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The magnetic moment, flux and current penetration, and creep in type-II superconductors of nonzero thick-
ness in a perpendicular applied magnetic field are calculated. The presented method extends previous one-
dimensional theories of thin strips and disks to the more realistic case of arbitrary thickness, including as limits
the perpendicular geometry~thin long strips and circular disks in a perpendicular field! and the parallel
geometry~long slabs and cylinders in a parallel field!. The method applies to arbitrary cross section and
arbitrary current-voltage characteristicsE(J) of conductors and superconductors, but a linear equilibrium
magnetization curveB5m0H and isotropy are assumed. Detailed results are given for rectangular cross
sections 2a32b and power-law electric fieldE(J)5Ec(J/Jc)

n versus current densityJ, which includes the
Ohmic (n51) and Bean (n→`) limits. In the Bean limit above some applied field value the lens-shaped flux-
and current-free core disconnects from the surface, in contrast to previous estimates based on the thin strip
solution. The ideal diamagnetic moment, the saturation moment, the field of full penetration, and the complete
magnetization curves are given for all side ratios 0,b/a,`. @S0163-1829~96!01429-4#

I. INTRODUCTION

Magnetzation curves, ac response, flux penetration, and
relaxation in superconductors typically are measured with
specimens and field orientations that are far from the ideal
geometry assumed by existing theories for the evaluation of
such experiments. Demagnetizing effects are negligible only
in infinitely long, thin slabs or cylinders in a parallel mag-
netic field. The introduction of a demagnetizing factor ac-
counts for these effects only in the special case of ellipsoids
with linear magnetic response. The magnetization curves of
superconductors with pinned flux lines, however, are highly
nonlinear and hysteretic, and ellipsoidal specimens are diffi-
cult to produce. In parallel geometry this nonlinear hysteretic
response often is well described by the Bean model1 and its
extensions.2–5The Bean model successfully explains also the
flux-density profiles observed at the flat end planes of long
cylindric or prismatic superconductors but only in the fully
penetrated critical state and when corrections for end effects
are accounted for.6

To obtain maximum signal, magnetization experiments
are often performed with thin flat specimens in a perpendicu-
lar field, e.g., small monocrystals of high-Tc superconductors
or strips with rectangular cross section, see inset in Fig. 1. In
this common geometry none of the classical theories of flux
penetration applies; only the fully penetrated critical state is
well understood provided the Bean assumption of constant
critical current densityJc holds. However, if the specimen is
much thinner than wide~e.g., a film evaporated on a sub-
strate! one may use recent theories that treat the supercon-
ductor as a two-dimensional~2D! medium. These 2D theo-
ries consider a circular disk7–9 or long strip10–12 with field
independent critical current densityJc by extending the
original Bean model to this perpendicular geometry, or a
strip13,14 or disk15 with general linear response, which is ob-
served in the regime of thermally assisted flux flow,16 see
Gilchrist17 for a short comparative overview. Analytic ex-
pressions for the static magnetization and for flux and current

profiles are available for the perpendicular Bean model7–12of
strips and disks and for thin strips with a geometric edge
barrier.18,19 The dynamic response of strips and disks in the
linear13–15 and nonlinear20,21 cases can be computed by a
direct time-integration method, which also works for inho-
mogeneous superconductors.22,23

The one-dimensional~1D! theory of thin long strips and
circular disks has recently been extended to the 2D problems
of thin superconductors with square or rectangular shape in a

FIG. 1. The fieldHp of full penetration of current and flux into
a bar of rectangular cross section 2a32b in a perpendicular mag-
netic field, see the lower inset. The material is characterized by a
current-voltage lawE(J)5Ec(J/Jc)

n. Plotted is theHp computed
from Eq. ~24! vs the side ratio 0.005<b/a<6 ~symbols! and the
fits, Eq. ~64!, for creep exponentsn5101 ~Bean limit!, n511
~weak creep!, andn55 ~strong creep! ~solid lines!. The dashed line
gives the exact penetration field~65! of the Bean model. The upper
inset shows the same data on a log-log plot.
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perpendicular field.23–26 These first-principle’s calculations
of thin rectangular nonlinear conductors were preceded by
numerical inversion methods27–29 which calculate the sheet
current flowing in these squares from the measured profiles
of the perpendicular flux density component. Such measure-
ments are possible at the surface of the superconductor by
magneto-optics6,21–23,27and by Hall probes.18,28 General ex-
pressions for the linear ac susceptibilityx(v) in terms of a
sum over first-order poles in the complexv plane are avail-
able for conductors with linear complex ac resistivity in the
shape of slabs, cylinders,30,16 and bars of various cross
sections15 in a parallel field, and for strips,31 disks,31,32 and
rectangles or squares24 in perpendicular field. Universal
properties of thin superconductors during flux creep in
slabs,33,34 disks and strips35 and rectangles25,36 were pre-
dicted and observed. The linear ac response during creep in
parallel37 and perpendicular38 geometries was shown to be
independent of the applied field, temperature, and material
properties, depending only on the geometry and on the time
elapsed since the creep has started~Sec. IV D 3!.

Apart from some analytic calculations for ellipsoids~ap-
proximate Bean model4,5 and linear ac response39,40! and the
computation of the Bean critical state in thick disks,6,41,42all
the above-quoted theories consider either the parallel limit
~infinite thickness! or perpendicular limit~zero thickness!,
which both assume a current density that does not depend on
the coordinate parallel to the homogeneous applied field
Ba . Nevertheless, from the 1D theories of thin strips one can
draw some conclusions on the current density profile across
the thickness, which may form a current-caused longitudinal
Bean critical state, and on the shape of the penetrating flux
front, cf. Figs. 2 and 3. The exact 2D method given below
confirms some of these predictions and outlines their limits.

In the present paper I show how the finite thickness
d52b of realistic specimens can be accounted for by time
integration of a relatively simple integral equation to obtain
the nonlinear response, flux penetration, creep, etc., or by
solving a linear integral equation~or inverting a matrix! to
obtain the linear complex and frequency dependent response.
The presented method yields detailed profiles of the flux and
current densities in the bulk and at the surface. It is based on
the observation that, if the specimen is sufficiently long or
rotationally symmetric, the general 3D problem, which can
be solved only with large numerical effort by little transpar-
ent finite-element algorithms, reduces to a 2D problem that
can be solved easily on a personal computer. The present
paper~part I! introduces the general method and applies it to
long strips and slabs of rectangular cross section in a perpen-
dicular field, Fig. 1. Similar results for circular disks and
cylinders of arbitrary height in an axial field will be given in
a forthcoming part II.43

The present 2D electrodynamic problem of bars or thick
disks in a perpendicular field should not be confused with the
different 2D problem of thin rectangular conductors or su-
perconductors in a perpendicular field. In the thin film geom-
etry the currents are restricted to a plane and have two com-
ponents, which are connected by divJ50. The present finite
thickness geometry is simpler in a sense, because the current
densityJ, electric fieldE, and vector potentialA have only
one component, which is directed along the strip or along
concentric circles. As one consequence, the contour lines of

A coincide with the magnetic field lines. Furthermore, the
time derivative of the scalarA in this geometry gives the
electric fieldE that inserted into the givenE(J) law yields
the current densityJ(E) and the magnetization, which is an
integral overJ. Of course, both 2D problems derive from the
same 3D Maxwell equations¹3H5J ~with the displace-
ment current disregarded! and¹3E52Ḃ. In both cases the
reduction to a 2D problem results in a nonlocal relation be-
tween the current density and the magnetic field, which leads
to an integral equation for the scalar functionJ(x,t) or
J(r ,t) in thin strips or disks, or for the density of the current
loops g(x,y,t) in thin rectangles, or forJ(x,y,t) or
A(x,y,t) in the present geometry, see below. All these inte-
gral equations contain the appropriate differential equations
plus the boundary conditions. They are thus more suitable
for numerical calculations since they do not require the com-
putation of spatial derivatives.

As in the previous problems I assume here the material
lawsB5m0H, which is a good approximation when every-
where inside the superconductor the flux densityB and the
critical sheet currentJcd are larger than the lower critical
field Bc1 of the superconductor, andE5r(J)J, which means
an, in general, nonlinear but local and isotropic~scalar! re-

FIG. 2. Current and flux fronts during penetration of a gradually
increased perpendicular magnetic fieldHa of vertical orientation
(iy) into long superconductor bars of side ratiosb/a52, 1, 0.5,
0.25, 0.125, 0.0625~from top to bottom!. Shown are the two sym-
metric contour lines where the current densityJ(x,y)iz equals
6Jc/2 for 11 field valuesHa /Hp50.05, 0.1, 0.2, . . . , 0.9, 1;
Hp is the field of full penetration, Eq.~64!, Hp /Jca50.85, 0.70,
0.51, 0.36, 0.23, and 0.14 . In the depicted Bean limit (n521) one
hasJ56Jc outside, andJ50 inside, the two contour lines. Note
that above some value ofHa the flux- and current-free central re-
gion disconnects from the surface.
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sistivity r(J)5E(J)/J. For concrete applications to flux
penetration or exit and creep, I shall consider the model

E~J!5EcuJ/JcunJ/J5rcuJ/Jcun21J, ~1!

with 1<n,`. This power law is observed in numerous ex-
periments and was used in theories on creep35,36,44and flux
penetration21–23and ac susceptibility.23,26,45,46It corresponds
to a logarithmic current dependence of the activation energy
U(J)5Ucln(Jc /J), which inserted into an Arrhenius law
yieldsE(J)5Ecexp(2U/kT)5Ec(J/Jc)

nwith n5Uc /kT. The
model ~1! contains only two independent parametersEc /Jc

n

and n and interpolates from ohmic behavior (n51) over
typical creep behavior (n510•••20) to ‘‘hard’’ supercon-
ductors with Bean behavior (n→`).

Extensions of the presented numerical method to aniso-
tropic and even nonlocal resistivity, if required, are straight-
forward, also the inclusion of the Hall effect. The extension
to arbitrary reversible magnetization curveB5m(H)H is
more difficult, but this extension~the consideration of finite
Bc1) will allow to compute the important geometric edge
barriers47,18,19,26and the ‘‘current string’’ predicted and ob-
served by Indenbom and co-workers48 in specimens with
thickness much larger than the London penetration depth
l. Work in this direction is under way.

In Sec. II the equations of motion for the current density
J(x,y,t) are derived for bars with arbitrary and rectangular
cross sections in a time dependent perpendicular field. Sec-
tion III shows how these 2D equations reduce to the known
1D equations for the perpendicular and parallel geometry
limits and how the nonlocality arises. Various numerical and
analytical solution methods are described and useful general
formulas given in Sec. IV. A selection of numerical results
for flux penetration and creep is presented in Sec. V.

II. EQUATIONS OF MOTION

A. General bar in a perpendicular field

This section presents a method which calculates the elec-
trodynamics of a conductor or superconductor with general
current-voltage characteristicsE(J) and arbitrary cross sec-
tion in the xy plane when a time dependent homogeneous
magnetic fieldHaiy is applied. The conductor is assumed to
be translational invariant along the directionz perpendicular
to Ha ~Fig. 1! but the method works also for conductors
which possess a rotational axis parallel toHa .

43 We further
assume that no current is fed into the conductor by contacts,
but this condition may be relaxed if desired. The applied
field induces currents in the bulk and at the surface of the
specimen which flow alongz. The current density
J5J(x,y) ẑ generates a planar magnetic fieldH which has no
z component. Since we assumeB5m0H whereB5¹3A is
the induction andA5A(x,y) ẑ the vector potential, we may
write J5¹3H5m0

21¹3(¹3A)52m0
21¹2A, thus the

scalar fieldsJ(x,y) andA(x,y) obey the 2D Laplace equa-
tionm0J52¹2A. Since we are interested only in the current
density J inside the specimen, the vector potential in this
equation should be interpreted as the partAJ of A5Aa1AJ
which is generated by this current, while the remaining part
Aa52xBa is generated by the current in the coil that pro-
duces the applied fieldBa5m0Ha . However, since
¹3Aa5Baẑ is constant inside the specimen, one has
¹2Aa50 there, and thus one may write bothm0J52¹2A or
m0J52¹2(A2Aa)5¹2AJ . This means that the applied
field drops out from the differential equations forA and J
and thus has to be considered separately by appropriate
boundary conditions forH, requiring the calculation ofH in
the entire space.

The computation can be simplified drastically if one finds
an equation of motion for the current densityJ(x,y,t) inside
the conductor alone, which should contain the time depen-
dent applied fieldBa(t) explicitly as an external driving
force that generates a non-zero solution. Such equations of
motion were derived for strips,13 disks,15 and rectangles24 in
perpendicular field, and for a slab in parallel field,49 see also
Sec. III B. To obtain such an equation for the present geom-
etry, we proceed as follows. First we write down the general
solution to the 2D Laplace equationm0J52¹2(A1xBa),

A~r !52m0E
S
d2r 8Q~r,r 8!J~r 8!2xBa ~2!

with r5(x,y) and r 85(x8,y8) and the integral kernel

Q~r,r 8!5
lnur2r 8u
2p

. ~3!

The integration in~2! is over the cross sectionS of the speci-
men, the area to which the current densityJ is confined.
Formally, Eq.~2! may be inverted and written in the form

J~r !52m0
21E

S
d2r 8Q21~r,r 8!@A~r 8!1x8Ba#. ~4!

HereQ21(r,r 8) is the inverse kernel defined by

FIG. 3. Comparison of the computed flux fronts~bold! with the
estimate ~71! ~dashed! for strips with b/a50.1 ~top! and
b/a50.05 ~bottom!. For clarity in this plot the specimen thickness
d52b is stretched by factors 2.5~top! and 5~bottom!. The slight
wiggle of the computed fronts is due to the small numberNy in the
used grid ofNxNy56039 and 7038 points, and to the large creep
exponentn521.
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E
S
d2r 8Q21~r ,r 8!Q~r 8,r 9!5d~r2r 9!. ~5!

The kernel~3! satisfies¹2Q(r2r 8)5d(r2r 8). Therefore, in
the infinite space the application of*Q21 would be identical
to the application of the Laplacian operator
¹25]2/]x21]2/]y2. However, since the integrals in~2! and
~4! are confined to the specimen cross section,Q21 is differ-
ent from ¹2 and contains information about the specimen
shape. One can show that the first term in the integral~4!
yields thebulk currentwhile the second term is thesurface
screening currentthat exactly compensates the applied field
inside the specimen. This surface current plays the role of the
Ha-dependent boundary condition in an equation forJ. The
inverse kernel may be computed by inverting a matrix as
shown in Sec. IV A.

Next we express the induction law¹3E52Ḃ
52¹3Ȧ in the form E52Ȧ. The arbitrariness of the
gauge ofA, to which an arbitrary curl-free vector field may
be added, presents no problem in this simple geometry. With
the material lawE5E(J), e.g.,E5Ec(J/Jc)

nsgn(J) ~1! or a
general linear and complexE5rJ, one getsȦ52E(J).
This relation betweenȦ andJ allows one to eliminate from
Eq. ~2! eitherA or J. EliminatingA, one obtains an equation
of motion for J(x,y,t),

E@J~r,t !#5m0E
S
d2r 8Q~r ,r 8!J̇~r 8,t !1xḂa~ t !. ~6!

This implicit equation for the current densityJ(r ,t) contains
the time derivativeJ̇ under the integral sign. It may be used
in this form ~containing the kernelQ rather thanQ21) if one
is interested in the linear response to a periodic signalḂa
} ivexp(ivt). In this case the time dependence of
J̇(r ,t)5J(r )exp(ivt) is explicitly known and the amplitude
J(r ) follows from a linear integral equation13–15,31,38~Sec.
IV D !. In the special case of flux creep, i.e., whenBa is held
constant and thusḂa50, Eq. ~6! can be solved analytically
by separation of the variables inE(r ,t)5 f (r )g(t) ~Sec.
IV B !. This separation works ifE(J) is sufficiently
nonlinear33–35or if the power law~1! applies.49 Equation~6!
for J(r ,t) may be written as an equation forE(r ,t) by noting
that J̇5Ė(]J/]E) where]J/]E51/E8(J) is the given dif-
ferential conductvity. A further problem where the separa-
tion of variables works is given in Sec. IV C.

In the general case of nonlinearE(J) and arbitrary sweep
of Ba(t), the time integration of~6! has to be performed
numerically as described in Sec. IV A. For this purpose, the
time derivative should be moved out from the integral to
obtainJ̇ as an explicit functional ofJ andḂa . This inversion
is achieved by using Eq.~4! instead of Eq.~2!. The equation
of motion for J(r ,t) then reads

J̇~r ,t !5m0
21E

S
d2r 8Q21~r ,r 8!$E@J~r 8,t !#2x8Ḃa~ t !%.

~7!

This integral equation is easily time integrated by starting
with J(r ,0)50 at time t50 and then putting,
J(r ,t1dt)5J(r ,t)1 J̇(r ,t)dt.

Note that Eq. ~7! does not contain the applied field
Ba(t) itself but only its time derivative, the ramp rate
Ḃa(t). This property applies also to the corresponding equa-
tions of motion of the previously treated perpendicular ge-
ometry of strips,13 disks,15 and rectangles.24–26Remarkably,
in the present perpendicular bar geometry, one can also find
an equation of motion which contains the fieldBa(t) itself.
Namely, by inserting the relationJ$A%, Eq. ~4!, into the
induction law Ȧ52E(J) using a givenE(J) model, one
obtains an equation for the vector potentialA(r ,t) alone,

Ȧ~r ,t !52E@J~r ,t !#,

J~r ,t !52m0
21E

S
d2r 8Q21~r ,r 8!@A~r 8,t !1x8Ba~ t !#.

~8!

Both Eqs.~7! and ~8! work equally well when incorporated
into numerical programs as described in Sec. IV A.

Equations describing superconductors in the Meissner
state with London penetration depthl are obtained by insert-
ing in ~2!, ~4!, or ~8! A52m0l

2J, and in ~6! or ~7!
E5m0l

2J̇. The time dependence of the resulting linear
equation forJ or E separates; it thus suffices to solve it for
one value ofBa or Ḃa as described in Sec. IV C 4.

B. Strips and bars with rectangular cross section

In typical experiments the superconductor samples have
rectangular cross section withBa applied along one of the
symmetry axesx or y. In this particular case, or more gen-
erally if the specimen exhibits two mirror planesx50 and
y50, the integrations in the above expressions may be re-
stricted to one-quarter of the specimen cross section
2a<x<a, 2b<y<b, e.g., to 0<x<a, 0<y<b. One
then has to use a symmetric kernelQsym, which follows
from the symmetry of the current densityJ. When Ba is
alongy, thenJ, E, andA are odd functions ofx and even
functions of y, e.g., J(x,y)52J(2x,y)5J(x,2y). The
symmetric kernel Qsym5Q(x8,y8)2Q(2x8,y8)
1Q(x8,2y8)2Q(2x8,2y8) with Q from ~3! may be writ-
ten in the compact form

Qsym~r,r 8!5
1

4p
ln

~x2
2 1y2

2 !~x2
2 1y1

2 !

~x1
2 1y2

2 !~x1
2 1y1

2 !
~9!

with x65x6x8, y65y6y8. For example, Eq.~2! now
reads for the rectangular cross section

A~r !52m0E
0

a

dx8E
0

b

dy8Qsym~r ,r 8!J~r 8!2xBa .

~10!

Defining the inverse kernelQsym
21 of ~9! we may write the

equation of motion~7! in the form

J̇~r ,t !5m0
21E

0

a

dx8E
0

b

dy8Qsym
21 ~r ,r 8!@E~J!2x8Ḃa#.

~11!

With appropriately modified boundaryb5b(x), Eqs. ~10!
and ~11! apply also to specimens with varying thickness
2b(x) as long as these still possess the mirror planesx50
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andy50. For example, to describe a circular cylinder with
radiusa in a perpendicular field, one just replaces the inte-
gration boundaryb in the integral overy by the function
b(x)5(a22x2)1/2. The inverse kernelQsym

21 defined by Eq.
~5! depends on the specimen shape and thus also onb(x).

C. Disks and cylinders in an axial field

For completeness I give here also the equation for con-
ductors with a rotational axis parallel toBa and with maxi-
mum radiusa. The height 2b is constant for disks (b!a)
and long cylinders (b@a), but in generalb(r ) may be an
arbitrary function of the radiusr5(x21z2)1/2, e.g.,
b(r )5(a22r 2)1/2 for spheres andb(r )5b(0)(12r 2/a2)1/2

for rotational ellipsoids. In this cylindrical geometry the cur-
rent density, electric field, and vector potential have onlyone
component, which points along the azimuthal directionŵ,
thusJ5J(r ,y)ŵ, E5E(r ,y)ŵ, andA5A(r ,y)ŵ. The vec-
tor potential of the applied field Ba5Baŷ is
Aa52(r /2)Ba . The solution of the Laplace equation
m0J52¹2@AJ1(r /2)Ba# reads in this cylindrical geometry

A~r !52m0E
0

a

dr8E
0

b

dy8Qcyl~r ,r 8!J~r 8!2
r

2
Ba , ~12!

where nowr5(r ,y) and r 85(r 8,y8) and the kernel is

Qcyl~r ,r 8!5 f ~r ,r 8,y2y8!1 f ~r ,r 8,y1y8!,

f ~r ,r 8,h!5E
0

pdw

2p

r 8 cosw

~h21r 21r 8212rr 8cosw!1/2
. ~13!

This kernel was obtained by integrating the 3D Green func-
tion of the Laplace equation, 1/(4pur32r 83u) with
r35(x,y,z), over the anglew5arctan(z/x), while the kernel
~3! was obtained by integrating 1/(4pur32r 83u) overz from
2` to `. If desired, the integral kernel~13! may be ex-
pressed in terms of elliptic integrals, but for computational
purposes it is more convenient to evaluate thew integral~13!
numerically.

The equation of motion for the azimuthal current density
J(r ,y,t) is obtained in the same way as Eqs.~7! and ~11!,
yielding

J̇~r ,t !5m0
21E

0

a

dr8E
0

b

dy8Qcyl
21~r ,r 8!SE~J!2

r 8

2
ḂaD .

~14!

Note the similarity of~14! with the corresponding equation
~11! for the current density in strips, bars, or slabs. There-
fore, the same numerical program can be used to compute
the electrodynamics for long bars in perpendicular field and
for rotationally symmetric specimens in axial field. One just
has to replace in~11! the integral kernelQsym ~9! by Qrot
~13!, multiply Ba by a factor 1/2, and interpret the coordinate
x as the radiusr . Note that these equations describe also
cylinders in both perpendicular and parallel fields.

III. PERPENDICULAR AND PARALLEL LIMITS

Formulas~9!–~11! for bars with rectangular cross section
2a32b in a perpendicular field allow one to see how the

limits of thin conductors in~a! parallel and~b! perpendicular
fields are reached. In these two limiting geometries, linear
and nonlinear conductors or superconductors show quite dif-
ferent behavior. For example, in the Bean modeluJu<Jc ,
they exhibit qualitatively different current and field profiles
during penetration of flux:~a! Constant current density
J50 or J56Jc and constant slope ofB(x);

1 ~b! a flux front
with vertical slopes ofJ andB, and a logarithmic infinity of
B at the edges.11 The Bean magnetization curvesM (Ha)
during flux penetration are also different in these two geom-
etries: ~a! an inverted parabola with constantM for
Ha>Jca; ~b! a hyperbolic tangent which in the limit of zero
thickness does not saturate, cf. Sec. V F. The parallel results
are easily derived since demagnetizing effects are absent and
the problem is one dimensional; they follow directly from
Bean’s assumptionuJu<Jc or, whenE5rJ is linear, from
the linear diffusion equation forB(x,t) or J(x,t) with flux
diffusivity D5r/m0 . The perpendicular results were ob-
tained from a static or dynamic integral equation for the
sheet current in Refs. 7–15.

I show now how all these results for strips and slabs fol-
low naturally from Eq.~11!. A similar derivation of the lim-
iting cases of thin circular disks or long cylinders from Eq.
~14! will be given elsewhere.43

A. Perpendicular limit b!a

If the thicknessd52b of a strip is much smaller than its
width 2a, the integral kernel~9! varies little over the thick-
ness and may be replaced by its value in the planey50. This
means that only the current density integrated over the thick-
ness enters the static equation~10!, the sheet current, or line
current

Js~x!5E
2b

b

J~x,y!dy. ~15!

Therefore, the equations for the statics of thin strips contain
only the sheet currentJs(x); the local current density
J(x,y) is required only if one wants to know the parallel
field componentBx(x,y)52*0

yJ(x,y)dy inside the strip,
which determines also the local slopeBy /Bx of the curved
vortices in the strip.50 The perpendicular component
By(x,y)'By(x,0) and the magnetic field at and near the
surface of the strip, however, depend only onJs(x) ~15!.
Only this sheet current and the critical sheet current
Jsc5Jcd enter the perpendicular Bean models,7–12 irrespec-
tive of how the currents are distributed across the thickness.
One may have, e.g.,J(x,y)5const, or J(x,y)}cosh(y/l)
wherel is the London penetration depth, orJ(x,y)50 in a
central layeruyu,y0 andJ(x,y)56Jc in two surface layers
uyu>y0 ~a current caused Bean state across the thickness!.
The equations forJs(x) even allow for a varying thickness
2b(x) and for a space dependentJsc(x).

From the implicit equation of motion~6! one might argue
that for thin strips the dynamics, too, depends only on the
integrated currentJs(x) ~15!. However, the inverted and ex-
plicit equation of motion~7! and its symmetric version~11!
show that even whenQsym does not depend ony and y8
sinceb!a is small, they dependence ofJ(x,y) has to be
known because the integration in~11! is overE rather than
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J. Only whenE(J) is linear does the sheet currentJs ~15!
uniquely determine the average*2b

b E(x,y)dy. Therefore,
for general nonlinearE(J) the 2D dynamic equation~11!
reduces to a 1D equation only ifJ(x,y) does not depend on
y. In this case one hasJs5Jd. The general 2D equation
~11!, however, remains valid for arbitrarily inhomogeneous
J(x,y), also for nonlinearE(J), and even for inhomoge-
neous materials orB dependentJc(B).

With the above restrictions in mind, one may express Eqs.
~6! and ~11! as equations of motion for the sheet current
Js(x,t) in a strip in perpendicular fieldBa(t),

EFJs~x,t !d G5m0E
0

a

dx8Qtra~x,x8!J̇s~x8,t !1xḂa , ~16!

J̇s~x,t !5m0
21E

0

a

dx8Qtra
21~x,x8!FES Jsd D2x8ḂaG , ~17!

where the 1D transverse kernel isQsym at y5y850,

Qtra~x,x8!5Qsym~x,0,x8,0!5
1

2p
lnU x2x8

x1x8
U ~18!

andQtra
21(x,x8) is its inverse. These equations were used in

Refs. 13–15 and 20–22 to derive the dynamic and quasis-
tatic behavior of thin superconductor strips in a perpendicu-
lar field.

B. Parallel limit b@a

When the thickness of the strip is increased more and
more until b@a, one arrives at the longitudinal limit of a
slab in parallel field. In this limitJ(x,y,t) becomes indepen-
dent of y if one disregards the deviating behavior near the
far-away edgesy56b. The 2D integral equations~6! and
~11! for J(x,y,t) then reduce to 1D equations as in the per-
pendicular limit, but now for the current densityJ(x,t)
rather than for the sheet currentJs(x,t). These 1D equations
are thus as general as Eqs.~6! and~11! and describe both the
static and dynamic behavior of the slab. Defining
J(x,t)5J(x,0,t), one may write these 1D equations of mo-
tion in the form

E@J~x,t !#5m0E
0

a

dx8Qlong~x,x8!J̇~x8,t !1xḂa , ~19!

J̇~x,t !5m0
21E

0

a

dx8Qlong
21 ~x,x8!@E~J!2x8Ḃa#, ~20!

with the 1D longitudinal kernel (x,x8>0)

Qlong~x,x8!5E
0

`

Qsym~x,0,x8,y8!dy85
1

2
~ ux2x8u2ux1x8u!

52min~x,x8!, ~21!

i.e., one hasQlong52x for 0,x,x8 andQlong52x8 for
0,x8,x. To derive~21! I have used the formula51

E
0

`

ln
p21y2

q21y2
dy5p~p2q!. ~22!

The kernel ~21! has the property
]2Qlong(x,x8)/]x

25d(x2x8). Therefore, by taking the sec-
ond derivatives on both sides of Eq.~19! one arrives at a
differential equation for the electric field

E9~x!5m0J̇~x,t !5m0

]J

]E
Ė~x,t !. ~23!

This diffusion equation with diffusivityD5m0
21]E/]J

could have been obtained directly from the above Maxwell
equationsm0J52¹2A andE52Ȧ. However, the applied
field has now dropped out by taking the second derivative.
Therefore, for practical calculations the integral equation
~19! and its inverse~20! are more suited than differential
equations of the type~23! because they incorporate the
boundary conditions for B or A, B(x56a,t)
52A8(x56a,t)5Ba(t) in an equation for the current den-
sity J(x,t).

C. Local and nonlocal diffusion

From the differential equation~23! one can see that the
equivalent integral equation~20! describes the diffusion of
the electric fieldE(x,t) or current densityJ(x,t) under a
driving force given byḂa and with the boundary conditions
contained in the integral kernelQlong

21 and in the integration
boundaries. This diffusion in general isnonlinearwhen the
E(J) law is not linear. In the parallel geometry the diffusion
is local, since in Eq.~23! Ė(x,t) depends only onE9(x,t) at
the same positionx. In contrast to this, in the perpendicular
geometry the diffusion isnonlocalsince Eq.~17! cannot be
written as a differential equation for the sheet current
Js(x,t). Of course, the original 3D Maxwell equations used
here are local. The nonlocality is an artifact coming from the
reduction of the dimensionality to obtain an equation of mo-
tion for the 2D sheet current. One may say that each point in
the thin conductor interacts with all other points via the mag-
netic stray field in the outer space.

The question whether our general equations of motion for
J(x,y,t) or A(x,y,t) in a bar or thick disk describe local or
nonlocal diffusion is less clear. The general Eqs.~6!–~8! for
bars of arbitrary cross section may be called local diffusion
equations since they can be expressed as differential equa-
tions with appropriate boundary conditions. Equations~11!
and ~14! for the rectangular bar or for the circular disk de-
scribe the same local diffusion, but now the imposed sym-
metry formally causes an interaction of each point (x,y) with
itself and with its image points (2x,y), (x,2y), and
(2x,2y) in the rectangle, or with all points on a circle in
the disk, via the symmetric integral kernelsQsym ~9! or
Qdisk ~13!. So, one may say that imposing boundary or sym-
metry conditions formally introduces some nonlocality in
otherwise local diffusion problems. This nonlocality be-
comes visible from the compact formulation of such a prob-
lem in terms of an integral equation. But not in all cases can
an integral equation be transcribed into a differential equa-
tion, e.g., the integral equations~16! and ~17! for the 2D
sheet current.
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IV. SOLUTION METHODS

A. Flux penetration: Time integration

To obtain the current and field profiles and the magneti-
zation during penetration of perpendicular flux into long bars
with nonlinearE(J) law, one has to integrate Eq.~11! nu-
merically. This may be done easily on a personal computer
by tabulating the functionsJ, E, andA on a 2D grid with
equidistant pointsxk5(k21/2)a/Nx (k51,2, . . . ,Nx) and
yl5( l21/2)b/Ny ( l51,2, . . . ,Ny), choosingNy'bNx and
the length unita51. Labeling the points (xk ,yl) by one
index i51,2, . . . ,N with N5NxNy , the functions
J(x,y,t), etc., become time dependent vectorsJi(t) with N
components, and the integral kernelQsym ~9! becomes an
N3N matrix Qi j . The inverse kernelQsym

21 also becomes a
N3N matrix,Qi j

21 , which is obtained by inverting the ma-
trix Qi j . One has( lQilQl j

215d i j whered i j51 if i5 j and
d i j50 else. The calculation and inversion of the matrixQi j
has to be performed only once at the beginning of the com-
putation.

With the power law ~1! and in reduced units
m05a5Jc5Ec51, yieldingE5Jn, the equation of motion
~11! takes the form

J̇i~ t !5
b

N(
j
Qi j

21@Jj~ t !
n2xj Ḃa~ t !#. ~24!

The time integration of this system of nonlinear differential
equations of first order for theJi(t) is straightforward. One
may start withJi(0)50 and then increase the time in steps
dt, putting Ji(t1dt)5 J̇i(t)dt. More elaborate methods are
conceivable, also with nonequidistant grids as described in
Refs. 13 and 15, but for our bar geometry this simple method
is very stable and fast and yields beautiful pictures of flux
penetration~Sec. V!. An important hint is, however, that at
each time the time step should be chosen inversely propor-
tional to the maximum value of the resistivity
r i5Ei /Ji5uJi un21, e.g., dt5c1 /@maxr i(t)1c2# with
c150.3/(Nx

2n) andc250.01. This choice provides optimum
computational stability and speed. The computation time is
thus proportional toN2/dt}Nx

4Ny
2n.

From the computed current densityJ(x,y,t) the magneti-
zation is obtained by integration~or summation of thexiJi)
as described in Sec. V F. The vector potential inside the bar
may be obtained from the electric fieldE5Jn by time inte-
gration,Ai(t)52*0

t Ji(t)
ndt. Alternatively, one may com-

pute A(x,y,t) from the integral~10!. This second method
yields the vector potential alsooutsidethe specimen, if the
kernel Qsym ~9! is also computed for these outer points
(x,y). FromA(x,y,t) the magnetic field lines are easily plot-
ted noting that they coincide with the contour lines ofA. If
desired, the field componentsBx andBy , e.g., at the speci-
men surface, may be calculated as spatial derivatives ofA.

A big advantage of the present method is that neither the
inductionB nor any spatial derivative have to be computed
in order to obtain the current profiles and magnetization
curves during flux penetration or exit. The method thus
achieves high accuracy with modest computational effort.
Even a grid of onlyN510310 points may be used, see Sec.
V. To reach this accuracy the diagonal terms of the matrix

Qi j5Qsym(r i ,r j ) have to be chosen appropriately. Note that
Qi j diverges as lnur i2r j u when r i approachesr j . The opti-
mum choice of the diagonal termsQii for this and similar
integral kernels may be obtained from a sum rule13–15or by
expressing the kernel as a finite Fourier series with as many
terms as pointsr i .

23–25Recently Gilchrist and Brandt52 dis-
cussed this cutoff problem in some detail for films with cir-
cular current flow and show that it is related to the well-
known fact that the mutual inductance of two loops is nearly
independent of the width or radius of the conductors, but the
self-inductances diverge logarithmically when the strip width
or wire radius goes to zero. The matrix elementsQi j in our
theory may be interpreted as mutual (iÞ j ) and self- (i5 j )
inductances of double strips or loops. For practical purposes
it suffices to state that good accuracy is achieved by replac-
ing in the matrix Qi j the terms lnur i2r j u by
(1/2)ln@(r i2r j )

21e2# where e250.015dxdy if dx5a/Nx
'dy5b/Ny .

B. Creep: Separation of variables

In at least two special cases the nonlinear nonlocal diffu-
sion equation~6! can be solved analytically by separation of
the time and space variables as realized first for the problem
of flux creep by Gurevich.34,35To see this we write Eq.~6! as
an equation for the electric fieldE(r ,t) noting that
J̇5Ė/(]E/]J). For the power lawE(J)5Ec(J/Jc)

n one ex-
plicitly has ]E/]J5(nE/Jc)(Ec /E)

1/n, yielding35,49

E~r ,t !5
m0Jc
nEc

1/nE d2r 8Q~r ,r 8!
Ė~r 8,t !

E~r 8,t !121/n 1xḂa .

~25!

If Ba is held constant,Ḃa50, one has the situation of flux
creep. In this case an exact solution of Eq.~25! is the ansatz
E5 f (r )g(t), which gives49

E~r ,t !5Ecf n~r !S t

t11t D
n/~n21!

. ~26!

If we chose t5m0JcS8/@4p(n21)Ec# with S8 denoting
some arbitrary area, e.g., the specimen cross sectionS, we
obtain f n(r ) from the implicit equation

f n~r !52
4p

S8
E
S
d2r 8Q~r ,r 8! f n~r 8!

1/n. ~27!

This nonlinear integral equation is easily solved by iterating
the relation f n

(m11)52(4p/S8)*Qfn
(m)1/n starting with

f n
(0)51. The resulting seriesf n

(1) , f n
(2) , . . . , converges rap-

idly if n.1. For m@1 one has approximately
f n
(m11)(r )' f n

(m)(r )•(11c/nm) with c'1. Forn@1 ~practi-
cally for n>5) the shapef n(r ) of the electric field becomes
a universal function which depends only on the specimen
shape but not on the exponentn,

f n>5~r !' f `~r !52
2

S8
E
S
d2r 8lnur2r 8u. ~28!

In the ohmic casen51, the ansatz~26! makes no sense
since the exponentn/(n21) diverges. For this special case
the integral equation~25! is linear since the factor
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]J/]E5s51/r is the constant ohmic conductivity. This lin-
ear integral equation is solved by the ansatz

E~r ,t !5E0f 1~r !exp~2t/t1!, ~29!

with E05const and the relaxation timet15m0sS8/L1 ,
whereL1 and f 1(r ) are the lowest eigenvalue and eigen-
function of the linear integral equation

f n~r !52Ln

2

S8
E
S
d2r 8lnur2r 8u f n~r 8!. ~30!

In ~30! the index n51,2, . . . labels the eigenvalues and
eigenfunctions, which will be required also in Sec. IV D;n
should not be confused with the exponentn, which in gen-
eral may be any real numbern>1; in this section acciden-
tally f n(x,y) and f n(x,y) for n51 and n51 denote the
same function.

From ~1! and ~26! the current density becomes

J~r ,t !5Jcu f n~r !u1/nS t

t11t D
1/~n21!

sgnf n~r !. ~31!

For large n@1 and t@t1 the time factor in~31! equals
(t/t)1/(n21)'12@1/(n21)# ln(t/t) and the spatial factor is
u f n(r )u1/n'1. One thus has everywhereuJu'Jc with slight
creep corrections.

These results still apply to arbitrary shape of the specimen
cross sectionS. For rectangular cross sectionS52a32b
one may replace in~25! and~27! Q by Qsym ~9! and restrict
the integration to 0<x8<a, 0<y8<b. In the perpendicular
limit b!a usingS85S54ab we get

t5m0Jcab/@p~n21!Ec#, ~32!

f n~x!5
1

aE0
a

dx8lnU x1x8

x2x8
U f n~x8!1/n, ~33!

andE(x,t)'Ecf n(x)(t/t)
n/(n21). For large creep exponent

n@1 this reproduces the universal creepingE(x,t) for thin
strips of Ref. 35,

E~x,t !5
m0Jcab

p~n21!

1

t S lna1x

a2x
1
x

a
ln
a22x2

x2 D . ~34!

Note that the final resultE(x,t) ~34! is independent of the
choice ofS8. But the simplicity of Eq.~33! suggests that
S854ab is the natural choice in the perpendicular limit. In
the parallel limit b@a, the natural choice appears to be
S8516a2/p, which yields with~21!

t5m0Jc4a
2/@p2~n21!Ec#, ~35!

f n~x!5
p2

4a2E0
a

dx8min~x,x8! f n~x8!1/n ~36!

for 0<x<a, with f n(2x)52 f n(x). The integral equation
~35! is equivalent to a differential equation with boundary
conditions,

f n9~x!52k1
2f n~x!1/n, f n~0!5 f n8~a!50 , ~37!

with k15p/2a. The solutions of~37! in the ohmic (n51)
and Bean (n5`) limits look very similar,

f 1(x)5const3sin(px/2a) and f `(x)5(p2/8a2)x(2a2uxu).
For large exponentsn@1 this reproduces the universal
creeping electric field

E~x,t !5
m0Jc
n21

x~2a2uxu!
2t

~38!

obtained for slabs in parallel field by Gurevich and Ku¨pfer.33

The correspondingE(r ,t) for long cylinders in parallel field
is25

E~r ,t !5
m0Jc

~n21!t F ~3a22r 0
2!ln~r /r 0!

4 @ ln~a/r 0!11#
2
r 22r 0

2

4 G , ~39!

wherer 0!a is an inner cutoff radius,E(r 0 ,t)50.
For rectangular bars with arbitrary side ratio 0,b/a,` a

useful interpolation isS854ab/(11pb/4a). With this
choice ofS8 the iteration of Eq.~27! converges rapidly, and
in both limitsb!a andb@a, f n(x) becomes independent of
a andb if a is chosen as length unit.49

C. Reaching magnetic saturation

The second special case where separation of variables
works is when the ramp rateḂa is kept constant until full
magnetic saturation is reached. In the Bean limitn→`, this
saturation occurs when the applied fieldBa has reached the
field of full penetrationBp , which is computed in Sec. V A
as a function of the side ratiob/a. But for finite creep expo-
nent n,` the saturation is reached only gradually. I will
show now that the approach of saturation is exponential in
time.

In the fully saturated state the current densityJ(x,y,t)
does not change any more, and also the electric field
E(x,y,t) generated by this current according to the material
law E5E(J) ~1!. The stationary valueE(x,y,`) is deter-
mined by the ramp rate and by the specimen shape as dis-
cussed in detail in Ref. 25. For our bar in perpendicular field
one hasE(x,y,`)52Ȧa5xḂa as is obvious from Eq.~25!.
Writing near the saturationE(x,y,t)5xḂa1E1(x,y,t) we
may obtain the small perturbationE1 from Eq.~25!. Keeping
only the terms linear inE1 we get

E1~r ,t !5CE d2r 8Q~r ,r 8!x81/n21Ė1~r 8,t ! ~40!

with C5m0Jc /(nEc
1/nḂa

121/n). This linear equation is solved
by the ansatzE1(x,y,t)5g(x,y)exp(2t/t). The profile
g(x,y) and the time constantt follow from the linear eigen-
value equation

gn~r !52lnE d2r 8Q~r ,r 8!x81/n21gn~r !, ~41!

where the eigenvaluesln have to equalC/tn , thus
tn5C/ln . We are interested in the relaxation mode with the
longest time constantt1 corresponding to the lowest eigen-
valuel1 . We thus find att@t1

E~r ,t !5xḂa2constg1~x,y!exp~2t/t1!, ~42!

54 4253SUPERCONDUCTORS OF FINITE THICKNESS IN A . . .



t15
C

l1
5

m0Jc

nḂal1
S Ḃa

Ec
D 1/n, ~43!

wherel1 andg1(x,y) are the lowest eigenvalue and eigen-
function of Eq.~41! and the constant has to be determined
from the full nonlinear equation~25!. This exponential ap-
proach to the saturation ofE, and thus also ofJ and of the
magnetic momentM , is quantitatively confirmed by our
computations in Sec. V.

D. Linear response: Eigenvalue problems

Writing E5rJ we may put the equation of motion~6! for
the current densityJ(x,y,t) into the form

r

m0
J~r ,t!5E

S
d2r 8Q~r ,r 8!J̇~r 8,t !1xḢa~ t ! ~44!

with Ha5Ba /m0 and r/m05D the diffusion coefficient of
flux. We discuss now three cases where the linear response
J to a time dependent applied fieldHa(t) can be obtained
from an eigenvalue problem, which is easily solved by find-
ing the eigenvectors of the matrixQi j5Qsym(r i ,r j ) intro-
duced in Sec. IV A. In these three cases, respectively, the
general resistivityr in ~44! is either~1! ohmic ~linear, real,
frequency independent!; ~2! linear, complex, and dispersive,
r5rac(v); or ~3! arbitrarily nonlinear,r5r(J)5E(J)/J.

I present here the main formulas, detailed numerical re-
sults will be given elsewhere.

1. Ohmic bar in switched field

When the applied fieldHa(t) changes abruptly from one
constant value to another at timet50, e.g., by switching it
on or off, one hasḢa(t)50 at tÞ0. Equation~44! is then
solved by a linear superposition of relaxing eigenmodes

J~x,y,t !5 (
n51

`

cn f n~x,y!e2t/tn. ~45!

The amplitudescn as usual are obtained from the initial con-
dition at t50 and thef n(x,y) are the eigenfunctions of the
linear equation~30!, which for rectangular bars may be writ-
ten in terms ofQsym ~9!,

f n~r !52Ln

4p

S8
E
0

a

dx8E
0

b

dy8Qsym~r ,r 8! f n~r 8!. ~46!

The time constantstn are obtained by equating the prefactors
of ~46! and of ~44! with ~45! inserted,
4pLn /S85m0 /(rtn), yielding

tn5
m0S8

4prLn
. ~47!

Note that only the ratioLn /S8 enters in~46! and~47!. To get
dimensionless eigenvaluesLn we have introduced in~30!
and ~46! the arbitrary areaS8. As shown in Sec. IV B, it is
convenient to choose forS8 the specimen cross section
S85S54ab if one considers the perpendicular limitb!a,
i.e., a thin strip in perpendicular field. This yields the time
constants tn5m0ab/(prLn) with Ln'0.63851n21,
n51,2, . . . , as inRefs. 13 and 31.

For the longitudinal limitb@a of a slab in parallel field,
the eigenvalues of the integral equation~30! are obtained
from the equivalent linear differential equation with bound-
ary conditions@cf. the similar Eq.~37!#,

f n9~x!52kn
2f n~x!, f n~0!5 f n8~a!50 , ~48!

yielding f n5sinknx and kn5p(n21/2)/a, n51,2, . . . .
Equating the prefactors of~46! and ~48!, 4pL/S85kn

2 , we
obtain the time constants ~47!, tn5m0 /(rkn

2)
5m0a

2/@p2(n21/2)2r] as in Refs. 13 and 15. As stated in
Sec. IV B, the choiceS8516a2/p appears natural in this
parallel limit since it yieldsLn5(2n21)251,9,25,. . . . A
convenient interpolation to all side ratiosb/a is the choice
S854ab/(11pb/4a) as above.

2. Linear complex ac susceptibility

The linear magnetic response of a bar with general com-
plex resistivityrac(v) ~Refs. 26,32 and 53–58! in a perpen-
dicular ac fieldHa(t)5Hdc1H0exp(ivt) may be obtained
from Eq. ~44! using the method presented in Ref. 31. A
convenient complex frequency variable is

w5
ivm0S8

4prac~v!
5 ivt~v!, ~49!

wheret is a time constant which in general is complex; only
for ohmic r is t a real relaxation time. With the same
choices as above,S854ab (b!a) and S8516a2/p
(b@a), one getsw5 ivm0ab/prac for thin strips~as in Ref.
31! and w5 ivm04a

2/p2rac for slabs, and the dissipative
partx9 of the ac susceptibilityx5x82 ix9 has its maximum
at uwu'1 for all side ratiosb/a.

In terms of the eigenvaluesLn and eigenfunctions
f n(x,y) of Eqs.~30! or ~46!, with the normalization

4p

S8
E
S
d2r f m~r ! f n~r !5dmn , ~50!

and with the dipole moments

bn5
4p

S8
E
S
d2rx f n~r !, ~51!

the magnetic moment per unit length of the bar becomes

m~ t !5E
S
d2rxJ~r ,t !5m~v!eivt, ~52!

m~v!5H0w(
n

Lnbn
2

w1Ln
. ~53!

The magnetic susceptibilityx(v)52m(v)/m(`) of bars
with r5rac(v) in a perpendicular ac field is thus

x~v!52w(
n

Lnbn
2

w1Ln
Y(

n
Lnbn

2 . ~54!

This general expression applies to bars with arbitrary cross
section in a perpendicular ac field, also to cylinders. In the
limits b!a andb@a it reproduces the susceptibility of thin
strips31 and of slabs16,26,31and yields interesting corrections
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due to the nonzero thickness of the strip or slab. In particular,
for b!a the permeabilitym(v)511x(v) at large frequen-
cies (uwu@1) changes from ‘‘perpendicular’’to ‘‘parallel’’
behavior,

m~v!5~2/pw!ln~16w!, v!v0 , ~55!

m~v!5c/w1/2, v@v0 , ~56!

wherev0 and the constantc depend onb/a. The real and
imaginary parts ofx follow from ~54! to ~56! with w from
~49! inserted. More details and numerical results for arbitrary
side ratiob/a and the extension to discs and cylinders in an
axial ac field will be given elsewhere.43

3. Linear ac response during creep

Very recently it was shown38 that a superconductor~or
nonlinear conductor! which performs flux creep away from
the fully penetrated critical state exhibits a linear response to
a small ac magnetic field. Extending this theory to the
present geometry, I find that the linear ac susceptibility dur-
ing creep is given by the same expressions~54!–~56! but
with different constantsLn , bn , v0 , and c and, most re-
markably, with the complex frequency variablew ~10! re-
placed by the imaginary variableivt where t is the time
which has elapsed since creep has started. This means that
the linearx(v) during creep isuniversal, depending only on
the geometry and the creep time, but not on temperature,
applied or internal dc magnetic fields, or any material param-
eter. The universal expressions forx apply only for not too

small frequenciesv@1/t. Therefore, the maximum in the
dissipative partx9 of x5x82 ix9 ~54! occurring atuwu'1
~if S8 is choosen as suggested above! has no equivalent in
the linear susceptibility during creep.

4. Flux penetration in the Meissner state

For a superconductor in the Meissner state with magnetic
penetration depthl the London equationA52m0l

2J in our
bar geometry may be written as

l2J~r !5E
S
d2r 8Q~r ,r 8!J~r 8!1xHa , ~57!

cf. Eq. ~2!. In the matrix formulation on a grid (xi ,yi) of
Sec. IV A, Eq.~57! reads

l2Ji5(
j
Qi j Jj1xjHa . ~58!

This matrix equation is solved for the current density
Ji5J(xi ,yi) by inverting the matrixQi j2l2d i j , cf. also Eq.
~24!,

Ji5Ha(
j

~l2d i j2Qi j !
21xj . ~59!

Thus the London penetration of a perpendicular magnetic
field Ha into a bar of arbitrary cross section is obtained by
finding the eigenvalues of the matrixQi j5Q(r i ,r j )

FIG. 4. Profiles of the current densityJ(x,y) in a superconduct-
ing bar of side ratiob/a50.5 in an increasing perpendicular field
Ha atHa /Hp50.2 ~top! and 0.8~bottom! in units of the penetration
field Hp50.540Jca ~64! for creep exponentn551 on a grid of
24312 points. Notice the penetrating saturation toJ56Jc , the
current-free zoneJ50 in the center, and the abrupt jump ofJ at the
two ends of the central linex50 in the lower plot.

FIG. 5. Profiles of the current densityJ(x,y) whenHa is de-
creased from1Hp ~64! to 2Hp for side ratiob/a50.5 and expo-
nentn551 as in Fig. 4, but on a grid of only 20311 points. From
left to right and top to bottom one hasHa /Hp50.95, 0.7, 0.4, 0,
20.4, 20.9.
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5 lnur i2r j u/2p. The magnetic moment is then obtained as
m5( ixiJi . This very effective computational method is eas-
ily extended to other geometries. In the limitl→0, Eq.~59!
yields the surface screening currents, which in this 2D prob-
lem may also be calculated by the method of conformal map-
ping. The ideal diamagnetic moment is computed in Sec.
V F.

V. FLUX PENETRATION AND CREEP

In this section I present a selection of useful results com-
puted mainly by time integration of Eq.~24! for supercon-
ductors of rectangular cross section with weak creep. More
results will be given elsewhere.43 In all figures the orienta-
tion of the applied field (y axis! is vertical.

A. Field of full penetration

One characteristic quantity in the Bean model for various
geometries is the field valueHp at which in a gradually in-

creasing applied fieldHa(t) the magnetic flux has penetrated
to the center and the current density has reached its satura-
tion valueJc in the entire specimen. For slabs and strips of
rectangular cross section 2a32b this field of full penetration
in the parallel and perpendicular limits is given by

Hp'Jca, b@a, ~60!

Hp'Jc~2b/p!ln~2a/b!, b!a. ~61!

The parallelHp ~60! is obvious from the constant slope
udH/dxu5Jc of the penetrating field and the boundary con-
dition H5Ha at x56a. The penetration field~61! for the
perpendicular geometry is less obvious. It follows from the
Bean solution10–12 for thin strips by introducing an inner
cutoff such that full penetration is reached when the width of
the flux-free central zone 2a/cosh(Hap/Jcd) has decreased to
the specimen thicknessd52b. Our computations for small
but finite side ratiob/a confirm this cutoff argument. More-

FIG. 6. The sheet currentJs(x) ~15! ~current density integrated
over the thickness! for flat bars with side ratiosb/a50.5, 0.1, and
0.05 ~from top to bottom! and exponentn551 during flux penetra-
tion, plotted in unitsJca for applied fieldsHa /Hp50.1, 0.2, 0.4,
0.6, 0.8, 0.9, and 1~from right to left, solid line with dots!. Hp is the
penetration field~64!, Hp /Jca50.540, 0.207, and 0.125. The solid
lines give the parallel component of the magnetic field at the sur-
face,Bx(x,b), which for thin strips (b!a) should coincide with
2Js/2 for uxu,a and vanish foruxu.a ~i.e., away from the strip!.
As seen in this plot, the abrupt jump inJs from Jc to 0 at the
specimen edgex5a causes a jump inBx which is smeared due to
finite thickness 2b.

FIG. 7. Profiles of the electric fieldE(x,y) during flux penetra-
tion into a superconducting bar of side ratiob/a50.5 and exponent
n551 as in Fig. 4, for the same valuesHa /Hp50.2 ~top! and 0.8
~middle and bottom!. The top and middleE(x,y)5JnsgnJ are com-
puted as the 51st power of theJ(x,y) plotted in Fig. 4 and are thus
defined only inside the bar,uxu<a and uyu<b. The bottom
E(x,y) is the same as the middleE(x,y) but is plotted in the larger
region uxu<1.4a and uyu<2b (33324 grid points! covering also
some space outside the superconductor; hereE was computed from
E52Ȧ. The specimen edges cannot be seen in the bottom plot
sinceE(x,y) is smooth at the specimen surfaces.
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over, it appears that our computed values ofHp for all side
ratios 0.005<b/a<6 are fitted to an accuracy of better than
2% by a compact expression which has the correct limits
~60! and ~61!,

Hp5JcatanhF 2bpa
lnS 1.471 2.68a

b D G . ~62!

Figure 1 shows computed penetration fields in unitsJca at
various values of the side ratiob/a of rectangular bars in a
perpendicular field. It can be seen that for large exponent
n5101 these data are perfectly fitted by formula~62!. At
smaller exponents the penetration field is reduced due to flux
creep, which allows the flux front to reach the specimen
center earlier than in ‘‘hard’’ Bean superconductors with
n5`.

Here the principal problem arises how to define the field
of full penetration when the creep exponent isn,`. As
shown in Sec. IV C, the magnetic saturation at constant ramp
rate Ḃa is approached only gradually, with an exponential
time law Eq.~42!, see also Sec. V F. In Fig. 1Hp is defined
as the field at which the current profilesJ(x,y) become
nearly constant along the field (y) direction, such that the
mean square difference

s5
1

aE0
a

@J~x,a!2J~x,0!#2dx ~63!

FIG. 8. Electric fieldE(x,y) during flux penetration at constant
ramp rateḢa in bars with side ratiosb/a52 ~left! and b/a50.5
~right! at two field valuesHa /Hp50.2 ~top! andHa /Hp50.8 ~bot-
tom! where Hp is the penetration field ~64! (n551,
Hp /Jca50.862, 0.540!. The plotted lines of constantE look simi-
lar as the magnetic field lines of Fig. 9 below, but they are nearly
equidistant, while the magnetic field lines inside the bar have nearly
linearly varying distance when the gradient]By /]x is nearly con-
stant.

FIG. 9. Field lines of the magnetic fieldB(x,y) during flux
penetration into bars with side ratiosb/a52 andb/a50.5 at two
field valuesHa /Hp50.2 andHa /Hp50.8, n551, the same cases
shown in Fig. 8. The bold lines indicate the flux and current fronts
shown also in Fig. 2.

FIG. 10. Magnetic field lines for a square bar (b5a) in an
increasing perpendicular fieldHa for Ha /Hp50.2, 0.8, and 1~full
penetration! with Hp50.715Jca from ~64!, n551. Left: total mag-
netic field flowing around the flux-free core. Right: the magnetic
field caused by the currents in the bar,B2Ba . This is also the field
in a remanent state with the same degree of flux penetration, which
may be reached after field cooling by decreasingHa to zero. For
full penetration,Ha>Hp ~bottom right!, the plotted field lines of
B2Ba coincide with the lines of constant electric field during flux
creep,~Ref. 49! cf. Sec. IV D. The bold lines indicate the flux and
current fronts, cf. Fig. 2.
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becomes smaller than 531026. This is a quite sharp crite-
rion: The computed quantitys, and also the difference be-
tween the magnetic momentm(t) and its saturation value
m(`)5msat, Eq.~69! below, decrease exponentially in time,
and thus inHa5tḢa , over at least seven decades in a nar-
row field interval ifn is large.

The slight reduction of the penetration field with decreas-
ing creep exponentn is fitted to a good approximation by
shifting the entire curveHp ~61! plotted versus ln(b/a), hori-
zontally as shown in Fig. 1. For 5<n,` this fit yields

Hp'JcatanhF2xp lnS 1.471 2.68

x D G ,
x5

b

a
expS 2

2.2

n
10.022D . ~64!

For smaller exponentsn,5 the definition ofHp is not
unique since creep into the saturation state is slow.

The computed penetration field~62! has to be compared
with the exact analytical expression forHp given by Forkl.

59

The applied field at which the magnetic field reaches the
center of an arbitrarily shaped Bean superconductor can be
obtained from the Biot-Savart law by calculating the field
H(r ) caused by the critical currents. In the Bean critical state
the magnitude ofJ(r ) equalsJc and its direction depends on
the specimen shape as discussed, e.g., in Refs. 1–6,21–23,
and 60. At the moment when the flux front has reached the
specimen centerr50, the current-caused fieldH(0) there
should exactly compensate the applied fieldHa . From this

argument Forkl59 obtains for a rectangular bar and for a cir-
cular disk of constant thickness 2b and radiusa the perpen-
dicular penetration fields

Hp5Jc
b

p F2ab arctanba1 lnS 11
a2

b2D G ~bar!, ~65!

Hp5Jc b lnFab1S 11
a2

b2D
1/2G ~disk!. ~66!

The general expression~65! has the limits

Hp5Jca~12a/pb!, b@a, ~60a!

Hp5Jc~2b/p!ln~ea/b!, b!a. ~61a!

This means the estimated factor 2 in the logarithm in~61!
has the exact valuee52.718, which is close to the fitted
value 2.68 in~62! and ~64!.

As can be seen in Fig. 1, the guessed fit function~62! for
Hp(b/a) coincides with the exact analytical result~65!
within line thickness for all side ratiosb/a<1.5. At larger
b/a values, theHp expected for finite creep exponentsn can
be larger or smaller thanHp ~65! depending on the criterion
chosen to define full penetration. In principle, for any
n,` the penetration field also should slightly depend on the
ramp rateḂa , which in our computation is chosen equal to
unity in units a5Jc5Ec5m051. Moreover, the saturated
magnetic momentmsat itself depends onḂa when n,`.
This may be seen as follows.

FIG. 11. Magnetic field lines during penetration of perpendicular flux into a thick strip withb/a50.25 at applied fieldsHa /Hp50.2, 0.4,
0.8, and 1,Hp50.374Jca, n551. ~a! total fieldB(x,y). ~b! current-caused fieldB(x,y)2Ba , or field in the remanent critical state. The flux
front is shown as bold line.
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B. Saturated state

When the applied field is increased with constant ramp
rateḂa then eventually the current density saturates such that
J̇50. It follows then from Eq.~6! that the electric field satu-
rates to the profileE(r ,`)5xḂa . From this stationaryE we
get the stationaryJ by inverting the givenE(J) law. For the
power law~1! and constantḂa one obtains thus for the fully
saturated~critical! state, usingm54b*0

axJ(x)dx ~Sec. V F!,

E5Esat~x!5xḂa5Ec~Jsat/Jc!
n, ~67!

J5Jsat~x!5JcS Ḃaa

Ec
D 1/nS xaD

1/n

, ~68!

m5msat52Jcba
2S Ḃaa

Ec
D 1/n 2n

2n11
. ~69!

From Eqs. ~67!–~69! we notice several remarkable facts,
which are all confirmed by our computations.

~a! The profiles of the saturated current density and elec-
tric field depend only on the coordinatex, but not ony and
not on the specimen height 2b. They do not depend on the
shape of the bar cross section at all.

~b! The general results~67!–~69! depend only on the
combinationEc /Jc

n , but in the limitn→` only Jc matters.
For large creep exponentsn@1 the weakx dependence of
J may be disregarded and one hasJsat'Jc and
msat'2ba2Jc as predicted by Bean.1

~c! For general creep exponentn,` the saturation mag-
netization depends slightly onn and on the ramp rateḂa .
The saturation is reached exponentially fast as shown in Sec.
IV C.

C. Current density

Figure 2 shows the fronts of penetrating flux in rectangu-
lar bars of various side ratiosb/a in an increasing perpen-
dicular applied fieldHa . In the lens-shaped region between
the two fronts one hasB50 andJ50, and outside this zone
J56Jc . This means one has a current-caused Bean critical
state across the thickness, with full penetration of the current
in the outer zoneuxu.x0 and partial penetration in the inner
region uxu,x0 . For fieldsHa below some valueHdet the
flux- and current-free zone meets the surface at the two
points ~or lines alongz) x50, y56b. The current density
J(x,y) at the surfacesy56b thus goes smoothly through
zero with finite slope, as it does on the entire central line
x50. For not too thick strips the shape of this inner zone
whereB50 andJ50, and of the sickle-shaped outer zones
whereJ56Jc , follows from the known analytical expres-
sion for the sheet currentJs(x) ~15! of thin Bean strips,10–12

Js~x!5
2Jcd

p
arctanF S a22x0

2

x0
22x2D

1/2x

aG ~70!

for 0<x<x0 and Js(x)5Jcd for x0<x<a, and
Js(2x)52Js(x), wherex05a/cosh(pHa /Jcd) is the posi-
tion of the flux front on the middle planey50 andd52b is
the thickness of the strip. Forx0,a/2 one has

Js(x)'(2Jcd/p)arcsin(x/x0). Since the current density is ei-
ther 0 or6Jc , the boundary of the current-free zone in the
half strip x.0 takes the form

y~x!56bS 12
Js~x!

Jcd
D'b

2

p
arccos

x

x0
. ~71!

This analytical estimate is compared with the numerically
obtained flux fronts in Fig. 3. As expected, the agreement is
best near the flat surfacesy56b but away from the edges
x56a and from the centerx50. In general, the correct
numerical result exhibits a faster penetration: The low-field
flux front is flatter and nearly parallel to the edges and has
penetrated deeper than predicted by~71!. This behavior of
the flux fronts will be modified further when in future com-
putations a finite lower critical fieldHc1 can be accounted
for, which leads to an edge barrier.47,18,19,26Next we discuss
the deviation from the analytical front~71! near the specimen
center.

At larger fieldsHa.Hdet the central flux-free zone de-
taches from the surface and becomes isolated. This detach-
ment occurs when the boundary of the flux-free zone at the
surfacey56b has a slope of approximately 45°. The cur-
rent density now jumps abruptly from1Jc to 2Jc on the
two sections of the central line~or plane! x50 which con-
nect this lens-shaped zone with the surfaces. This jump can
be seen in the 3D plots of Fig. 4. From Fig. 3 one sees that
for b>a/2 the detachment field is approximately
Hdet'Hp/2 with Hp from ~64! and for b/a50.25 ~0.1225,
0.0625! one hasHdet/Hp'0.6 ~0.7, 0.8!. For b/a→0 one
hasHdet/Hp→1. Notice that the computed exact flux front of
Figs. 2 and 3 differ from the concentric ellipsoids which
were assumed in the analytical calculations of Refs. 4 and 5.

The curved flux fronts in Fig. 2 were computed from Eq.
~24! on grids ofN5NxNy'600 points for a creep exponent
n521. They are defined as the two lines~or planes! where
J(x,y)560.5Jc . The two straight parallel contour lines vis-
ible in the center whereJ jumps from1Jc to 2Jc , ideally
should occur atx56a/2n, cf. Eq. ~68!, but in these figures
they appear atx560.25/Nx since on the grid the jump goes
from x150.5/Nx to 2x1 . Apart from this detail the contours
obtained for different exponentsn>11 and different grid
spacing practically coincide. Similar flux fronts for the Bean
model were recently computed by Prigozhin61 from a varia-
tional principle, and from differential equations by Becker
et al.62 The detachment of the Bean flux fronts from the sur-
face was also seen in computations of cylindrical wires in
transverse field63,64 and in spheres and spheroids.65,66

When the applied field is decreased fromHa5Hp to
2Hp , the new fronts of penetrating flux and current of op-
posite sign have the same shape as the fronts depicted for the
virgin magnetization curve in Fig. 2. At these new frontsJ
jumps from1Jc to 2Jc ; the natural definition of these front
lines ~or planes! is thus J(x,y)50. When Ha52Hp is
reached one arrives again at the critical state but withJ and
B having reversed sign. WhenHa is decreased from
H0>Hp to 2H0 the new frontsy↓(x) follow from the virgin
fronts y(x) by the relation

y↓~x,Ha!5yS x,H02Ha

2 D . ~72!
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This simple superposition principle applies only to the Bean
model, i.e., whenJc is independent ofB and n is infinite.
The penetration of the reversed flux and current is shown in
the 3D plots of Fig. 5. Computing such a half cycle on a
486DX4/100 Personal Computer takes a few minutes.

Figure 6 shows the sheet currentJs(x) ~15!, i.e., the cur-
rent density integrated over the thickness. For thin strips
b/a<0.05 the sheet current is related to the parallel field
component at the flat surfaces,Bx(x,6b)57Js/2, which is
also depicted in Fig. 6. The abrupt jumps ofJx(x) at
uxu5x0 ~flux front! and uxu5a ~edge! are smeared in
Bx(x,b) over a distance'b. For b!a the computedJs(x)
coincides with formula~70!.

D. Electric field

The electric fieldE(x,y,t) inside the superconductor is
obtained by inserting the computed current density
J(x,y,t) into the assumed current-voltage law~1!, or
E5Jn in reduced units. Alternatively, one may obtainE
from the time derivative of the vector potential,E52Ȧ.
Both methods give identical results, butE52Ȧ yields E
alsooutsidethe specimen. We remind thatJ, E, andA are
directed alongz for our bar. Figure 7 showsE during in-

crease of the applied fieldHa for the same parameters
b/a50.5, n551, andHa /Hp50.2 and 0.8 used for the cur-
rent density in Fig. 4. The upper two plotsE(x,y) in Fig. 7
thus in principle contain the same information as the plots
J(x,y) in Fig. 4 sinceE5Jn. Note thatE(x,y) is a smooth
continuous function near the specimen edges, where only
¹2A52m0J has a discontinuity. Far from the specimen, or
after full penetration, one hasE5Ḃa .

The lines of equalE(x,y) are depicted in Fig. 8 for
b/a52 and 0.5, andHa /Hp50.2 and 0.8. Note that most of
the contour lines ofE are nearly equidistant, corresponding
to the nearly constant slope ofE in the 3D plots in Fig. 7. In
the absence of an applied field, i.e. in remanent states, the
contours lines ofE(x,y,t) andA(x,y,t) coincide provided
the time dependence separates,E5 f (x,y)g(t). This is the
case when in the fully penetrated state the applied field is
increased further, or when it is held constant to observe flux
creep. In these cases the contour lines ofE coincide with the
magnetic field lines, cf. Fig. 10 below.

E. Magnetic field

Figure 9 shows the magnetic field lines during flux pen-
etration for the same cases as in Fig. 8. The field is applied in
vertical direction, as in all figures of this paper. The bold

FIG. 12. Magnetic field lines during penetration of perpendicu-
lar flux into a thinner strip withb/a50.1 at applied fields
Ha /Hp50.1, 0.2, 0.4, 0.6, 0.8, and 1~from top!, Hp50.207Jca,
n551. The flux front is shown as bold line.

FIG. 13. Profiles of the perpendicular flux densityBy(x,y) at
the surface~thin lines, y56b) and central plane~thick lines,
y50) of bars with side ratiosb/a52, 1, and 0.5 in an increasing
perpendicular fieldHa /Hp50.1, 0.2, 0.4, 0.6, 0.8, 0.9, 1
(Hp /Jca50.862, 0.715, 0.540,n551). The corresponding parallel
componentBx(x,b) is shown in Fig. 6.
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lines are the contour lines whereJ560.5Jc and thus denote
the current front as in Fig. 2. More magnetic field lines are
depicted in Figs. 10, 11, and 12 for side ratiosb/a51 ~bar
with square cross section!, b/a50.25 ~thick strip!, and
b/a50.1 ~thin strip!. The left column in Fig. 10 shows the
field lines of the fieldB2Ba caused by the currents in the
specimen, see also Fig. 11~b!. Notice that inside the current-
free zone this field is homogeneous and opposed to the ap-
plied field, compensating it and creating a field-free zone.

In the particular case of full penetration the current den-
sity is known,J5Jcsgnx, and thusB(x,y) can be calculated
analytically from the Biot-Savart law.1–6 In this case the
electric field during flux creep, which yields the nearly satu-
rated relaxing current density, is also known analytically,
namely, due to the separation of variablest andr ~Sec. IV B!
the electric fieldE52Ȧ is proportional to the vector poten-
tial A ~2! caused by this current.49 Therefore, the two plots in
Fig. 10 ~bottom, right! and Fig. 11~b! ~bottom! give both the
magnetic field lines in the remanent fully penetrated state
and the contour lines of the electric field during flux creep or,
when Ba is swept, at the moment whenBa goes through
zero.

The magnetic field at the surfacesy56b is shown in Fig.
6 ~componentBx parallel to the surface! and Figs. 13 and 14
~componentBy perpendicular to the surface! for various val-
ues of the increasingBa . Also shown in Figs. 13 and 14 is
the field By(x,0) in the central plane where one has
Bx(x,0)50 because of symmetry. The central field profile
for all side ratiosb/a exhibits a sharp cusp at the specimen

edges and a sharp flux front inside whichB is exactly zero.
These three sharp features are smeared out in the surface
field, but for very thin strips this smearing is weak and both
field profiles in the center and at the surface nearly collapse
into one curve, which coincides with the theoretical profile
calculated for thin strips.11,12

F. Magnetization curves

The magnetic moment per unit length of a bar with rect-
angular cross section in a perpendicular applied fieldHaiy is

m5 ŷE
S
d2r r3J„r …54E

0

a

dxE
0

b

dyJ~x,y!x. ~73!

In ~73! the prefactor 1/2 of the definition
mLzŷ5(1/2)*r3Jd3r was compensated by the contribution
of theU-turning currents at the far away ends of the bar at
z56Lz/2@a,b. The resulting factor of 2 inm was some-
times missed in previous work on slabs.

First I consider the case of ideal screening, where surface
screening currents from Eq.~4!,

Jscr~r !52HaE d2r 8Q21~r,r 8!x8 ~74!

generate a magnetic field which inside the conductor exactly
compensates the applied fieldHa and vector potential
Aa52xBa , cf. Eq. ~4!. From ~73! and ~74! the ideal dia-
magnetic momentmscr is obtained, which determines the ini-
tial slope m8(0)5mscr/Ha of the magnetization curve
m(Ha) of nonlinear conductors and of superconductors,

FIG. 14. As Fig. 13, but for thinner strips with side ratios
b/a50.25, 0.1, and 0.05 (Hp /Jca50.374, 0.207, 0.125,n551).

FIG. 15. The initial slopeum8(0)u of the virgin magnetization
curvem(Ha) of rectangular bars in perpendicular fieldHa , or the
ideal diamagnetic momentmscr(Ha)5Ham8(0), as afunction of
the side ratiob/a. The circles are computed from Eq.~76! and the
line gives the fit formula~77!. The inset shows the fullum8(0)u
while the main plot shows the differenceum8(0)u/(4a2Jc)
2b/a2p/4, which vanishes in the perpendicular limitb!a and
goes tog'0.64 in the longitudinal limitb@a.
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m8~0!52E d2r E d2r 8xQ21~r ,r 8!x8. ~75!

On our grid ofN points r i5(xi ,yi) this reads

m8~0!52S 4abN D 2(
i j

xiQi j
21xj , ~76!

where Qi j
21 is the reciprocal matrix of

Qi j5Q(r i ,r j )5 lnur i2r j u/2p ~3! or of its symmetrized ver-
sion ~9!. Evaluating the sum~76! on a grid with nonequidis-
tant points~more closely spaced near the surface! we get for
the rectangular bar the fit with absolute deviation
,331024, cf. Fig. 15,

2m8~0!

4a2
5
b

a
1

p

4
1gtanhFg ba lnS 1.71 1.2a

b D G ~77!

with g50.64. This approximation has the correct parallel
and perpendicular limits,m8(0)524ab ~the specimen cross
section! for b@a and m8(0)52pa2 ~a circle area! for
b!a.11–13 Instead from the sum~76!, m8(0) also may be
computed from Eq.~53! by solving an eigenvalue problem,
and it may be calculated analytically by conformal mapping.

Next I discuss the virgin magnetization curvesm(Ha) of
superconducting bars in an increasing perpendicular field
Ha . Above we have already obtained the initial slope
m8(0) ~77! and saturation valuem(Ha>Hp)5msat
'2Jcba

2 ~69!. One may use these characteristic values to
normalize the magnetization curves for various side ratios
b/a such that the initial slopes and saturation values equal
unity. Writing m(Ha)5msatM (h), h5Haum8(0)u/msat one
hasM 8(h)51 andM (h@1)5M sat51. It turns out17 that
these normalized magnetization curves for hard~Bean! su-

perconductors withn@1 differ very little for various geom-
etries; between thin strips6 and thin circular disks7–9 the dif-
ference is,0.011, and between thin circular and quadratic
disks the difference is,0.002.26 Similarly, we find that for
our rectangular bars the normalizedM (h) for various ratios
b/a differs by,0.03 from some average curveM (h).

Figure 16 shows normalized magnetization curves for
b/a56 to 0.005. All these curves are very similar. To avoid
that they merge into one bold line, each curve is slightly
shifted horizontally. Forb/a<0.02 the computedM (h)
practically coincides with the thin strip result11

M (h)5tanh(h). The parallel Bean limitM (h)5h2h2/4 is
reached only at relatively large side ratiosb/a@6, which are
difficult to compute. Since the contribution toM (h) from the
two end regionsy'6b is additive, one may conclude that
for b@a the differenceM (h)2h1h2/4 is proportional to
a/b.

Figure 17 shows virgin magnetization curvesm(Ha) for
various creep exponentsn51, 3, 5, 7, 11, 21, and 101 for
bars with side ratiosb/a53, 1, and 0.1 in constantly ramped
perpendicular field. In these plots the ramp rate was

FIG. 16. Normalized virgin magnetization curves
M (h)52m(Ha)/msat, h5Haum8(0)u/msat, for rectangular bars
with side ratiosb/a56, 4, 2, 1.5, 1, 0.7, 0.5, 0.2, 0.1, 0.05, 0.02,
0.01, 0.005~from left to right, with the origin of each curve slightly
shifted,n5101). The squares and circles give the parallel and per-
pendicular limits, M (h)5h2h2/4 and M (h)5tanh(h), respec-
tively.

FIG. 17. Virgin magnetization curvesm(Ha) of rectangular bars
with side ratiosb/a53, 1, and 0.1~from top to bottom! and creep
exponentsn51, 3, 5, 7, 11, 21, and 101 in the current-voltage law
E}Jn.
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Ḃa5Ec /a, but different ramp rates give identical curves
with scaled axes; this scaling may be found by choosing
differentEc andJc values inE5Ec(J/Jc)

n keeping the ratio
Ec /Jc

n constant. Except for the ohmic casen51, the curves
for n>3 practically collapse into one bold line ifm is mul-
tiplied by (n11/2)/n, which means normalization to unity
saturation value, cf. Eq.~69!, without changing the abscissa
Ha . This means the exponentn or activation energyU dis-
cussed following Eq.~1!, cannot be determined from an ex-
periment with constantly rampedHa(t). However, the expo-
nentn strongly influences the creep rate during constant-held
Ha ~Sec. IV B! and also the shape of the magnetization
loops, in particular whenHa(t) is swept sinusoidally.

For the Bean limitn→`, Jc5const, the entire magneti-
zation loopm↓↑(Ha) during field sweep between1H0 and
2H0 can be obtained from the above virgin magnetization
curvem(Ha) by the prescription2,6,8,9

m↓~Ha!5m~H0!22mSH02Ha

2 D ~78!

and m↑(Ha)52m↓(2Ha), where the arrows denote in-
creasing and decreasingHa(t), cf. Eq. ~72!.

VI. CONCLUDING REMARKS

The presented method for the computation of flux and
current penetration into bars or disks circumvents the costly
computation of the magnetic field in the infinite space and its
inaccurate spatial differentiation. Instead, the current density
J(x,y,t) inside the baris obtaineddirectly by time integra-
tion of a 2D integral equation of motion, without requiring
any differentiation. The maintheoretical problem was the
incorporation of the time dependent applied magnetic field
Ha(t) into this equation, since any spatial differentiation
makes this term vanish. The solution to this principal prob-
lem is that the ‘‘outer world’’~i.e.,Ha) enters the equation
of motion ~7! or ~24! in form of the induced surface current
~74!, which penetrates into the conductor by nonlinear diffu-
sion. A further problem is the optimum choice of the cutoff

in the diagonal terms Qii of the matrix
Qi j5(1/2p)lnur i2r j u; theQi j may be interpreted as the mu-
tual and self-inductances of double strips.52 A mainpractical
problem might be the required inversion of theN3N matrix
Qi j , but this inversion has to be performed only once for a
given grid at the beginning of the computation; for
N<1000 it presents no problem even on a personal com-
puter.

In this paper the superconductor is modeled as a nonlinear
conductor with general current-voltage lawE5E(J), or a
power law E}Jn, or with linear complex resistivity
rac(v)5E/J. Numerous useful formulas are presented in
Sec. IV, which may be used to compute magnetization
curves, field and current profiles, creep, the linear ac re-
sponse, and flux penetration in the Meissner state. The uni-
versality of flux creep is demonstrated in Sec. IV B and in
Ref. 49. It appears that the power lawE}Jn is distinguished
since it allows for exact separation of the variablesr and t
during creep and it has the required physical property
E→0 for J→0, in contrast to the other separable modelE
}exp(J/J1).

In Sec. V we have presented mainly Bean-like results for
large creep exponentsn@1, but most of the given formulae
apply to anyn>1; in fact the computation is easiest for
small n. More details on the magnetization curves with
stronger creep~smallern) for bars and disks or cylinders will
be published elsewhere.43 If desired, with the presented
method the magnetization and flux and current profiles are
easily calculated also for non-Bean models with field depen-
dentJc(B) andn(B) and for other than rectangular specimen
cross sections. The obtained flux- and current-free zones of
the Bean model differ from the concentric ellipsoids as-
sumed in Refs. 4 and 5.
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