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We report on a numerical study intended to examine the possibility that magnetic oscillations persist in
type-II superconductors beyond the point where the pairing self-energy exceeds the normal state Landau level
separation. Our work is based on the self-consistent numerical solution for model superconductors of the
Bogoliubov–de Gennes equations for the vortex lattice state. In the regime where the pairing self-energy is
smaller than the cyclotron energy, magnetic oscillations resulting from Landau level quantization are sup-
pressed by the broadening of quasiparticle Landau levels due to the nonuniform order parameter of the vortex
lattice state and by splittings of the quasiparticle bands. Plausible arguments that the latter effect can lead to a
sign change of the fundamental harmonic of the magnetic oscillations when the pairing self-energy is compa-
rable to the cyclotron energy are shown to be flawed. Our calculations indicate that magnetic oscillations are
strongly suppressed once the pairing self-energy exceeds the Landau level separation.
@S0163-1829~96!07230-X#

I. INTRODUCTION

de Haas–van Alphen~dHvA! oscillations in the mixed
state of type-II superconductors, discovered1 in NbSe2 some
time ago, have recently2–4 been observed in several addi-
tional materials. The oscillations are damped relative to those
in the normal state and become unobservable at sufficiently
weak external magnetic fields. These findings have led to a
number of theoretical studies of the modification of normal
state Landau level structure in the mixed state.5–12 Conclu-
sions from these studies are not always completely consistent
and no widely accepted picture which covers all regimes of a
magnetic field has emerged from this work. Recently we
reported on a thorough numerical study of the quasiparticle
band structure obtained by solving the Bogoliubov–de
Gennes~BdG! mean-field equations in the vortex lattice state
of a simple model two-dimensional~2D! superconductor.13

We found that at fields nearHc2, magnetic oscillations were
clearly present, but that these were rapidly damped as the
superconducting self-energy strengthened at weaker fields.
We argued and found partial numerical support for the asser-
tion that the effect of superconductivity was similar to the
effect of a disorder broadening of the normal state Landau
levels, proportional to the pairing self-energy timesnm

21/4

wherenm is the Landau level index at the Fermi level. We
also found that once the pairing self-energy became compa-
rable to the Landau level separation, the quasiparticle elec-
tronic structure in the vortex lattice state entered a compli-
cated crossover regime which simplified with increasing
pairing self-energy only when unambiguous vortex cores
with associated bound states emerged. While magnetic oscil-
lations were essentially absent once the vortex cores became
distinct, we were unable to draw any clear conclusions con-
cerning magnetic oscillations in the crossover regime. These
calculations did indicate the possibility of a phase shift of
p for magnetic oscillations in the crossover regime, but the

origin of this phase shift was not understood. Such a phase
shift was also found in earlier work by Manivet al.14 based
on an expansion of the free energy to fourth order in the
order parameter. Recently, Manivet al.15 have attributed this
phase shift to a splitting of Landau levels in the vortex lattice
state which they associate with the two vortices per electron
magnetic flux quanta in the vortex lattice state. This sugges-
tion has motivated us to examine the crossover regime in
greater detail.

Our study is based on numerical solution of the BdG
equations16 for a model superconductor with a BCS pairing
interaction, i.e., ad-function attractive interaction modified
by an energy cutoff. We solve the BdG equations in a Lan-
dau level basis so that the band energy quantization which is
the source of magnetic oscillations is incorporated in an ex-
act way. The formalism necessary to carry out these calcu-
lations in a convenient way is fully described in our earlier
work17,13 and briefly summarized below. This approach ne-
cessitates a number of practical limitations on the scope of
our study: ~i! Numerical problems which arise because of
oscillations in high Landau index quantum wave functions
make it convenient to restrict our attention to single-particle
states with Landau level indices smaller than'60. ~ii ! We
consider only two-dimensional electron systems; adding a
third dimension creates no formal difficulty but does add to
an already considerable computational burden.~iii ! We ap-
proximate the magnetic field by its spatial average. The most
serious of these limitations is the restriction to moderately
large Landau level indices. Two-dimensional models will, if
anything, overestimate the importance of magnetic oscilla-
tions and are even appropriate for some systems of current
interest. The screening corrections to the uniform external
magnetic field are small close toHc2 and are approximately
uniform themselves, except for external fields close toHc1.

In the present study Zeeman splitting is ignored since its
effects are well understood. Most of the results we discuss
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use the grand canonical ensemble rather than the canonical
ensemble appropriate to experimental systems, since this
eliminates the problem of determining the chemical potential
self-consistently. In the normal state, there is little difference
between magnetic oscillations in canonical and grand ca-
nonical ensembles for Landau level indices larger than about
6.18 In the mixed state, however, canonical and grand canoni-
cal ensemble results may differ. We have therefore, in some
cases, executed the Legendre transform from the grand ca-
nonical to the canonical ensemble numerically in order to
quantify the importance of magnetic oscillations in the
chemical potential.

In Sec. II of this paper we summarize the BdG formalism
which is the basis of our numerical calculations. In Sec. III
we discuss the devolution of the Landau level structure in the
quasiparticle spectrum as the superconducting order
strengthens. It is this devolution which underlies the damp-
ing of dHvA oscillations in the mixed state. We find that a
picture in which the normal state Landau levels simply
broaden captures little of the process, hence the substantial
difficulty in developing a simple analytic theory for the in-
fluence of superconductivity on dHvA oscillations analogous
to the simple and successful theory for the influence of dis-
order. In this section we discuss a plausible approximation
which suggests that magnetic oscillations in the vortex lattice
state in the crossover field regime will differ by a sign from
those in the normal state. The possible sign change is asso-
ciated with a splitting in the density of quasiparticle states
associated with each Landau level at fields belowHc2. We
explain the origin of this splitting and comment on the fail-
ure of the commonly used diagonal approximation for the
quasiparticle spectrum. In Sec. IV we carefully examine
magnetic oscillations in this regime and find that the sign
change does not survive a more thorough analysis. Instead,
the fundamental harmonic of the magnetization is strongly
damped. The magnetization in this regime has substantial
variation with field but the indication from our numerical
calculations is that the field dependence is aperiodic. We
conclude in Sec. V with a brief summary.

II. BOGOLIUBOV –de GENNES FORMALISM

In zero-field BCS theory, the pairing self-energy couples
only single-particle states at wave vectorskW and 2kW . The
property that the coupled states have the same band energy is
favorable for the formation of a condensate of electron pairs.
In a magnetic field the loss of time-reversal invariance makes
it impossible to achieve this situation. The center-of-mass
momentum of a pair of electrons, which is zero for conden-
sate pairs at zero magnetic field, has quantum fluctuations in
a magnetic field;\/l wherel 5(\c/eB)1/2 is the quantum
magnetic length. Associated quantum fluctuations in the mo-
menta of the individual electrons contributing to the pair
lead19 to pairing between electrons in different Landau levels
and therefore with different single-particle energies. It is this
qualitative difference which is responsible, from a micro-
scopic point of view, for the decrease ofTc in a magnetic
field. The well-known dependence ofHc2 on field, obtained
from semiclassical theory or~near Tc0) from Ginzburg-
Landau theory, reflects in the microscopic theory primarily
contributions from pairing between electrons in different or-

bital Landau levels.20 It is not possible to understand the
modification of Landau levels by superconductivity, even in
the regime nearHc2, unless one includes these ‘‘off-
diagonal’’ terms.13

The BdG mean-field equations for a superconductor in a
constant magnetic field17,20 replace the 232 secular matrix
of BCS theory at zero magnetic field by a secular matrix of
order 2N ~whereN is the number of Landau levels within a
pairing cutoff energy! for each wave vectorkW in the Brillouin
zone of the vortex lattice. The diagonal~normal! electron
and hole blocks of the secular matrix are diagonal in the
Landau level basis with elements given byjn and 2jn ,
respectively, where jn[(n11/2)\vc2m. Here
vc5eB/mc is the cyclotron frequency andm is the chemical
potential. It is the simplicity of the diagonal block which
makes such a basis convenient. The off-diagonal~pairing!
blocks have matrix elements17

FkWNM5
2l\vc

2 (
j

xM1N2 j~kW !Dj
MND j , ~1!

with

x j~kW !5(
t
ei2kxaxte2 ipt2/2x j~2kyl

212tax!, ~2!

x j~Y!5S 1

2 j j !A2p
D 1/2e2Y2/4l2Hj S Y

A2l D ~3!

(Hj a Hermite polynomial!, and

Dj
NM5S j ! ~N1M2 j !!N!M !

2N1M D 1/2

3 (
m50

j
~21!N2m

~ j2m!! ~N1m2 j !! ~M2m!!m!
. ~4!

In these equationsl is the BCS coupling constant so that
l\vc5V/(2p l 2) whereV is the strength of the attractive
interaction. The vortex lattice primitive vectors are (0,ay)
and (ax ,2ay/2) with axay5p l 2 (ax5A3ay/2 for a triangu-
lar lattice!. The sum overj in Eq. ~1! is over the possible
partitionings of the total quantized kinetic energy of the pair,
\vc(N1M11), into contributions from the pair center-of-
mass motion,\vc( j11/2), and the pair relative motion,
\vc(N1M2 j11/2), with (Dj

NM)2 the probability that a
pair of electrons in Landau levelsN andM will have center-
of-mass kinetic energy\vc( j11/2).

In this formalism the order parameter in the vortex lattice
state is paramatrized by a small set of numbers,D j , which
should be determined by solving the BdG equations
self-consistently:17

D j52(
NM

D j
MN(

kW

2ax
Nkl

xM1N2 j* ~kW !(
m

~122 f kW
m
!uNkW

m vMkW
* m ,

~5!

whereEkW
m is themth positive eigenvalue of the secular ma-

trix, (uNkW
m ,vMkW

m ) is the corresponding eigenvector, andf kW
m is

the Fermi function.Nk5LxLy /(2p l 2) is the number ofk
points (LxLy is the area of the system!. The Abrikosov
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solution21 for the order parameter nearHc2 corresponds to a
solution with onlyD0Þ0 and it is easy to verify that this
solution is recovered in the appropriate limit. For a triangular
flux lattice, the lowest-energy solution hasD j real and non-
zero only for j56m wherem is an integer.

We determine the magnetization by numerically differen-
tiating the appropriate thermodynamic potential with respect
to magnetic field. The grand potential may be expressed in
the following form which we use for our numerical
calculations:17

V5(
N

jNNN1EP2TS, ~6!

where the pairing self-energy is

EP52l\vc

lNk

4ax
(
j

uD j u2. ~7!

HereNN is the occupation number of Landau levelN,

NN5
2

Nk
(
mkW

f kW
muuNkW

m u21~12 f kW
m
!uvNkW

m u2, ~8!

andS is the entropy:

S52
2kB
Nk

(
mkW

~12 f kW
m
!ln~12 f kW

m
!1 f kW

mlnf kW
m . ~9!

For canonical ensemble calculations we calculate the free
energyF over a range of electron densities from the grand
potential calculated over a range of chemical potentials by
using

F5V1m(
N

NN , ~10!

where bothF and the density depend parametrically onm.
The canonical ensemble magnetization is determined by nu-
merically differentiatingF with respect to field at fixed den-
sity. A portion of the discussion of our results is motivated
by an equivalent alternate expression forV in terms of qua-
siparticle energies:22,7,15

V52
2kBT

Nk
(
mkW

lnF2coshS EkW
m

2kBT
D G1(

n
jn1EP .

~11!

The last term here is a double-counting correction for the
pair interaction energy.

The magnetization is determined by numerically differen-
tiation:M (B)52]V/]B. In practice, we generate results as
a function of nm[m/\vc21/2 and calculate energies per
state in the Landau level in units of\vc . Therefore, the
derivative for the magnetization has two terms, the first com-
ing from differentiating an explicit dependence onB ~that is,
V5V0B

2, with one power ofB coming from\vc and the
other from the Landau level degeneracy factor!, the second
from the dependence ofV0 on nm which is determined nu-
merically. Note that we do not need to perform separate cal-
culations to determine the density dependence ofV men-
tioned above and the field dependence ofV required for the
magnetization. Similarly, in the canonical ensemble the mag-

netization can be expressed in terms of the derivative of the
corresponding dimensionless free energy with respect to
N5(NNN .

III. LANDAU LEVEL DEVOLUTION
IN THE MIXED STATE

We first analyze the secular matrix in the limit of small
D0. Our objective here is to understand the behavior of the
mixed state quaisparticle bands over one period of the nor-
mal state magnetic oscillations. Consider the case where
nm5n (n an integer!. For this case, we note that for each
electron energy in the upper diagonal block, there will be a
hole energy of the same value in the lower diagonal block.
For the Landau level atm, these two have the same index
(n); otherwise, their indices are different (n1m and
n2m). When the order parameter is small, the strongest
mixing of a particle in the Landau leveln1m will be with a
hole in Landau leveln2m. The degeneracy of the particle
and hole levels will be lifted by the matrix elements in the
pairing block which are, in general, off diagonal in Landau
level index. At a givenkW the two levels will be split by
2uFn1m,n2mu for all Landau levels within the pairing cutoff.
In particular, one of the quasiparticle energy levels at zero in
the normal state will be shifted up byuFnnu while one of the
quasiparticle levels at\vc in the normal state will be shifted
down by uFn11,n21u. Obviously, this splitting cannot con-
tinue to grow indefinitely since these two levels will eventu-
ally approach each other, leading to an avoided crossing. A
similar degeneracy occurs whennm5n11/2 with the elec-
tron level at Landau level indexn111m and the hole level
at Landau level indexn2m being degenerate, resulting in a
similar splitting of each Landau level. In this case, one of the
two quasiparticle levels which has energy 1/2\vc in the nor-
mal state will be shifted down byuFn11,nu. For nm5n11/4
~or n13/4), the level repulsion effect is weak; that is, the
Landau level splitting is most pronounced when degenera-
cies occur in the normal state, partially invalidating the anal-
ogy to Zeeman splitting suggested by Manivet al.15

We illustrate these points in an approximation where all
matrix elements in the pairing blocks are taken to be the

FIG. 1. Lowest eigenvalue (\vc units! vs lD0 in an approxi-
mation where all pairing matrix elements are the same constant
@21/2(nmp)21/4D0\vc# for nm520 ~solid points!, nm520.25
~pluses!, andnm520.5 ~open points!.
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same constant,21/2(nmp)21/4D0\vc , which is the large-
N limit of the matrix element at the chemical potential if
l51 andx is set to unity.20 For the cases considered in this
paper, we take the cutoffvD , to be 1/2m ~thus, for
nm520, Landau levels 10–30 are involved in the pairing!.
The resulting eigenvalues for the above three cases are plot-
ted as a function ofD0 in Fig. 1. In the large-D0 limit,
oscillations in the low-energy quasiparticle eigenvalue spec-
trum are about the same magnitude and are shifted by half a
period relative to the oscillations in the normal state. The
expression for the grand potential in terms of quasiparticle
energies suggests that this might lead to ap phase shift in
the Fourier transform of the magnetization relative to the
normal state case, i.e., to a change in sign of the oscillatory
contribution to the grand potential. We say ‘‘might’’ since it
is not obvious, even from Eq.~11!, that a phase shift in the
oscillations of low-energy quasiparticle energies will neces-
sarily show up as a phase shift of the magnetization.@Equa-
tion ~11! involves three terms and each contributes strongly
to the oscillatory dependence ofM (B).#

To examine this idea in more detail we have solved the
BdG self-consistently at several differentl values fornm
P(20,21) and calculated coefficients of the Fourier expan-
sions of quantities of interest within this interval. In the nor-
mal state the Fourier expansion coefficients vary slowly with
the Landau level index associated with the interval over
which the Fourier transform is performed, since the domi-
nant variation withnm is periodic. In the mixed state we will
have to check for this periodicity by verifying that the Fou-
rier expansions in successive intervals are similar. We focus
on the coefficient of the leading sine term in the Fourier
expansion which is the dominant term in the normal state
and refer to the Fourier expansion coefficients as harmonics
of the magnetic oscillation; the terminology anticipates a
repetition of the same pattern in successive intervals which
does not always occur as we discuss in further detail below.
For the intervalnmP(20,21) we find that the zero of the
fundamental sine harmonic of the Fourier transform of
M (B) in this interval does indeed closely correspond to the
point where the three curves in Fig. 1 cross. To test the
degree of correspondence between the total oscillatory con-
tribution to the grand potential and the contribution from the
lowest band of quasiparticles, we have also verified that the
quantity

Ẽ152
kBT

Nk
(
kW
lnF2coshS EkW

1

2kBT
D G ~12!

~with 1 denoting the lowest quasiparticle band! has a mag-
netization whose fundamental sine harmonic agrees quite
closely with that of the total magnetization. Note thatẼ1 is
essentially21/2 the mean of the energies of the lowest qua-
siparticle band, suggesting that there is some validity in as-
sociating magnetization oscillations with oscillations in the
low-lying quaisparticle bands.~This similarity of leading
harmonics occurs even though the shapes of the two ‘‘mag-
netizations’’ with respect tonm are quite different; the cor-
respondence does not hold for higher harmonics.! Finally,
we again note the qualitative difference between Fig. 1 and
what would be expected if the splittings were simply propor-
tional toD as in the Zeeman-splitting analogy proposed by

Maniv et al.15 In this case, avoided crossing effects at larger
D do not occur and additional zeros would occur in the har-
monics at largerD.

The behavior seen in Fig. 1 should be contrasted with the
commonly used diagonal approximation, where the only el-
ements retained in the pairing blocks are diagonal in the
Landau level index. In this case, the eigenvalues are simply
shifted fromjN to AjN

21uFNNu2. In this approximation the
level-splitting effect occurs only whenjN50; otherwise, all
quasiparticle Landau levels are shifted away from the Fermi
level. Because of this qualitative failure, we do not feel that
the diagonal approximation is useful for understanding the
electronic structure of the vortex lattice state except for the
Landau level closest to the Fermi level and then only when
n5nm .

To examine how Fig. 1 is changed when the constant
matrix element approximation is abandoned and details of
pairing in the vortex lattice state are properly accounted for,
we have solved Eqs.~1!–~4! as a function ofD0. As dis-
cussed in our earlier work,13 the use of a sharp cutoff when
solving the secular matrix leads to spurious effects in
M (B) associated with the ratio of the cutoff energy to the
cyclotron energy.23 To eliminate this, we elect to use a
smooth cutoff with the pairing interaction between Landau
levelsN andM scaled byAWNWM where

FIG. 2. Density of states versus energy (\vc units! for
lD051 andnm520.

FIG. 3. Mean eigenvalue (\vc units! of the lowest band vs
lD0 for the flux lattice. Same notation as Fig. 1.
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WN51.55e2~jN/0.5vD!4. ~13!

In Fig. 2 we show a plot of the density of states for
nm520 andlD051. Each quasiparticle Landau level, not
only the Landau level closest to the Fermi energy, is split
into two roughly symmetric subbands. This splitting is due to
particle-hole mixing. We have been unable to uncover a de-
tailed connection between this splitting and the fact, empha-
sized by Manivet al., that two superconducting flux quanta
pass through each area of the vortex lattice state enclosing
one electronic flux quantum.

In Fig. 3, we show results for the vortex lattice quasipar-
ticle bands which are analogous to those of Fig. 1 obtained
using the constant matrix element approximation. The plot-
ted eigenvalue in this case is the mean eigenvalue of the

lowest band using a 66-kW -point grid in the irreducible tri-
angle ~1/12! of the vortex lattice magnetic Brillouin zone.
The results look very similar to Fig. 1 up to the point where
the curves cross. This crossing point is close to the point

where the spatially averaged pairing self-energy in a coordi-
nate representation (F0.0.44lD0\vc) is equal to \vc

(F0 being the vortex lattice analogue of the BCS gap!. For
smaller values oflD0, we are in the quantum regime where
we expect strong magnetic oscillations. AslD0 increases the
dependence of the eigenvalues onnm weakens and magnetic
oscillations are correspondingly damped. The oscillations are
further damped in this regime by the nonzero width of the
Landau levels which reflects the nonuniformity of the order
parameter. The width is linear inD0 for smallD0 and should
lead to an exponential suppression of magnetic oscillations
with an effective scattering rate linear inD0.

13 At higher
values oflD0 we initially enter into the crossover regime
and then into the regime where well-defined vortex cores
emerge. The fact that the mean eigenvalues increase in this
regime reflects the crossover of the lowest-energy quasipar-
ticle states to vortex-core bound states.13 The eigenvalues
clearly still have a substantial dependence onnm within the
interval (20,21), at least in the crossover regime, although

FIG. 4. Fundamental sine harmonic ofM (B) ~solid points! and
of the magnetization of21/2 the mean of the first quasiparticle
band ~open points! vs lD0 ~grand canonical! from the periodnm

P(20,21). The pluses are results forM (B) generated in the canoni-
cal ensemble.

FIG. 5. Fundamental sine harmonic ofM (B) vs nm for lD0

54.75. Each point represents a calculation over a single period.

FIG. 6. Mean eigenvalue (\vc units! of the lowest band vs
lD0 for nm524 ~solid points!, nm524.25 ~pluses!, andnm524.5
~open points!.

FIG. 7. Fundamental sine harmonic ofM (B) vs lD0 for the
periodsnmP(20,26) ~solid points! andnmP(21,27) ~open points!.
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the dependence is much weaker than in the constant matrix
element approximation.

Up to this point we have been performing calculations at
fixed lD0, i.e., at fixed pairing self-energy. To compute the
magnetization we should in principle determineD0 self-
consistently at each value ofnm and keepl fixed. To facili-
tate comparisons with the preceding results for the quasipar-
ticle bands we have chosen instead to allowl to vary with
nm so that self-consistency is achieved at a fixed value of
lD0. This self-consistent value ofl at a fixedlD0 (l̃) is
easily determined13 by using Eq.~5! to calculate the output
value (D0

out) at l51: l̃[lD0
in/D0

out. Results are shown in
Fig. 4 for the fundamental sine harmonic of the Fourier
transforms ofM (B) and Ẽ1 versuslD0. A zero in the har-
monic ofM (B) occurs forF0;1.6\vc ~similar results are
found for self-consistent calculations at fixedl). The zero of
the harmonic ofẼ1 is close to the zero forM (B) as claimed
earlier. We note that in the small-D0 regime, the dependence
of the harmonic onD0 contains both linear and quadratic
terms. The calculations are consistent with a crossover from
quadratic to linear behavior when the quantityF0 /nm

1/4 ex-
ceeds 2pkBT. We also present in Fig. 4 canonical ensemble
results generated from the grand canonical calculations by a
Legendre transform. Deviations from the grand canonical en-
semble results occur at smallD0.

24 The important point,
though, is that the zeros of the harmonics in the two schemes
agree.

IV. ABSENCE OF PERSISTENT MAGNETIC
OSCILLATIONS

The calculations in the previous section discussed the
variation of different properties of the vortex lattice state
within one particular period@nmP(20,21)# of the normal
state magnetic oscillations. In order for the magnetic oscilla-
tions to persist in the vortex lattice state, the same pattern of
variation must occur over many periods of the normal state
magnetic oscillations. To investigate whether or not this is
the case we have studied the dependence of superconducting
properties on field through a number of periods of the normal
state oscillations. The small-D0 behavior always involves the
quantityD0 /nm

1/4 and retains the normal state magnetic oscil-
lations with reduced amplitude. The zero and subsequent
sign reversal of the fundamental harmonic with increasing
D0, however, does not occur in every normal state oscillation
period. In Fig. 5, we plot the sine of the fundamental har-
monic versusnm for a value oflD0 equal to 4.75~where the
weak maximum in Fig. 4 occurs!. These results show that no
clear component of the magnetization with the normal state
period survives in the crossover regime. The harmonic of the
Fourier tranform of the magnetization in the finite interval
from nm to nm11 in this regime varies in sign and magni-
tude with no pattern we have been able to discern, consistent
with results presented in our earlier work.13 Corresponding
variations occur in the lowest band quasiparticle energies. In
Fig. 6 we plot the eigenvalue means as in Fig. 3 but for the
casenmP(24,25). One sees that the three curves converge
together as in Fig. 3 but this time do not cross when the

crossover regime is entered. That is, the crossing effect of
Fig. 3 may or may not occur depending on Landau level
index. To emphasize this, we plot in Fig. 7 the fundamental
harmonic averaged over two different six-period intervals.
We see that the phase shift effect of Fig. 4 has been com-
pletely washed out and the fundamental harmonic is
smoothly damped to zero asF0 increases beyond\vc .

V. CONCLUDING REMARKS

Experimental evaluations of dHvA oscillation amplitudes
are based on Fourier transforms over many periods of oscil-
lations. The results in the preceding section indicate that no
measurable oscillation with the normal state period or with
any other period we have been able to recognize occurs once
the typical value of the pairing self-energy becomes compa-
rable to the Landau level separation. Because we work with
relatively small Landau level indices compared with the typi-
cal experimental situation, we are not able to completely
eliminate the possibility that oscillations in this regime are
periodic with a different periodicity or with a periodicity in
B rather25 than inB21, although we have looked for such
patterns without success and are reasonably confident that
they do not exist. It seems clear that in the 3D case where
many Landau levels contribute, even for a fixed field, mag-
netic oscillations will be even more strongly suppressed. Dis-
order broadening, which we have neglected, will damp the
oscillatory signal beyond that calculated here.

In conclusion, we have done a detailed analysis of the
nature of the quasiparticle states in the field regime near the
upper critical field of a 2D type-II superconductor. We find
that for smallD, all Landau levels and not just the Landau
level at the Fermi energy, are split. This property is associ-
ated with the absence of time-reversal symmetry in the pres-
ence of a magnetic field. The splitting would be naively ex-
pected to lead to a sign change in the fundamental harmonic
of the Fourier transform of the magnetization for a value of
the pairing self-energy of order the cyclotron energy, analo-
gous to the sign changes which can occur due to the spin
splitting of Landau levels. However, our numerical calcula-
tions show that once the pairing self-energy is comparable to
the normal state Landau level separation, although the spec-
trum of quasiparticle excitations and the magnetization have
sizable variations on the magnetic field scale of the normal
state dHvA oscillations, the variations are aperiodic. Accord-
ingly, we find that dHvA oscillations are strongly suppressed
once this regime is reached.
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