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We present in detail a nonperturbative method for vortex liquid systems. This method is based on the
resummation of an infinite subset of Feynman diagrams, the so-called parquet graphs, contributing to the
four-point vertex function of the Ginzburg-Landau model for a superconductor in a magnetic field. We derive
a set of coupled integral equations, the parquet equations, governing the structure factor of the two-dimensional
vortex liquid system with and without random impurities and the three-dimensional system in the absence of
disorder. For the pure two-dimensional system, we simplify the parquet equations considerably and obtain one
simple equation for the structure factor. In two dimensions, we solve the parquet equations numerically and
find growing translational order characterized by a length sRalas the temperature is lowered. The tem-
perature dependence Rf is obtained in both pure and weakly disordered cases. The effect of disorder appears
as a smooth decrease Rf as the strength of disorder increase30163-18206)02729-4

I. INTRODUCTION equations previously. In the present work, we were able to
obtain one simple equation for the structure factor, which
Since the discovery of higfiz. superconductors, the na- contains all the nonperturbative information for the 2D vor-
ture of the mixed state in a type-Il superconductor has been &x liquid in the absence of disorder.
focus of theoretical and experimental investigation. In many In this paper, we also apply the parquet-graph resumma-
high-T. materials, thermal fluctuations are responsible fortion technique to the 2D vortex liquid in the presence of
the melting of the vortex lattice phase predicted by the meanguenched disorder. We find that the sharp peaks which ap-
field theory into a vortex liquid phase. The presence of peared in the structure factor of the pure system become
guenched random impurities in the vortex liquid or latticebroadened as the strength of the disorder increases. This is
phases also plays an important role, since it presents a posntirely consistent with one’s intuition that in the presence of
sibility of a dissipation-free current flow due to pinning of disorder the length scal, describing the translational order
flux lines. Theoretical phases such as the vortex glass phaskecomes smaller as compared to the pure case. In the present
for point defects and the Bose glass pHasahe presence of work, since our pure system is always in the liquid phase, the
extended defects have been proposed. As shown by Larkieffect of disorder appears as smooth deviations from the pure
and Ovchinniko¢ (LO) the quenched point disorder de- case. From the nonperturbative results, we find the tempera-
stroys, for spatial dimensioth<<4, the long-range crystalline ture dependence of the length sc&e. It is, however, dif-
order of the vortex lattice. The system is described by soméicult to make any connection between our results and the
characteristic length scak. over which a short-range trans- LO-type argument, since there exists no vortex lattice phase
lational order exists. at any finite temperature within our nonperturbative scheme,
In a previous papet,we developed a nonperturbative while the LO argument always starts from the vortex lattice
scheme to calculate the structure factor of the two-with a true long-range crystalline order.
dimensional(2D) vortex liquid in the absence of random  We note that there exist recent theoretical studiesed
impurities. The main ingredient of this nonperturbative on the elastic theory of pinned lattices suggesting that the
method was the resummation of an infinite subset of Feynpinning by quenched disorder becomes less effective due to
man diagrams contributing to the structure factor, the sothe periodicity of the lattice so that a quasi-long-range order
called parquet grapHsThis is an analytic approach to the 2D persists beyond the Larkin length sca&g. In the present
vortex liquid system which is sophisticated enough to predichonperturbative analysis, the existence of such quasi-long-
growing crystalline order in the system as the temperature isange translational order has not been observed.
lowered. The growth of the translational order was investi- The point whether the 2D vortex liquid in the absence of
gated in connection with the sharp peaks developing in théisorder undergoes a finite-temperature phase transition into
liquid structure factor. Within this scheme, we found no evi-a 2D vortex lattice is still controversial. Numerical
dence for a finite temperature phase transition into the vortesimulation§ seem to suggest a first-order phase transition.
lattice phase and the system remains as a liquid. The lengtHowever, as shown in Ref. 9, these results depend crucially
scale R, characterizing this growing translational order, on boundary conditions. In a spherical geometry, the authors
seemed to diverge only in the zero-temperature limit. of Ref. 9 demonstrated the absence of a finite-temperature
In this paper, we give detailed derivations of the parquetphase transition. There also exists a recent experithpat-
graph resummation technique which were omitted in the preformed on a sample with very weak pinning, where no sign
vious paper. In addition, we present a simplified version of of a phase transition is detected. The present parquet ap-
the parquet equations governing the structure factor, whiclproximation, which is an analytic theory on an infinite plane,
were given in terms of a set afouplednonlinear integral seems to support the absence of a finite temperature phase
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transition between 2D vortex liquid and solid.
Unlike the 2D system, it is generally believed that a 3D F[(b]:f dz"dz

vortex liquid undergoes a first-order phase transition into a

vortex lattice. An experiment by Zeldat al! on Bi-Sr-Ca- B - .

Cu-O has been accepted as convincing evidence for the tran- o exp—p 12]9)[¢(2)]

sition. However, there exists a recent cl&frthat the results

of Ref. 11 might be an artifact due to a particular sample N . .

geometry. Therefore, it would be interesting if one c:ouIdWherefdZ Szdenotes_ the integration over tRey pIa_ng and

develop a three-dimensional parquet-graph resummatioﬁHE““Lhe B/2m vanishes at the mean-field transition tem-

scheme and obtain nonperturbative information on the perature. . .
vortex liquid system. We find that one can generalize the The central quantity in this analysis is the structure factor

parquet equations to three dimensions without difficulty. Un_of the two-dimensional vortex liquid. It is proportional to the

fortunately, the equations become very complicated and ngurier traznsfokrrg of the density-density correlation function,
were not able to obtain a numerical solution to the 3D par-X(K)=Jd“Re"™“x(r,r+R),
guet equations.

In the next section, we introduce the structure factor of a x(r,r =¥ () [A¥ ()2~ (w2 ([w(r)]?),
two-dimensional disordered vortex liquid within the
((j;mz.burg—La}nda_lu theory. In Secs. Il an_d v, we presentwhere the angular brackets denote the thermal averages. The
etailed derivations of the parquet equations which account ; .
for all the parquet graphs contributing to the structure factor tructure factor (k) is then defined by
for both pure and disordered cases. We also consider zero-
dimensional models to discuss the validity of the parquet k2 - —_—
approximation in general. In the following section, we Qexp( - Z_qu)A(k)EX(k)/[<|‘P(r)| e 2.4
present the main results of our calculation and discuss the
temperature dependence of the length s&aleIn Sec. VI, . ) .
we present the generalization of the parquet equations to A convenient way to deal with quenched averages is to
three dimensions. Finally, we conclude with a discussion ofhtroducen replicas ofZ and calculate the correlation func-

2
(et w22 ont - 212kl (0 2

: 2.3

future directions. tions with respect to
n
Il. THE STRUCTURE FACTOR zn:f 1T d(b;d‘ﬁaexf{_f dz*dz[ aye #1272
a

We begin our analysis with the Ginzburg-LandéslL)
free energy for a superconducting film in a perpendicular
magnetic fieldB=V XA in the presence of quenched ran-
dom impurities,

X3 | da(2)[*+ ge*““@ |ba2)*

A
- e S |¢a<z)|2|¢b(z)|2H 25

F[«If]:f dzr(i|(—ihv—e*A)qf|2+[a+T(r)]|«1f|2
2m in the limit n—0. One can develop a standard perturbation

8 theory for(2.5). The bare propagator arising from the pertur-
+ §|\I’|4), (2.1)  bation expansion of2.5) is given by

1 2 2
wherea, B, andm are phenomenological parameters. The ng(g*,z)E(<¢;(§*)¢b(z))>0= 5ab—g—exp<%§*z),
random fieldr(r) representing the quenched impurities sat- @H €T 2
isfies the probability distributionz(r)=0 and '

where the double brackét- - -)) denotes the average with
W=)\ﬁ(z)(r—r’). (2.2) respect toZ". I'F is important to note that, because of the
simple quadratic term of the LLL free energy (R.5), the
renormalized propagat@?f’ is obtained by simply replacing
In this paper we neglect the fluctuations in the vector poten«,, by the renormalized masss. This means that the mag-
tial A and restrict the order parametdf to the space netic lengthu ! is the only length scale involved in the
spanned by the lowest-Landau-leeLL ) wave functions. renormalized propagator. This is one of the simplifying fea-
In the symmetric gauge, whefe=(B/2)(—vy,x), the LLLis  tures of the LLL approximation that makes the present non-
fully described by an arbitrary analytic function of the vari- perturbative calculation feasible.
able z=x+iy multiplied by an exponential factor; As noticed in Ref. 13, the GL free energy obtained from
W (x,y) =exp( (u?4)z* ) $(z), where u’=e*Blh=2m/ (2.5 is not closed under renormalization. The renormaliza-
Q andQ is the area of the unit cell of the vortex lattice. In tion effectively generates the quartic vertices of a general
the LLL approximation, the GL free energy becomes form,
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. 22 (P4 12D ) and similarly w(k), _wher_e k,k* are complex momenta,
1l dz'dze iz ;) | pa(z1)] k=k,+iky,k* =k; —ik, with k=(k;,k,). Thus, Gg(/k|)
’ = B/2 andwg(|k|)=\/2 are constants.
In order to calculate the structure fact(®,4), we need to
, consider the renormalized four-point correlation function
arising from Eq.(2.5),

X (8ap0(|21— 25]) —W(| 23— 2,])) | pp(22) |?

(2.7)
for arbitrary functionsy andw. The bare interactions corre- ((Pa(Z7) b5 (Z5) be(Z3) py(Z4) ))
spond to =GaY(Zr ,25)GRY(Z5 ,24) + GRA(Z5 125)GEX (2 ,24)
9s(|2]) = §5(Z)5(Z*), wg(|z])= %5(2)5(2*)- +{(3(21) b5 (25) be(23) da(Za)))c
It is convenient to work with the Fourier transfotn where the last term denotes the contribution from all con-
) r_lected Feynman diagrams. To th_e lowest o_rder of p_erturba-
'(j(k)=f dz*dzq|z|)exr<|§(k*z+ kz*)) ggr;i;[;%oer)g;r;ilg?ggzcsted four-point correlation function can

u? dk* dk

2 2 2/ % * 2 ~
<<¢;<z’f)¢§(z§)¢c<z3>¢d(z4>>>c=—6acébda—é(5) e R AT

—Wg(|K|)Je I /n7 g ilk (23~ 29 +KE - 212 4 (¢ d, zge52,) + O( B2, BN ND),

(2.9

where the second term on the right-hand side is the same as 27 d?p . i

the first term withc andd, andz; andz, interchanged. In f(k)= f Wf(P)eXF{—z(klpz—kzpl))-
(2.8, we absorbed the renormalization of the propagators K
using the renormalized mass;. To the lowest order, one The general four-point function is then given lésee the
can easily evaluate thie integrals in(2.8), but, in general, Appendi®

higher-order corrections to the connected four-point function

are represented i{2.8) by the departure of the quartic vertex ({3 (z})dp (Z5) be(Z3) pa(Z4))) e

functions from constantgg(|k|) = 8/2 andwg(|k|) =\/2, to

w2

generak-dependent functiongz(k) andwg(k). Therefore, _ i(r“_z) ZeX;{r“_Z(Z*Z Loy ))
the LLL approximation enables us to concentrate on the ap\ 2 2 1732t
renormalized quartic vertex functiongg(k) and Wg(k), . )
which depend only on one variable instead of three charac- dk*dk /_3 k)ex;{ _ &_ ~[K* (25— 24)
terizing three independent channels in a usual field theory. (27)? 2 abcd 2u’ 2 3 4
Now, one can pu€2.8) for generalgg(k) andwg(k) in a
more symmetric form using scaled functions, +K(Z -2 )]) 2.9
2 2j5, 2\ h
fR(k)EEeXK—k 1217)gr(k), where

1
2 1_‘ab,cd(k): E‘Sacgbd[ Sapfr(K)— Our(K)]
vr(k)= XeX[i — k2/2,u,2)V~VR( k).

1 - R
+ = 8240 Sapfr(K) — Ovr(k)], (2.1
The bare vertices are given by 27 o danlr(K) ~ OUR(k)], (210

fa(k)=vg(k)=exp(k?/2u?). Interchangingz; and z, in
the second term on the right-hand side(2®) is equivalent
to using, instead of (k) andvg(k), the transformed func-
tions, fr(k) andwg(k), wheref(k) is defined for an arbi-
trary functionf (k) by

and =/ represents the strength of the disorder. Equation
(2.10 can be represented diagrammatically as in Fig. 1.

The structure factoa (k) is then obtained by joining two
external legs of the four-point correlation functior{,9).
From (2.9) and (2.10 and the definition(2.4) in the limit
n—0, we obtain

s 2w d?p '{ i )
f(k)=7f (27T)Zf(p)ex F(klpZ_kZpl) ) A(k)=1—2xF(k), (211)



54 PARQUET-GRAPH RESUMMATION METHOD FOR VORTEX ... 4221

a,l c,3
a,l a,3 a,l a,3
Z: H + 3
= fR —’(_9' Ve el e
03 a4  bZ " b4 o : T e
b,2 d,4 *,
——y
a,l a,2 a,l b,2 -+ O + ———t
[ $:
R \Y) ——
+  \.R -5 \.. o
+ ,»"V.O‘\ + T et
a,4 a,3 a,4 b,3

FIG. 1. Diagrammatic representation of the renormalized con-

nected four-point correlation function. The labels, 1. ,4,denote FIG. 2. Diagrammatic representation of Dyson equation for the

71 .75 ,23,24, respectively, and, . .. ,d are replica indices. self-energy> . The solid lines represent the renormalized propaga-
tors. The thick dashed and dotted lines are the renormalized vertex

where functions,fg andvg, as in Fig. 1, while the thin dashed and dotted

lines denote the bare vertex functiorfig,andvg, respectively.

1 . -
F(k)EE{fR(kaR(k)_ Olvr(K)+or(k)]} (212 detail how to sum an infinite subset of such diagrams, the
so-called parquet graphs.
and x=u?B/2mad is a dimensionless parameter which ap-  We first consider the pure system where 0, then gen-
pears in the high-temperature perturbation expangidh. eralize the result to the disordered case. The analysis of the
In the following sections, we will evaluatéz(k) and pure case will mostly reproduce results given in Ref. 5. In
vr(K) nonperturbatively by summing the parquet graphs. Aghe present work, we make a further simplification of the
mentioned earlier, we absorb any renormalization of theparquet equation fofg(k) found in Ref. 5 and obtain a very
propagator into the renormalized parametgr. But knowl-  simple equation for the structure facta(k).
edge of the four-point vertex function also fixes the relation- For both pure and disordered cases, we will present the
ship betweenyg and the bare parametes, , thus complet- analysis for the zero-dimensional analogg28), which can
ing the description of the system. This relation comes fronbe integrated exactly. For the pure case, we find it conve-
the Dyson equation arising frort2.5) which is described nient to introduce the parquet resummation scheme in a
diagrammatically in Fig. 2 for the self-energy simple zero-dimensional model and then generalize to the
S=G"1- 651=2w(aR— aH)/MZ; two-dimensional problem. Furthermore, since there is no ap-
parent expansion parameter involved in the parquet approxi-
1 27 d2k b s mation, it would be instructive to apply the parquet resum-
ar=—|1-x(2—- 0)+x2—2—J ———e K2 mation to the cases where exact solutions are known and to
Vx p= ) (2m) compare the approximate result with the exact solution.

X[2(1=0)fr(k) = 0(2— O)vr(k)]|, (2.13 A. d=0

_ _ _ For =0 and dimension =0, the partition function cor-
where ar=ay\27/Bu? is the dimensionless temperature. responding td2.3) is a simple integral,
Note that this is amxactrelationship between the renormal-

ized propagator and the quartic vertex functions. We will, dydy* B

X _ _ 2__ 4
however, usefgr(k) and vg(k) obtained from the present Z(aH,,B)—f 5 ex;{ anlp]*= S 1Yl
nonperturbative approximation. The Hartree approximation
used in the high-temperature perturbation expariSicorre- .
sponds to neglecting terms that depend on the vertex func- = ﬁerfc(a)exmrz),

tions, fgr andvg.
whereo= o /{28 and erfcg)=1—erf(o) is the comple-
. PARQUET-GRAPH RESUMMATION: mentary error function. In the parquet analysis, one calcu-
PURE SYSTEM (A=0) lates the renormalized four-point vertex

In order to calculatég(k) andvg(k), one needs to evalu- ot ot
ate the Feynman diagrams contributing to the four-point cor- =— _R<| ¢|4>C:_R
relation function. In this and the next section, we show in 4 2

i InZ+ !
_n JE—
aB a2R
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FIG. 5. The parquet decomposition of the reducible vertex

. IT;. Again, the labels 1 . . ,4 aredrawn for the general cases. The
FIG. 3. (8) Three one-loop diagrams. The symmetry factors arésame giagrammatic decomposition can be used in higher dimen-

2, 4, and 4, respecti\{ely. The labels.1.,4 aredrawn for. the sional models for both pure and disordered cases.
general cases to be discussed later. For the zero-dimensional case,

there is no distinction between the second and the third diagrams.
But, it is important to separate this contribution into two equal
parts.(b) An example of constructing successive parquet graphs.

If both bare vertices in a one-loop diagram are replaced
by the full renormalized vertex in the above construction of
graphs, then the diagrams become overcounted. There is a

whereag*=(|#|?). Although an exact solution can readily systematic way to eliminate this overcounting and to gener-
be found, one can construct the usual Feynman graph expadte all the Feynman diagrams and the symmetry factors as-
sion forT. To the lowest order, we haié=Tg= /2. To  Sociated with each diagram, and that is to use the full vertex
the one-loop order, the diagrams can be represented &' the bare vertex on the right-hand side of Fig. 3, but the
shown in Fig. 3. A convenient way to generate the next ordef0-calledirreducible vertex for the one on the left-hand side,
diagrams is to replace each vertex in a one-loop diagram byhich is defined as follows: Letl;, i=1,2,3 denote the
the vertices obtained up to the one-loop order. In generafliagrams constructed out of the three one-loop diagrams in
one can construct higher-order diagrams by replacing eachid- 3 andA; the corresponding irreducible vertices, we have
vertex in the one-loop diagrams by the vertices obtained ufyom Fig. 5

to the current order of perturbation expansion. An example 5

of such construction is shown in Fig. 3. The diagrams ob- IM,=— —A4T, (3.13
tained in this way are callegarquetgraphs. Note that par- aR
guet graphs can be separated into two parts by cutting two
propagator lines. _ 4
Although parquet graphs cover an enormous number of M= ;gAzF, (3.1b

diagrams, obviously not all diagrams can be constructed in

this way. The nonparquet diagrams are generated in the

above construction by the so-called totally irreducible verti- 3=— ?A?,F, (3.19

ces whose contribution here is denoted Ry The totally R

irreducible vertex consists of the bare vertex and higherwhere we absorb any renormalization on propagator lines
order[ O(B%)] vertices(see Fig. 4 There is no systematic into ar. Now, for the irreducible vertex\;, we must in-
way of enumerating these higher-order diagrams contributelude all the diagrams that do not belonglig to avoid the

ing to R. The parquet approximation which we employ in overcounting, thusA;=T—1II;. Finally, the renormalized
this work corresponds to keeping only the bare vertex convertexI' is given by the sum of all contributions:

tribution in R: R=I"g= B/2 in the zero-dimensional case. 5

=R+ Zl I, . (3.2
R = >< + -+ 0(8%) Therefore,

Note that(3.1)—(3.3) areexactrelations for the renormalized
FIG. 4. The totally irreducible verteR. vertexI'. But, as mentioned before, we uRe=8/2. To see
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B.d=2

We now consider the two-dimensional problem in the ab-
sence of disorder. The parquet equations can be constructed
similarly to thed=0 case. In fact, Eq43.1)—(3.3) take al-
most the same form as before. The only differences are the
fact that the vertices now depend on the internal momentum
k and the right-hand sides ¢3.1) should be obtained from a
direct evaluation of diagrams in Fig. 5. In the Appendix, we
show explicitly how this calculation is done. The resulting
equations corresponding {8.1) are

I3 (k) = =X(A1°T")(k), (3.63
T1,(k) = — 2xA (k)T (K), (3.6
M5(k)=—2x(Ag*T)(K), (3.69

FIG. 6. The renormalized four-point vertex functignfor the ~ where the operationsand* between two arbitrary functions
pure zero-dimensional model as a function of temperaurdhe  f(k) andg(k) are defined by
solid line is the exact solution. The dashed line corresponds to the

e 2
parquet approximation.

27 [ dp kip2—kap1
(fog) (k)= sz PEES p)g(p)cos( 2 )
which diagrams are explicity summed by the parquet ap-
proximation, one iterate@.1)—(3.3) starting withR= 8/2. A 2w ( d?p
listing of all parquet diagrams up (%) is given in the (f*g)(k)z;;f Wf(k—p)g(p)-
review of Jacksoet al® (their Fig. 8, but their diagrammatic o ) )
formalism is not identical to ours and we have additionalThe remaining parquet equations are given by
diagrams to theirs since there are arrows on our propagators 3

In the language employed in many-body physics, within the _
parquet approach, all reducible two-particle diagrams are F(k)_R(kHZ‘l k), (3.7
summed up by choosing an irreducible kerffer us, the
bare vertexand by preserving the crossing symmetry of the
four-point correlation function. Ai(k)= R(k)f; I1;(k), (3.8
One can easily simplify the above equations Ror 8/2 2
as follows: From(3.1), one has whereR(k) represents the totally irreducible part. In the par-
quet approximationR(k) is equal to the bare vertex part:
_oore? L are R(K)=(1/2) (fg+ f5) = exp(—kZ/2u?).
Hl_ag_zr ' H2_H3_a§_4r ' We can make a simplification on the parquet equations as
in the zero-dimensional case. We first note the following

Therefore, from(3.2), we obtain identities: fog)=(foQ), fog=fog="og, and

v 242 f*g(k)="f(k)a(k). Ins_ertjng Ai(k)=T"(k)—II;(k) _into

y=p— -2 , (3.4) (3.6b and(3.69 and usingl’=T" from (2.10, we obtain
1-y 1-2y
5 5 ) ) N —2xI"2(k)
wherey=2I'/ag andp=B/af. As a function ofp, there is IT,(k)=TI5(k)= m (3.9
only one solutiony(p) that satisfies the trivial condition:
I'=y=0 whenB=p=0. Now, inserting this into(3.63,
To complete the description of the system, one needs a

relation between the barex(; or &) and renormalizeddg or (k) = =X[(R+ T+ 1I3)T"](k)
p) mass. In the parquet approximation, we use an analog of = —X[(R+2IT,)eT (k). (3.10

the Dyson equation2.13, which, in this case, is
Therefore, inserting3.9) and(3.10 into (3.7), we obtain an

1 equation for I'(k). In terms of the structure factor
o=—[1-2p(1-vy)]. (3.5  A(k)=1-—2xI'(k), this equation becomes
V2p
. o . 1-A(k) (1-4)?
From this relation usingy=y(p) obtained from(3.4), one szR(ka(RoA)(k)— A oA |(K).

finds p as a function ofo, and consequently we have the (3.1
renormalized four-point vertex as a function ofo. In Fig. '

6, y(o) of the parquet approximation is compared with theThis is our main equation mentioned in Sec. | that com-

exact solution. One can see there is excellent agreement bpletely describes the structure factor of 2D vortex liquid in

tween the two. the absence of disorder. Note that we have kept the totally
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irreducible partR(k) in a general form. We note that, al-
though this is arexactrelation in a very simple form, it has 5 ca(k)= _ZXE AL (KT peq(k),  (4.1b
little advantage for finding numerical solutidfisover the
coupled parquet equation.6), (3.7), and(3.8) or another
version to be described below. We believe, however, that ngj)’cd(k)z—ZxE (A *Tipee) (k).  (4.10
this equation might open a possibility in the future for a
nonperturbativeanalytic investigation on the 2D vortex lig-  The remaining equations follow froii8.7) and (3.9):
uid.
When we consider the disordered case in the next section, 3 _
it will be necessaryto decomposd(k) into fg(k) and T abcd(K)=Rapca(K)+ 2 TI9 4(k),  (4.10
fr(K) using (2.10 and consider the parquet equation in =1
terms of fr(k) arising from the faithful representation of

Feynman diagrams as in Fig. 1. Equati@9) suggests the A('g cd(K)=Rap, cd(k)+2 H(lb (K, (4.10
following decompositions: i#

where

ab cd(k)= l_‘ab cd(k) = 0acOpd( Oap— O)EXP(— k2/2M2)

. 1 . in the parquet approximation.

Hz(k)=1'[3(k):E[Fz(k)+r‘3(k)], ~ As one can see froni2.10, in order to take t'hen—>0.
limit, one needs to decompose the above equations as in the

previous section and to get equations analogoué3ib2).

First, we note that

1 A
L (k)= 3 [Ta(k)+ k)],

1 N
Al(k)=§[ll(k)+|1(k)].
Agj)),dc(k):Agzb),cd(k)v Habdc(k) ngb),cd(k)'

A 1 “ . . -
Aa(k)=Ag(k)=3[12(k)+15(k) ], :]I'herefore, we can write, for some functiohis, Z;, I;, and
i
for some functiond; andT’;. Inserting these int§3.6), we
have TIED ca(k) = 5ac5bd[ SapT'1(K) = 0E1(K)]
I'1(k)==x(I1°fr)(k), (3.129

1 ~ “
~ n + E 5ad5bc[ é\abl—‘l(k)_ ﬂal(k)],
Io(k)==X[15(k) fr(kK)+12(k) fr(k) +13(k) fr(k)],

(3.12b 1
T ca(K) =118 4 (K) = 5 SacBod Sapl 2(K) — 65 5(K)]
Ia(k)=—x(I13*fr)(k), (3.129
and 1 A N
+ E 5ad5bc[ 5abr3(k) - 053(")]1
3
fr(k)=fg(k)+ 2 Ti(k), (3129  and
=1
1
cd(k) 5ac5bd[ é\abl (k)_ aJl(k)]
Ii(k)=fB(k)+; I'i(k). (3.12¢
1 “ -
This version of the parquet equations has been previously T3 Gaudbdl Sapl 1(K) = 031(K)],
given in Ref. 5.
1
IV. PARQUET-GRAPH RESUMMATION: AD ed0)= A 4e(K) = 5 SacOdl Savl 2(K) — 635(K)]
DISORDERED CASE
1 “ -
For the disordered case, one has to construct the parquet + §5ad5bc[ Oapl 3(K)— 0J3(k)].

equation for the vertex function containingreplica indices.
Let us first consider the two-dimensional case directly. It is
straightforward to generaliz€3.6) to the present case. By
putting the replica indices in the diagrams in Fig. 5, we have

Inserting these expressions ar@d.10 into (4.1) and
eliminating one term that contains an explicit factomofwe
get the following set of parquet equations in the presence of
disorder:

1) =_
Hab cd(k) XE ab ef I‘efcd)( ), (4-13 Fl(k):_X(IlOfR_ ol 1PUR— ﬂJlofR)(k),
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(k)= = x{1 (k) fr(K) + 1 5(K)[ Fr(k) = 80 (k) 1+ [15(k)
—035(K)1fR(K)},
[3(k)=—X(I3* fr— 0l 3x vg— 0J3* f ) (K),
and
21(k) =x0(3100R) (K),
(k)= = x{12(k)vr(k) + (k) fr(k) + Io(K)[ Fr(K)
— 00(K) 1+ [13(k)— 635(k) Jur(k)},

E3(k)=x0(Jz*vr)(K)

with
3
fR<k>:fB(k)+_:21 Ii(k), (4.29
3
vR<k>=vB<k>+i§1 Ei(k), (4.2b
and
Ii(k)sz(k)+; Tj(k), (4.33
Ji(k)=vB(k)+; E;(k). (4.3

0.8

FIG. 7. The renormalized four-point vertex functiorfg, and
vk for the disordered zero-dimensional model as functions of tem-
peratures. The filled triangles, circles, and squares are obtained
from the parquet approximation fa#=0.1, 1.0, and 5.0, respec-
tively. The solid lines are the corresponding exact solutions.

4

sz%[<|w|2>2—[<|¢|2>12]

azR aé d P ]—
= - Bl2—+—|InZ,
B~ BB adf

wherear '=(|#|%) = — 3 InZIday, . These quantities can eas-
ily be evaluated as functions ef and 6 using (4.4).
On the other hand, the parquet equationsffgrandvg

Before solving these complicated equations, we considg@ke exactly the same form a4.2), (4.3), if we make the
first the zero-dimensional toy model where the parquet equd®!lowing simplifications: the binary operationsand+ be-

tions reduce to a set of algebraic equations a3id).

d=0

come multiplications between two factors; the transforma-
tion f has no effectf=f; x is replaced byp=pg/ag; and
finally fg=vg=1. It is then straightforward to eliminate
(orT';) andJ; (or Z,) from the parquet equations in favor of

Ford=0, the partition function is again a simple integral, { = ,f . andv = pvg. The parquet equations then reduce to

dydy*
Z(a,7.)= | F exp(—<aH+r>|¢|2—§|w|4)

| fc(aH+T ;{(QH-FT)Z
= zﬂer \/ﬁ ex 28 .

Averaging overr with respect ta2.2), we have

0

— 1
~InZ(0,8.0)= 5Inp - 2— >

1 * 2
———| do'e ") Ynerfqo’),

Vo)

(4.9

whereo=ay /28, and9=\/B as before.
The quantities corresponding fg(k) andvg(k) in the

zero-dimensional case are defined by

82

—+ —|InZ,
B dad

a4 _ —_— (14
fr=— 552l 1=- 5

the following coupled algebraic equations:

2fL
(1-frtvR)(1+ovp)
fr
+ —2fg=p,
(1—fptop(1—2f+op R P
4.9
2v} v
R R —2v4=6p. (4.6)

_l’_
1+vg (1—-2fp+ovp)?

For given# andp, one can find the corresponding solu-
tions f; and vy to these equations. We can then use the
Dyson equatior(2.13),

1
o= —={1-p(2=0)+p[2(fg—vR) — 0(2fr—vR) ]}
V2p
to find a relation betweep and o: p=p(o) for given 6.
Using this, we obtairfz(o) andvi(o) for given 4. These
are shown in Fig. 7 together with the exact solutions. For



4226 JOONHYUN YEO AND M. A. MOORE 54

0=<1, the parquet results show excellent agreement with the

exact solutions. A® becomes larger, however, the discrep- A
ancies between two solutions grow. This analysis for the
zero-dimensional model suggests that the parquet approxi- e
mation is in general very good when the strength of disorder 61 -
is moderate. But, the diagrams omitted in the parquet ap- =
proximation might produce quantitative errors in the strong 5[ wo
disorder regime. We note, however, that physical quantities VX .
in this approximation remain smooth as functiongafnlike
other approximation methotfson this system. 47 o
3 [ LTy
V. RESULTS AND ANALYSIS . ‘ ‘ . i

For the case of the two-dimensional system, one has to Oy
solve a set of coupled integral equations figi(k) and
vr(k), (4.2 and(4.3), containing two parameteps and 6.

We consider a rotationally symmetric case where all verte>§
functions depend only oK =|k|/u. We apply a similar nu- un

FIG. 8. The renormalized propagatopi2mag~+X) as a
ction of temperaturery in d=2. The filled squares are obtained
from the parquet approximation in the pure case. The open tri-
%ngles, filled triangles, and open squares correspond to the parquet

find it convenient to work wittig(K) =fr(K) — fug(K) and approximation for6=0.1, 0.2, and 0.3, respectively.

vr(K). For a given set of irreducible part$l;(K)} and
{Ji(K)}, Egs.(4.2) are coupledinear integral equations for
hg andvg. We first solve these equations fog for fixed
vgr by numerically inverting a matri£ and then solve for
vgr Using the solutiorhgy. We then update the irreducible

parts using(4.3. The solution to the parquet equations 'S tive picture where the disorder prevents ordering on long

obtained by iterating this procedure. . ) .
A fast convergence can be obtained if we choose the iniI_ength scales. In Fig. 11, we show the height of the first peak

tial functions {1}, {J;}, andvg close to the actual solutions. ?sdatgu?czﬂor} of iﬁmpelr;ture far= 0'|1' |0'2"tharc]id 03. We
At high enough temperatures, it is sufficient to start from Ind that the fengih scals; grows asjas| With decreasing

l.=J,=vg=expK%2). As one goes into the low proportionality constant for increasingy We recall that, in
i—JiTURT : -

temperature regime, it is necessary to use the solution at tge a_bsencet c?r d|sor(;jer, Ithe length scalg (t:h]:';lractle:rlzmg a
temperature close to the desired temperature as initial fumgrlowmgf_cré/str? tmti or (;:r afs?hgrowsv\is;]ﬂ. tu ' row '9. h
tions. We face the same numerical difficulty as in Ref. 5 asl. » We hin at the rate of this gro gets smalfler as the

the temperature is lowered, namely, one has to use a ﬁnéysorder gets stronger. In the next subsection, we show that

mesh inK space as well as a larger cutoff in order to get aone can derive this behavior analytically from the parquet

low-temperature solution. In this case, we hawoapledset equations.

of equations, which requires an additional computing time.

The minimum temperature we used was=—8.5 where

the cutoff was akK=15 and the number of mesh points was

600. We also find it difficult to solve the parquet equations 2

directly for arbitrarily large values of. Again, one needs to

start from the actual solution fof close to the value for

which the structure factor is to be calculated. In the present

analysis, we were able to obtain(K) for three values of A

#; 6=0.1, 0.2, and 0.3. 1r
In Fig. 8, we first present the renormalized propagator

Vx~ag! as a function of temperature; for three values of

0. Compared to the pureg&0) casewt(x) as a function of

x shows very little deviation. In general, one finds that the

same value of paramet&rrepresents a slightly higher tem-

obtained from the inverse width of the first peak, or equiva-
lently from the peak height® For fixed temperatures, we
find that the length scale decreases as the strength of disorder
increasegsee Fig. 10 The result is consistent with an intui-

I A
5

perature a¥ increases. 10 15
In Figs. 9 and 10, the structure factor is plotted for various K
values ofat and 6. The structure factor develops a collec-
tion of peaks around the reciprocal-lattice vect@®4V) of FIG. 9. The structure factor for fixed=0.2 and for various

the triangular lattice. As the temperature is lowered for fixedemperaturegdashed line:a;=—3.78, dotted line:ar=—5.34,

¢, one can clearly see from Fig. 9 that the first peak growsjot-dashed linear=—6.51, and solid lineax;=—8.36). The ar-
with decreasing width. This can be interpreted as a growingows indicate the positions of RLV of the triangular lattice. Since
short-range translational order in the disordered vortex ligthe second and the third RLV are closely spaced, our solution could
uid. The length scal®. over which this order exists can be not resolve these peaks.
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ooty g

and

T (k)= [T 1(k)+Ty(k)— (2 1(k)+ E4(K))],

l
N| =

T,(k)= = [T 5(k) + T5(k) — 6(Z 5(k) + E5(K))],

Il
N| =

I5(k)=TI(k).

Using these functions and the original parquet equations,
(4.2 and(4.3), one can find a set of equations B(k) as
follows:

0 10 3
K P (k) =Tg(k)+ 2, T1i(K), (5.13
FIG. 10. The structure factor for fixed= 30 (or slightly varying Ai(k)=T(k)—1II;(k), (5.1b
at; —6.67<a7<—6.45), and for various values @f =0 (thick
line), 0.1, 0.2, and 0.3. The peaks are getting smaller as the strength I, (k)= —x(AT)(k), (5.10
of disorder @) increases.
62

Parquet equations for <1

For very weak disorder§<1, one can extract from the

IT5(k)==2x| Ax(K)I'(K) = - Ja(K)vg(k) |, (5.1

parquet equations the smallbehavior of the structure factor I14(k) =T1,(k), (5.1e
A(k) around the pure {=0) solution. One can in fact de- h

rive the temperature dependence of the length skaléor where

small # from the parquet equations. In order to do that, we Ta(k)=(1— 8)exp — k2/2u2), (5.2

need to find the parquet equation analogoug3té), (3.7),
and(3.8) for I'(k) = (1/2)[ hg(k) + hg(k)]. Out of the func-
tions used in(4.2) and(4.3), we define

1 - -
Aq(k)=S[1(K) + 1K) = 6Q2(K) + Ix (k)]

1 - n
Aa(K)= 5 [1a(k) +15(k) = 6(32(K) + Is(k))],

As(k)=Ay(k)

FIG. 11. The heightA; of the first peak as a function of tem-

and we have used the above-mentioned identities involving
the binary operations, and*. Note that these equations are
almost the same as those given in the pure d&s8), (3.7),
and(3.8). One extra term inf5.1d comes from the subtrac-
tion of the diagram containing an explicit factor of There

is of course the second equation ig¢, which couples non-
trivially to these equations.

Note that the structure factoA(k) is just given by
A=1-2xI", and we can simplify the above equations as
done in the pure case to get one equation for the structure
factor. From(5.1d and theJ, equation in(4.3b), we have

) 14 2xA,(K)
2K =vr(K) T 00

Inserting this into(5.10), we obtain

1
Az(k)zg

A(K)—26xvg(K)
[A(K)— Oxvr(K)]?

Now using(5.19 and the identities mentioned above, we
find
A(k)—26xvg(k)
[A(k)— Oxvr(k)]?

= 14X g(K) +x(TgoA ) (K)

A2+ A_ZGXUR
ST [A—Oxvg)?

oA)(k).
(5.3

perature. The filled circles, triangles, filled squares, and opetWWhen =0, this reduces t¢3.11). So far we have not made

squares correspond to the solutionsfatO, 0.1, 0.2, and 0.3, re-
spectively. The solid lines are linear fits.

any assumptions on the magnitude é&f For small 9, one
may consider the lowest-order perturbation in the structure



4228

JOONHYUN YEO AND M. A. MOORE

54

factor as compared to the pure solution. Note that, up to We consider only the pure case for simplicity. The order

O( ), the equation takes the same form as in@he0 case,
except thatl'g(k) in (5.2 contains an additional factor of
(1-6). This means that fop<1, the solution for giverd
and x is the same as the pure solution, denotedARy at
x(1-6),

A(k;x,0)=A [k;x(1-6)], 6<1. (5.4

For givenx and 6, «at is determined via2.13. If we
denote bya?(x) the relation betweem andx for 9=0,
then from(2.13 and(5.4) we deduce that t®(6)

0
ar(x)=af[x(1-0)]- 5[2\x+af(x)]. (55

We note that, forg=0, a3(x)=[1—xBa(X)1/ X~ — VXBa

parameter¥(x,y,r,) in 3D depends on the coordinate
perpendicular to thex,y) plane. In the lowest-Landau-level
approximation, the order parameter takes the form

|

The GL free energy analogous (8.3) is given by

2

\I’(X,y,rl): ¢(Zirl)ex4 - %|Z|2

FLo1= | ar a2 a2 (10, g7+ al e #2

+ Do pleBl gtz I,

whered, =4d/dr, . The renormalized propagator can be writ-

asat— —, where the generalized Abrikosov ratio changes;o, o5
from 2 at high temperatures to some low-temperature limit,

Ba. In the pure case, we founthat the length scale grows
as ~|a¥(x)|~ VXBa(x). Using (5.4 and(5.5), one can de-
rive that

Re~BaV(1— 0)x~

as ar— —. As mentioned before, this behavior is already
captured in our numerical solutigqgee Fig. 11

1
1—0(

|aT|

VI. GENERALIZATION TO THREE DIMENSIONS

u? %

* . — *
G(g 1ZaQ)— zwg(q)ex4 2 g Z)v (61)
whereq is the Fourier momentum correspondingrto. For
the bare propagatog,(q) = (g>+ ay) ~*. But, the renormal-
ization drivesG(q) into a general function. This is in contrast
to the two-dimensional case where the propagator is com-
pletely described by one parametes .

Similarly, the renormalized four-point vertex carries four
momentag,d,,qs, andd,, in addition tok describing the
correlation in the X,y) plane. Among the four momenta

In this section, we apply the parquet resummation metho@nly three will be independent due to the momentum conser-
to a three-dimensional vortex liquid system. We shall demvation (q;+0d,=0d3+0d4). Using, for example, new vari-
onstrate that, while the generalization of the parquet equaables,s=q;+0q,, t=0;—ds, andu=q;—0d,, one can de-

tions to three dimensions is straightforward, it is virtually

scribe the renormalized four-point vertex function in terms

impossible to solve the equations using the same numericalf I'(s,t,u;k). The parquet equations for follow from Fig.
technigue as in the 2D case. We shall then discuss a possitfe By evaluating the diagrams in Fig. 5 using the momentum

analytic approach to the problem.

conservation on each vertex, one finds that

dq s+t+u s—t—u s—t+u s+t—u
Hl(s,t,u;k)=—nf - A Ayl s, —5——q0- —5 [ Is4-———.0-— (k),
dqg s—t+u s+t+u s—t—u s+t—u
Hz(s,t,u;k):—znf EQ(q,t)Az q+ 5 b —-q:;k|T| g+ 5 b 5 K,
dq S+t—u s+t+u s—t—u s—t+u
Hs(s,t,u;k)=—27;f 77 AW Ag g+ ——, ————qu Il g+ ——.q- —5—.u (k)

where n=Bu?/27 andQ(q,q9’)=6(q)G(q—q’) and° and
* operate on the two-dimensional momentlkmas before.

whereR accounts for the totally irreducible parts, which is
set to

The remaining parquet equations take the same form as in

the 2D case:

3
F(s,t,u;k)=R(s,t,u;k)+Zl I1(s,t,u;k),

Ai(s,t,u;k)=T"(s,t,u;k) —II;(s,t,u;k),

R(s,t,u;k)=exp —k?/2u?)

independent o§,t,u in the parquet approximation.

The first difficulty one faces when one tries to solve the
above parquet equations as in the 2D case is the fact that the
propagator is given as an unknoviumctionin this case. In
the 2D problem, we were able to determine the unknown
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constantag (or x) self-consistently using the Dyson equa- VIl. DISCUSSION AND SUMMARY
tion. In this case, we have a functional self-consistent equa-

tion for the self-energ®(q) =G 1(q) — gal(q) as follows: In this paper, we applied the parguet resummation method

to the 2D vortex liquid with and without quenched impurities
and to the 3D vortex liquid in the absence of disorder. In the
q’ 2D system, we were able to solve the parquet equations nu-
E(q)=277f ﬁg(q/) merically and find the length scaR,. The temperature de-
) . pendence oRR. was also obtained. In the pure 2D vortex
_2772277 d“k dqg'dg e‘kz’zﬂzg(q')g(q”)g(q liquid, we found in the previous papethat the agymptotlc
w?) 2m)? (2m)? forms, A(Kk)~2mu?2g.00?(k—G), or equivalently
S, , T frk)~x"[1-7u?256@(k—G)] solves the parquet
+9'=0")T(q+a".9-9".9"=q":k). equations if the inverse width of th&function peaks, or the
length scaleR, behaves likey'X~|ay| asar— —%. In the
Even if one uses this self-consistent relation, the parquedisordered case, one can obtain similar low-temperature as-
equations are coupled integral equations for the fundtiafi ~ Ymptotic forms forfg(k) andvg(k) in terms of 6 functions
four independent Variab|e$’¢,u and |k|) Storing all the aroundk ~ G. One can then obtain expressionsmgrsimilar
data forl" and for all the irreducible parts; in the numeri- t0 (5.6). These simple asymptotic forms, however, have
cal calculation will be a formidable task. Furthermore, thesSome limitations. First of all, the amplitude of each
integrations in the equations become multiple sums and-function peak cannot be determined from the parquet
therefore the previous numerical method of inverting a ma€guations. It is also not clear whether one can use these
trix becomes more cumbersome. One may have to resort tofgPresentations in the strong disorder regime. In the previous
direct iteration, which converges slower than the numericafection, we argued that an ansatz lik&(k,q)
inversion of matrices. ~ 8(0) 2600 (k—G) was not enough to produce any use-
These numerical difficulties, however, should not discour-ful nonperturbative information for the three-dimensional so-
age one from attempting to get some nonperturbative inforlution. We believe that finding appropriate low-temperature
mation from the parquet equations. In 2D, the parquet equaasymptotic forms for the vertex functions is a first step to-
tions seem to be a minimal set of equations that predicts th&ards a more fruitful use of the parquet equations. To this
growing translational order in thecy) plane, whose length €nd, a simple equation liké.11) might be useful.
scale is characterized 1. Thus, we expect that the above  The effect of random impurities on the mixed state of a
3D parquet equations contain among other things nonpertufyPe-Il superconductor is usually described by the so-called
bative information on various length scales characterizing-arkin-Ovchinnikov argumertt,which states that for a di-
the low-temperature regime of the system. In addition tonensiond<4 the long-range crystalline order of the mixed
R., the 3D system may have growing length scales for thétate is destroyed by a weak disorder. For thin films
correlation in ther | direction. We denote by, the length (d=2), one can estimate the Larkin length sc&g over
scale arising from the propagatgrand byL . the one asso- Which a short-range order persist§ &~ |a+|/\. Although
ciated with the 3D structure factor the|aq| dependence dR. is the same as the present result,
S(k,q)= (27 n?)expk?2u?)x(k,q) [see(2.4)], where we note that there is a basic difference between our result
and the LO-type argument. Since the LO argument starts
from a perfect crystalline state wheke=0,R.=c, a very
small amount of disorder makes an abrupt change as can be
seen from the /A dependence oR.. Within the parquet
e approximation, there is no 2D crystalline phase and the pure
5 J' dg'dq G(q")G(a")G(a+q" )Gl system has a finit®; at any finite temperature. As we have
7 (27)? g q ara d seen in the previous sections, the effect of small disorder is
"r Vo S represented as a smooth decrease of this length scale.
+99)l(a+9’+09"9.9"~q"k). In this paper, we have concentrated on a rotationally sym-
metric liquid state where the vertex functions depend only on
If one uses in the parquet equations some kinds of lowthe magnitude ok. But, for example, in the presence of
temperature asymptotic forms fei{(q) and S(k,q) which  magnetoelastic interactions between vortices, one must con-
are characterized by the length scalgs, L., andR;, one  sider generak-dependent vertex functions in the parquet
might be able to extract nonperturbative relations for thesequations. We recall that the input parameters of the parquet
length scales and the temperature. We have tried a simplkquations are the temperature and the bare vertex functions,
ansatz wherej and S are represented a&-function-like  fg andvg. It would be interesting to study a situation where
sharp peaks arourgi=0 andk=G (RLV). The length scales the bare vertex functions possess a nontrikialependence.
are set to be equal to the inverse width of the corresponding One could also generalize the present parquet resumma-
peaks. But, we found that these forms are too simplified tdion technique to study the dynamics of type-ll supercon-
produce a sufficient amount of information on the temperaductors. We expect that the parquet equations for the time-
ture dependences of each length scale. We believe that modependent Ginzburg-Landau theory can be obtained without
sophisticated asymptotic forms are needed for the analysis ehuch difficulty. But, the vertex functions will depend on the
the 3D parquet equations. This point will be discussed agaifrequency as well as the usual momenta. Thus, one faces
in the next section. similar numerical difficulty to the 3D case. In addition, one

d !
stka)= | Srd(anda+a)
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After performing the Gaussian integrals using
¢ ¢ m
¢ 11 deidgfexst —w(£ My~ 6= b))
— -

T m
=(?) (detM) ~exd u?(af M;; 'by)], (A1)

é/ é/*
one obtaing2.9).

FIG. 12. Diagrammatic representation of the propagator and the L€t us evaluate the one-loop diagrams and de(&).
four-point vertex. We consider only the first diagram of Fig. 5 and thus derive

(3.6a. The remaining two diagrams can be evaluated in the
same manner. The first one-loop diagram gives

o &) 2] ) 1 o

4 4
e(‘k1|2+‘k2|2)/2l4‘2f Jl;[l dgldg]k ex% — %Z

has to be careful in taking the LLL limf?

2 *
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APPENDIX: EVALUATION OF DIAGRAMS

Here we give some examples of evaluating the Feynman
diagrams involved in the present work. Similar analysis can
be found in the Appendix of Ref. 21. We consider only the
pure case X=0) for simplicity. The results can easily be
generalized to the disordered case carrying the replica indi-
ces. Feynman diagrams are constructed by connecting the

i
Xex;{ - E[kf(§1_§2)+(§’{ -3k,

propagator lines represented 8:6) with the quartic verti-
ces, which can be obtained froff.7) as(see Fig. 12

dkdk 20 2
- [K| /2
(2m)? (ke

ge—ﬁ(lélzﬂz'\zwz

xexr{—Iz[k*(f—é”)Jf(é“*—é”*)k]}

By joining four propagator linegstarting fromz; and
z5 and ending az; andz,) with this vertex, we have

B /"Lz 4 dkdk* |k|2/ 2
T e
2

x f [T dgdgr e wlal+lalre
=1

2
%
Xex;{7[z’l‘ Ut 258+ {123+ {5 24]

ST (G L)+ - K|,

+K5 (3= La)+ (L3 _ﬁ)kz]}

Integrating over¢; and £ using (A.1) and changing the
variablesk; +k,—k, andk,;—p, we obtain

B\ n?\? 1 dkdk* dpdp*
8 E (E ZG_elL2(2123+z 24 /Zf T )4 Al(p)
R

i
><F(k—p)e|"|2’2“2exp{ ~ 5IK* (25~ 2) + (21~ 23)K]

1
* _Nn*
+—2M2(k pP—p*k)|.
Comparing this with the general expressi9), we find

that the one-loop contribution from this diagram to the vertex
function is

dpd 1
e I pro] ki |.

which is equal to the right-hand side (8.63.
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