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Superconductors of finite thickness in a perpendicular magnetic field: Strips and slabs
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The magnetic moment, flux and current penetration, and creep in type-Il superconductors of nonzero thick-
ness in a perpendicular applied magnetic field are calculated. The presented method extends previous one-
dimensional theories of thin strips and disks to the more realistic case of arbitrary thickness, including as limits
the perpendicular geometrhin long strips and circular disks in a perpendicular fiedthd the parallel
geometry(long slabs and cylinders in a parallel fieldfThe method applies to arbitrary cross section and
arbitrary current-voltage characteristiefJ) of conductors and superconductors, but a linear equilibrium
magnetization curvéB=ugH and isotropy are assumed. Detailed results are given for rectangular cross
sections 2% 2b and power-law electric fieldE(J)=E.(J/J;)" versus current densit§, which includes the
Ohmic (h=1) and Beanij— ) limits. In the Bean limit above some applied field value the lens-shaped flux-
and current-free core disconnects from the surface, in contrast to previous estimates based on the thin strip
solution. The ideal diamagnetic moment, the saturation moment, the field of full penetration, and the complete
magnetization curves are given for all side ratiosta<c. [S0163-18206)01429-4

. INTRODUCTION profiles are available for the perpendicular Bean mbdéof
strips and disks and for thin strips with a geometric edge

Magnetzation curves, ac response, flux penetration, anbarrier’®° The dynamic response of strips and disks in the
relaxation in superconductors typically are measured withinear®** and nonline&?* cases can be computed by a
specimens and field orientations that are far from the idealirect time-integration method, which also works for inho-
geometry assumed by existing theories for the evaluation dhogeneous superconductéfs?
such experiments. Demagnetizing effects are negligible only The one-dimensiong[lD) theory of thin long strips and
in infinite|y |ong’ thin slabs or Cy|inders in a para||e| mag- circular disks has recently been extended to the 2D problems
netic field. The introduction of a demagnetizing factor ac-of thin superconductors with square or rectangular shape in a
counts for these effects only in the special case of ellipsoids
with linear magnetic response. The magnetization curves of
superconductors with pinned flux lines, however, are highly g

n=101

nonlinear and hysteretic, and ellipsoidal specimens are diffi- S _Hﬂ
cult to produce. In parallel geometry this nonlinear hysteretic L oad, 214
response often is well described by the Bean mbdet its I oL S

extensiong° The Bean model successfully explains also the
flux-density profiles observed at the flat end planes of long
cylindric or prismatic superconductors but only in the fully
penetrated critical state and when corrections for end effects ool o e
are accounted fdt. b/a

To obtain maximum signal, magnetization experiments I y A H,
are often performed with thin flat specimens in a perpendicu-
lar field, e.g., small monocrystals of high-superconductors I
or strips with rectangular cross section, see inset in Fig. 1. In 2b

HP/OJC

this common geometry none of the classical theories of flux - 74 g
penetration applies; only the fully penetrated critical state is o e
well understood provided the Bean assumption of constant 0.01 0.1 1 10
critical current densityl. holds. However, if the specimen is b/a

much thinner than widée.g., a film evaporated on a sub-

strat one may uge reqent theories 'that treat the supercon- FIG. 1. The fieldH, of full penetration of current and flux into
d_uctor as_ a t\NO-dlmenS|o_na£D) medlum: 'I(')fjiazse_ZD _theo- a bar of rectangular cross sectioa22b in a perpendicular mag-
ries consider a circular di$K’ or long strig with field  netic field, see the lower inset. The material is characterized by a
independent critical current density, by extending the  current-voltage lanE(J) =E(J/J,)". Plotted is theH, computed
original Bean model to this perpendicular geometry, or arom Eq. (24) vs the side ratio 0.065b/a<6 (symbols and the
strip*®** or disk'® with general linear response, which is ob- fits, Eq. (64), for creep exponents=101 (Bean limit, n=11
served in the regime of thermally assisted flux fitfwsee  (weak creep andn=5 (strong creep(solid lines. The dashed line
Gilchrist'” for a short comparative overview. Analytic ex- gives the exact penetration fielf5) of the Bean model. The upper
pressions for the static magnetization and for flux and currenihset shows the same data on a log-log plot.
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perpendicular field®2° These first-principle’s calculations

of thin rectangular nonlinear conductors were preceded by r W
numerical inversion methotfs?® which calculate the sheet

current flowing in these squares from the measured profiles

of the perpendicular flux density component. Such measure-

ments are possible at the surface of the superconductor by
magneto-optics®1~2>27and by Hall probed®?® General ex-

pressions for the linear ac susceptibiliffw) in terms of a

sum over first-order poles in the complexplane are avail-
able for conductors with linear complex ac resistivity in the

2)
shape of slabs, cylindef8® and bars of various cross
sectiond® in a parallel field, and for strip$, disks3*? and
rectangles or squarésin perpendicular field. Universal
properties of thin superconductors during flux creep in
slabs®334 disks and strip§ and rectanglés=® were pre-
dicted and observed. The linear ac response during creep in
paralle” and perpendiculd? geometries was shown to be

independent of the applied field, temperature, and material
properties, depending only on the geometry and on the time
elapsed since the creep has stafi@dc. IV D 3.

Apart from some analytic calculations for ellipsoitp-
proximate Bean mod&? and linear ac respon$&9 and the
computation of the Bean critical state in thick di$k;*?all
the above-quoted theories consider either the parallel limit
(infinite thicknes$ or perpendicular limit(zero thickness
which both assume a current density that does not depend on
the coordinate parallel to the homogeneous applied field FIG. 2. Current and flux fronts during penetration of a gradually
B,. Nevertheless, from the 1D theories of thin strips one canncreased perpendicular magnetic figt, of vertical orientation
draw some conclusions on the current density profile acrosdly) into long superconductor bars of side ratioka=2, 1, 0.5,
the thickness, which may form a current-caused longitudinaf-25, 0.125, 0.062&rom top to bottom. Shown are the two sym-
Bean critical state, and on the shape of the penetrating flusetric contour lines where the current densifx,y)||z equals
front, cf. Figs. 2 and 3. The exact 2D method given below*Jc/2 for 11 field valuesH,/H,=0.05, 0.1, 0.2, ... , 0.9, 1;
confirms some of these predictions and outlines their limitsHp 1S the field of full penetration, Eq64), H,/J.a=0.85, 0.70,

In the present paper | show how the finite thicknes<-51, 0.36, 0.23, and 0.14 . In the depicted Bean limit@1) one
d=2b of realistic specimens can be accounted for by tim
integration of a relatively simple integral equation to obtain
the nonlinear response, flux penetration, creep, etc., or b
solving a linear integral equatiofor inverting a matrix to L ) o )
obtain the linear complex and frequency dependent respons®. coincide with the magnetic field lines. Furthermore, the
The presented method yields detailed profiles of the flux an§me derivative of the scalah in this geometry gives the
current densities in the bulk and at the surface. It is based oflectric fieldE that inserted into the giveB(J) law yields
the observation that, if the specimen is sufficiently long orthe current density(E) and the magnetization, which is an
rotationally symmetric, the general 3D problem, which canintegral over. Of course, both 2D problems derive from the
be solved only with large numerical effort by little transpar- Same 3D Maxwell equation§ xH=J (with the displace-
ent finite-element algorithms, reduces to a 2D problem thafent current disregardgdndV X E= —B. In both cases the
can be solved easily on a personal computer. The presefgduction to a 2D problem results in a nonlocal relation be-
paper(part ) introduces the general method and applies it totween the current density and the magnetic field, which leads
long strips and slabs of rectangular cross section in a perpeie an integral equation for the scalar functidix,t) or
dicular field, Fig. 1. Similar results for circular disks and J(r,t) in thin strips or disks, or for the density of the current
cylinders of arbitrary height in an axial field will be given in loops g(x,y,t) in thin rectangles, or forJ(x,y,t) or
a forthcoming part If3 A(x,y,t) in the present geometry, see below. All these inte-

The present 2D electrodynamic problem of bars or thickgral equations contain the appropriate differential equations
disks in a perpendicular field should not be confused with theplus the boundary conditions. They are thus more suitable
different 2D problem of thin rectangular conductors or su-for numerical calculations since they do not require the com-
perconductors in a perpendicular field. In the thin film geom-putation of spatial derivatives.
etry the currents are restricted to a plane and have two com- As in the previous problems | assume here the material
ponents, which are connected by #v0. The present finite laws B=uqoH, which is a good approximation when every-
thickness geometry is simpler in a sense, because the currenhere inside the superconductor the flux den&itand the
densityJ, electric fieldE, and vector potentiah have only  critical sheet currend.d are larger than the lower critical
one component, which is directed along the strip or alongfield B, of the superconductor, are= p(J)J, which means
concentric circles. As one consequence, the contour lines @, in general, nonlinear but local and isotrofscalay re-

(C o=y

asJ=*J. outside, and]=0 inside, the two contour lines. Note
that above some value df, the flux- and current-free central re-
jon disconnects from the surface.
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Il. EQUATIONS OF MOTION
A. General bar in a perpendicular field

This section presents a method which calculates the elec-
trodynamics of a conductor or superconductor with general
current-voltage characteristi€yJ) and arbitrary cross sec-
tion in the xy plane when a time dependent homogeneous
magnetic fieldH |y is applied. The conductor is assumed to
be translational invariant along the directinmperpendicular
to H, (Fig. 1 but the method works also for conductors
which possess a rotational axis parallelHg.*® We further
assume that no current is fed into the conductor by contacts,
but this condition may be relaxed if desired. The applied
field induces currents in the bulk and at the surface of the
specimen which flow alongz. The current density
J=J(x,y)z generates a planar magnetic fieldvhich has no
Zz component. Since we assurBe= uoH whereB=V XA is
the induction andA=A(x,y)z the vector potential, we may
write J=VXH=puy VX (VXA)=—ugs'V?A, thus the
scalar fields](;gy) andA(x,y) obey the 2D Laplace equa-
wiggle of the computed fronts is due to the small numiigiin the ;[:IiOI’l 'L_LO‘JZ__V A. Since we are interested only in the c_urrer_lt
used grid ofN,N, = 60X 9 and 708 points, and to the large creep ensnyJ inside the.speumen, the vector potential in this
exponentn=21. equation should be interpreted as the geytof A=A, + A,
which is generated by this current, while the remaining part

o o A,=—XxB, is generated by the current in the coil that pro-
sistivity p(J)=E(J)/J. For concrete applications to flux g,ces the applied fieldB,=uoH,. However, since

penetration or exit and creep, | shall consider the model yx A =B, is constant inside the specimen, one has
V2A,=0 there, and thus one may write boigd= — V2A or
] - wod=—V2(A—A,)=V?A;. This means that the applied
E(J)=E¢[3/3¢["II=pc| 313", (1) field drops out from the differential equations farandJ
and thus has to be considered separately by appropriate

. . . . boundary conditions foH, requiring the calculation dfl in
with 1<n<. This power law is observed in NUMErous ex- tha entire space.

periments and was used in theories on ciedp*and flux The computation can be simplified drastically if one finds
penetratiofi **and ac susceptibilit§>**“>“°It corresponds 4 equation of motion for the current densitx,y.t) inside

to a logarithmic current dependence of the activation energyhe conductor alonewhich should contain the time depen-
U(J)=UcIn(J:/J), which inserted into an Arrhenius law dent applied fieldB,(t) explicitly as an external driving
yieldsE(J) = Ecexp(—U/KT)=E(J/J)" with n=U./kT. The  force that generates a non-zero solution. Such equations of
model (1) contains only two independent parametBgJ.  motion were derived for strip's disks!® and rectangled in

and n and interpolates from ohmic behavion£1) over perpendicular field, and for a slab in parallel fiéldsee also
typical creep behaviorn=10.--20) to “hard” supercon- Sec. lll B. To obtain such an equation for the present geom-
ductors with Bean behavion(- «). etry, we proceed as follows. First we write down the general

Extensions of the presented numerical method to anisgsolution to the 2D Laplace equatiqn]= —V?(A+xB,),
tropic and even nonlocal resistivity, if required, are straight-
forward, also the inclusion of the Hall effect. The extension 5, , ,
to arbitrary reversible magnetization curB= w(H)H is A(r):_MOLd r'Q(rr’)J(r')—xBg, @
more difficult, but this extensiofthe consideration of finite
Bca1) will allow to compute the important geometric edge with r=(x,y) andr’=(x’,y’) and the integral kernel
barrierd”181926and the “current string” predicted and ob-
served by Indenbom and co-work&sn specimens with
thickness much larger than the London penetration depth Q(rr")=
\. Work in this direction is under way.

In Sec. Il the equations of motion for the current density
J(x,y,t) are derived for bars with arbitrary and rectangular
cross sections in a time dependent perpendicular field. Se
tion 1l shows how these 2D equations reduce to the know
1D equations for the perpendicular and parallel geometry
limits and how the nonlocality arises. Various numerical and —_ 1 q2rry-1pp g , /
analytical solution methods are described and useful general 3(r) Ho Ld TR IIAIT +XBa]. - (4
formulas given in Sec. IV. A selection of numerical results
for flux penetration and creep is presented in Sec. V. HereQ (r,r’) is the inverse kernel defined by

FIG. 3. Comparison of the computed flux frorikmld) with the
estimate (71) (dashed for strips with b/a=0.1 (top) and
b/a=0.05 (bottom. For clarity in this plot the specimen thickness
d=2b is stretched by factors 2.Gop) and 5(bottom. The slight

In|r—r’| 3
o ()
The integration in2) is over the cross sectidhof the speci-
nen, the area to which the current densityis confined.
ormally, Eq.(2) may be inverted and written in the form
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o1 o . Note that Eq.(7) does not contain the applied field

Ld r'QT(r,r)Q(r',r"y=4s(r—r"). () B(t) itself but only its time derivative, the ramp rate
B,(t). This property applies also to the corresponding equa-

The kernel(3) satisfiesV2Q(r—r")=8(r—r'). Therefore, in  tions of motion of the previously treated perpendicular ge-

the infinite space the application $0 ~* would be identical  ometry of strips:® disks’® and rectangle&'~2® Remarkably,

to the application of the Laplacian operator in the present perpendicular bar geometry, one can also find

V2= 92/ 9x*+ 9°/ y?. However, since the integrals(ﬁ) and  an equation of motion which contains the fid@g(t) itself.

(4) are confined to the specimen cross sect@n! is differ- ~ Namely, by inserting the relatiod{A}, Eq. (4), into the

ent from V2 and contains information about the specimeninduction law A= —E(J) using a givenE(J) model, one

shape. One can show that the first term in the inte¢hal  obtains an equation for the vector poten#df,t) alone,

yields thebulk currentwhile the second term is theurface .

screening currenthat exactly compensates the applied field A(r,t)=—E[J(r,1)],

inside the specimen. This surface current plays the role of the

H ,-dependent boundary condition in an equationJoiThe _ , , , ,

inverse kernel may be computed by inverting a matrix as J(r,t)=—,u01JSd2r Q (rr)IA(r, ) +x"Ba(1)].

shown in Sec. IV A _ (8)

Next we express the induction lawXE=—-B
=—VXA in the form E=—A. The arbitrariness of the
gauge ofA, to which an arbitrary curl-free vector field may
be added, presents no problem in this simple geometry. Wlttgt
the material lanE=E(J), e.g.,.E=E(J/J.)"sgn(@) (1) or a ing in (2, (4), or (8 A=—uo\2, and in (6) or (7)
general linear and complek=pJ, one getsA=—E(J).  g_ 2] The time dependence of the resulting linear
This relation betweerk andJ allows one to eliminate from  aquation ford or E separates; it thus suffices to solve it for
Eq. (2) eitherA or J. EliminatingA, one obtains an equation
of motion for J(x,Y,t),

Both Egs.(7) and(8) work equally well when incorporated

into numerical programs as described in Sec. IV A.
Equations describing superconductors in the Meissner

ate with London penetration depthare obtained by insert-

one value ofB, or Ba as described in Sec. IV C 4.

B. Strips and bars with rectangular cross section

E[J(f,t)]=MoLd2f'Q(rvr')J(r"tHXBa(t)' ®) In typical experiments the superconductor samples have
rectangular cross section wiB, applied along one of the

This implicit equation for the current densifyr,t) contains  symmetry axex or y. In this particular case, or more gen-
the time derivativel under the integral sign. It may be used erally if the specimen exhibits two mirror plangs-0 and
in this form (containing the kerne rather tharQ 1) if one y=0, the integrations in the above expressions may be re-
is interested in the linear response to a periodic sighal stricted to one-quarter of the specimen cross section
xiwexp(ot). In this case the time dependence of —asxsa, —bs<ysb, e.g., to 6<x<a, Osys<b. One
J(r,t)=J(r)exp(at) is explicitly known and the amplitude then has to use a symmetric kerr@l,,, which follows
J(r) follows from a linear integral equatidfr'>3+%¥(Sec.  from the symmetry of the current densify When B, is
IV D). In the special case of flux creep, i.e., whgpis held ~ alongy, thenJ, E, andA are odd functions ok and even
constant and thu,=0, Eq. (6) can be solved analytically functions ofy, e.g., J(x,y)= —J(—x,¥)=,J(x,—y)., Tf/we
by separation of the variables if(r,t)="f(r)g(t) (Sec. Symmetrc kern?l , Qsym=Q(X",y') —Q(=x"y")
IVB). This separation works ifE(J) is sufficiently QX' —y)=Q(=x",—y’) with Q from (3) may be writ-
nonlinea?*~*or if the power law(1) applies’® Equation(6) ~ t€n in the compact form

for J(r,t) may be written as an equation f&(r,t) by noting (x +y (X2 +y+)

that J=E(dJ/9E) where dJ/9E=1/E'(J) is the given dif- Qsynl( 1T ’)— n i 9
ferential conductvity. A further problem where the separa- (X+ y )(X+ y+)
tion of variables works is given in Sec. IV C. with X.= , Y-=y=*xy'. For example, Eq.(2) now

In the general case of nonlineB(J) and arbitrary sweep reads for the rectangular cross section
of B,(t), the time integration of6) has to be performed
numerically as described in Sec. IV A. For this purpose, the _ a ., , , N
time derivative should be moved out from the integral to AN == o de Ody QuynfF,1") (") =XB,.
obtainJ as an explicit functional o andB, . This inversion (10
is achieved by using Ed4) instead of Eq(2). The equation

. u . 71 .
of motion for J(r,t) then reads Defining the inverse kerneQq, of (9) we may write the

equation of motion(7) in the form

Irt=po fdzr Q Y(r,r ME[I(r',H)]—x'Ba(b)}. 'J(r,t)=m;1fadx'dey'Q;yﬁ](r,r’)[E(J)—X’Ba]-
0 0

@) 11

This integral equation i_s easily time integrated by s_tartingwith appropriately modified boundary=b(x), Egs. (10)
with  J(r,0)=0 at time t=0 and then putting, and (11) apply also to specimens with varying thickness
J(r,t+dt)=J(r,t) +J(r,t)dt. 2b(x) as long as these still possess the mirror plaxe$



4250

ERNST HELMUT BRANDT

54

andy=0. For example, to describe a circular cylinder with limits of thin conductors ina) parallel andb) perpendicular
radiusa in a perpendicular field, one just replaces the intefields are reached. In these two limiting geometries, linear

gration boundaryb in the integral overy by the function
b(x)=(a?~x?)2 The inverse kermneQ, defined by Eq.
(5) depends on the specimen shape and thus aldm(>xon

C. Disks and cylinders in an axial field

and nonlinear conductors or superconductors show quite dif-
ferent behavior. For example, in the Bean mofBk J,
they exhibit qualitatively different current and field profiles
during penetration of flux:(a) Constant current density
J=0 orJ==*J, and constant slope &(x);! (b) a flux front
with vertical slopes ofl andB, and a logarithmic infinity of

For completeness | give here also the equation for cong 4t the edged! The Bean magnetization curvédd(H )

ductors with a rotational axis parallel #, and with maxi-
mum radiusa. The height ® is constant for disksh<a)
and long cylinders l§=>a), but in generab(r) may be an
arbitrary function of the radiusr=(x*+2z%), e.g.,
b(r)=(a?—r?)*2 for spheres ant(r)=b(0)(1—r?/a??
for rotational ellipsoids. In this cylindrical geometry the cur-
rent density, electric field, and vector potential have anig
component, which points along the azimuthal directipn
thusJ=J(r,y)@, E=E(r,y)@, andA=A(r,y)@. The vec-
tor potential of the applied field B,=B,y is
A,=—(r/2)B,. The solution of the Laplace equation
wod=—V?[A;+(r/2)B,] reads in this cylindrical geometry

a b r
A== po|"ar' [ ay Qur.rar - 5B, a2

where nowr=(r,y) andr’=(r’,y") and the kernel is

Qcyl(rir,):f(rir,7y_y’)+f(rir,1y+y’)r

!

; , fﬂdcp r' cose
rr’ n)=| — :
(r.r',m) 0 2 (7 +12+r1"2+2rr ' cosp)?

(13

during flux penetration are also different in these two geom-
etries: (a) an inverted parabola with constaritl for
H.=J.a; (b) a hyperbolic tangent which in the limit of zero
thickness does not saturate, cf. Sec. V F. The parallel results
are easily derived since demagnetizing effects are absent and
the problem is one dimensional; they follow directly from
Bean’s assumptiof]|<J. or, whenE=pJ is linear, from

the linear diffusion equation foB(x,t) or J(x,t) with flux
diffusivity D=p/uqy. The perpendicular results were ob-
tained from a static or dynamic integral equation for the
sheet current in Refs. 7—15.

I show now how all these results for strips and slabs fol-
low naturally from Eq.(11). A similar derivation of the lim-
iting cases of thin circular disks or long cylinders from Eqg.
(14) will be given elsewheré

A. Perpendicular limit b<a

If the thicknessd=2b of a strip is much smaller than its
width 2a, the integral kerne(9) varies little over the thick-
ness and may be replaced by its value in the pjané. This
means that only the current density integrated over the thick-
ness enters the static equatid), the sheet current, or line

This kernel was obtained by integrating the 3D Green func¢rrent

tion of the Laplace equation, 1/g4rz—r’s]) with
rs=(x,y,z), over the angleo=arctang¢/x), while the kernel
(3) was obtained by integrating 1/¢4r;—r's|) overz from
—o to oo, If desired, the integral kerndfl3) may be ex-

pressed in terms of elliptic integrals, but for computational

purposes it is more convenient to evaluate ¢ghiategral(13)
numerically.

The equation of motion for the azimuthal current density

J(r,y,t) is obtained in the same way as E¢g) and (11),
yielding

r'. )
5Bal.
(14

Note the similarity of(14) with the corresponding equation

. a b
J(r,t>=ualfodr’fody'ogykr,r')(E(J)—

b
300 [ axypay. 19

Therefore, the equations for the statics of thin strips contain
only the sheet currently(x); the local current density
J(x,y) is required only if one wants to know the parallel
field componentB,(x,y)=— [{J(x,y)dy inside the strip,
which determines also the local slopg/B, of the curved
vortices in the strip® The perpendicular component
By(x,y)~By(x,0) and the magnetic field at and near the
surface of the strip, however, depend only 3fx) (15).
Only this sheet current and the critical sheet current
Jsc=1J.d enter the perpendicular Bean mod&l& irrespec-
tive of how the currents are distributed across the thickness.

(12) for the current density in strips, bars, or slabs. ThereOne may have, e.g.J(x,y)=const, orJ(x,y)=cosh{/))
fore, the same numerical program can be used to comput&here\ is the London penetration depth, &x,y)=0 in a
the electrodynamics for long bars in perpendicular field andgentral layery| <y andJ(x,y) = = J. in two surface layers
for rotationally symmetric specimens in axial field. One just|Y|=Yo (a current caused Bean state across the thickness

has to replace ir{11) the integral kerneQgym (9) by Qo

The equations fodg(x) even allow for a varying thickness

(13), multiply B, by a factor 1/2, and interpret the coordinate 2b(x) and for a space dependehf(x). .
x as the radiug. Note that these equations describe also From the implicit equation of motiof6) one might argue

cylinders in both perpendicular and parallel fields.

Ill. PERPENDICULAR AND PARALLEL LIMITS

Formulas(9)—(11) for bars with rectangular cross section

that for thin strips the dynamics, too, depends only on the
integrated curreniy(x) (15). However, the inverted and ex-
plicit equation of motion(7) and its symmetric versiofiL1)
show that even wheQs,, does not depend oy andy’
sinceb<a is small, they dependence ad(x,y) has to be

2ax2b in a perpendicular field allow one to see how theknown because the integration (hl) is overE rather than
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J. Only whenE(J) is linear does the sheet currehf (150  The kernel (21 has the property
uniquely determine the averag’&bE(x,y)dy. Therefore, &ZQ,Ong(x,x’)/axzz5(x—x’). Therefore, by taking the sec-
for general nonlineaE(J) the 2D dynamic equatioill)  ond derivatives on both sides of E(L9) one arrives at a
reduces to a 1D equation onlyJ{x,y) does not depend on differential equation for the electric field
y. In this case one ha3,=Jd. The general 2D equation
(11), however, remains valid for arbitrarily inhomogeneous
J(x,y), also for nonlinearE(J), and even for inhomoge- . ad .
neous materials 0B dependend(B). E" (%)= rod(X,1) = o7z E(X,1). (23
With the above restrictions in mind, one may express Egs.
(6) and (11) as equations of motion for the sheet current
Js(X,1) in a strip in perpendicular fiel@(t), This diffusion equation with diffusivity D= uy *9E/dJ
Jux.t A could have been obtained directly from the above Maxwell
s :Mof dX' Qua(X, X' )Is(X',t)+xB,, (16)  equationsuel= —V2A and E=—A. However, the applied
d 0 field has now dropped out by taking the second derivative.
Therefore, for practical calculations the integral equation

. P I ) Js i (19 and its inverse(20) are more suited than differential

Js(x, D) =wo Jo dX'Qua (X, X")| E| 5| =X'Ba|, (17)  equations of the type23) because they incorporate the
boundary conditions for B or A, B(x=z=xa,t)

where the 1D transverse kernel@g,, aty=y’'=0, =—A'(x==*a,t)=B,(t) in an equation for the current den-

sity J(x,1).

!

(18

1
QuaX,X') = QeynfX,0X",0)= o—In| “——7

L C. Local and nonlocal diffusion
and Q. (x,x") is its inverse. These equations were used in

) . . From the differential equatiof23) one can see that the
Refs. 13-15 and 20-22 to derive the dynamic and quaSISéquivalent integral equatio(®0) describes the diffusion of

;c:’ru%gglhawor of thin superconductor strips in a perpend|cu;[he electric fieldE(x,t) or current densityd(x,t) under a
driving force given byB, and with the boundary conditions
contained in the integral kerang,}g and in the integration
boundaries. This diffusion in general i®nlinearwhen the
When the thickness of the strip is increased more ang(J) law is not linear. In the parallel geometry the diffusion
more untilb>a, one arrives at the longitudinal limit of a js|ocal, since in Eq(23) E(x,t) depends only oft”(x,t) at
slab in parallel field. In this limig(x,y,t) becomes indepen- the same position. In contrast to this, in the perpendicular
dent ofy if one disregards the deviating behavior near thegeometry the diffusion isonlocalsince Eq.(17) cannot be
far-away edgey==b. The 2D integral equation§) and  written as a differential equation for the sheet current
(12) for J(x,y,t) then reduce to 1D equations as in the per-j(x,t). Of course, the original 3D Maxwell equations used
pendicular limit, but now for the current densitfx,t)  here are local. The nonlocality is an artifact coming from the
rather than for the sheet curren(x,t). These 1D equations reduction of the dimensionality to obtain an equation of mo-
are thus as general as E¢8) and(11) and describe both the tion for the 2D sheet current. One may say that each point in
static and dynamic behavior of the slab. Definingthe thin conductor interacts with all other points via the mag-
J(x,t)=J(x,0,t), one may write these 1D equations of mo- netic stray field in the outer space.
tion in the form The question whether our general equations of motion for
. J(x,y,t) or A(x,y,t) in a bar or thick disk describe local or
_ / N " nonlocal diffusion is less clear. The general E@s—(8) for
E[J(X't)]_’uoj’o AX’ Quong X, x")I(X",1) +XBq, (19 bars of arbitrary cross section may be called local diffusion
equations since they can be expressed as differential equa-
) a : tions with appropriate boundary conditions. Equatigh%)
J(X,t)=,u51f dX' Qiond XX )[E(J)=X'B,], (200  and(14) for the rectangular bar or for the circular disk de-
0 scribe the same local diffusion, but now the imposed sym-
with the 1D longitudinal kernelx,x’=0) metry formally causes an interaction of each po] with
itself and with its image points {x,y), (X,—Yy), and
, o Lo, 1 , ) (—x,—Y) in the rectangle, or with all points on a circle in
Qiong(X,X ):jo Qeym(x,0x",y")dy :§(|X_X |=Ix+x) " the disk, via the symmetric integral kerne@s,m (9) or
Quisk (13). So, one may say that imposing boundary or sym-
=—min(x,x"), (22 metry conditions formally introduces some nonlocality in
_ , , otherwise local diffusion problems. This nonlocality be-
i.e., one haWong=—x for 0<x<x" and Qing= =X’ for  comes visible from the compact formulation of such a prob-

B. Parallel limit b>a

0<x’<x. To derive(2]) | have used the formuta lem in terms of an integral equation. But not in all cases can
- pley? an integral equation be transcribed into a differential equa-
In dv= —q. 29 tion, e.g., the integral equatiorid¢6) and (17) for the 2D
Jo q%+y? y=m(p=a) 2 sheet current.



4252 ERNST HELMUT BRANDT 54

IV. SOLUTION METHODS Qij=Qsynlri.1;) have to be chosen appropriately. Note that

A. Flux penetration: Time integration Qjj diverges as Imi—r;| whenr; approaches;. The opti-
mum choice of the diagonal terng;; for this and similar

To obtain the current and field profiles and the magnetiTntegraI kernels may be obtained from a sum 1i& or by
zation during penetration of perpendicular flux into long barsgypressing the kernel as a finite Fourier series with as many
with nonlinearE(J) law, one has to integrate E¢L1) nU-  {orms as points; .23-25 Recently Gilchrist and Bran®t dis-

merically. This may be done easily on a personal computeg,sseq this cutoff problem in some detail for films with cir-
by tabulating the functions, E, andA on a 2D grid with  cyjar current flow and show that it is related to the well-
equidistant pointsq=(k—1/2)a/Ny (k=1,2,...,N,) and  nown fact that the mutual inductance of two loops is nearly
yi=(1—=1/2)b/N, (I=1,2,... Ny), choosingN,~bN, and  independent of the width or radius of the conductors, but the
the length unita=1. Labeling the pointsX,y;) by one  self-inductances diverge logarithmically when the strip width
index i=12,...N with N=N,N,, the functions or wire radius goes to zero. The matrix eleme@is in our
J(x,y.1), etc., become time dependent vectdit) with N theory may be interpreted as mutuat() and self- (=)
components, and the integral kerr@l,, (9) becomes an jnductances of double strips or loops. For practical purposes
NXN matrix Q;; . The inverse kerneQgr, also becomes a it suffices to state that good accuracy is achieved by replac-
NXN matrix, Qﬁl, which is obtained by inverting the ma- ing in the matrix Q; the terms Iirj—r; by
trix Q;j. One has¥|QQ;;*= 8 where ;=1 if i=j and  (1/2)In(r;—r;)?+ €?] where ¢2=0.015ixdy if dx=a/N,
6;;=0 else. The calculation and inversion of the mat@ix ~dy=Db/N, .
has to be performed only once at the beginning of the com-
putation. B. Creep: Separation of variables

With the power law (1) and in reduced units
uno=a=J.=E.=1, yieldingE=J", the equation of motion
(11) takes the form

In at least two special cases the nonlinear nonlocal diffu-
sion equatior(6) can be solved analytically by separation of
the time and space variables as realized first for the problem
of flux creep by Gurevicii***To see this we write Eq6) as
Ji(t)= EE Qfl[‘]_(t)n_xga(t)]_ (24) an equation for the electric fieldE(r,t) noting that

NS 1] ] I n
j J=E/(JE/3J). For the power lavE(J)=E,(J/J;)" one ex-

plicitly has 9E/9J= (nE/J.)(E./E)*", yielding®™*°
The time integration of this system of nonlinear differential

equations of first order for thé(t) is straightforward. One Modc 5, , E(r’,t)
may start withJ;(0)=0 and then increase the time in steps E(r.t)= Efﬁ dor'Q(r,r )WH+XBa-
dt, putting J;(t+dt)=J;(t)dt. More elaborate methods are (25)

conceivable, also with nonequidistant grids as described in . . o
Refs. 13 and 15, but for our bar geometry this simple methodf Ba is held constantB,=0, one has the situation of flux
is very stable and fast and yields beautiful pictures of fluxcreep. In this case an exact solution of E2p) is the ansatz
penetrationSec. \). An important hint is, however, that at E=f(r)g(t), which give$
each time the time step should be chosen inversely propor-
tional to the maximum value of the resistivity E(r,t)=E.f(r)| —
pi=E13;=]3|""%, e.g., dt=c,/[maxp;(t)+c,] with ty+t
cl=0.3/(N§n) andc,=0.01. This choice provides optimum |t we chose 7= uyJ.S' /[4m(n—1)E.] with S’ denoting
computatlon_al stability and fp(zeed. The computation time igome arbitrary area, e.g., the specimen cross seSiiome
thus proportional taN?/dteNgNgn. obtainf(r) from the implicit equation

From the computed current densigx,y,t) the magneti-
zation is obtained by integratiof@r summation of the;J;) 4 , , ,
as described in Sec. V F. The vector potential inside the bar fn(r)=— ?Ldzr Q(rr)fn(r)*™. (27)
may be obtained from the electric fielt=J" by time inte- . _ _ o . . _
gration, A(t) = — [{J;(t)"dt. Alternatively, one may com- This nonlinear integral equation is easily solved by iterating

; ; i (m+1)_ _ ’ (m)1/n . .

pute A(x,y,t) from the integral(10). This second method the relation f™" %= —(4x/S")[Qf} starting  with
yields the vector potential alsoutsidethe specimen, if the f{”’=1. The resulting serie&), f&), ... , converges rap-
kernel Qsym (9) is also computed for these outer pointsidly if n>1. For m>1 one has approximately
(x,y). FromA(x,y,t) the magnetic field lines are easily plot- f™"D(r)~f{™(r).(1+c/n™) with c~1. Forn>1 (practi-
ted noting that they coincide with the contour linesAaf If cally for n=5) the shapd ,(r) of the electric field becomes
desired, the field componenis, andB,, e.g., at the speci- a universal function which depends only on the specimen
men surface, may be calculated as spatial derivatives. of shape but not on the exponemt

A big advantage of the present method is that neither the
induction B nor any spatial derivative have to be computed
in order to obtain the current profiles and magnetization
curves during flux penetration or exit. The method thus
achieves high accuracy with modest computational effort. In the ohmic casen=1, the ansatZ26) makes no sense
Even a grid of onlyN= 10X 10 points may be used, see Sec.since the exponeni/(n—1) diverges. For this special case
V. To reach this accuracy the diagonal terms of the matrixhe integral equation(25) is linear since the factor

n/(n—1)
(26)

2
fr=s(N~fu(f)=-g Sd2r’ln|r—r’|. (28)
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3/ 9E= o= 1lp is the constant ohmic conductivity. This lin- f,(x)=consix sin(mx/2a) and f..(x) = (7%/8a%)x(2a—|x|).

ear integral equation is solved by the ansatz For large exponentsi>1 this reproduces the universal
creeping electric field
E(r,t)=Eof y(r)exp —t/ry), (29 Ping
with Eg=const and the relaxation time;=puq0S /A4, _ mode x(2a—|x|)
where A; and f{(r) are the lowest eigenvalue and eigen- Ex0= n-1 2t (38)

function of the linear integral equation
obtained for slabs in parallel field by Gurevich andpfer 3

f,(r)= _Avgf d?r'Infr=r’|f (). (30) ;ggse corresponding(r,t) for long cylinders in parallel field
S
In (30) the indexv=1,2, ... labels the eigenvalues and 2_,2 2_ .2
eigenfunctions, which will be required also in Sec. IV D; E(r,t)= role | (3877 ro)In(r/ro) 17— . (39
should not be confused with the exponentwhich in gen- (n=1)t[ 4[In(a/ro)+1] 4

eral may be any real numbee1; in this section acciden-
tally f,(x,y) and f (x,y) for n=1 and v=1 denote the
same function.

From (1) and(26) the current density becomes

wherer <<a is an inner cutoff radiuskE(rg,t) =0.

For rectangular bars with arbitrary side ratietb/a<<c a
useful interpolation isS'=4ab/(1+ wb/4a). With this
choice ofS' the iteration of Eq(27) converges rapidly, and
Un-1) in both limitsb<a andb>a, f,(x) becomes independent of

I(r,)=J¢lfa(r) M sgrf,(r). (81  aandb if a is chosen as length urfi.

t,+t

For largen>1 andt>t; the time factor in(31) equals C. Reaching magnetic saturation

(7/t)Y"D=~1-[1/(n—1)]In(t/7) and the spatial factor is _ _ _
f.(r)|¥"~1. One thus has everywhefd|~J, with slight The second special case where separation of variables

creep corrections. works is when the ramp ratB, is kept constant until full
These results still apply to arbitrary shape of the specimefagnetic saturation is reached. In the Bean limit <, this
cross sectiorS. For rectangular cross sectid=2ax2b  saturation occurs when the applied fiéld has reached the

one may rep|ace |(]25) and (27) Q by stm (9) and restrict field of full penetratioan, which is Computed in Sec. VA
the integration to &x’<a, 0<y’<b. In the perpendicular as a function of the side ratio/a. But for finite creep expo-

limit b<a usingS’' =S=4ab we get nentn<c the saturation is reached only gradually. | will
show now that the approach of saturation is exponential in
7= podcab/[ m(n—1)E.], (32  time.

In the fully saturated state the current densi{x,y,t)
does not change any more, and also the electric field
E(x,y,t) generated by this current according to the material
law E=E(J) (1). The stationary valu&(x,y,») is deter-
and E(x,t) ~Ef(x)(7/t)” ("1, For large creep exponent mined by the ramp rate and by the specimen shape as dis-
n>1 this reproduces the universal creepiagx,t) for thin  cussed in detail in Ref. 25. For our bar in perpendicular field
strips of Ref. 35, one hasE(x,y,») = —A,=XB, as is obvious from Eq25).
Writing near the saturatioft(x,y,t)=xB,+E;(X,y,t) we

!

Fa(x")*, (33

!

1ra - |X
fn(x)zafo dx’In T x

2__\2
E(x,t)= Holcab E na+x + fma 2X ) (34)  may obtain the small perturbatidty from Eq.(25). Keeping
m(n—1) ti a-x a X only the terms linear irE; we get
Note that the final resulE(x,t) (34) is independent of the
choice of S’. But the simplicity of Eq.(33) suggests that _ J 2.1 Nyt Iin=1p (01
S’'=4ab is the natural choice in the perpendicular limit. In Ei(r,)=C | dr'Q(r.r')x S0 40
the parallel limit b>a, the natural choice appears to be 11
S’ =16a2/, which yields with(21) with C= uqJ./(NEX"BL ™). This linear equation is solved
by the ansatzEi(x,y,t)=g(x,y)exp(-t/7). The profile
= polcAa/ [T (n—1)E.], (39 g(x,y) and the time constant follow from the linear eigen-

value equation

w? [a
fn(x)=Hf dx’min(x,x")f,(x")n (36)
0 0.00= -\, | QX i, @
for O=x=a, with f,(—=x)=—"f,(x). The integral equation
(35) is equivalent to a differential equation with boundarywhere the eigenvameg\v have to equa| C/Tw thus
conditions, 7,=C/\,. We are interested in the relaxation mode with the
longest time constant; corresponding to the lowest eigen-
0= —KH00M, £ (0)=fi@)=0, (G a0 Lo ooponding J

value\ ;. We thus find at> 1
with k;=m/2a. The solutions of(37) in the ohmic f=1) )
and Bean =) limits look very similar, E(r,t)=xB,—constg,(X,y)exp(—t/7y), (42
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C J
Foce = (43)  the eigenvalues of the integral equati(80) are obtained
C

N nBahg from the equivalent linear differential equation with bound-
where); andg;(x,y) are the lowest eigenvalue and eigen-ary conditiongcf. the similar Eq.(37)],
function of Eq.(41) and the constant has to be determined . 5 ,
from the full nonlinear equatioi25). This exponential ap- f(x)=-kf,(x), 1,(0)=f,(a)=0, (48)
proach to the saturation &, and thus also of and of the yielding f,=sinkx and k,==(v—1/2)/a, v=1,2,.
magnetic. momenﬂ\/l, is quantitatively confirmed by our Equating the prefactors d#6) and (48), 4mwA/S' = kz we
computations in Sec. V. obtain the time constants (47), T,,_,uo/(pky)
_ _ = uoa?l[ m?(v—1/2)?p] as in Refs. 13 and 15. As stated in
D. Linear response: Eigenvalue problems Sec. IV B, the choiceS'=16a%/ 7 appears natural in this
Writing E= pJ we may put the equation of motid6) for ~ parallel limit since it yieldsA ,=(2v—1)?=1,9,25, ... A

Ba) Un For the longitudinal limito>a of a slab in parallel field,

the current density(x,y,t) into the form convenient interpolation to all side ratitda is the choice
S’'=4ab/(1+ wb/4a) as above.
P _ 2,1 r - ’ )
_‘](r't)_Ld r'Q(r,r")J(r’,t) +xHa(t) (44) 2. Linear complex ac susceptibility

The linear magnetic response of a bar with general com-

with H,=B, /o and p/ uy=D the diffusion coefficient of ex resistivityp,.(w) (Refs. 26,32 and 53-58n a perpen-

flux. We discuss now three cases where the linear respon?
J to a time dependent applied field,(t) can be obtained f cuIaIrE ac ‘&eldH a(t) tth°+ Eoeprth) mta)(g be gb;algidA
from an eigenvalue problem, which is easily solved by find- rom Eq. (44) u3||ng f € metho Pri‘je’.‘ ed in Re

ing the eigenvectors of the matri®;; = Qgy(ri,rj) intro- convenient complex frequency variable is

duced in Sec. IV A. In these three cases, respectively, the

general resistivityp in (44) is either(1) ohmic (linear, real, = %ﬂwr((u), (49

frequency independent(2) linear, complex, and dispersive, AT pad @)

p=pac(w); or (3) arbitrarily nonlinearp=p(J)=E(J)/J. wherer is a time constant which in general is complex; only
I present here the main formulas, detailed numerical refor ohmic p is = a real relaxation time. With the same

sults will be given elsewhere. choices as aboveS =4ab (b<a) and S'=16a%=

(b>a), one getsww=iwpugabl/ wp, for thin strips(as in Ref.

31) and w=iwpugda® mp,. for slabs, and the dissipative
When the applied fieltH,(t) changes abruptly from one party” of the ac susceptibility = x’ —ix" has its maximum

constant value to another at time-0, e.g., by switching it ~ at |w|~1 for all side ratios/a.

on or off, one had,(t)=0 att#0. Equation(44) is then In terms of the eigenvalues\, and eigenfunctions

solved by a linear superposition of relaxing eigenmodes  f.(X,y) of Egs.(30) or (46), with the normalization

1. Ohmic bar in switched field

©

A
2 —
IxY.D=2 c,f,(xye V. (45) 5 fsd MTulOT(0)= 6,0, 0
The amplitude, as usual are obtained from the initial con- 2nd with the dipole moments
dition att=0 and thef (x,y) are the eigenfunctions of the
linear equatior(30), which for rectangular bars may be writ- b =

= d2rxfy(r) (51)
ten in terms onsym (9), S

the magnetic moment per unit length of the bar becomes

f(r=-A VS, dX f dy' Qeyn(r,r")f,(r"). (46)

m(t)=fdzrxJ(r,t)=m(w)ei‘“‘, (52)

The time constants, are obtained by equating the prefactors S

of (46) and of (44 with (45 inserted, A b2

A7 A, IS = pol(pT,), yielding m(w)= OWEV W_:AVV' (53)
Tv—m- (47 The magnetic susceptibility(w)=—m(w)/m(e) of bars

with p=p,{ w) in a perpendicular ac field is thus
Note that only the ratio\ ,/S’ enters in(46) and(47). To get

dimensionless eigenvalues, we have introduced if30) )

and (46) the arbitrary are&®’. As shown in Sec. IV B, it is X(w)= —WE W+A /2 A,b. (54
convenient to choose foB’ the specimen cross section

S'=S=4ab if one considers the perpendicular linfit<a, This general expression applies to bars with arbitrary cross
i.e., a thin strip in perpendicular field. This yields the time section in a perpendicular ac field, also to cylinders. In the
constants 7,=ueab/(mpA,) with A,~0.6385+v—1, limits b<a andb>a it reproduces the susceptibility of thin
v=1,2,..., as irRefs. 13 and 31. strips’ and of slab¥?®3'and yields interesting corrections
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FIG. 4. Profiles of the current densidyx,y) in a superconduct-
ing bar of side ratidb/a=0.5 in an increasing perpendicular field
H, atH,/H,=0.2(top) and 0.8(bottom) in units of the penetration
field H,=0.54Q.a (64) for creep exponenh=>51 on a grid of
24X 12 points. Notice the penetrating saturationJte =J., the
current-free zond=0 in the center, and the abrupt jumpXét the
two ends of the central line=0 in the lower plot.
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FIG. 5. Profiles of the current densif(x,y) whenH, is de-
creased from+H, (64 to —H,, for side ratiob/a=0.5 and expo-
nentn=>51 as in Fig. 4, but on a grid of only 2011 points. From
left to right and top to bottom one has,/H,=0.95, 0.7, 0.4, O,
-0.4, -0.9.

due to the nonzero thickness of the strip or slab. In particular,

for b<<a the permeabilityu(w) =1+ x(w) at large frequen-
cies (w|>1) changes from “perpendicular’to “parallel”
behavior,

p(w)=(2/7w)In(16w), (55

w<wg,

1/2
1

u(w)=clw w> wg, (56)

where wy and the constant depend orb/a. The real and
imaginary parts ofy follow from (54) to (56) with w from

small frequencieso>1/f. Therefore, the maximum in the
dissipative party” of y=x'—ix" (54) occurring atjw|~1
(if S’ is choosen as suggested abolias no equivalent in
the linear susceptibility during creep.

4. Flux penetration in the Meissner state

For a superconductor in the Meissner state with magnetic
penetration depth the London equatioA= — uo\2J in our
bar geometry may be written as

(49) inserted. More details and numerical results for arbitrary

side ratiob/a and the extension to discs and cylinders in an

axial ac field will be given elsewhef@é.

3. Linear ac response during creep

Very recently it was show!i that a superconductdior
nonlinear conductgrwhich performs flux creep away from

the fully penetrated critical state exhibits a linear response to
a small ac magnetic field. Extending this theory to the

)\ZJ(r)zLdzr’Q(r,r’)J(r’)erHa, (57)

cf. EQ. (2). In the matrix formulation on a gridx{,y;) of
Sec. IV A, Eq.(57) reads

present geometry, | find that the linear ac susceptibility durThis matrix equation is solved for the current density

ing creep is given by the same expressi¢bd)—(56) but
with different constants\,, b,, wgy, andc and, most re-
markably, with the complex frequency variabhe (10) re-
placed by the imaginary variableot wheret is the time

which has elapsed since creep has started. This means that

the lineary(w) during creep isiniversal depending only on

Ji=J(x;,y;) by inverting the matrixQ;; —\2§;;, cf. also Eq.

ijos
(24),

J=Ha> (\26;— Q) 1x;. (59
J

the geometry and the creep time, but not on temperaturd,hus the London penetration of a perpendicular magnetic
applied or internal dc magnetic fields, or any material paramfield H, into a bar of arbitrary cross section is obtained by
eter. The universal expressions fprapply only for not too  finding the eigenvalues of the matridQ;;=Q(r;,r;)
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FIG. 6. The sheet curredt(x) (15) (current density integrated
over the thicknessfor flat bars with side ratiob/a=0.5, 0.1, and

0.05 (from top to bottom and exponent =51 during flux penetra- ) o )
tion, plotted in unitsJ.a for applied fieldsH,/H,=0.1, 0.2, 0.4, FIG. 7. Profiles of the electric fiell(x,y) during flux penetra-

0.6, 0.8, 0.9, and tfrom right to left, solid line with dots H,, is the tion into a_superconducting bar of side ralita= 0.5 and exponent
penetration field64), H,/J.a=0.540, 0.207, and 0.125. The solid N=51 as in Fig. 4, for the same valuék, /H,=0.2 (top) and 0.8
lines give the parallel component of the magnetic field at the sur{Middle and bottom The top and middI&(x,y) =J"sgrJ are com-
face, B,(x,b), which for thin strips b<a) should coincide with ~Puted as the 51st power of td¢x,y) plotted in Fig. 4 and are thus
—J4/2 for |x|<a and vanish foix|>a (i.e., away from the strip  defined only inside the barix|<a and |y|<b. The bottom
As seen in this plot, the abrupt jump il from J, to O at the E(x,y) is the same as the middi(x,y) but is plotted in the larger

specimen edg&=a causes a jump iB, which is smeared due to "€gion [x|<1.4a and|y|<2b (33x24 grid points covering also
finite thickness 2b. some space outside the superconductor; Eenes computed from

E=—A. The specimen edges cannot be seen in the bottom plot

. . . inceE i th at th i f .
=In|ri—r;|/27. The magnetic moment is then obtained as>"e® (x.y) 1s smooth at the specimen surfaces

m=X;x;J; . This very effective computational method is eas-
ily extended to other geometries. In the limit-~0, Eqg.(59)
yields the surface screening currents, which in this 2D prob
lem may also be calculated by the method of conformal ma
ping. The ideal diamagnetic moment is computed in Sec
V F.

creasing applied fielti ,(t) the magnetic flux has penetrated

to the center and the current density has reached its satura-
tion valueJ, in the entire specimen. For slabs and strips of
rectangular cross sectiom 2b this field of full penetration

in the parallel and perpendicular limits is given by

Hp~Jca, b>a, (60)
V. FLUX PENETRATION AND CREEP
. _ H,~Jc(2b/m)In(2a/b), b<a. (61)
In this section | present a selection of useful results com- . .
puted mainly by time integration of Eq24) for supercon- The parallelH, (60) is obvious from the constant slope
ductors of rectangular cross section with weak creep. MorédH/dx|=J. of the penetrating field and the boundary con-

results will be given elsewhef8.In all figures the orienta- dition H=H, atx=*a. The penetration field61) for the
tion of the applied field y axis) is vertical. perpendicular geometry is less obvious. It follows from the

Bean solutiot®~2 for thin strips by introducing an inner
cutoff such that full penetration is reached when the width of
the flux-free central zonedcoshH,m/J.d) has decreased to
One characteristic quantity in the Bean model for variousghe specimen thicknest=2b. Our computations for small
geometries is the field valud, at which in a gradually in- but finite side ratido/a confirm this cutoff argument. More-

A. Field of full penetration
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FIG. 8. Electric fieldE(x,y) during flux penetration at constant
ramp rateH, in bars with side ratiob/a=2 (left) andb/a=0.5
(right) at two field valuesH,/H,=0.2 (top) andH,/H,=0.8 (bot-
tom) where H, is the penetration field (64) (n=51,
Hp/J:a=0.862, 0.54D The plotted lines of consta look simi-

lar as the magnetic field lines of Fig. 9 below, but they are nearly
equidistant, while the magnetic field lines inside the bar have nearly

linearly varying distance when the gradiei, /dx is nearly con-
stant.

over, it appears that our computed valuedHgf for all side
ratios 0.005:b/a<6 are fitted to an accuracy of better than
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(60) and(61),
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FIG. 9. Field lines of the magnetic fielB(x,y) during flux
penetration into bars with side ratidda=2 andb/a=0.5 at two
field valuesH,/H,=0.2 andH,/H,=0.8, n=>51, the same cases
shown in Fig. 8. The bold lines indicate the flux and current fronts
shown also in Fig. 2.

1

FIG. 10. Magnetic field lines for a square bar=a) in an
increasing perpendicular field, for H,/H,=0.2, 0.8, and Xfull
penetratiop with H,=0.715).a from (64), n=51. Left: total mag-
netic field flowing around the flux-free core. Right: the magnetic
field caused by the currents in the bBr-B, . This is also the field
in a remanent state with the same degree of flux penetration, which
may be reached after field cooling by decreasihgto zero. For
full penetration,H,=H, (bottom righy, the plotted field lines of
B - B, coincide with the lines of constant electric field during flux
creep,(Ref. 49 cf. Sec. IV D. The bold lines indicate the flux and
current fronts, cf. Fig. 2.

Figure 1 shows computed penetration fields in udjs at
various values of the side ratlw'a of rectangular bars in a
perpendicular field. It can be seen that for large exponent
n=101 these data are perfectly fitted by formyG2). At
smaller exponents the penetration field is reduced due to flux
creep, which allows the flux front to reach the specimen
center earlier than in “hard” Bean superconductors with
n=oco,

Here the principal problem arises how to define the field
of full penetration when the creep exponentnisic. As
shown in Sec. IV C, the magnetic saturation at constant ramp
rate B, is approached only gradually, with an exponential
time law Eq.(42), see also Sec. V F. In Fig.H, is defined
as the field at which the current profile§x,y) become
nearly constant along the field/) direction, such that the
mean square difference

s= gfoa[J(x,a)—J(x,O)]de (63
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FIG. 11. Magnetic field lines during penetration of perpendicular flux into a thick striplwik- 0.25 at applied fieldsl,/H,=0.2, 0.4,
0.8, and 1H,=0.374).a, n="51.(a) total fieldB(x,y). (b) current-caused fielB(x,y) — B, or field in the remanent critical state. The flux
front is shown as bold line.

becomes smaller than>610~6. This is a quite sharp crite- argument Fork obtains for a rectangular bar and for a cir-
rion: The computed quantitg, and also the difference be- cular disk of constant thicknes$2and radiusa the perpen-
tween the magnetic momem(t) and its saturation value dicular penetration fields

m(>)=msy, EQ.(69) below, decrease exponentially in time, )

and thus inH,=tH,, over at least seven decades in a nar- _, bj2a b a
row field interval ifn is large. Hp_‘]crr b arctarg+|n 1+ b? (bay, (65
The slight reduction of the penetration field with decreas-
ing creep exponen is fitted to a good approximation by a 2\ 12 _
shifting the entire curvéd, (61) plotted versus Irifa), hori- Hp=JcblIn i+ ( 1+ F) (disk). (66)
zontally as shown in Fig. 1. ForsSn< this fit yields
The general expressidBb) has the limits
2X 2.68
Hp~Jcatanh) —In| 1.47+ ——]/, Ho=J.a(l—a/wb), b>a, (603
b 2.2 H,=J.(2b/7)In(ea/b), b<a. 61
x= aexp( = 7+o.022). (64) p=Jc(2b/m)In(ealb) (613

This means the estimated factor 2 in the logarithn(@m)
For smaller exponents<5 the definition ofH, is not has the exact value=2.718, which is close to the fitted

unique since creep into the saturation state is slow. value 2.68 in(62) and (64). , _

The computed penetration fiel62) has to be compared  AS can be seen in Fig. 1, the guessed fit functié) for
with the exact analytical expression fidr, given by Forkl>® Hp(b/a) coincides with the exact analytical resul6s)
The applied field at which the magnetic field reaches thavithin line thickness for all 5|de_ r_atlob/as 1.5. At larger
center of an arbitrarily shaped Bean superconductor can J&/@ values, theH,, expected for finite creep exponemisan
obtained from the Biot-Savart law by calculating the field P& larger or smaller thaH;, (65) depending on the criterion
H(r) caused by the critical currents. In the Bean critical stathosen to define full penetration. In principle, for any
the magnitude 08(r) equals), and its direction depends on N<% the penetration field also should slightly depend on the
the specimen shape as discussed, e.g., in Refs. 1-6,21-28Mp rateB,, which in our computation is chosen equal to
and 60. At the moment when the flux front has reached thénity in units a=J.=E.=pu,=1. Moreover, the saturated
specimen center=0, the current-caused field(0) there = magnetic momening, itself depends orB, when n<w.
should exactly compensate the applied field. From this  This may be seen as follows.
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J(xX)~(2J3.d/m)arcsini/xy). Since the current density is ei-

When the applied field is increased with constant ramgher 0 or+Jc, the boundary of the current-free zone in the
rateB, then eventually the current density saturates such thdtalf stripx>0 takes the form

J=0. It follows then from Eq(6) that the electric field satu-
rates to the profil&(r,») =xB,. From this stationar§ we
get the stationary by inverting the giverE(J) law. For the
power law(1) and constanB, one obtains thus for the fully
saturatedcritical) state, usingn=4bf$xJ(x)dx (Sec. V B,

E=Ega(X)=XB,= Ec(\]sat/\]c)nr (67)
'Baa 1/n X 1/n

J=Jsa(X)=J¢ E_c a ) (68)

o 23.ba?| 222 " 2n 69

M=Me=2cba’| =) 507 (69

From Egs.(67)—(69) we notice several remarkable facts,

which are all confirmed by our computations.

—+b(1 B0 _p2 % 71
y(x)==*b| 1- 3. | D arecos . (72)

This analytical estimate is compared with the numerically
obtained flux fronts in Fig. 3. As expected, the agreement is
best near the flat surfacgs= =b but away from the edges
x==*a and from the centex=0. In general, the correct
numerical result exhibits a faster penetration: The low-field
flux front is flatter and nearly parallel to the edges and has
penetrated deeper than predicted (@). This behavior of
the flux fronts will be modified further when in future com-
putations a finite lower critical fieldH.; can be accounted
for, which leads to an edge barrf&r'81°%Next we discuss
the deviation from the analytical froKif1) near the specimen
center.

At larger fieldsH,>H 4 the central flux-free zone de-
taches from the surface and becomes isolated. This detach-

(a) The profiles of the saturated current density and elecment occurs when the boundary of the flux-free zone at the

tric field depend only on the coordinake but not ony and
not on the specimen height2 They do not depend on the
shape of the bar cross section at all.

(b) The general result$67)—(69) depend only on the
combinationE./J7, but in the limitn—c only J. matters.
For large creep exponents>1 the weakx dependence of
J may be disregarded and one hak,~J. and
Msar=2ba?l, as predicted by Beah.

(c) For general creep exponemt o the saturation mag-
netization depends slightly om and on the ramp ratB,.

surfacey= *b has a slope of approximately 45°. The cur-
rent density now jumps abruptly fromJ; to —J; on the

two sections of the central liner plang x=0 which con-
nect this lens-shaped zone with the surfaces. This jump can
be seen in the 3D plots of Fig. 4. From Fig. 3 one sees that
for b=a/2 the detachment field is approximately
Hger=Hp/2 with H, from (64) and for b/a=0.25 (0.1225,
0.0625 one hasH ye/Hp~0.6 (0.7, 0.8. For b/a—0 one
hasH4e/Hp— 1. Notice that the computed exact flux front of
Figs. 2 and 3 differ from the concentric ellipsoids which

The saturation is reached exponentially fast as shown in Se¥ere assumed in the analytical calculations of Refs. 4 and 5.

IV C.

C. Current density

The curved flux fronts in Fig. 2 were computed from Eg.
(24) on grids ofN=N,N,~600 points for a creep exponent
n=21. They are defined as the two lings plane$ where
J(x,y)==*0.5].. The two straight parallel contour lines vis-

Figure 2 shows the fronts of penetrating flux in rectangu-ple in the center wherd jumps from+J. to —J., ideally

lar bars of various side ratid¥/a in an increasing perpen-

should occur ak= +a/2", cf. Eq.(68), but in these figures

dicular applied fieldH,. In the lens-shaped region between they appear at= +0.25N, since on the grid the jump goes

the two fronts one haB=0 andJ=0, and outside this zone

from x,=0.5/N, to —x,. Apart from this detail the contours

J=*J.. This means one has a current-caused Bean criticalptained for different exponents=11 and different grid
state across the thickness, with full penetration of the currerdpacing practically coincide. Similar flux fronts for the Bean
in the outer zonéx|>Xx, and partial penetration in the inner model were recently computed by Prigoz‘Hifrom a varia-

region |x|<Xx,. For fieldsH, below some valueH 4 the

tional principle, and from differential equations by Becker

flux- and current-free zone meets the surface at the twet al® The detachment of the Bean flux fronts from the sur-

points (or lines alongz) x=0, y==*b. The current density
J(x,y) at the surfacey= b thus goes smoothly through

face was also seen in computations of cylindrical wires in
transverse fieff®*and in spheres and spherofi$®

zero with finite slope, as it does on the entire central line When the applied field is decreased fra,=H, to
x=0. For not too thick strips the _shape of this inner zone—H,, the new fronts of penetrating flux and current of op-
whereB=0 andJ=0, and of the sickle-shaped outer zonesposite sign have the same shape as the fronts depicted for the

whereJ==*J., follows from the known analytical expres-
sion for the sheet curred(x) (15) of thin Bean strips?-12

5 2J.d t a?—x3\Y2x -0
= arcta -

s(X) - XS—XZ a (70

for O0=sx=Xxy and Jy(x)=J.d for xy<x=<a, and

Js(—x)=—J4(X), wherexy=al/cosh¢rH,/Jd) is the posi-
tion of the flux front on the middle plang=0 andd=2b is
the thickness of the strip. Forxg<a/2 one has

virgin magnetization curve in Fig. 2. At these new frodts
jumps from+J. to —J.; the natural definition of these front
lines (or planes is thus J(x,y)=0. When H,=—H, is
reached one arrives again at the critical state but widnd
B having reversed sign. Whemd, is decreased from
Ho=H, to —H, the new frontsg/, (x) follow from the virgin
fronts y(x) by the relation

HO_H""). (72)

yl(X!Ha):y(Xl 2
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the surface(thin lines, y=*b) and central plangthick lines,

y=0) of bars with side ratiob/a=2, 1, and 0.5 in an increasing
FIG. 12. Magnetic field lines during penetration of perpendicu-perpendicular fieldH,/H,=0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 1
lar flux into a thinner strip withb/a=0.1 at applied fields (Hp/J.:a=0.862, 0.715, 0.54M=51). The corresponding parallel

H./H,=0.1, 0.2, 0.4, 0.6, 0.8, and (from top), H,=0.207.a, componenB,(x,b) is shown in Fig. 6.
n=51. The flux front is shown as bold line.

FIG. 13. Profiles of the perpendicular flux densBy(x,y) at

crease of the applied fieléH, for the same parameters

This simple superposition principle applies only to the Bearb/a=0.5, n=51, andH,/H,=0.2 and 0.8 used for the cur-
model, i.e., whenl, is independent oB andn is infinite.  rent density in Fig. 4. The upper two pldE&x,y) in Fig. 7
The penetration of the reversed flux and current is shown ithus in principle contain the same information as the plots
the 3D plots of Fig. 5. Computing such a half cycle on aJ(x,y) in Fig. 4 sinceE=J". Note thatE(x,y) is a smooth
486DX4/100 Personal Computer takes a few minutes. continuous function near the specimen edges, where only

Figure 6 shows the sheet curreljfx) (15), i.e., the cur- V2A=— u,J has a discontinuity. Far from the specimen, or
rent density integrated over the thickness. For thin stripsifter full penetration, one has= Ba,
b/a<0.05 the sheet current is related to the parallel field The lines of equalE(x,y) are depicted in Fig. 8 for
component at the flat surface8,(x, = b) = +J4/2, whichis  p/a=2 and 0.5, andi,/H,=0.2 and 0.8. Note that most of
also depicted in Fig. 6. The abrupt jumps 8f(x) at the contour lines of are nearly equidistant, corresponding
Ix|=xo (flux front) and [x|=a (edge are smeared in to the nearly constant slope Efin the 3D plots in Fig. 7. In
By(x,b) over a distance=b. Forb<a the computeds(x)  the absence of an applied field, i.e. in remanent states, the

coincides with formulg70). contours lines ofE(x,y,t) and A(x,y,t) coincide provided
the time dependence separates; f(x,y)g(t). This is the
D. Electric field case when in the fully penetrated state the applied field is

increased further, or when it is held constant to observe flux
The electric fieldE(x,y,t) inside the superconductor is creep. In these cases the contour line& aincide with the
obtained by inserting the computed current densitymagnetic field lines, cf. Fig. 10 below.
J(x,y,t) into the assumed current-voltage la¢t), or
E=J" in reduced units. Alternatively, one may obtélh o
from the time derivative of the vector potentidt=—A. E. Magnetic field

Both methods give identical results, bHt=—A vyields E Figure 9 shows the magnetic field lines during flux pen-
alsooutsidethe specimen. We remind that E, andA are etration for the same cases as in Fig. 8. The field is applied in
directed alongz for our bar. Figure 7 showk during in-  vertical direction, as in all figures of this paper. The bold
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I ] FIG. 15. The initial slopgm’(0)| of the virgin magnetization
0.1k | curvem(H,) of rectangular bars in perpendicular figt,, or the
T | ideal diamagnetic momenhg.(H,)=H_,m’'(0), as afunction of
the side ratidb/a. The circles are computed from E{.6) and the
line gives the fit formula(77). The inset shows the fullm’(0)]
while the main plot shows the differencém’(0)|/(4a2J,)
0.0 o —b/a— /4, which vanishes in the perpendicular linbitca and

goes toy~0.64 in the longitudinal limit>a.

edges and a sharp flux front inside whiBhis exactly zero.
These three sharp features are smeared out in the surface
field, but for very thin strips this smearing is weak and both
field profiles in the center and at the surface nearly collapse
lines are the contour lines whede= +0.5J. and thus denote into one curve, which coincides with the theoretical profile
the current front as in Fig. 2. More magnetic field lines arecalculated for thin strips>*?
depicted in Figs. 10, 11, and 12 for side rattvsa=1 (bar
with square cross sectipnb/a=0.25 (thick strip), and
b/a=0.1 (thin strip). The left column in Fig. 10 shows the
field lines of the fieldB—B, caused by the currents in the = The magnetic moment per unit length of a bar with rect-
specimen, see also Fig. (bl. Notice that inside the current- angular cross section in a perpendicular applied fielfly is
free zone this field is homogeneous and opposed to the ap-
plied field, compensating it and creating a field-free zone. R a b

In the particular case of full penetration the current den- m=YJ dz”XJ(f)=4f de dyJx,y)x. (73
sity is known,J=J_.sgrx, and thuB(x,y) can be calculated s 0 0
analytically from the Biot-Savart laW.® In this case the
electric field during flux creep, which yields the nearly satu-
rated relaxing current density, is also known analytically,
namely, due to the separation of varialiesdr (Sec. IV B)
the electric fieldE= — A is proportional to the vector poten-
tial A (2) caused by this currefit. Therefore, the two plots in
Fig. 10 (bottom, righj and Fig. 11b) (bottom) give both the
magnetic field lines in the remanent fully penetrated stat
and the contour lines of the electric field during flux creep or,
\év:rin B, is swept, at the moment wheB, goes through o) = _Haf d2r'Q Y, )x’ (74)

The magnetic field at the surfaces = b is shown in Fig.
6 (componenB, parallel to the surfageand Figs. 13 and 14 generate a magnetic field which inside the conductor exactly
(componenB, perpendicular to the surfacéor various val-  compensates the applied field, and vector potential
ues of the increasing,. Also shown in Figs. 13 and 14 is A,=—xB,, cf. Eq. (4). From (73) and (74) the ideal dia-
the field By(x,0) in the central plane where one has magnetic moment is obtained, which determines the ini-
B,(x,0)=0 because of symmetry. The central field profiletial slope m’(0)=mg,/H, of the magnetization curve
for all side ratiosb/a exhibits a sharp cusp at the specimenm(H,) of nonlinear conductors and of superconductors,

FIG. 14. As Fig. 13, but for thinner strips with side ratios
b/a=0.25, 0.1, and 0.05H,/J.a=0.374, 0.207, 0.125=51).

F. Magnetization curves

In (73) the prefactor 1/2 of the definition
mL,y=(1/2)fr xJd* was compensated by the contribution
of the U-turning currents at the far away ends of the bar at
z=*L,/2>a,b. The resulting factor of 2 i was some-
times missed in previous work on slabs.

First | consider the case of ideal screening, where surface
escreening currents from E),
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FIG. 16. Normalized virgin magnetization curves
M(h)=—m(H,)/Mgy, h=H,4m’(0)|/my, for rectangular bars —
with side ratiosb/a=6, 4, 2, 1.5, 1, 0.7, 0.5, 0.2, 0.1, 0.05, 0.02, L n=101
0.01, 0.005from left to right, with the origin of each curve slightly
shifted,n=101). The squares and circles give the parallel and per-
pendicular limits, M(h)=h—h?/4 and M(h)=tanhf), respec-
tively.

m'(0)=—Jd2rJdzr’fol(r,r')x’. (75) b/a=0.1

On our grid ofN pointsr;=(x;,y;) this reads 0 — .
2 ' H,/J.a
2 xiQj ', (76)

ij

0.2

4ab

m’'(0)=— N

-1 . . . FIG. 17. Virgin magnetization curves(H,) of rectangular bars

where Q'l IS the reciprocal matrix of with side ratiosb/a=3, 1, and 0.1(from top to bottom and creep

Qij=Q(ri,ry)=Inlri—r;|/2m (3) or of its symmetrized ver- exponentai=1, 3, 5, 7, 11, 21, and 101 in the current-voltage law
sion (9). Evaluating the suni76) on a grid with nonequidis- g jn

tant points(more closely spaced near the surfaae get for
the rectangular bar the fit with absolute deviation

<3x10°%, cf. Fig. 15, perconductors wittn>1 differ very little for various geom-

etries; between thin stripsnd thin circular disks® the dif-

-m'(0) b = b 1.2a ference is<0.011, and between thin circular and quadratic
—Z —ata”t ytanr{yaln 1.7+ T) (77)  disks the difference is<0.0022% Similarly, we find that for

our rectangular bars the normaliz&tih) for various ratios
with y=0.64. This approximation has the correct parallelb/a differs by <0.03 from some average curi¢(h).
and perpendicular limitsn’ (0)= —4ab (the specimen cross Figure 16 shows normalized magnetization curves for
section for b>a and m’'(0)=—ma® (a circle areafor b/a=6 to 0.005. All these curves are very similar. To avoid
b<a.!*"*¥Instead from the suni76), m’(0) also may be that they merge into one bold line, each curve is slightly
computed from Eq(53) by solving an eigenvalue problem, shifted horizontally. Forb/a=<0.02 the computedM (h)
and it may be calculated analytically by conformal mapping.practically —coincides with the thin strip restit
Next | discuss the virgin magnetization curve¢H,) of ~ M(h)=tanhg). The parallel Bean limitM(h)=h—h?%/4 is
superconducting bars in an increasing perpendicular fieldeached only at relatively large side ratiws>6, which are
H,. Above we have already obtained the initial slopedifficult to compute. Since the contribution ké(h) from the
m’(0) (77) and saturation valuem(H,=Hy)=mg, two end regiony/~=*b is additive, one may conclude that
~2J.ba? (69). One may use these characteristic values tdor b>a the differenceM (h)—h+h?/4 is proportional to
normalize the magnetization curves for various side ratios/b.
b/a such that the initial slopes and saturation values equal Figure 17 shows virgin magnetization curveH,) for
unity. Writing m(H,) =mgM(h), h=H,m’(0)|/ms, one  various creep exponents=1, 3, 5, 7, 11, 21, and 101 for
hasM’(h)=1 and M(h>1)=Mg~=1. It turns out’ that  bars with side ratiob/a=3, 1, and 0.1 in constantly ramped
these normalized magnetization curves for héBdar su-  perpendicular field. In these plots the ramp rate was



54 SUPERCONDUCTORS OF FINITE THICKNESS IN A ... 4263

B.=E./a, but different ramp rates give identical curvesin the diagonal terms Q; of the matrix
with scaled axes; this scaling may be found by choosindQj;=(1/2m)In|r;—r;|; the Q;; may be interpreted as the mu-
differentE, andJ, values inE=E(J/J.)" keeping the ratio tual and self-inductances of double strif main practical
E./J7 constant. Except for the ohmic case: 1, the curves problem might be the required inversion of tNe<N matrix
for n=3 practically collapse into one bold lineifi is mul- ~ Qjj, but this inversion has to be performed only once for a
tiplied by (n+1/2)/n, which means normalization to unity given grid at the beginning of the computation; for
saturation value, cf. Eq69), without changing the abscissa N=<1000 it presents no problem even on a personal com-
H,. This means the exponentor activation energy) dis-  puter.
cussed following Eq(1), cannot be determined from an ex- In this paper the superconductor is modeled as a nonlinear
periment with constantly ramped,(t). However, the expo- conductor with general current-voltage ldi=E(J), or a
nentn strongly influences the creep rate during constant-hel@ower law ExJ", or with linear complex resistivity
H, (Sec. IVB and also the shape of the magnetizationpad @) =E/J. Numerous useful formulas are presented in
loops, in particular whet ,(t) is swept sinusoidally. Sec. IV, which may be used to compute magnetization
For the Bean limin—o, J.=const, the entire magneti- CUIVves, field and current profiles, creep, the linear ac re-
zation loopm,;(H,) during field sweep betweeftHy and ~ SPONSE, and flux penetration in the Meissner state. The uni-

—H, can be obtained from the above virgin magnetizationversality of flux creep is demonstrated in Sec. IV B and in
curvem(H,) by the prescriptioh®®° Ref. 49. It appears that the power |&wJ" is distinguished

since it allows for exact separation of the variableandt

o—Ha during creep and it has the required physical property
mi(Ha):m(HO)_zm( 2 ) (78 E—.0 for J—0, in contrast to the other separable mokHel
- cexpdldy).
and m;(Hz)=—m (—H,), where the arrows denote in- | Sec. V we have presented mainly Bean-like results for
creasing and decreasity,(t), cf. Eq.(72. large creep exponents>1, but most of the given formulae
apply to anyn=1; in fact the computation is easiest for
VI. CONCLUDING REMARKS small n. More details on the magnetization curves with

The presented method for the computation of flux an
current penetration into bars or disks circumvents the costl
computation of the magnetic field in the infinite space and it
inaccurate spatial differentiation. Instead, the current densit
J(x,y,t) inside the baris obtaineddirectly by time integra-
tion of a 2D integral equation of motion, without requiring
any differentiation. The mainheoretical problem was the
incorporation of the time dependent applied magnetic fiel
H,(t) into this equation, since any spatial differentiation
makes this term vanish. The solution to this principal prob-
lem is that the “outer world”(i.e., H,) enters the equation I acknowledge useful discussions with M. V. Indenbom,
of motion (7) or (24) in form of the induced surface current A. Gurevich, L. Prigozhin, A. Forkl, Th. Schuster, H. Kuhn,
(74), which penetrates into the conductor by nonlinear diffu-Ch. Jooss, Yu. N. Ovchinnikov, A. M. Campbell, L.
sion. A further problem is the optimum choice of the cutoff Burlachkov, J. R. Clem, and J. Gilchrist.

e published elsewhefd.If desired, with the presented

ethod the magnetization and flux and current profiles are

asily calculated also for non-Bean models with field depen-

entJ.(B) andn(B) and for other than rectangular specimen
cross sections. The obtained flux- and current-free zones of
the Bean model differ from the concentric ellipsoids as-
dsumed in Refs. 4 and 5.

gronger creefsmallern) for bars and disks or cylinders will
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