Fermi surface since we have managed to haveD and
D8 with opposite signs, and cos2uk goes from 0 to 1 when we
move at the Fermi surface of a given band. Therefore we
have an order parameter which isd-wave like, although we
have assumed an attractive pairing in the planes.

We have then as usual^g2 ig i&52(d i /2ei) tanh(bei/2).
From Eqs.~11!, ~12!, and~13! this leads to

D5(
k

~gcos2uk2Ksin2uk!
d1,k
2e1,k

tanhS be1,k
2 D

1~gsin2uk2Kcos2uk!
d2,k
2e2,k

tanhS be2,k
2 D , ~16!

D85(
k

~g8sin2uk2Kcos2uk!
d1,k
2e1,k

tanhS be1,k
2 D

1~g8cos2uk2Ksin2uk!
d2,k
2e2,k

tanhS be2,k
2 D . ~17!

Since the bands are well separated, thek summations will be
around the Fermi surface of each band with cutoffvD for
ei ,k . The integration perpendicular to the Fermi surface will
give the standard factorx 5 ln (1.13bvD) and we are left
with summations along the Fermi surface:
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D5x(
k

~gcos2uk2Ksin2uk!d1,kd~e1,k!

1~gsin2uk2Kcos2uk!d2,kd~e2,k!, ~18!

D85x(
k

~g8sin2uk2Kcos2uk!d1,kd~e1,k!

1~g8cos2uk2Ksin2uk!d2,kd~e2,k!, ~19!

where the order parameterd i ,k should not be confused with
the Dirac functiond(e). For e1,k 5 0 we have cos2u
5 e8/(e 1 e8) and cos2u 5 e/(e 1 e8) for e2,k 5 0. More-
over, for most of the Fermi surface we havee ! e8 or e8
! e, leading to cos2u 5 0 or 1. This corresponds merely to
the result one obtains without hybridization. Subtracting
from Eqs.~18! and~19! their counterpart without hybridiza-
tion, we are left with summations over quantities which are
essentially nonzero only in the anticrossing region. In this
small region it is convenient to take, at fixedkz , e ande8 as
new variables instead ofkx and ky . The Jacobian of the
transformation isJ5](e,e8)/](kx ,ky)5u vp3vc u where
vp and vc are the Fermi velocities of the plane and chain
band at the crossing point. We are then led to evaluate

E d«d«8
f ~«,«8!

~«1«8!2
@d~e1!1d~e2!2d~«!2d~«8!#,

with f (e,e8) 5 e2 or e82 or 2ee8. This is easily done by
taking e/t k and e8/t k as new variables and extending the
boundaries of the integrals to infinity. The result is the same
for the three integrals, namely,2putku. When this result is
carried into Eqs.~18! and ~19! we find naturally the first-
order correction to the coupling constantsl 5 Npg, l8
5 Ncg8,k5NcK, and k85NpK, whereNp andNc are the
total density of states of the~uncoupled! plane and chain
bands. The hybridization changes these coupling constants,
respectively, into l2Nt(g1K), l82Nt(g81K),
k2Nt(g1K), andk82Nt (g81K). HereNt is an effective
density of states due to the hybridization and given by
Nt5 t̄/(pJc), where t̄ is the average ofutku over kz ~we
have taken into account that there are four crossings in the
Brillouin zone!. Naturally since we haveNt!Np , Nc in our
model these changes are small.

III. IMPURITY EFFECT
ON THE CRITICAL TEMPERATURE

We consider now the effect on the critical temperature of
impurities located in the planes and in the chains. We will
assume that the impurity potential scatters electrons within
the planes or within the chains, but that it does not scatter
them from plane to chain. Our physical motivation is natu-
rally that planes and chains are physically well separated,
which corresponds to the fact that the hopping termtk is
small. Therefore the potential for scattering from plane to
chain is reduced by a factor of ordertk /t0 compared to the
intraplane or intrachain scattering~wheret0 is a typical hop-
ping term within planes or chains!. This physical point is
essential for the validity of our result. Including this small
plane-chain scattering does not make any problem, but for
sake of clarity and simplicity we will not do it explicitly and

we will rather come back to this point after we have obtained
the effect of intraplane and intrachain scattering. We will
also take an isotropic scattering within planes and chains,
consistently with what we have done for the interactions.
This leads us to the following impurity potential:

V5U1(
k,k8

c1,k
† c1,k81U2(

k,k8
c2,k
† c2,k8. ~20!

We treat this potential within the Born approximation since,
for the calculation of the critical temperature, making use of
the T-matrix approximation is merely equivalent to renor-
malizing the scattering potential. There is, however, another
effect produced by going beyond the Born approximation,
which will be considered at the end of this section.

Within the Born approximation and after impurity aver-
aging, only contributions to the self-energy corresponding to
scattering twice on the same impurity are retained.38 Since
the potential, Eq.~20!, does not scatter electrons from plane
to chain, the impurities contribution to the self-energy has
only components within planes or chains. They are given
by39

S i5niUi
2(

k
t3Gii t3 , ~21!

wheren1 andn2 are the number of impurities per unit vol-
ume in the planes and in the chains,t i are the Pauli matrices
in Nambu space, andG is the temperature Green’s function
in plane-chain representation. The Green’s function is related
to the self-energy by

G215G0
212S, ~22!

whereG0 is the Green’s function in the absence of the im-
purity self-energy. Explicitly we set

Gi j
215~ i Ṽi2« it32D̃it1!d i j2tt3sx,i j , ~23!

G0,i j
215~ iv2« it32D it1!d i j2tt3sx,i j , ~24!

wherev5(2n11)pT is the Matsubara frequency~we omit
systematically for clarity the indexn in the Matsubara fre-
quency and all frequency-dependent quantities!, sx is the
Pauli matrix in plane-chain space, andD i is the off-diagonal
self-energy due to the pairing interaction~we have sete1
[ e ande2 [ e8). In order to invertG21 it is convenient to
go the hybridized band representation, or more precisely to
make the transformation which diagonalizesG21 when the
off-diagonal partD̃i of the self-energy is zero. ForG0

21 the
transformation matrix is justai j t0 whereai j is the transfor-
mation considered in the preceding section. In the present
case we have merely to formally generalize it by replacing
e i by e i2 i Ṽi for the particle-particle part in Nambu space
and by e i1 i Ṽi in the hole-hole part. We keep the same
notation for this transformation, but theai j are now complex.
The complete transformation matrix is nowAi j 5 (ai j
1 ai j* ) t0 /2 1 (ai j2ai j* ) t3 /2 . Actually we haveS , D
!t, since we assume that the hybridized bands are well sepa-
rated (S or D are typically of the same order of magnitude in
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the important cases as it will be clear below!. Moreover, as
usual we will be only concerned with Matsubara frequencies
v at most of orderS andD and therefore negligible com-
pared tot. This implies that, when it multiplies a quantity of
order S or D, we can take forai j its zero order value,
namely, the real value found in the preceding section. This
leads to the expressiong21 5 tA G21A for the full Green’s
function in the hybridized representation (tA is the transpose
of A):

gi j
2152 1

2 @~ ẽi2ẽi
* !t01~ ẽi1ẽi

* !t3#d i j2akiD̃kak jt1 ,
~25!

where

2ẽ1,25«11«22 i ~Ṽ11Ṽ2!

6@~«12«22 i Ṽ11 i Ṽ2!
214t2#1/2

'2e1,222i ṽ1,2 ~26!

and we have set

2ṽ1,25Ṽ11Ṽ26
~Ṽ12Ṽ2!~«12«2!

@~«12«2!
214t2#1/2

. ~27!

Now the dominant contributions to the summations ofG
over the wave vectork will come from the vicinity of the
Fermi surface of the hybridized bands. In this case either
ẽ1 is large and all the other matrix elements ofg21 are small
~of orderD typically!, or ẽ2 is large and the other elements
are small. It is then easy to see that whenẽ2 is large, we
obtaing by simply inverting the~1,1! block of g21; that is,
we havegi j ' @(g21)11#

21 d i ,1 d j ,1 . The other terms of
gi j are smaller by a factor of orderD over energy separation
of the hybridized bands~for fixedk!, that is, a factor of order
D/t or less. We have a similar result whenẽ1 is large. Taken
together this means that we can takegi j as block diagonal,
that is,gi j 5 gii d i j , with

gii52
1

ẽi ẽi*1 d̃ i
2 S ẽi* d̃ i

d̃ i 2ẽi D , ~28!

where d̃ i 5 ai j
2 D̃j , that is, explicitly d̃1 5 D̃1 cos2u

1 D̃2 sin
2u and d̃2 5 D̃1 sin

2u 1 D̃2 cos
2u.

We can now calculate the impurity self-energyS. Since
gi j is block diagonal, we haveGii 5 ai j

2 gj j . When we carry
this result into Eq.~21!, we can perform the integration per-
pendicularly to the Fermi surface~that is, integrate overe1 or
e2) since it converges within an energy range of orderD.
We are then left with summations along the Fermi surface,
just as in the calculation of the critical temperature in the
preceding section. This leads to

S i52pniUi
2(

k
ai j
2 d~ej !

i ṽ jt02 d̃ jt1

uṽ j u
, ~29!

where we have taken into account thatd̃ i!ṽ i since we are
only interested in the calculation of the critical temperature.
We can then proceed as in the preceding section: For most of

the Fermi surface we havee1!e2 or e2!e1, leading toai j
2

5 0 or 1. This corresponds to the result without hybridiza-
tion, which is

S i
052G iS i t0sgnv2

D̃i

uṼi u
t1D , ~30!

whereG i5pniNi Ui
2 with N1 [ Np andN2 [ Nc . When

we calculateS i2S i
0 we are left with summations over non-

zero quantities only in the anticrossing region. We take then
(e12e2)/t and (e11e2)/2t as new variables and extend the
boundaries of the integrals to infinity. The resulting expres-
sion simplifies under exchanginge1 ande2. We obtain that
the diagonal parts ofS i and S i

0 are equal, which implies
Ṽi 5 v 1 G i sgnv. On the other hand we find from the
off-diagonal part

D̃15D11G1

D̃1

uṼ1u
1G1

Nt

N1

2

pE0
1 du

~12u2!3/2

3F ~11u!2D̃11~12u2!D̃2

u~11u!Ṽ11~12u!Ṽ2u
1$u→2u%2

2D̃1

uṼ1u
G , ~31!

whereu5(e12e2)/@(e12e2)
214t2#1/2 and a similar result

for D̃2 .
This equation displays explicitly an essential point for our

result: The correction to the self-energy due to hybridization
is small, of orderNt / N1,2, compared to the self-energy in
the absence of hybridization. This correction corresponds
physically to the scattering from plane to chain induced by
hybridization. However, without hybridization, we are in the
standards-wave situation and impurities do not change the
critical temperature. The only effect onTc will come from
the correction due to hybridization. Since this correction is
small, we expect the change ofTc to be small with respect to
what one would get with a simpled-wave order parameter.
Although the integration in Eq.~31! can be performed ana-
lytically in the general case, the result is not simple. There-
fore, in order to obtain reasonably simple calculations, we
will continue our quantitative investigation only in the par-
ticular case whereG1 5 G2 [ G, which impliesṼ1 5 Ṽ2

[ Ṽ . Actually this equality is always valid when the Mat-
subara frequencyv is large enough compared toG1 and
G2. This is in particular always valid when the impurity con-
centration is small enough so thatG1,2!Tc . Therefore the
case we consider is quite reasonable.

In this case the equations forD̃1 and D̃2 simplify to

D̃15D11G
D̃1

uṼu
1G

Nt

N1

D̃22D̃1

uṼu
, ~32!

D̃25D21G
D̃2

uṼu
1G

Nt

N2

D̃12D̃2

uṼu
. ~33!

We have finally to calculate from Eqs.~12! and ~13! the
self-energiesD1 andD2 due to the pairing interactions. We
have already obtained the off-diagonal part of the Green’s
function, and the calculation is essentially the same as for the
off-diagonal part of the impurity self-energy. One finds
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D15N1gpT(
n

F D̃1

uṼu
1
Nt

N1

D̃22D̃1

uṼu G
2N2KpT(

n
F D̃2

uṼu
1
Nt

N2

D̃12D̃2

uṼu G , ~34!

D25N2g8pT(
n

F D̃2

uṼu
1
Nt

N2

D̃12D̃2

uṼu G
2N1KpT(

n
F D̃1

uṼu
1
Nt

N1

D̃22D̃1

uṼu G . ~35!

However, these equations merely mean that we have to cal-
culate the critical temperature with the coupling constants
modified by the hybridization, as we have found at the end of
the preceding section. With these coupling constants, Eqs.
~34! and ~35! take the simple form

D15lpT(
n

D̃1

uṼu
2kpT(

n

D̃2

uṼu
, ~36!

D25l8pT(
n

D̃2

uṼu
2k8pT(

n

D̃1

uṼu
. ~37!

From Eqs.~32! and ~33! we have

D̃1

uṼu
5

D1

uvu
1

g1~D22D1!

uvu~ uvu1g11g2!
, ~38!

D̃2

uṼu
5

D2

uvu
1

g2~D12D2!

uvu~ uvu1g11g2!
, ~39!

where we have setg15GNt /N1 and g25GNt /N2. As ex-
pected the inverse lifetimeG due to scattering within planes
and chains has disappeared from the equations, and only are
left g1 andg2 which describe physically the scattering from
plane to chain due to hybridization. When this is carried into
Eqs. ~36! and ~37! and the summations on the Matsubara
frequency are carried out, one finds

D15lFD1x1~D22D1!
k

k1k8
K~r!G

2kFD2x1~D12D2!
k8

k1k8
K~r!G , ~40!

D25l8FD2x1~D12D2!
k8

k1k8
K~r!G

2k8FD1x1~D22D1!
k

k1k8
K~r!G ~41!

wherex5 ln (1.13vD/Tc) andK(r)5c(1/21r)2c(1/2),
with r 5 (g1 1 g2)/(2pTc), and we have used the fact that
in our casek/k85g1 /g2. Equations~40! and~41! are essen-
tially what one obtains for the effect of the impurities in a
two-band model.26 This is easy to understand physically
since, because of hybridization, the in-plane scattering poten-
tial allows effectively an electron to scatter from plane to
chain, for example. However, our essential point is

that the corresponding effective inverse scattering time
g [ g1 1 g2 is strongly reduced, compared to plane-plane
or chain-chain scattering, because the hybridization is small.
We note also that, in the general case, our Eq.~31! does not
reduce to a simple two-band model, although we expect the
physics to be similar.

Let us briefly review the existing literature26 for the con-
sequences of Eqs.~40! and ~41! for the critical temperature,
and add some results for the case which is of interest for us,
namely, the general situation with repulsive interactions.
From Eqs.~40! and~41! one gets an equation forx which is
more conveniently rewritten as

K~r!5
~x2x0!~x2x1!

x2x2
. ~42!

Herex0 andx1 are the solutions of Eq.~9!. More precisely
Eq. ~9! has two physically relevant solutions when
ll8.kk8. The lower one,x0, gives the physical critical tem-
perature. The higher one,x1, corresponds to an unstable su-
perconducting state where the order parameter has the same
sign in the two bands, and therefore the interband coupling
decreases the critical temperature with respect to the un-
coupled situation instead of increasing it@in the uncoupled
limit x0 5 1/l and x1 5 1/l8; we assume, for example,
l.l8 ~Ref. 41!#. Whenll8,kk8, the interband coupling is
too strong for the state with the ill-chosen signs of the order
parameter to exist and the unstable solution disappears~there
is still a mathematical solution withx1 , 0 but it must be
rejected physically because it does not satisfy the weak-
coupling condition x@1 anymore!. Finally we have
(ll82kk8)x25(lk1l8k812kk8)/(k1k8) in Eq. ~42!. It
is easy to see that one has alwaysx0 , x2 , x1 for ll8
.kk8, while x1 , x2 , x0 is satisfied forll8 ,kk8. Now
for fixed g, K(r) is a positive, increasing function ofx
1 ln (g/vD), with K(r) → 0 for x→2` andK(r) 'x
1 ln (g/vD) for x → `. Then it is easy to see graphically
that, starting fromx0 for g 5 0, x as given by Eq.~42! is an
increasing function ofg. Therefore, in all possible cases, the
critical temperature decreases when the impurity concentra-
tion increases.

Forll8 .kk8 the increase ofx saturates atx2, leading to
a large concentration limitTc

` for the critical temperature
given, as found by Kusakabe,26 by

lnS 1.13vD

Tc
` D 5

2kk81lk1l8k8

~ll82kk8!~k1k8!
. ~43!

This saturation corresponds physically to the situation where
strong impurity scattering has made the order parameter
completely isotropic,D1 5 D2, while (D12D2)K(r) takes
an independent nonzero value. The result, Eq.~43!, is then
easily rederived directly from Eqs.~40! and ~41!. Therefore
in this case the superconducting state survives very strong
impurity scattering by becoming isotropic. This situation is
analogous to the fate of very dirty anisotropics-wave
superconductors40 and naturally quite different from the stan-
dard behavior of ad-wave superconductor. We note inciden-
tally that, when one goes from the pure system to the very
dirty one, one goes fromD1 D2 , 0 to D1 D2 . 0, which
implies that, ifl1k8.l81k, for example, the chains be-
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come gaplessD2 5 0 at some specific impurity concentra-
tion @given from Eqs. ~40! and ~41! by
K(r)5(k1k8)/(ll82kk8) and x5(l81k)/(ll82kk8)#.
However this casell8.kk8 requires not too small coupling
constantsl andl8 in both bands. In YBCO it is not clear at
all that the CuO chains alone have a superconducting ten-
dency. If we havel8 ' 0, the conditionll8.kk8 cannot be
satisfied.

For ll8,kk8 there is no saturation in the increase ofx
and the critical temperature goes to zero when the impurity
concentration is increased, as found by Kusakabe.26 How-
ever when we substitute in Eq.~42! the largex behavior of
K(r), we obtain

x2x05 ln
Tc
0

Tc
5

~x02x2!ln~1.13g/Tc
0!

x22x12 ln~1.13g/Tc
0!
, ~44!

where Tc
0 is the critical temperature without impurities.

ThereforeTc goes to zero for a critical impurity concentra-
tion and we find in this case a behavior similar to the stan-
dardd-wave result. The corresponding critical valuegc for
g is given by

ln
1.13gc

Tc
0 5x22x15

1

2~kk82ll8! FA~l2l8!214kk8

2
~l2l8!~k2k8!14kk8

k1k8 G . ~45!

The right-hand side~RHS! of Eq. ~45! is positive and it goes
from zero ~for l2l85k2k8 or k850) to infinity ~for
ll85kk8). Therefore the lowest possible value ofgc is the
standardd-wave resultgc50.88Tc

0 but it can easily be much
higher since it is given by the exponential of the rhs of Eq.
~45!. From this, one would conclude that, for a giveng, our
model is much less sensitive to impurities than standardd
waves. However, when one looks at the behavior ofTc as a
function ofg, one sees that this large value ofgc is obtained
at the end of a long tail where the value ofTc is already quite
small, as can be seen in Fig. 1. Therefore, in order to fully

characterize the sensitivity ofTc to impurities, we have also
to look at the initial slope found for low impurity concentra-
tion.

In this regime we have from Eq.~42!

12
Tc
Tc
0 5

p

4

g

Tc
0

x02x2
x02x1

5
p

4

g

Tc
0 F121

~l2l8!~k2k8!14kk8

2~k1k8!A~l2l8!214kk8
G ,

~46!

which is the result of Moskalenko and Palistrant.26 As they
indicated, (x02x2)/(x02x1) goes from 0 to 1, which implies
that the decrease ofTc is always less than for the pure
d-wave case. Thed-wave result is obtained in the limiting
casel2l85k2k8 or k8→0. On the other hand fork→0
~and fixedk8), the critical temperature does not depend any-
more on the impurity concentration@this result is actually
valid whatever the impurity concentration as it can be seen
from Eq. ~42!#. This limiting case is not unphysical since it
corresponds to a situation where the density of statesNc in
the chains would be very small. We would still have a
d-wave-type order parameter with change of sign and nodes,
but the critical temperature would be completely controlled
by the planes and the chains would simply follow. Therefore
we have the surprising result of a superconducting phase
with ad-wave-type order parameter which has a critical tem-
perature insensitive to impurities just as ans-wave supercon-
ductor. However, it is fair to say that we do not expect such
a limiting situation to occur in YBCO. Hence we believe that
in our case Eq.~46! leads to a sensitivity to impurities which
is always somewhat reduced with respect to the standard
d-wave case, but not by a large factor. An example of the
general behavior ofTc / Tc

0 as a function of our scattering
rateg is given in Fig. 1 where we have chosen the param-
etersl51, l850, andk850.5, andk takes the values 0.01,
0.1, 0.2, 0.5, 1.5, and 5 (k51.5 gives exactly an Abrikosov-
Gor’kov law!.

In order to conclude this section, let us now come back to
the various terms we have omitted from the beginning. We
did not take into account direct plane-chain scattering by
impurities. As we mentionned, we expect physically this
scattering to be reduced by a factorNt /Np,c compared to
plane-plane or chain-chain scattering which we have treated.
Including this plane-chain term is just what is done in the
standard two-band model when the effect of impurities on
Tc is calculated. Since we have shown that our calculation
leads us to the two-band model, including direct plane-chain
scattering would just give us an additional term of the same
order as the one we have found~it would appear as an addi-
tional term inS0). Therefore our conclusions with respect to
the sensitivity ofTc to impurities are unchanged. We have
also omitted mixed plane-chain termsD12 for the order pa-
rameter. This is justified by our finding that, when the hy-
bridized bands are well separated, the dominant contribu-
tions of g come from the block diagonal partsg11 andg22.
Hence we have, for example,G125a11g11a211a12g22a22.
However, the productsa11a21 and a12a22 are significantly
different from zero only in the anticrossing region. When we

FIG. 1. Relative variation of the critical temperature from Eq.
~42! as a function of our reduced effective relaxation rateg/Tc

0 for
the parametersl 5 1, l850, andk850.5, and fork taking the
values 0.01, 0.1, 0.2, 0.5, 1.5, and 5 (k51.5 gives exactly an AG
law!.
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calculate the off-diagonal self-energy, we have to sumG12
overk. Accordingly the resultD12 will be smaller by a factor
of orderNt /Np,c compared toD1 andD2 , which justifies our
approximation. Finally we note that going beyond the Born
approximation will not only renormalize the impurity cross
section. It will also introduce plane-chain termsS12 in the
impurity self-energy because, after scattering on a plane im-
purity, an electron can go to the chains throughG12 and
scatter on a chain impurity. But we have just seen that, after
summation ofG12 over k, one obtains a result which is
smaller by a factorNt /Np,c . This leads to aS12 which is
smaller thanS1 or S2 by the same factor and hence negli-
gible.

IV. DISCUSSION

The conclusion of our study is that, in our model, the
critical temperature is much less sensitive to impurities than
it is in standardd-wave models. One basic reason is that we
expect physically impurities to produce essentially plane-
plane and chain-chain scattering. Just as ins-wave supercon-
ductors, this scattering does not affect the critical tempera-
ture. On the other handTc is reduced by scattering between
parts of the Fermi surface which have opposite signs for the
order parameter, just as in standardd-wave case. In our
model this is due to plane-chain scattering. We have found
that this scattering, whatever its origin, will be smaller by a
factor of order t/EF ~that is, hybridization coupling over
Fermi energy! compared to plane-plane and chain-chain scat-
tering. From the band structure calculations we expect this
factor to be typically somewhere between 0.1 and 0.3. There-
fore the sensitivity ofTc to impurities in our model is re-
duced by a similar factor, compared to thed-wave situation.
In the specific case which we have studied in detail and
which reduces to the two-band model, we have found a fur-
ther reduction of the sensitivity ofTc to impurities with a
behavior which can vary continuously froms-wave like to
d-wave like depending on the parameters. From our discus-
sion of its physical origin, we expect a similar behavior and
reduction to occur in the general case.

It is unfortunately not possible to make a quantitative
comparison with experiments. Indeed it seems surprisingly
quite difficult18 to avoid a magnetic character for substitu-
tional impurities in YBCO. Naturally this occurs when the
isolated impurity atom itself has a magnetic moment. But
this happens also when a nonmagnetic impurity acquires a
magnetic moment due to its interaction with the environ-
ment, as is the case for Zn, for example.18 Naturally an im-
purity with a magnetic character will produce pair breaking,
leading to an Abrikosov-Gor’kov like law in any model, in
agreement with what is observed experimentally. Hence
these kind of experiments cannot be used directly to elimi-
nate theoretical models. Nevertheless, after these words of
caution with respect to a simple-minded interpretation of im-
purity experimental results, we note that the reduction of
Tc down to 13 K for 8% Zn is obtained by an increase of the
residual resistivity18 by a factor of order 10. The correspond-
ing \/t should be then of order 20Tc ~see below!. This is
much more than what is necessary to destroy superconduc-
tivity within a d-wave model according to the Abrikosov-
Gor’kov law. Moreover, it is useful to plot the results of

Refs. 17 and 18 for the critical temperature as a function of
the residual resistivity. This is done in Fig. 2. It can be seen
that the behavior of some of our results found in Fig. 1 is
quite similar to the experimental results~we assume natu-
rally that the residual resistivity is proportional to the scat-
tering rate due to impurities!. We have naturally enough ad-
justable parameters to fit them nicely. However, such a fit
would be rather meaningless because, in addition to the mag-
netic problem, the scatter in the data is rather important at
low impurity content and the interpretation of the data for
larger concentration is uncertain~localization effects which
are not taken into account in our theory might play a signifi-
cant role!.

If we turn to irradiation experiments, whether by electrons
or by light ions, the interpretation is also not an easy one. It
is known that high-Tc compounds have a critical temperature
much more sensitive to irradiation than standard supercon-
ducting materials. However, although it is likely that most of
the created defects do not have a magnetic character, we can
not eliminate, from our knowledge on substitutional impuri-
ties, the possibility that some are magnetic. The experimental
evidence is controversial in this respect.15 Then there is some
evidence that localization effects might be important since a
metal-insulator transition is observed in YBCO under light
ion irradiation, and there is no intermediate normal phase
between the superconducting phase and the insulating one.14

This sensitivity to localization is easy to understand because
of the two-dimensional nature of the CuO2 planes. Localiza-
tion effects are not included in our theoretical study. It is also
not clear at all that the created disorder can be considered as
homogeneous12 since the resistivity measurements do not al-
ways display a sharp drop at the critical temperature. Simi-
larly one might expect that the defects created by irradiation
are randomly distributed at the microscopic scale, but it is
actually quite likely that the chains are more sensitive to
irradiation than the planes. There is finally the obvious prob-
lem of having an experimental determination of the quasipar-
ticle lifetime produced by disorder. Measuring the increase
in resistivity appears the best way to do it11 although it is far
from perfect since, for example, it measures at best a trans-

FIG. 2. Experimental results for the variation of the critical tem-
perature of YBCO, due to Zn impurities, as a function of the re-
sidual resistivity. The solid circles are the results of Ref. 17, the
open squares, the crosses, the solid diamonds, and the solid tri-
angles are, respectively, the results for the batches 2, 3, 4, and 6 of
Ref. 18.
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port lifetime which we expect to be somewhat larger than
quasiparticle lifetime.

Notwithstanding the above problems let us try to interpret
the irradiation experiments with our theoretical model, just to
see what comes out. From Drude’s law, with a typical resis-
tivity of 100 mV cm at Tc and a plasma frequency of 1.1
eV,15 we have a typical inverse lifetime\/t '2Tc . Since
superconductivity disappears in thed-wave case when the
inverse lifetime due to impurities is of order 2Tc we would
expect that an increase of resistivity of 100mV cm leads to
the suppression ofTc .

11 This corresponds roughly to a de-
crease ofTc of 1 K per mV cm ~the AG law is essentially
linear!. The experimental results of Ref. 15 give a linear
decrease ofTc with respect to resistivity with a slope 0.3 K/
mV cm. In Ref. 14 there is an upward curvature at low re-
sistivity with a maximal initial slope of 0.1 K/mV cm. Since
in our model a reduction by a typical factor 1/10 with respect
to thed-wave result corresponds to a typical choice of our
parameters, we see that this last experimental result agrees
with our expectation. But the result of Ref. 14 could easily
be explained, for example, by a larger value of the hybrid-
ization energy or by a suitable choice of the other parameters
of our two-band model. Quite generally we have enough
parameters to vary in our model and so we can easily get
agreement with these various experimental results. However,
it must also be kept in mind that, as discussed above, there
are other possible physical processes which we have not
taken into account and which will add up to produce a faster
decrease of the critical temperature with the resistivity. A
clear example of this is found in Ref. 14 where a more rapid
decrease is found for a set of samples and attributed to ex-
trinsic effects, while good samples show an average decrease
of 0.03 K/mV cm. Therefore we can consider an experimen-
tal result as an upper bound for our theoretical result, but it
may quite well be larger than what we find. Clearly it is more
difficult to explain in ad-wave model the slow dependence
of Tc on resistivity found in Ref. 14 than it is in our model to
explain the somewhat stronger dependence found in Ref. 15.

In conclusion we have seen that our model is quite coher-
ent with the present experimental evidence. Naturally, with

respect to this problem of the effect of impurities on the
critical temperature, it would be much better to have experi-
ments providing stronger constraints on theoretical models,
but this might prove difficult to achieve.
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APPENDIX

Let us vary Eq.~9! with respect to the phonon frequencies
vD and V. We assume, for example,dr 5 2 dvD /
vD52dV/V,0. The variation of Eq.~9! gives

dy~2y2l*2l8* !5d~k* k8* !2dm* ~y2l8* !

2dm8* ~y2l* !, ~A1!

wherey5x21. The isotope effect is reduced if we show that
dy , 0. We setD215(11mr )(11m8r )2kk8r 2. We have
d(k* k8* )52k* k8* dD/D, and dm*5m* dD/D1D(mm8
2kk8)dr.m* dD/D ~we assumemm82kk8.0, which im-
plies m*m8*2k* k8*.0). Since we havey.l* and
y.l8* , anddD.0, it is enough to prove that

2k* k8*2m* ~y2l8* !2m8* ~y2l* !,0. ~A2!

The left-hand side is zero when the variabley is equal to
Y5(2k* k8*1m* l8*1m8* l* )/(m*1m8* ). We find that
y1,Y,y0 , since we have

~m*1m8* !2@~Y2l* !~Y2l8* !2k* k8* #

52k* k8* @l*2l8*1m*2m8* #22~m*m8*2k* k8* !

3@~l*2l8* !214k* k8* #,0, ~A3!

wherey0 51/ x0 andy1 51/ x1. Since we havey.y0.Y,
Eq. ~A2! is satisfied and the isotope effect is indeed reduced.
There is no reduction only in the limiting casemm85kk8
andl*1m*5l8*1m8* .
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