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Absence of persistent magnetic oscillations in type-Il superconductors
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We report on a numerical study intended to examine the possibility that magnetic oscillations persist in
type-Il superconductors beyond the point where the pairing self-energy exceeds the normal state Landau level
separation. Our work is based on the self-consistent numerical solution for model superconductors of the
Bogoliubov—de Gennes equations for the vortex lattice state. In the regime where the pairing self-energy is
smaller than the cyclotron energy, magnetic oscillations resulting from Landau level quantization are sup-
pressed by the broadening of quasiparticle Landau levels due to the nonuniform order parameter of the vortex
lattice state and by splittings of the quasiparticle bands. Plausible arguments that the latter effect can lead to a
sign change of the fundamental harmonic of the magnetic oscillations when the pairing self-energy is compa-
rable to the cyclotron energy are shown to be flawed. Our calculations indicate that magnetic oscillations are
strongly suppressed once the pairing self-energy exceeds the Landau level separation.
[S0163-182896)07230-X

[. INTRODUCTION origin of this phase shift was not understood. Such a phase
shift was also found in earlier work by Manat all* based
de Haas-van AlphefidHvA) oscillations in the mixed on an expansion of the free energy to fourth order in the
state of type-Il superconductors, discovéradNbSe, some  order parameter. Recently, Maret al'® have attributed this
time ago, have recenfly* been observed in several addi- phase shift to a splitting of Landau levels in the vortex lattice
tional materials. The oscillations are damped relative to thosstate which they associate with the two vortices per electron
in the normal state and become unobservable at sufficientljnagnetic flux quanta in the vortex lattice state. This sugges-
weak external magnetic fields. These findings have led to #on has motivated us to examine the crossover regime in
number of theoretical studies of the modification of normalgreater detail.
state Landau level structure in the mixed staté.Conclu- Our study is based on numerical solution of the BdG
sions from these studies are not always completely consisteetjuation&® for a model superconductor with a BCS pairing
and no widely accepted picture which covers all regimes of danteraction, i.e., as-function attractive interaction modified
magnetic field has emerged from this work. Recently weby an energy cutoff. We solve the BdG equations in a Lan-
reported on a thorough numerical study of the quasiparticlelau level basis so that the band energy quantization which is
band structure obtained by solving the Bogoliubov—dethe source of magnetic oscillations is incorporated in an ex-
GennegBdG) mean-field equations in the vortex lattice stateact way. The formalism necessary to carry out these calcu-
of a simple model two-dimension&2D) superconductol®  lations in a convenient way is fully described in our earlier
We found that at fields nea,, magnetic oscillations were work!”*% and briefly summarized below. This approach ne-
clearly present, but that these were rapidly damped as theessitates a number of practical limitations on the scope of
superconducting self-energy strengthened at weaker fieldsur study: (i) Numerical problems which arise because of
We argued and found partial numerical support for the assemlscillations in high Landau index quantum wave functions
tion that the effect of superconductivity was similar to themake it convenient to restrict our attention to single-particle
effect of a disorder broadening of the normal state Landagtates with Landau level indices smaller tha%0. (i) We
levels, proportional to the pairing self-energy timltae,§1’4 consider only two-dimensional electron systems; adding a
wheren,, is the Landau level index at the Fermi level. We third dimension creates no formal difficulty but does add to
also found that once the pairing self-energy became compan already considerable computational burd@n. We ap-
rable to the Landau level separation, the quasiparticle elegroximate the magnetic field by its spatial average. The most
tronic structure in the vortex lattice state entered a compliserious of these limitations is the restriction to moderately
cated crossover regime which simplified with increasinglarge Landau level indices. Two-dimensional models will, if
pairing self-energy only when unambiguous vortex coresanything, overestimate the importance of magnetic oscilla-
with associated bound states emerged. While magnetic osciiions and are even appropriate for some systems of current
lations were essentially absent once the vortex cores becangerest. The screening corrections to the uniform external
distinct, we were unable to draw any clear conclusions conmagnetic field are small close t#,, and are approximately
cerning magnetic oscillations in the crossover regime. Thesgniform themselves, except for external fields closéitg.
calculations did indicate the possibility of a phase shift of In the present study Zeeman splitting is ignored since its
7 for magnetic oscillations in the crossover regime, but theeffects are well understood. Most of the results we discuss
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use the grand canonical ensemble rather than the canonidaital Landau level$® It is not possible to understand the
ensemble appropriate to experimental systems, since thimodification of Landau levels by superconductivity, even in
eliminates the problem of determining the chemical potentiathe regime nearH.,, unless one includes these *“off-
self-consistently. In the normal state, there is little differencediagonal” termst®

between magnetic oscillations in canonical and grand ca- The BdG mean-field equations for a superconductor in a
nonical ensembles for Landau level indices larger than aboutonstant magnetic fietd?° replace the X2 secular matrix
6.1%In the mixed state, however, canonical and grand canonief BCS theory at zero magnetic field by a secular matrix of
cal ensemble results may differ. We have therefore, in somerder 2N (whereN is the number of Landau levels within a

cases, executed the Legendre transform from the grand cgairing cutoff energyfor each wave vectdk in the Brillouin
quantify the importance of magnetic oscillations in theang hole blocks of the secular matrix are diagonal in the
chemical potential. . _Landau level basis with elements given By and —¢&,,

In Sec. Il of this paper we summarize the BdG forma"smrespectively, where  &=(n+1/2)hw.— u. Here

which is the basis of our numerical calculations. In Sec. Il , —ep/mcis the cyclotron frequency and is the chemical
we discuss the devolution of the Landau level structure in theystential. It is the simplicity of the diagonal block which

quasiparticle spectrum as the superconducting ordefakes such a basis convenient. The off-diagapairing
strengthens. It is this devolution which underlies the dampy)gcks have matrix elemerits

ing of dHVA oscillations in the mixed state. We find that a

picture in which the normal state Landau levels simply — Mg - MN

broaden captures little of the process, hence the substantial FRNNFTE xm+n-j(K)Dj A, 1)
difficulty in developing a simple analytic theory for the in- .

fluence of superconductivity on dHVA oscillations analogouswith

to the simple and successful theory for the influence of dis-

order. In this section we discuss a plausible approximation (R — i2keaut q—imt?2 2

which suggests that magnetic oscillations in the vortex lattice Xk Z © © Xi(2ky 17+ 2tay), @
state in the crossover field regime will differ by a sign from

those in the normal state. The possible sign change is asso- 1 12 - Y

ciated with a splitting in the density of quasiparticle states X;j(Y)= T R ()]
associated with each Landau level at fields beldyy. We 2! V27 V2

explain the origin of this splitting and comment on the fail- (H; a Hermite polynomia| and

ure of the commonly used diagonal approximation for the

quasiparticle spectrum. In Sec. IV we carefully examine av_ [ IH(N+M—])INIMT| V2

magnetic oscillations in this regime and find that the sign i oN+M

change does not survive a more thorough analysis. Instead, _

the fundamental harmonic of the magnetization is strongly ! (—1N-m

damped. The magnetization in this regime has substantial Xm:0 (G—m!(N+m—))I(M—m)Im! " 4

variation with field but the indication from our numerical
calculations is that the field dependence is aperiodic. Wén these equationa is the BCS coupling constant so that
conclude in Sec. V with a brief summary. Mw.=V/(2m?) whereV is the strength of the attractive
interaction. The vortex lattice primitive vectors are &),
and @y, —a,/2) with a,a,= ml? (a,= \/§ay/2 for a triangu-
lar lattice). The sum ovelj in Eq. (1) is over the possible
In zero-field BCS theory, the pairing self-energy couplespartitionings of the total quantized kinetic energy of the pair,
only single-particle states at wave vectdrsand —k. The ~ #@c(N+M+1), into contributions from the pair center-of-
property that the coupled states have the same band energy}&sS motion fwc(j+1/2), ar,lﬁ\‘/l the pair relative motion,
favorable for the formation of a condensate of electron pairsh @c(N+M—j+1/2), with (Dj™)? the probability that a
In a magnetic field the loss of time-reversal invariance make®air of electrons in Landau levelé andM will have center-
it impossible to achieve this situation. The center-of-mas®f-mass kinetic energfiw.(j +1/2).
momentum of a pair of electrons, which is zero for conden- In this formalism the order parameter in the vortex lattice
sate pairs at zero magnetic field, has quantum fluctuations igfate is paramatrized by a small set of numbars, which
a magnetic field~#// where/= (fc/eB)?is the quantum should be determined by solving the BdG equations
magnetic length. Associated quantum fluctuations in the moself-consistently?
me(r;ttga of the individual electrons contributing to the pair 2a
lead™ to pairing between electrons in different Landau levels , _ _ MNNY S99  x (r DY TNy
and therefore with different single-particle energies. It is this A % Dj Ek Nl XM*'\'*'(k)% (1=200) Ui i
qualitative difference which is responsible, from a micro- (5)
i int of view, for th r in a magneti . o .
ﬁg?dp_ (':I'PE): wteI(I)-kngwﬁ (;)epter?dgﬁgeeglfsj Erg] fiel?zl, oggaiﬁfag whereE[, is the uth positive eigenvalue of the secular ma-
from semiclassical theory ofnear To,) from Ginzburg-  triX, (Uyg.vi,e) is the corresponding eigenvector, affflis
Landau theory, reflects in the microscopic theory primarilythe Fermi function.N,=L,L, /(2] 2) is the number ofk
contributions from pairing between electrons in different or-points (L,L, is the area of the systomThe Abrikosov

II. BOGOLIUBOV —de GENNES FORMALISM
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solutior?* for the order parameter neht,, corresponds to a 0.5 |

solution with onlyAy#0 and it is easy to verify that this °

solution is recovered in the appropriate limit. For a triangular 04 ° Lee 7

flux lattice, the lowest-energy solution has real and non- ' R

zero only forj=6m wherem is an integer. 0.3 ° . L

We determine the magnetization by numerically differen- S R O

tiating the appropriate thermodynamic potential with respect o ©

to magnetic field. The grand potential may be expressed in 0.2 . ° o i

the following form which we use for our numerical * o, .

calculations:’ 014 , ® oo o o [

0 T T T T | | |

Q:% ENNNFTER—TS, ©) o 1 2 3 4 5 6 7 8

where the pairing self-energy is

FIG. 1. Lowest eigenvaluefifw, units) vs NA, in an approxi-
IN—kE |A-|2 @ mation where all pairing matrix elements are the same constant
4a,9 e [—1/2(n,m) *Ahw] for n,=20 (solid pointy, n,=20.25
(pluses, andn,=20.5(open points

Ep: —)\ﬁwc

Here Ny is the occupation number of Landau levw|

2 netization can be expressed in terms of the derivative of the
NN:N_kZ fEluR 2+ (1= ) ord % (8)  corresponding dimensionless free energy with respect to
uk N = ENNN .

andS is the entropy:

2Kg Ill. LANDAU LEVEL DEVOLUTION
S=— N_E (1—F4)In(1— )+ f4InfL (9) IN THE MIXED STATE
kK

) i We first analyze the secular matrix in the limit of small
For canonical ensemble calculations we calculate the frego_ Our objective here is to understand the behavior of the
energyF over a range of electron densities from the grandmixed state quaisparticle bands over one period of the nor-
potential calculated over a range of chemical potentials byng| state magnetic oscillations. Consider the case where
using n,=n (n an integey. For this case, we note that for each
electron energy in the upper diagonal block, there will be a
F=Q+u2 Ny, (100  hole energy of the same value in the lower diagonal block.
N For the Landau level gk, these two have the same index
(n); otherwise, their indices are differentntm and
{1k m). When the order parameter is small, the strongest
mixing of a particle in the Landau level+m will be with a
ghole in Landau leveh—m. The degeneracy of the particle
and hole levels will be lifted by the matrix elements in the
pairing block which are, in general, off diagonal in Landau

level index. At a givenIZ the two levels will be split by

where bothF and the density depend parametrically @n
The canonical ensemble magnetization is determined by n
merically differentiatingF with respect to field at fixed den-
sity. A portion of the discussion of our results is motivate
by an equivalent alternate expression fbiin terms of qua-
siparticle energie&"1°

2kgT E¢ 2|Fmn-ml for all Landau levels within the pairing cutoff.
O=- N 2 In| 2cos kT +2 éntEp. In particular, one of the quasiparticle energy levels at zero in
K uk B n the normal state will be shifted up B%,,| while one of the

11 guasiparticle levels d w. in the normal state will be shifted

The last term here is a double-counting correction for thedown by |F.;,_1|. Obviously, this splitting cannot con-
pair interaction energy. tinue to grow indefinitely since these two levels will eventu-

The magnetization is determined by numerically differen-ally approach each other, leading to an avoided crossing. A
tiation: M(B) = —d€2/B. In practice, we generate results as similar degeneracy occurs when, =n+1/2 with the elec-
a function ofn,=u/fiw,—1/2 and calculate energies per tron level at Landau level index+1+m and the hole level
state in the Landau level in units dfw.. Therefore, the at Landau level index—m being degenerate, resulting in a
derivative for the magnetization has two terms, the first comsimilar splitting of each Landau level. In this case, one of the
ing from differentiating an explicit dependence Brithat is,  two quasiparticle levels which has energy7idg, in the nor-
Q=0Q,B?, with one power oB coming from#w, and the mal state will be shifted down by 1110/ For n,=n+1/4
other from the Landau level degeneracy fagttihe second (or n+3/4), the level repulsion effect is weak; that is, the
from the dependence @2, on n, which is determined nu- Landau level splitting is most pronounced when degenera-
merically. Note that we do not need to perform separate caleies occur in the normal state, partially invalidating the anal-
culations to determine the density dependenceélofmen-  ogy to Zeeman splitting suggested by Maeival1°
tioned above and the field dependencdlofequired for the We illustrate these points in an approximation where all
magnetization. Similarly, in the canonical ensemble the magmatrix elements in the pairing blocks are taken to be the
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same constant-1/2(n,m) " "*Aofiw., which is the large- 350 L x L
N limit of the matrix element at the chemical potential if
A=1 andy is set to unity’® For the cases considered in this
paper, we take the cutofiop, to be 1/24 (thus, for 250 L
n,=20, Landau levels 10-30 are involved in the paiying

The resulting eigenvalues for the above three cases are plot- § 200
ted as a function ofA, in Fig. 1. In the larged, limit, 150 N
oscillations in the low-energy quasiparticle eigenvalue spec- ‘

300+ u

trum are about the same magnitude and are shifted by half a 1007 "
period relative to the oscillations in the normal state. The 50 L
expression for the grand potential in terms of quasiparticle

energies suggests that this might lead ta @hase shift in 0 ' ' ‘ '

the Fourier transform of the magnetization relative to the 0 1 2 E 3 4 5

normal state case, i.e., to a change in sign of the oscillatory

_contrlbutlo_n to the grand potential. We say mlght_ since it FIG. 2. Density of states versus energfiaf, unit for
is not obvious, even from Eq11), that a phase shift inthe , \ _5 .41 Zop

oscillations of low-energy quasiparticle energies will neces- ° K '

sarily show up as a phase shift of the magnetizati&qua- ) 15 i i ,
tion (11) involves three terms and each contributes stronglyManiv et al=> In this case, avoided crossing effects at larger

to the oscillatory dependence Mf(B).] A do not occur and additional zeros would occur in the har-
To examine this idea in more detail we have solved thghonics at larged. _
BAG self-consistently at several different values forn,, The behavior seen in Fig. 1 should be contrasted with the

(20,21) and calculated coefficients of the Fourier expanommonly used diagonal approximation, where the only el-
sions of quantities of interest within this interval. In the nor- 8Ments retained in the pairing blocks are diagonal in the
mal state the Fourier expansion coefficients vary slowly with-@ndau level index. In this case, the eigenvalues are simply
the Landau level index associated with the interval oveshifted froméy to V&R +[Fynl®. In this approximation the
which the Fourier transform is performed, since the domi-level-splitting effect occurs only wheé=0; otherwise, all
nant variation witm,, is periodic. In the mixed state we will guasiparticle Landau levels are shifted away from the Fermi
have to check for this periodicity by verifying that the Fou- level. Because of this qualitative failure, we do not feel that
rier expansions in successive intervals are similar. We focuthe diagonal approximation is useful for understanding the
on the coefficient of the leading sine term in the Fourierelectronic structure of the vortex lattice state except for the
expansion which is the dominant term in the normal statd-andau level closest to the Fermi level and then only when
and refer to the Fourier expansion coefficients as harmonic8=n,, .

of the magnetic oscillation; the terminology anticipates a T0 examine how Fig. 1 is changed when the constant
repetition of the same pattern in successive intervals whicinatrix element approximation is abandoned and details of
does not always occur as we discuss in further detail belowpairing in the vortex lattice state are properly accounted for,
For the intervain,  (20,21) we find that the zero of the We have solved Eq41)—(4) as a function ofA,. As dis-
fundamental sine harmonic of the Fourier transform ofcussed in our earlier work,the use of a sharp cutoff when
M (B) in this interval does indeed closely correspond to thesolving the secular matrix leads to spurious effects in
point where the three curves in Fig. 1 cross. To test théV(B) associated with the ratio of the cutoff energy to the
degree of correspondence between the total oscillatory cogyclotron energy’ To eliminate this, we elect to use a
tribution to the grand potential and the contribution from thesmooth cutoff with the pairing interaction between Landau
lowest band of quasiparticles, we have also verified that théevelsN andM scaled byyWyWy where

guantity

El 0.5 ' '

E,=— kB—TE In Zcosr(—k” (12)
Ny < 2kgT ° .
0.4+ et it E

(with 1 denoting the lowest quasiparticle bards a mag- . e 0 °
netization whose fundamental sine harmonic agrees quite  _ 0.3 o . : 3 -
closely with that of the total magnetization. Note tliat is g IR A
essentially— 1/2 the mean of the energies of the lowest qua- 0.2 . -
siparticle band, suggesting that there is some validity in as-
sociating magnetization oscillations with oscillations in the 0.1 * -
low-lying quaisparticle bands(This similarity of leading .
harmonics occurs even though the shapes of the two “mag- 0 : : : : : : :
netizations” with respect tm, are quite different; the cor- o 1 2 3 4 5 6 7 8
respondence does not hold for higher harmohi€snally, M,

we again note the qualitative difference between Fig. 1 and
what would be expected if the splittings were simply propor-  FIG. 3. Mean eigenvaluef(w, units) of the lowest band vs
tional to A as in the Zeeman-splitting analogy proposed byx A, for the flux lattice. Same notation as Fig. 1.
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FIG. 4. Fundamental sine harmonic Mf(B) (solid pointg and FIG. 6. Mean eigenvaluefiw. units) of the lowest band vs

of the magnetization of-1/2 the mean of the first quasiparticle \A, for n,=24 (solid point, n,=24.25(pluse3, andn,=24.5
band (open points vs NA, (grand canonicalfrom the periodn,, (open points

€(20,21). The pluses are results fdi(B) generated in the canoni-

cal ensemble.

_ —(£n/0.50p)?
Wy=1.58" (fn050)", (13 where the spatially averaged pairing self-energy in a coordi-

nate representationFg=0.4MAfw.) is equal t0 7w,

In Fig. 2 we show a plot of the density of states for (Fq being the vortex lattice analogue of the BCS yéfor
n,=20 and\A,=1. Each quasiparticle Landau level, not smaller values ok Ao, we are in the quantum regime where
only the Landau level closest to the Fermi energy, is splitve expect strong magnetic oscillations. ¥4, increases the
into two roughly symmetric subbands. This splitting is due todependence of the eigenvaluesrgpweakens and magnetic
particle-hole mixing. We have been unable to uncover a deescillations are correspondingly damped. The oscillations are
tailed connection between this splitting and the fact, emphafurther damped in this regime by the nonzero width of the
sized by Manivet al, that two superconducting flux quanta Landau levels which reflects the nonuniformity of the order
pass through each area of the vortex lattice state enclosingarameter. The width is linear iy for small A, and should
one electronic flux quantum. lead to an exponential suppression of magnetic oscillations

In Fig. 3, we show results for the vortex lattice quasipar-with an effective scattering rate linear iny.*® At higher
ticle bands which are analogous to those of Fig. 1 obtainedalues ofAA, we initially enter into the crossover regime
using the constant matrix element approximation. The plotand then into the regime where well-defined vortex cores
ted eigenvalue in this case is the mean eigenvalue of themerge. The fact that the mean eigenvalues increase in this

lowest band using a 6&-point grid in the irreducible tri- regime reflects the crossover of the lowest-energy quasipar-
angle (1/12) of the vortex lattice magnetic Brillouin zone. ticle states to vortex-core bound statésThe eigenvalues
The results look very similar to Fig. 1 up to the point whereclearly still have a substantial dependencengnwithin the

the curves cross. This crossing point is close to the poininterval (20,21), at least in the crossover regime, although

01 0.1 t
0.05+ — 0 983;8Boooi‘
L
o -0.1 * -
S 0 - 2 .
® & e 20-26
-0.2 . o 21-27 I
-0.05 r *
-03-¢ ° I
-01 T 1 T -04 T T T T T T
20 25 30 35 40 0 1 2 3 4 5 6 7 8
n, AA
0
FIG. 5. Fundamental sine harmonic M(B) vs n, for NAq FIG. 7. Fundamental sine harmonic bf(B) vs AA, for the

=4.75. Each point represents a calculation over a single period. periodsn,, e (20,26) (solid pointg andn,, € (21,27) (open points
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the dependence is much weaker than in the constant matrorossover regime is entered. That is, the crossing effect of

element approximation. Fig. 3 may or may not occur depending on Landau level
Up to this point we have been performing calculations atindex. To emphasize this, we plot in Fig. 7 the fundamental

fixed NAy, i.e., at fixed pairing self-energy. To compute the harmonic averaged over two different six-period intervals.

magnetization we should in principle determidg self- We see that the phase shift effect of Fig. 4 has been com-

consistently at each value of, and keep\ fixed. To facili-  pletely washed out and the fundamental harmonic is

tate comparisons with the preceding results for the quasipasmoothly damped to zero &, increases beyontlw,. .

ticle bands we have chosen instead to allowo vary with

n, so that self-consistency is achieved at a fixed value of

AA,. This self-consistent value of at a fixedAAg (M) is

easily determinetf by using Eq.(5) to calculate the output V. CONCLUDING REMARKS

value (A3") at A=1: \=AAg/Ag". Results are shown in  Experimental evaluations of dHVA oscillation amplitudes
Fig. 4 for the fundamental sine harmonic of the Fourierare based on Fourier transforms over many periods of oscil-
transforms ofM(B) andE; versushA,. A zero in the har- lations. The results in the preceding section indicate that no
monic of M(B) occurs forFy~1.6hw. (similar results are measurable oscillation with the normal state period or with
found for self-consistent calculations at fixeJl. The zero of  any other period we have been able to recognize occurs once
the harmonic o, is close to the zero foM (B) as claimed the typical value of the pairing self-energy becomes compa-
earlier. We note that in the small, regime, the dependence rable to the Landau level separation. Because we work with
of the harmonic oM\, contains both linear and quadratic relatively small Landau level indices compared with the typi-
terms. The calculations are consistent with a crossover fromal experimental situation, we are not able to completely
guadratic to linear behavior when the quanﬂFtM/n’llL/4 ex- eliminate the possibility that oscillations in this regime are
ceeds ZrkgT. We also present in Fig. 4 canonical ensemblePeriodic with a different periodicity or with a periodicity in
results generated from the grand canonical calculations by B rathef® than inB~*, although we have looked for such
Legendre transform. Deviations from the grand canonical enPatterns without success and are reasonably confident that
semble results occur at Smaﬂo_24 The important poin[, they do not exist. It seems clear that in the 3D case where
though, is that the zeros of the harmonics in the two schemeg®any Landau levels contribute, even for a fixed field, mag-
agree. netic oscillations will be even more strongly suppressed. Dis-
order broadening, which we have neglected, will damp the
oscillatory signal beyond that calculated here.
In conclusion, we have done a detailed analysis of the
nature of the quasiparticle states in the field regime near the
IV. ABSENCE OF PERSISTENT MAGNETIC upper critical field of a 2D type-II superconductor. We find
OSCILLATIONS that for smallA, all Landau levels and not just the Landau

The calculations in the previous section discussed théEVel at the Fermi energy, are split. This property is associ-
variation of different properties of the vortex lattice state@€d with the absence of time-reversal symmetry in the pres-
within one particular periodn, < (20,21)] of the normal ence of a magnetic f_leld. The sp_llttlng would be naively ex-
state magnetic oscillations. In order for the magnetic oscillaPcted to lead to a sign change in the fundamental harmonic
tions to persist in the vortex lattice state, the same pattern dff the Fourier transform of the magnetization for a value of
variation must occur over many periods of the normal statdN€ Pairing self-energy of order the cyclotron energy, analo-
magnetic oscillations. To investigate whether or not this i90US to the sign changes which can occur due to the spin
the case we have studied the dependence of superconductifigfiting of Landau levels. However, our numerical calcula-
properties on field through a number of periods of the normalions show that once the pairing self-energy is comparable to
state oscillations. The smally behavior always involves the the normal state Landau level separation, although the spec-

quantityA0/n1/4 and retains the normal state magnetic oscil-frum of quasiparticle excitations and the magnetization have

lations with r{Leduced amplitude. The zero and subsequerﬁjzable variations on the magnetic field scale of the normal

sign reversal of the fundamental harmonic with increasin tate dHVA oscillations, the variations are aperiodic. Accord-
Ay, however, does not occur in every normal state oscillatio ngly, we find that dHvA oscillations are strongly suppressed

period. In Fig. 5, we plot the sine of the fundamental har-ONc€ this regime is reached.
monic versus, for a value ofA A, equal to 4.7%where the
weak maximum in Fig. 4 occursThese results show that no
clear component of the magnetization with the normal state
period survives in the crossover regime. The harmonic of the
Fourier tranform of the magnetization in the finite interval  This work was supported in part by the U.S. Department
fromn, to n,+1 in this regime varies in sign and magni- of Energy, Basic Energy Sciences, under Contract No.
tude with no pattern we have been able to discern, consisteMt/-31-109-ENG-38, and in part by the National Science
with results presented in our earlier wdrkCorresponding Foundation through Grant No. DMR-9416906. The original
variations occur in the lowest band quasiparticle energies. Inersion of the computer code used for these calculations was
Fig. 6 we plot the eigenvalue means as in Fig. 3 but for thewritten by Hiroshi Akera. The authors thank Tsofar Maniv
casen, e (24,25). One sees that the three curves convergor stimulating interactions and Steven Hayden for some dis-
together as in Fig. 3 but this time do not cross when thecussions about experimental data.
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