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We present in detail a nonperturbative method for vortex liquid systems. This method is based on the
resummation of an infinite subset of Feynman diagrams, the so-called parquet graphs, contributing to the
four-point vertex function of the Ginzburg-Landau model for a superconductor in a magnetic field. We derive
a set of coupled integral equations, the parquet equations, governing the structure factor of the two-dimensional
vortex liquid system with and without random impurities and the three-dimensional system in the absence of
disorder. For the pure two-dimensional system, we simplify the parquet equations considerably and obtain one
simple equation for the structure factor. In two dimensions, we solve the parquet equations numerically and
find growing translational order characterized by a length scaleRc as the temperature is lowered. The tem-
perature dependence ofRc is obtained in both pure and weakly disordered cases. The effect of disorder appears
as a smooth decrease ofRc as the strength of disorder increases.@S0163-1829~96!02729-4#

I. INTRODUCTION

Since the discovery of high-Tc superconductors, the na-
ture of the mixed state in a type-II superconductor has been a
focus of theoretical and experimental investigation. In many
high-Tc materials, thermal fluctuations are responsible for
the melting of the vortex lattice phase predicted by the mean-
field theory1 into a vortex liquid phase. The presence of
quenched random impurities in the vortex liquid or lattice
phases also plays an important role, since it presents a pos-
sibility of a dissipation-free current flow due to pinning of
flux lines. Theoretical phases such as the vortex glass phase2

for point defects and the Bose glass phase3 in the presence of
extended defects have been proposed. As shown by Larkin
and Ovchinnikov4 ~LO! the quenched point disorder de-
stroys, for spatial dimensiond,4, the long-range crystalline
order of the vortex lattice. The system is described by some
characteristic length scaleRc over which a short-range trans-
lational order exists.

In a previous paper,5 we developed a nonperturbative
scheme to calculate the structure factor of the two-
dimensional~2D! vortex liquid in the absence of random
impurities. The main ingredient of this nonperturbative
method was the resummation of an infinite subset of Feyn-
man diagrams contributing to the structure factor, the so-
called parquet graphs.6 This is an analytic approach to the 2D
vortex liquid system which is sophisticated enough to predict
growing crystalline order in the system as the temperature is
lowered. The growth of the translational order was investi-
gated in connection with the sharp peaks developing in the
liquid structure factor. Within this scheme, we found no evi-
dence for a finite temperature phase transition into the vortex
lattice phase and the system remains as a liquid. The length
scale Rc , characterizing this growing translational order,
seemed to diverge only in the zero-temperature limit.

In this paper, we give detailed derivations of the parquet-
graph resummation technique which were omitted in the pre-
vious paper.5 In addition, we present a simplified version of
the parquet equations governing the structure factor, which
were given in terms of a set ofcouplednonlinear integral

equations previously. In the present work, we were able to
obtain one simple equation for the structure factor, which
contains all the nonperturbative information for the 2D vor-
tex liquid in the absence of disorder.

In this paper, we also apply the parquet-graph resumma-
tion technique to the 2D vortex liquid in the presence of
quenched disorder. We find that the sharp peaks which ap-
peared in the structure factor of the pure system become
broadened as the strength of the disorder increases. This is
entirely consistent with one’s intuition that in the presence of
disorder the length scaleRc describing the translational order
becomes smaller as compared to the pure case. In the present
work, since our pure system is always in the liquid phase, the
effect of disorder appears as smooth deviations from the pure
case. From the nonperturbative results, we find the tempera-
ture dependence of the length scaleRc . It is, however, dif-
ficult to make any connection between our results and the
LO-type argument, since there exists no vortex lattice phase
at any finite temperature within our nonperturbative scheme,
while the LO argument always starts from the vortex lattice
with a true long-range crystalline order.

We note that there exist recent theoretical studies7 based
on the elastic theory of pinned lattices suggesting that the
pinning by quenched disorder becomes less effective due to
the periodicity of the lattice so that a quasi-long-range order
persists beyond the Larkin length scaleRc . In the present
nonperturbative analysis, the existence of such quasi-long-
range translational order has not been observed.

The point whether the 2D vortex liquid in the absence of
disorder undergoes a finite-temperature phase transition into
a 2D vortex lattice is still controversial. Numerical
simulations8 seem to suggest a first-order phase transition.
However, as shown in Ref. 9, these results depend crucially
on boundary conditions. In a spherical geometry, the authors
of Ref. 9 demonstrated the absence of a finite-temperature
phase transition. There also exists a recent experiment10 per-
formed on a sample with very weak pinning, where no sign
of a phase transition is detected. The present parquet ap-
proximation, which is an analytic theory on an infinite plane,
seems to support the absence of a finite temperature phase
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transition between 2D vortex liquid and solid.
Unlike the 2D system, it is generally believed that a 3D

vortex liquid undergoes a first-order phase transition into a
vortex lattice. An experiment by Zeldovet al.11 on Bi-Sr-Ca-
Cu-O has been accepted as convincing evidence for the tran-
sition. However, there exists a recent claim12 that the results
of Ref. 11 might be an artifact due to a particular sample
geometry. Therefore, it would be interesting if one could
develop a three-dimensional parquet-graph resummation
scheme and obtain nonperturbative information on the 3D
vortex liquid system. We find that one can generalize the
parquet equations to three dimensions without difficulty. Un-
fortunately, the equations become very complicated and we
were not able to obtain a numerical solution to the 3D par-
quet equations.

In the next section, we introduce the structure factor of a
two-dimensional disordered vortex liquid within the
Ginzburg-Landau theory. In Secs. III and IV, we present
detailed derivations of the parquet equations which account
for all the parquet graphs contributing to the structure factor
for both pure and disordered cases. We also consider zero-
dimensional models to discuss the validity of the parquet
approximation in general. In the following section, we
present the main results of our calculation and discuss the
temperature dependence of the length scaleRc . In Sec. VI,
we present the generalization of the parquet equations to
three dimensions. Finally, we conclude with a discussion on
future directions.

II. THE STRUCTURE FACTOR

We begin our analysis with the Ginzburg-Landau~GL!
free energy for a superconducting film in a perpendicular
magnetic fieldB5“3A in the presence of quenched ran-
dom impurities,

F@C#5E d2r S 1

2m
u~2 i\“2e*A!Cu21@a1t~r !#uCu2

1
b

2
uCu4D , ~2.1!

wherea, b, andm are phenomenological parameters. The
random fieldt(r ) representing the quenched impurities sat-
isfies the probability distribution,t(r )50 and

t~r !t~r 8!5ld~2!~r2r 8!. ~2.2!

In this paper we neglect the fluctuations in the vector poten-
tial A and restrict the order parameterC to the space
spanned by the lowest-Landau-level~LLL ! wave functions.
In the symmetric gauge, whereA5(B/2)(2y,x), the LLL is
fully described by an arbitrary analytic function of the vari-
able z5x1 iy multiplied by an exponential factor;
C(x,y)5exp(2(m2/4)z* z)f(z), where m2[e*B/\52p/
Q andQ is the area of the unit cell of the vortex lattice. In
the LLL approximation, the GL free energy becomes

F@f#5E dz* dzF @aH1t~z,z* !#expS 2
m2

2
uzu2D uf~z!u2

1
b

2
exp~2m2uzu2!uf~z!u4G , ~2.3!

where*dz* dzdenotes the integration over thex-y plane and
aH[a1\e*B/2m vanishes at the mean-field transition tem-
perature.

The central quantity in this analysis is the structure factor
of the two-dimensional vortex liquid. It is proportional to the
Fourier transform of the density-density correlation function,
x̃(k)5*d2Reik•Rx(r ,r1R),

x~r ,r 8![^uC~r !u2uC~r 8!u2&2^uC~r !u2& ^uC~r 8!u2&,

where the angular brackets denote the thermal averages. The
structure factorD(k) is then defined by

QexpS 2
k2

2m2DD~k![x̃~k!/@^uC~r !u2&#2. ~2.4!

A convenient way to deal with quenched averages is to
introducen replicas ofZ and calculate the correlation func-
tions with respect to

Zn5E )
a

n

dfa* dfaexpF2E dz* dzH aHe
2m2uzu2/2

3(
a

ufa~z!u21
b

2
e2m2uzu2(

a
ufa~z!u4

2
l

2
e2m2uzu2(

a,b
ufa~z!u2ufb~z!u2J G ~2.5!

in the limit n→0. One can develop a standard perturbation
theory for~2.5!. The bare propagator arising from the pertur-
bation expansion of~2.5! is given by13

G0
ab~z* ,z![^^fa* ~z* !fb~z!&&05dab

1

aH

m2

2p
expS m2

2
z* zD ,

~2.6!

where the double bracket^^•••&& denotes the average with
respect toZn. It is important to note that, because of the
simple quadratic term of the LLL free energy in~2.5!, the
renormalized propagatorGR

ab is obtained by simply replacing
aH by the renormalized massaR . This means that the mag-
netic lengthm21 is the only length scale involved in the
renormalized propagator. This is one of the simplifying fea-
tures of the LLL approximation that makes the present non-
perturbative calculation feasible.

As noticed in Ref. 13, the GL free energy obtained from
~2.5! is not closed under renormalization. The renormaliza-
tion effectively generates the quartic vertices of a general
form,
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E )
i51,2

dzi* dzie
2~m2/2!~ uz1u21uz2u2!F(

a,b
ufa~z1!u2

3~dabg~ uz12z2u!2w~ uz12z2u!!ufb~z2!u2G ,
~2.7!

for arbitrary functionsg andw. The bare interactions corre-
spond to

gB~ uzu!5
b

2
d~z!d~z* !, wB~ uzu!5

l

2
d~z!d~z* !.

It is convenient to work with the Fourier transform14

g̃~k!5E dz* dzg~ uzu!expS i2 ~k* z1kz* ! D

and similarly w̃(k), where k,k* are complex momenta,
k5k11 ik2 ,k*5k12 ik2 with k5(k1 ,k2). Thus, g̃B(uku)
5b/2 andw̃B(uku)5l/2 are constants.

In order to calculate the structure factor,~2.4!, we need to
consider the renormalized four-point correlation function
arising from Eq.~2.5!,

^^fa* ~z1* !fb* ~z2* !fc~z3!fd~z4!&&

5GR
ac~z1* ,z3!GR

bd~z2* ,z4!1GR
bc~z2* ,z3!GR

ad~z1* ,z4!

1^^fa* ~z1* !fb* ~z2* !fc~z3!fd~z4!&&c ,

where the last term denotes the contribution from all con-
nected Feynman diagrams. To the lowest order of perturba-
tion theory, the connected four-point correlation function can
easily be calculated as

^^fa* ~z1* !fb* ~z2* !fc~z3!fd~z4!&&c52dacdbd
2

aR
4 S m2

2p D 2em2~z1* z31z2* z4!/2E dk* dk

~2p!2
@dabg̃B~ uku!

2w̃B~ uku!#e2uku2/m2
e2 i @k* ~z32z4!1k~z1*2z2* !#/21~c↔d,z3↔z4!1O~b2,bl,l2!,

~2.8!

where the second term on the right-hand side is the same as
the first term withc andd, andz3 andz4 interchanged. In
~2.8!, we absorbed the renormalization of the propagators
using the renormalized massaR . To the lowest order, one
can easily evaluate thek integrals in~2.8!, but, in general,
higher-order corrections to the connected four-point function
are represented in~2.8! by the departure of the quartic vertex
functions from constants,g̃B(uku)5b/2 andw̃B(uku)5l/2, to
generalk-dependent functions,g̃R(k) andw̃R(k). Therefore,
the LLL approximation enables us to concentrate on the
renormalized quartic vertex functionsg̃R(k) and w̃R(k),
which depend only on one variable instead of three charac-
terizing three independent channels in a usual field theory.

Now, one can put~2.8! for generalgR(k) andwR(k) in a
more symmetric form using scaled functions,

f R~k![
2

b
exp~2k2/2m2!g̃R~k!,

vR~k![
2

l
exp~2k2/2m2!w̃R~k!.

The bare vertices are given by
f B(k)5vB(k)5exp(2k2/2m2). Interchangingz3 and z4 in
the second term on the right-hand side of~2.8! is equivalent
to using, instead off R(k) andvR(k), the transformed func-
tions, f̂ R(k) and ŵR(k), where f̂ (k) is defined for an arbi-
trary function f (k) by15

f̂ ~k![
2p

m2E d2p

~2p!2
f ~p!expS i

m2 ~k1p22k2p1! D ,

f ~k!5
2p

m2E d2p

~2p!2
f̂ ~p!expS i

m2 ~k1p22k2p1! D .
The general four-point function is then given by~see the
Appendix!

^^fa* ~z1* !fb* ~z2* !fc~z3!fd~z4!&&c

52
4

aR
4 S m2

2p D 2expS m2

2
~z1* z31z2* z4! D

3E dk* dk

~2p!2
b

2
Gab,cd~k!expS 2

uku2

2m2 2
i

2
@k* ~z32z4!

1k~z1*2z2* !# D , ~2.9!

where

Gab,cd~k!5
1

2
dacdbd@dabf R~k!2uvR~k!#

1
1

2
daddbc@dabf̂ R~k!2u v̂R~k!#, ~2.10!

andu[l/b represents the strength of the disorder. Equation
~2.10! can be represented diagrammatically as in Fig. 1.

The structure factorD(k) is then obtained by joining two
external legs of the four-point correlation functions,~2.9!.
From ~2.9! and ~2.10! and the definition~2.4! in the limit
n→0, we obtain

D~k!5122xG~k!, ~2.11!

4220 54JOONHYUN YEO AND M. A. MOORE



where

G~k![
1

2
$ f R~k!1 f̂ R~k!2u@vR~k!1 v̂R~k!#% ~2.12!

and x[m2b/2paR
2 is a dimensionless parameter which ap-

pears in the high-temperature perturbation expansion.16,17

In the following sections, we will evaluatef R(k) and
vR(k) nonperturbatively by summing the parquet graphs. As
mentioned earlier, we absorb any renormalization of the
propagator into the renormalized parameteraR . But knowl-
edge of the four-point vertex function also fixes the relation-
ship betweenaR and the bare parameteraH , thus complet-
ing the description of the system. This relation comes from
the Dyson equation arising from~2.5! which is described
diagrammatically in Fig. 2 for the self-energy
S5G212G0

2152p(aR2aH)/m
2:

aT5
1

Ax
F12x~22u!1x2

2p

m2E d2k

~2p!2
e2k2/2m2

3@2~12u! f R~k!2u~22u!vR~k!#G , ~2.13!

whereaT[aHA2p/bm2 is the dimensionless temperature.
Note that this is anexactrelationship between the renormal-
ized propagator and the quartic vertex functions. We will,
however, usef R(k) and vR(k) obtained from the present
nonperturbative approximation. The Hartree approximation
used in the high-temperature perturbation expansion16 corre-
sponds to neglecting terms that depend on the vertex func-
tions, f R andvR .

III. PARQUET-GRAPH RESUMMATION:
PURE SYSTEM „l50…

In order to calculatef R(k) andvR(k), one needs to evalu-
ate the Feynman diagrams contributing to the four-point cor-
relation function. In this and the next section, we show in

detail how to sum an infinite subset of such diagrams, the
so-called parquet graphs.

We first consider the pure system wherel50, then gen-
eralize the result to the disordered case. The analysis of the
pure case will mostly reproduce results given in Ref. 5. In
the present work, we make a further simplification of the
parquet equation forf R(k) found in Ref. 5 and obtain a very
simple equation for the structure factorD(k).

For both pure and disordered cases, we will present the
analysis for the zero-dimensional analogs of~2.3!, which can
be integrated exactly. For the pure case, we find it conve-
nient to introduce the parquet resummation scheme in a
simple zero-dimensional model and then generalize to the
two-dimensional problem. Furthermore, since there is no ap-
parent expansion parameter involved in the parquet approxi-
mation, it would be instructive to apply the parquet resum-
mation to the cases where exact solutions are known and to
compare the approximate result with the exact solution.

A. d50

For l50 and dimensiond50, the partition function cor-
responding to~2.3! is a simple integral,

Z~aH ,b!5E dcdc*

2p
expS 2aHucu22

b

2
ucu4D

5A p

2b
erfc~s!exp~s2!,

wheres5aH /A2b and erfc(s)[12erf(s) is the comple-
mentary error function. In the parquet analysis, one calcu-
lates the renormalized four-point vertex

G[2
aR
4

4
^ucu4&c5

aR
4

2 F ]

]b
lnZ1

1

aR
2 G ,

FIG. 1. Diagrammatic representation of the renormalized con-
nected four-point correlation function. The labels, 1, . . . ,4,denote
z1* ,z2* ,z3 ,z4 , respectively, anda, . . . ,d are replica indices.

FIG. 2. Diagrammatic representation of Dyson equation for the
self-energyS. The solid lines represent the renormalized propaga-
tors. The thick dashed and dotted lines are the renormalized vertex
functions,f R andvR , as in Fig. 1, while the thin dashed and dotted
lines denote the bare vertex functions,f B andvB , respectively.
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whereaR
215^ucu2&. Although an exact solution can readily

be found, one can construct the usual Feynman graph expan-
sion for G. To the lowest order, we haveG5GB5b/2. To
the one-loop order, the diagrams can be represented as
shown in Fig. 3. A convenient way to generate the next order
diagrams is to replace each vertex in a one-loop diagram by
the vertices obtained up to the one-loop order. In general,
one can construct higher-order diagrams by replacing each
vertex in the one-loop diagrams by the vertices obtained up
to the current order of perturbation expansion. An example
of such construction is shown in Fig. 3. The diagrams ob-
tained in this way are calledparquetgraphs. Note that par-
quet graphs can be separated into two parts by cutting two
propagator lines.

Although parquet graphs cover an enormous number of
diagrams, obviously not all diagrams can be constructed in
this way. The nonparquet diagrams are generated in the
above construction by the so-called totally irreducible verti-
ces whose contribution here is denoted byR. The totally
irreducible vertex consists of the bare vertex and higher-
order @O(b4)# vertices~see Fig. 4!. There is no systematic
way of enumerating these higher-order diagrams contribut-
ing to R. The parquet approximation which we employ in
this work corresponds to keeping only the bare vertex con-
tribution in R: R.GB5b/2 in the zero-dimensional case.

If both bare vertices in a one-loop diagram are replaced
by the full renormalized vertex in the above construction of
graphs, then the diagrams become overcounted. There is a
systematic way to eliminate this overcounting and to gener-
ate all the Feynman diagrams and the symmetry factors as-
sociated with each diagram, and that is to use the full vertex
for the bare vertex on the right-hand side of Fig. 3, but the
so-calledirreduciblevertex for the one on the left-hand side,
which is defined as follows: LetP i , i51,2,3 denote the
diagrams constructed out of the three one-loop diagrams in
Fig. 3 andL i the corresponding irreducible vertices, we have
from Fig. 5

P152
2

aR
2 L1G, ~3.1a!

P252
4

aR
2 L2G, ~3.1b!

P352
4

aR
2 L3G, ~3.1c!

where we absorb any renormalization on propagator lines
into aR . Now, for the irreducible vertexL i , we must in-
clude all the diagrams that do not belong toP i to avoid the
overcounting, thus,L i5G2P i . Finally, the renormalized
vertexG is given by the sum of all contributions:

G5R1(
i51

3

P i . ~3.2!

Therefore,

L i5R1(
jÞ i

P j . ~3.3!

Note that~3.1!–~3.3! areexactrelations for the renormalized
vertexG. But, as mentioned before, we useR.b/2. To see

FIG. 3. ~a! Three one-loop diagrams. The symmetry factors are
2, 4, and 4, respectively. The labels 1, . . . ,4 aredrawn for the
general cases to be discussed later. For the zero-dimensional case,
there is no distinction between the second and the third diagrams.
But, it is important to separate this contribution into two equal
parts.~b! An example of constructing successive parquet graphs.

FIG. 4. The totally irreducible vertexR.

FIG. 5. The parquet decomposition of the reducible vertex
P i . Again, the labels 1, . . . ,4 aredrawn for the general cases. The
same diagrammatic decomposition can be used in higher dimen-
sional models for both pure and disordered cases.
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which diagrams are explicitly summed by the parquet ap-
proximation, one iterates~3.1!–~3.3! starting withR5b/2. A
listing of all parquet diagrams up toO(b6) is given in the
review of Jacksonet al.6 ~their Fig. 8, but their diagrammatic
formalism is not identical to ours and we have additional
diagrams to theirs since there are arrows on our propagators!.
In the language employed in many-body physics, within the
parquet approach, all reducible two-particle diagrams are
summed up by choosing an irreducible kernel~for us, the
bare vertex! and by preserving the crossing symmetry of the
four-point correlation function.

One can easily simplify the above equations forR5b/2
as follows: From~3.1!, one has

P15
2G2

aR
222G

, P25P35
4G2

aR
224G

.

Therefore, from~3.2!, we obtain

g5r2
g2

12g
22

2g2

122g
, ~3.4!

whereg[2G/aR
2 andr[b/aR

2 . As a function ofr, there is
only one solutiong(r) that satisfies the trivial condition:
G5g50 whenb5r50.

To complete the description of the system, one needs a
relation between the bare (aH or s) and renormalized (aR or
r) mass. In the parquet approximation, we use an analog of
the Dyson equation,~2.13!, which, in this case, is

s5
1

A2r
@122r~12g!#. ~3.5!

From this relation usingg5g(r) obtained from~3.4!, one
finds r as a function ofs, and consequently we have the
renormalized four-point vertexg as a function ofs. In Fig.
6, g(s) of the parquet approximation is compared with the
exact solution. One can see there is excellent agreement be-
tween the two.

B. d52

We now consider the two-dimensional problem in the ab-
sence of disorder. The parquet equations can be constructed
similarly to thed50 case. In fact, Eqs.~3.1!–~3.3! take al-
most the same form as before. The only differences are the
fact that the vertices now depend on the internal momentum
k and the right-hand sides of~3.1! should be obtained from a
direct evaluation of diagrams in Fig. 5. In the Appendix, we
show explicitly how this calculation is done. The resulting
equations corresponding to~3.1! are

P1~k!52x~L1+G!~k!, ~3.6a!

P2~k!522xL2~k!G~k!, ~3.6b!

P3~k!522x~L3*G!~k!, ~3.6c!

where the operations+ and* between two arbitrary functions
f (k) andg(k) are defined by

~ f +g!~k![
2p

m2E d2p

~2p!2
f ~k2p!g~p!cosS k1p22k2p1

m2 D ,
~ f * g!~k![

2p

m2E d2p

~2p!2
f ~k2p!g~p!.

The remaining parquet equations are given by

G~k!5R~k!1(
i51

3

P i~k!, ~3.7!

L i~k!5R~k!1(
jÞ i

P j~k!, ~3.8!

whereR(k) represents the totally irreducible part. In the par-
quet approximation,R(k) is equal to the bare vertex part:
R(k).(1/2)(f B1 f̂ B)5exp(2k2/2m2).

We can make a simplification on the parquet equations as
in the zero-dimensional case. We first note the following
identities: (f +g)5( f̂ +ĝ), f +ĝ5 f +ĝ5 f̂ +g, and
f * ĝ(k)5 f̂ (k)ĝ(k). Inserting L i(k)5G(k)2P i(k) into

~3.6b! and ~3.6c! and usingĜ5G from ~2.10!, we obtain

P2~k!5P̂3~k!5
22xG2~k!

122xG~k!
. ~3.9!

Now, inserting this into~3.6a!,

P1~k!52x@~R1P21P3!+G#~k!

52x@~R12P2!+G#~k!. ~3.10!

Therefore, inserting~3.9! and~3.10! into ~3.7!, we obtain an
equation for G(k). In terms of the structure factor
D(k)5122xG(k), this equation becomes

12D~k!

D~k!
5xR~k!1x~R+D!~k!2S F ~12D!2

D G +D D ~k!.

~3.11!

This is our main equation mentioned in Sec. I that com-
pletely describes the structure factor of 2D vortex liquid in
the absence of disorder. Note that we have kept the totally

FIG. 6. The renormalized four-point vertex functiong for the
pure zero-dimensional model as a function of temperatures. The
solid line is the exact solution. The dashed line corresponds to the
parquet approximation.
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irreducible partR(k) in a general form. We note that, al-
though this is anexactrelation in a very simple form, it has
little advantage for finding numerical solutions18 over the
coupled parquet equations,~3.6!, ~3.7!, and ~3.8! or another
version to be described below. We believe, however, that
this equation might open a possibility in the future for a
nonperturbativeanalytic investigation on the 2D vortex liq-
uid.

When we consider the disordered case in the next section,
it will be necessaryto decomposeG(k) into f R(k) and
f̂ R(k) using ~2.10! and consider the parquet equation in
terms of f R(k) arising from the faithful representation of
Feynman diagrams as in Fig. 1. Equation~3.9! suggests the
following decompositions:

P1~k!5
1

2
@G1~k!1Ĝ1~k!#,

P2~k!5P̂3~k!5
1

2
@G2~k!1Ĝ3~k!#,

L1~k!5
1

2
@ I 1~k!1 Î 1~k!#,

L2~k!5L̂3~k!5
1

2
@ I 2~k!1 Î 3~k!#,

for some functionsI i andG i . Inserting these into~3.6!, we
have

G1~k!52x~ I 1+ f R!~k!, ~3.12a!

G2~k!52x@ I 2~k! f R~k!1I 2~k! f̂ R~k!1 Î 3~k! f R~k!#,
~3.12b!

G3~k!52x~ I 3* f R!~k!, ~3.12c!

and

f R~k!5 f B~k!1(
i51

3

G i~k!, ~3.12d!

I i~k!5 f B~k!1(
jÞ i

G j~k!. ~3.12e!

This version of the parquet equations has been previously
given in Ref. 5.

IV. PARQUET-GRAPH RESUMMATION:
DISORDERED CASE

For the disordered case, one has to construct the parquet
equation for the vertex function containingn-replica indices.
Let us first consider the two-dimensional case directly. It is
straightforward to generalize~3.6! to the present case. By
putting the replica indices in the diagrams in Fig. 5, we have

Pab,cd
~1! ~k!52x(

e, f
~Lab,e f

~1! +Ge f,cd!~k!, ~4.1a!

Pab,cd
~2! ~k!522x(

e, f
Lae,c f

~2! ~k!G f b,ed~k!, ~4.1b!

Pab,cd
~3! ~k!522x(

e, f
~Lae, f d

~3!
*G f b,ce!~k!. ~4.1c!

The remaining equations follow from~3.7! and ~3.8!:

Gab,cd~k!5Rab,cd~k!1(
i51

3

Pab,cd
~ i ! ~k!, ~4.1d!

Lab,cd
~ i ! ~k!5Rab,cd~k!1(

jÞ i
Pab,cd

~ j ! ~k!, ~4.1e!

where

Rab,cd~k!.Gab,cd
~B! ~k!5dacdbd~dab2u!exp~2k2/2m2!

in the parquet approximation.
As one can see from~2.10!, in order to take then→0

limit, one needs to decompose the above equations as in the
previous section and to get equations analogous to~3.12!.
First, we note that

L̂ab,dc
~3! ~k!5Lab,cd

~2! ~k!, P̂ab,dc
~3! ~k!5Pab,cd

~2! ~k!.

Therefore, we can write, for some functionsG i , J i , I i , and
Ji ,

Pab,cd
~1! ~k!5

1

2
dacdbd@dabG1~k!2uJ1~k!#

1
1

2
daddbc@dabĜ1~k!2uĴ1~k!#,

Pab,cd
~2! ~k!5P̂ab,dc

~3! ~k!5
1

2
dacdbd@dabG2~k!2uJ2~k!#

1
1

2
daddbc@dabĜ3~k!2uĴ3~k!#,

and

Lab,cd
~1! ~k!5

1

2
dacdbd@dabI 1~k!2uJ1~k!#

1
1

2
daddbc@dabÎ 1~k!2u Ĵ1~k!#,

Lab,cd
~2! ~k!5L̂ab,dc

~3! ~k!5
1

2
dacdbd@dabI 2~k!2uJ2~k!#

1
1

2
daddbc@dabÎ 3~k!2u Ĵ3~k!#.

Inserting these expressions and~2.10! into ~4.1! and
eliminating one term that contains an explicit factor ofn, we
get the following set of parquet equations in the presence of
disorder:

G1~k!52x~ I 1+ f R2uI 1+vR2uJ1+ f R!~k!,
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G2~k!52x$I 2~k! f R~k!1I 2~k!@ f̂ R~k!2u v̂R~k!#1@ Î 3~k!

2u Ĵ3~k!# f R~k!%,

G3~k!52x~ I 3* f R2uI 3* vR2uJ3* f R!~k!,

and

J1~k!5xu~J1+vR!~k!,

J2~k!52x$I 2~k!vR~k!1J2~k! f R~k!1J2~k!@ f̂ R~k!

2u v̂R~k!#1@ Î 3~k!2u Ĵ3~k!#vR~k!%,

J3~k!5xu~J3* vR!~k!

with

f R~k!5 f B~k!1(
i51

3

G i~k!, ~4.2a!

vR~k!5vB~k!1(
i51

3

J i~k!, ~4.2b!

and

I i~k!5 f B~k!1(
jÞ i

G j~k!, ~4.3a!

Ji~k!5vB~k!1(
jÞ i

J j~k!. ~4.3b!

Before solving these complicated equations, we consider
first the zero-dimensional toy model where the parquet equa-
tions reduce to a set of algebraic equations as in~3.4!.

d50

For d50, the partition function is again a simple integral,

Z~aH ,t,b!5E dcdc*

2p
expS 2~aH1t!ucu22

b

2
ucu4D

5A p

2b
erfcS aH1t

A2b
D expS ~aH1t!2

2b D .
Averaging overt with respect to~2.2!, we have

2 lnZ~s,b,u!5
1

2
lnb2s22

u

2

2
1

Aup
E

2`

`

ds8e2~s2s8!2/uln erfc~s8!,

~4.4!

wheres5aH /A2b, andu5l/b as before.
The quantities corresponding tof R(k) and vR(k) in the

zero-dimensional case are defined by

f R[2
aR
4

2b
@^ucu4&22^ucu2&2#52

aR
4

b F ]

]b
1

]2

]aH
2 G lnZ,

vR[
aR
4

b
@^ucu2&22@^ucu2&#2#

52
aR
2

b
2

aR
4

b F2 ]

]b
1

]2

]aH
2 G lnZ,

whereaR
21[^ucu2&52] lnZ/]aH . These quantities can eas-

ily be evaluated as functions ofs andu using ~4.4!.
On the other hand, the parquet equations forf R and vR

take exactly the same form as~4.2!, ~4.3!, if we make the
following simplifications: the binary operations+ and* be-
come multiplications between two factors; the transforma-
tion f̂ has no effect,f̂5 f ; x is replaced byr[b/aR ; and
finally f B5vB51. It is then straightforward to eliminateI i
~or G i) andJi ~or J i) from the parquet equations in favor of
f R8[r f R andvR8[rvR . The parquet equations then reduce to
the following coupled algebraic equations:

2 f R8

~12 f R81vR8 !~11vR8 !

1
f R8

~12 f R81vR8 !~122 f R81vR8 !
22 f R85r,

~4.5!

2vR8

11vR8
1

vR8

~122 f R81vR8 !2
22vR85ur. ~4.6!

For givenu andr, one can find the corresponding solu-
tions f R8 and vR8 to these equations. We can then use the
Dyson equation~2.13!,

s5
1

A2r
$12r~22u!1r@2~ f R82vR8 !2u~2 f R82vR8 !#%

to find a relation betweenr and s: r5r(s) for given u.
Using this, we obtainf R8 (s) andvR8 (s) for given u. These
are shown in Fig. 7 together with the exact solutions. For

FIG. 7. The renormalized four-point vertex functions,f R8 and
vR8 for the disordered zero-dimensional model as functions of tem-
peratures. The filled triangles, circles, and squares are obtained
from the parquet approximation foru50.1, 1.0, and 5.0, respec-
tively. The solid lines are the corresponding exact solutions.
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u&1, the parquet results show excellent agreement with the
exact solutions. Asu becomes larger, however, the discrep-
ancies between two solutions grow. This analysis for the
zero-dimensional model suggests that the parquet approxi-
mation is in general very good when the strength of disorder
is moderate. But, the diagrams omitted in the parquet ap-
proximation might produce quantitative errors in the strong
disorder regime. We note, however, that physical quantities
in this approximation remain smooth as functions ofu unlike
other approximation methods19 on this system.

V. RESULTS AND ANALYSIS

For the case of the two-dimensional system, one has to
solve a set of coupled integral equations forf R(k) and
vR(k), ~4.2! and ~4.3!, containing two parametersx andu.
We consider a rotationally symmetric case where all vertex
functions depend only onK[uku/m. We apply a similar nu-
merical technique to the one used in Ref. 5. In practice, we
find it convenient to work withhR(K)[ f R(K)2uvR(K) and
vR(K). For a given set of irreducible parts,$I i(K)% and
$Ji(K)%, Eqs.~4.2! are coupledlinear integral equations for
hR and vR . We first solve these equations forhR for fixed
vR by numerically inverting a matrix,20 and then solve for
vR using the solutionhR . We then update the irreducible
parts using~4.3!. The solution to the parquet equations is
obtained by iterating this procedure.

A fast convergence can be obtained if we choose the ini-
tial functions,$I i%, $Ji%, andvR close to the actual solutions.
At high enough temperatures, it is sufficient to start from
I i5Ji5vR5exp(2K2/2). As one goes into the low-
temperature regime, it is necessary to use the solution at a
temperature close to the desired temperature as initial func-
tions. We face the same numerical difficulty as in Ref. 5 as
the temperature is lowered, namely, one has to use a finer
mesh inK space as well as a larger cutoff in order to get a
low-temperature solution. In this case, we have acoupledset
of equations, which requires an additional computing time.
The minimum temperature we used wasaT.28.5 where
the cutoff was atK515 and the number of mesh points was
600. We also find it difficult to solve the parquet equations
directly for arbitrarily large values ofu. Again, one needs to
start from the actual solution foru close to the value for
which the structure factor is to be calculated. In the present
analysis, we were able to obtainD(K) for three values of
u; u50.1, 0.2, and 0.3.

In Fig. 8, we first present the renormalized propagator
Ax;aR

21 as a function of temperatureaT for three values of
u. Compared to the pure (u50) case,aT(x) as a function of
x shows very little deviation. In general, one finds that the
same value of parameterx represents a slightly higher tem-
perature asu increases.

In Figs. 9 and 10, the structure factor is plotted for various
values ofaT andu. The structure factor develops a collec-
tion of peaks around the reciprocal-lattice vectors~RLV! of
the triangular lattice. As the temperature is lowered for fixed
u, one can clearly see from Fig. 9 that the first peak grows
with decreasing width. This can be interpreted as a growing
short-range translational order in the disordered vortex liq-
uid. The length scaleRc over which this order exists can be

obtained from the inverse width of the first peak, or equiva-
lently from the peak height.5,9 For fixed temperatures, we
find that the length scale decreases as the strength of disorder
increases~see Fig. 10!. The result is consistent with an intui-
tive picture where the disorder prevents ordering on long
length scales. In Fig. 11, we show the height of the first peak
as a function of temperature foru50.1, 0.2, and 0.3. We
find that the length scaleRc grows asuaTu with decreasing
proportionality constant for increasingu. We recall that, in
the absence of disorder, the length scale characterizing a
growing crystalline order also grows asuaTu. But, from Fig.
11, we find that the rate of this growth gets smaller as the
disorder gets stronger. In the next subsection, we show that
one can derive this behavior analytically from the parquet
equations.

FIG. 8. The renormalized propagator (m2/2paR;Ax) as a
function of temperatureaT in d52. The filled squares are obtained
from the parquet approximation in the pure case. The open tri-
angles, filled triangles, and open squares correspond to the parquet
approximation foru50.1, 0.2, and 0.3, respectively.

FIG. 9. The structure factor for fixedu50.2 and for various
temperatures~dashed line:aT523.78, dotted line:aT525.34,
dot-dashed line:aT526.51, and solid line:aT528.36). The ar-
rows indicate the positions of RLV of the triangular lattice. Since
the second and the third RLV are closely spaced, our solution could
not resolve these peaks.
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Parquet equations foru!1

For very weak disorder,u!1, one can extract from the
parquet equations the small-u behavior of the structure factor
D(k) around the pure (u50) solution. One can in fact de-
rive the temperature dependence of the length scaleRc for
small u from the parquet equations. In order to do that, we
need to find the parquet equation analogous to~3.6!, ~3.7!,
and ~3.8! for G(k)5(1/2)@hR(k)1ĥR(k)#. Out of the func-
tions used in~4.2! and ~4.3!, we define

L1~k![
1

2
@ I 1~k!1 Î 1~k!2u„J1~k!1 Ĵ1~k!…#,

L2~k![
1

2
@ I 2~k!1 Î 3~k!2u„J2~k!1 Ĵ3~k!…#,

L3~k![L̂2~k!

and

P1~k![
1

2
@G1~k!1Ĝ1~k!2u„J1~k!1Ĵ1~k!…#,

P2~k![
1

2
@G2~k!1Ĝ3~k!2u„J2~k!1Ĵ3~k!…#,

P3~k![P̂2~k!.

Using these functions and the original parquet equations,
~4.2! and ~4.3!, one can find a set of equations forG(k) as
follows:

G~k!5GB~k!1(
i51

3

P i~k!, ~5.1a!

L i~k!5G~k!2P i~k!, ~5.1b!

P1~k!52x~L+G!~k!, ~5.1c!

P2~k!522xFL2~k!G~k!2
u2

4
J2~k!vR~k!G , ~5.1d!

P3~k!5P̂2~k!, ~5.1e!

where

GB~k!5~12u!exp~2k2/2m2!, ~5.2!

and we have used the above-mentioned identities involving
the binary operations,+ and* . Note that these equations are
almost the same as those given in the pure case,~3.6!, ~3.7!,
and ~3.8!. One extra term in~5.1d! comes from the subtrac-
tion of the diagram containing an explicit factor ofn. There
is of course the second equation forvR , which couples non-
trivially to these equations.

Note that the structure factorD(k) is just given by
D5122xG, and we can simplify the above equations as
done in the pure case to get one equation for the structure
factor. From~5.1d! and theJ2 equation in~4.3b!, we have

J2~k!5vR~k!
112xL2~k!

D~k!22uxvR~k!
.

Inserting this into~5.1d!, we obtain

L2~k!5
1

2x F211
D~k!22uxvR~k!

@D~k!2uxvR~k!#2G .
Now using~5.1a! and the identities mentioned above, we

find

D~k!22uxvR~k!

@D~k!2uxvR~k!#2
511xGB~k!1x~GB+D!~k!

2S FD221
D22uxvR

@D2uxvR#2G +D D ~k!.

~5.3!

Whenu50, this reduces to~3.11!. So far we have not made
any assumptions on the magnitude ofu. For smallu, one
may consider the lowest-order perturbation in the structure

FIG. 10. The structure factor for fixedx530 ~or slightly varying
aT ; 26.67,aT,26.45), and for various values ofu: u50 ~thick
line!, 0.1, 0.2, and 0.3. The peaks are getting smaller as the strength
of disorder (u) increases.

FIG. 11. The heightD1 of the first peak as a function of tem-
perature. The filled circles, triangles, filled squares, and open
squares correspond to the solutions atu50, 0.1, 0.2, and 0.3, re-
spectively. The solid lines are linear fits.
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factor as compared to the pure solution. Note that, up to
O(u), the equation takes the same form as in theu50 case,
except thatGB(k) in ~5.2! contains an additional factor of
(12u). This means that foru!1, the solution for givenu
and x is the same as the pure solution, denoted byD0 , at
x(12u),

D~k;x,u!.D0@k;x~12u!#, u!1. ~5.4!

For given x and u, aT is determined via~2.13!. If we
denote byaT

0(x) the relation betweenaT and x for u50,
then from~2.13! and ~5.4! we deduce that toO(u)

aT~x!.aT
0@x~12u!#2

u

2
@2Ax1aT

0~x!#. ~5.5!

We note that, foru50, aT
0(x)5@12xbA(x)#/Ax;2AxbA

asaT→2`, where the generalized Abrikosov ratio changes
from 2 at high temperatures to some low-temperature limit,
bA . In the pure case, we found5 that the length scale grows
as;uaT

0(x)u;AxbA(x). Using ~5.4! and ~5.5!, one can de-
rive that

Rc;bAA~12u!x;F12uS 121
1

bA
D G uaTu ~5.6!

asaT→2`. As mentioned before, this behavior is already
captured in our numerical solution~see Fig. 11!.

VI. GENERALIZATION TO THREE DIMENSIONS

In this section, we apply the parquet resummation method
to a three-dimensional vortex liquid system. We shall dem-
onstrate that, while the generalization of the parquet equa-
tions to three dimensions is straightforward, it is virtually
impossible to solve the equations using the same numerical
technique as in the 2D case. We shall then discuss a possible
analytic approach to the problem.

We consider only the pure case for simplicity. The order
parameterC(x,y,r') in 3D depends on the coordinater'
perpendicular to the (x,y) plane. In the lowest-Landau-level
approximation, the order parameter takes the form

C~x,y,r'!5f~z,r'!expS 2
m2

4
uzu2D .

The GL free energy analogous to~2.3! is given by

F@f#5E dr'dz* dzS ~ u]'fu21aHufu2!e2m2uzu2/2

1
b

2
exp~2m2uzu2!uf~z,r'!u4D ,

where]'5]/]r' . The renormalized propagator can be writ-
ten as

G~z* ,z;q!5
m2

2p
G~q!expS m2

2
z* zD , ~6.1!

whereq is the Fourier momentum corresponding tor' . For
the bare propagator,G0(q)5(q21aH)

21. But, the renormal-
ization drivesG(q) into a general function. This is in contrast
to the two-dimensional case where the propagator is com-
pletely described by one parameteraR .

Similarly, the renormalized four-point vertex carries four
momenta,q1 ,q2 ,q3 , andq4 , in addition tok describing the
correlation in the (x,y) plane. Among the four momenta
only three will be independent due to the momentum conser-
vation (q11q25q31q4). Using, for example, new vari-
ables,s[q11q2 , t[q12q3, andu[q12q4 , one can de-
scribe the renormalized four-point vertex function in terms
of G(s,t,u;k). The parquet equations forG follow from Fig.
5. By evaluating the diagrams in Fig. 5 using the momentum
conservation on each vertex, one finds that

P1~s,t,u;k!52hE dq

2p
V~q,s!FL1S s, s1t1u

2
2q,q2

s2t2u

2 D +GS s,q2
s2t1u

2
,q2

s1t2u

2 D G~k!,

P2~s,t,u;k!522hE dq

2p
V~q,t !L2S q1

s2t1u

2
,t,

s1t1u

2
2q;kDGS q1

s2t2u

2
,t,q2

s1t2u

2
;kD ,

P3~s,t,u;k!522hE dq

2p
V~q,u!FL3S q1

s1t2u

2
,
s1t1u

2
2q,uD *GS q1

s2t2u

2
,q2

s2t1u

2
,uD G~k!,

whereh[bm2/2p andV(q,q8)[G(q)G(q2q8) and + and
* operate on the two-dimensional momentumk as before.
The remaining parquet equations take the same form as in
the 2D case:

G~s,t,u;k!5R~s,t,u;k!1(
i51

3

P i~s,t,u;k!,

L i~s,t,u;k!5G~s,t,u;k!2P i~s,t,u;k!,

whereR accounts for the totally irreducible parts, which is
set to

R~s,t,u;k!.exp~2k2/2m2!

independent ofs,t,u in the parquet approximation.
The first difficulty one faces when one tries to solve the

above parquet equations as in the 2D case is the fact that the
propagator is given as an unknownfunction in this case. In
the 2D problem, we were able to determine the unknown
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constantaR ~or x) self-consistently using the Dyson equa-
tion. In this case, we have a functional self-consistent equa-
tion for the self-energyS(q)5G21(q)2G021(q) as follows:

S~q!52hE dq8

2p
G~q8!

22h2
2p

m2E d2k

~2p!2
dq8dq9

~2p!2
e2k2/2m2G~q8!G~q9!G~q

1q82q9!G~q1q8,q2q9,q92q8;k!.

Even if one uses this self-consistent relation, the parquet
equations are coupled integral equations for the functionG of
four independent variables (s,t,u and uku). Storing all the
data forG and for all the irreducible parts,L i in the numeri-
cal calculation will be a formidable task. Furthermore, the
integrations in the equations become multiple sums and
therefore the previous numerical method of inverting a ma-
trix becomes more cumbersome. One may have to resort to a
direct iteration, which converges slower than the numerical
inversion of matrices.

These numerical difficulties, however, should not discour-
age one from attempting to get some nonperturbative infor-
mation from the parquet equations. In 2D, the parquet equa-
tions seem to be a minimal set of equations that predicts the
growing translational order in the (x,y) plane, whose length
scale is characterized byRc . Thus, we expect that the above
3D parquet equations contain among other things nonpertur-
bative information on various length scales characterizing
the low-temperature regime of the system. In addition to
Rc , the 3D system may have growing length scales for the
correlation in ther' direction. We denote byjL the length
scale arising from the propagatorG and byLc the one asso-
ciated with the 3D structure factor
S(k,q)[(2p/m2)exp(k2/2m2)x̃(k,q) @see~2.4!#, where

S~k,q!5E dq8

2p
G~q8!G~q1q8!

22hE dq8dq9

~2p!2
G~q8!G~q9!G~q1q8!G~q

1q9!G~q1q81q9,q,q82q9;k!.

If one uses in the parquet equations some kinds of low-
temperature asymptotic forms forG(q) and S(k,q) which
are characterized by the length scales,jL , Lc, andRc , one
might be able to extract nonperturbative relations for these
length scales and the temperature. We have tried a simple
ansatz whereG and S are represented asd-function-like
sharp peaks aroundq50 andk5G ~RLV!. The length scales
are set to be equal to the inverse width of the corresponding
peaks. But, we found that these forms are too simplified to
produce a sufficient amount of information on the tempera-
ture dependences of each length scale. We believe that more
sophisticated asymptotic forms are needed for the analysis of
the 3D parquet equations. This point will be discussed again
in the next section.

VII. DISCUSSION AND SUMMARY

In this paper, we applied the parquet resummation method
to the 2D vortex liquid with and without quenched impurities
and to the 3D vortex liquid in the absence of disorder. In the
2D system, we were able to solve the parquet equations nu-
merically and find the length scaleRc . The temperature de-
pendence ofRc was also obtained. In the pure 2D vortex
liquid, we found in the previous paper5 that the asymptotic
forms, D(k);2pm2(GÞ0d

(2)(k2G), or equivalently
f R(k);x21@12pm2(Gd (2)(k2G)# solves the parquet
equations if the inverse width of thed-function peaks, or the
length scaleRc behaves likeAx;uaTu asaT→2`. In the
disordered case, one can obtain similar low-temperature as-
ymptotic forms forf R(k) andvR(k) in terms ofd functions
aroundk;G. One can then obtain expressions forRc similar
to ~5.6!. These simple asymptotic forms, however, have
some limitations. First of all, the amplitude of each
d-function peak cannot be determined from the parquet
equations. It is also not clear whether one can use these
representations in the strong disorder regime. In the previous
section, we argued that an ansatz likeS(k,q)
;d(q)(GÞ0d

(2)(k2G) was not enough to produce any use-
ful nonperturbative information for the three-dimensional so-
lution. We believe that finding appropriate low-temperature
asymptotic forms for the vertex functions is a first step to-
wards a more fruitful use of the parquet equations. To this
end, a simple equation like~3.11! might be useful.

The effect of random impurities on the mixed state of a
type-II superconductor is usually described by the so-called
Larkin-Ovchinnikov argument,4 which states that for a di-
mensiond,4 the long-range crystalline order of the mixed
state is destroyed by a weak disorder. For thin films
(d52), one can estimate the Larkin length scaleRc over
which a short-range order persists as4 Rc;uaTu/l. Although
the uaTu dependence ofRc is the same as the present result,
we note that there is a basic difference between our result
and the LO-type argument. Since the LO argument starts
from a perfect crystalline state wherel50,Rc5`, a very
small amount of disorder makes an abrupt change as can be
seen from the 1/Al dependence ofRc . Within the parquet
approximation, there is no 2D crystalline phase and the pure
system has a finiteRc at any finite temperature. As we have
seen in the previous sections, the effect of small disorder is
represented as a smooth decrease of this length scale.

In this paper, we have concentrated on a rotationally sym-
metric liquid state where the vertex functions depend only on
the magnitude ofk. But, for example, in the presence of
magnetoelastic interactions between vortices, one must con-
sider generalk-dependent vertex functions in the parquet
equations. We recall that the input parameters of the parquet
equations are the temperature and the bare vertex functions,
f B andvB . It would be interesting to study a situation where
the bare vertex functions possess a nontrivialk dependence.

One could also generalize the present parquet resumma-
tion technique to study the dynamics of type-II supercon-
ductors. We expect that the parquet equations for the time-
dependent Ginzburg-Landau theory can be obtained without
much difficulty. But, the vertex functions will depend on the
frequency as well as the usual momenta. Thus, one faces
similar numerical difficulty to the 3D case. In addition, one
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has to be careful in taking the LLL limit.22
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APPENDIX: EVALUATION OF DIAGRAMS

Here we give some examples of evaluating the Feynman
diagrams involved in the present work. Similar analysis can
be found in the Appendix of Ref. 21. We consider only the
pure case (l50) for simplicity. The results can easily be
generalized to the disordered case carrying the replica indi-
ces. Feynman diagrams are constructed by connecting the
propagator lines represented by~2.6! with the quartic verti-
ces, which can be obtained from~2.7! as ~see Fig. 12!

2
b

2
e2m2~ uzu21uz8u2!/2E dkdk*

~2p!2
G~k!euku2/2m2

3expF2
i

2
@k* ~z2z8!1~z*2z8* !k#G .

By joining four propagator lines~starting fromz1* and
z2* and ending atz3 andz4) with this vertex, we have

24S b

2 D S m2

2p D 4 1

aR
4E dkdk*

~2p!2
G~k!euku2/2m2

3E )
i51

2

dz idz i* e
2m2~ uz1u21uz2u2!/2

3expFm2

2
@z1* z11z2* z21z1* z31z2* z4#

2
i

2
@k* ~z12z2!1~z1*2z2* !k#G .

After performing the Gaussian integrals using

E )
i51

m

dz idz i* exp@2m2~z i*Mi j z j2ai* z i2z i* bi !#

5S p

m2Dm~detM !21exp@m2~ai*Mi j
21bj !#, ~A1!

one obtains~2.9!.
Let us evaluate the one-loop diagrams and derive~3.6!.

We consider only the first diagram of Fig. 5 and thus derive
~3.6a!. The remaining two diagrams can be evaluated in the
same manner. The first one-loop diagram gives

8S b

2 D 2S m2

2p D 6 1

aR
6E )

i51

2 dkidki*

~2p!4
L1~k1!G~k2!

3e~ uk1u21uk2u2!/2m2E )
j51

4

dz jdz j* expS 2
m2

2 (
j51

4 Uz jU2D
3expFm2

2
~z1* z11z2* z21z3* z31z4* z41z1* z31z2* z4!G

3expF2
i

2
@k1* ~z12z2!1~z1*2z2* !k1

1k2* ~z32z4!1~z3*2z4* !k2#G .
Integrating overz i and z i* using ~A.1! and changing the
variablesk11k2→k, andk1→p, we obtain

8S b

2 D 2S m2

2p D 2 1

aR
6 e

m2~z1* z31z2* z4!/2E dkdk* dpdp*

~2p!4
L1~p!

3G~k2p!e2uku2/2m2
expF2

i

2
@k* ~z32z4!1~z1*2z2* !k#

1
1

2m2 ~k* p2p* k!G .
Comparing this with the general expression~2.9!, we find
that the one-loop contribution from this diagram to the vertex
function is

2
bm2

2paR
2E dpdp*

~2p!2
L1~p!G~k2p!expS 1

2m2 ~k* p2p* k! D ,
which is equal to the right-hand side of~3.6a!.
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