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We present a formalism for evaluating the amplitude of the NMR spin echo and stimulated echo as a
function of pulse spacings, for situations in which the nuclear spins experience an effective longitudinal
magnetic fieldhz(t) resulting from an arbitrary number of independent sources, each characterized by its own
arbitrary time correlation function. The distribution of accumulated phase angles for the ensemble of nuclear
spins at the time of the echo is approximated as a Gaussian. The development of the formalism is motivated by
the need to understand the transverse relaxation of89Y in YBa2Cu3O7, in which the89Y experiences63,65Cu
dipolar fields which fluctuate due to63,65Cu T1 processes. The formalism is applied successfully to this
example, and to the case of nuclei diffusing in a spatially varying magnetic field. Then we examine a situation
in which the approximation fails—the classic problem of chemical exchange in dimethylformamide, where the
methyl protons experience a chemical shift which fluctuates between two discrete values. In this case the
Gaussian approximation yields a monotonic decay of the echo amplitude with increasing pulse spacing, while
the exact solution yields distinct ‘‘beats’’ in the echo height, which we confirm experimentally. In light of this
final example the limits of validity of the approximation are discussed.@S0163-1829~96!05630-5#

I. INTRODUCTION

The problem of nuclear spins which experience a fluctu-
ating effective local magnetic field is ubiquitous in NMR.
Often situations arise in which only thez componenthz of
the local fieldh plays an important role~wherez is also the
direction of the applied static field!, affecting the transverse
relaxation process~T2! only. One classic example is the di-
polar coupling of nuclear species ‘‘B’’ to an unlike species
‘‘ A’’ which is being observed. Only the secular terms in the
‘‘ A-B’’ dipolar Hamiltonian, whereby the ‘‘A’’ spins expe-
rience an effectivez component of magnetic field emanating
from the B spins, are important. Herzog and Hahn1 treat
situations in which this dipolar coupling field is modulated,
either through dipolar interactions within theB spin system
or through the application of radio-frequency magnetic fields
at the B Larmor frequency. More recently Walstedt and
Cheong2 have demonstrated the importance of63Cu-17O di-
polar interactions in their17O T2 data for high-Tc supercon-
ductors. In their case the dipolar field fluctuations experi-
enced by17O result from very rapid63,65Cu spin-lattice
relaxation~T1! processes. Another such situation is the prob-
lem of spins diffusing in a magnetic-field gradient;3–5 in this
case the magnetic fields are uniform in time, yet the field
experienced by the nuclear spins is modulated due to their
motion within the gradient.

In our research on vortex fluctuations in YBa2Cu3O7 we
find that the89Y T2 is effected by the63,65Cu-89Y dipolar
interactions in a manner identical to that described by Wal-
stedt and Cheong. They performed numerical Monte Carlo
simulations of the63,65Cu T1 process, and its effect upon the
17O T2, and obtained results which agreed quantitatively
with experiment. In order to understand our own89Y T2 data,
and to obviate the need for numerical simulation, we have
sought and obtained an approximate analytical method which
can be used to modelT2 behavior resulting when spins ex-
perience fluctuating longitudinal fields.

At the outset we must distinguish between transverse re-
laxation as measured by the envelope of the free-induction
decay~FID! (T2* ), and the decay of the amplitude of the spin
echo as a function of 2t, wheret is the spacing between the
90 and 180° pulses. In many cases, especially for solids and
quadrupolar nuclei, there exist static~inhomogeneous!
broadening mechanisms in addition to the dynamic processes
which are of interest, and in these cases the dynamical be-
havior is accessibleonly through the spin-echo peak height,
since the spin echo refocuses the inhomogeneous effects.
Treatments of the free-induction decay are relatively plenti-
ful in standard textbooks,6–8 while treatments of transverse
relaxation for the spin echo are somewhat less
common.9,10,1,8Anderson and Weiss11 approached the prob-
lem taking a Gaussian distribution of instantaneous fieldshz ,
fluctuating with an arbitrary correlation function. Their ap-
proach has also been generalized to treat the spin-echo
amplitude.8 There is a distinction, however, between the
Anderson-Weiss approach, and a subsequent approximation
taken by Neumann,12 and later by Tarczon and Halperin,9 in
treating transverse relaxation of spins undergoing restricted
diffusion in a magnetic-field gradient. In this situation the
distribution of instantaneous fieldshz is clearly non-
Gaussian. The Neumann approximation, however, is to take
the distribution of accumulatedphasesat the time of the spin
echo to be Gaussian distributed. It is reasonable to expect
that this is a less stringent condition.

The approach which we take is identical in physical con-
tent to that of Neumann.12We generalize the approach, how-
ever, to allow for an arbitrary number of independent sources
field hz , each having its own arbitrary correlation function.
This generalization yields an expression which is convenient
and transparent for our application of the method to the cal-
culation of the89Y T2 in YBa2Cu3O7, which experiences
dipolar fields from both ‘‘plane’’ and ‘‘chain’’ 63Cu and
65Cu, each producing dipolar fields with differing correlation
functions. We show that our approach also yields transverse
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relaxation results obtained by Tarczon and Halperin9 for
spins diffusing in an arbitrary magnetic-field profile, but with
a simple physical interpretation for their results: that each
spatial Fourier component of the magnetic field distribution
acts as an independent source of fluctuating field with an
exponential correlation time related to the Fourier wave vec-
tor and the diffusion coefficientD.

Finally we apply our expression~in this case with only a
single source ofhz! to a classic problem: that of chemical
exchange, specifically for the molecule dimethylformamide.
Here the methyl protons experience a chemical shift which
fluctuates between two discrete values on a time scale which
shortens with increasing temperature. The transverse relax-
ation in this case can be derivedexactly, and we show, both
experimentally and theoretically, that in the limit of long
correlation times the echo height~as a function of pulse spac-
ing! contains ‘‘beats’’ which are not predicted in our ap-
proximation. In light of this final example we discuss the
limits of validity of the model.

II. GENERAL FORMALISM

We consider an ensemble of spins, initially pointing along
the z axis, and the trajectories of their magnetic moment
vectors during the time following a 90° and then a 180°
pulse. @Implicitly we are taking an average over a set of
subensembles of nuclear spins such that within each suben-
semble the spins experience the same fluctuating magnetic
field with z componenthz(t).# We operate in a rotating
frame such that ensemble average^hz(t)& of the fluctuating-
field vanishes. Immediately following a 90° pulse the spins
are oriented along what we define to be thex direction. Sub-
sequently spins respond to their local fieldhz(t) and rotate
within the xy plane, accumulating a phase~measured from
the initial x axis! f(t):

f~ t !5gE
0

t

hz~ t8!dt8, ~1!

whereg is the gyromagnetic ratio of the processing nuclear
spins. A 180° pulse~about thex axis! at timet then changes
the sign of the phase, so that the phase at the time of the echo
is given by

f~2t!5gE
t

2t

hz~ t9!dt92gE
0

t

hz~ t8!dt8. ~2!

Since the time dependence of the fluctuating field is random,
the phase is also a random variable.

The NMR signal size at time 2t is given by the product of
M0 ~the signal size fort50! and the average of cosf:

M ~2t!5M0

E ~cosf!P~f!df

E P~f!df

, ~3!

whereP~f! is the probability distribution function for the
accumulated phasef. We see immediately from Eqs.~2! and
~3! that for time-independentmagnetic fieldshz the spin-
echo height is undiminished;f will be zero both att50 and

at t52t. For time dependent fields, however,f may average
to zero over the full ensemble, yet typical values for the
subensemble are nonzero.

In the event thatP~f! should be a Gaussian with second
moment^f2&, the signalM ~2t! from expression~3! is given
by

M ~2t!5M0expF2
1

2
^f2&G . ~4!

Our approach uses one essential approximation taken by
Neuman,12 thatP~f! is a Gaussian, or, in the event that it is
not Gaussian, that expression~4!, incorporating thesecond
momentof the phase probability distribution, provides an
adequate approximation of the signal size. The problem of
finding the echo signal amplitude then reduces to that of
finding the second moment. We now proceed to find the
second momentof the actual probability distributionP~f!.
We find that the calculation is not very difficult for many
cases of interest.

First it is convenient to write thez component of mag-
netic field hz acting on a spin as a sum of any number of
independentlyfluctuating contributionsh z

( i )

hz~ t !5(
i
hz

~ i !~ t !. ~5!

Now we computêf2& at the timet52t, the peak of the
spin echo wheret is the 90–180° pulse spacing. First we
calculatef2 for an individual spin experiencing a fieldhz(t)
by using expression~2! above:

f25g2S E
t

2tE
t

2t

2E
t

2tE
0

t

2E
0

tE
t

2t

1E
0

tE
0

t D
3(

i51

V

(
q51

V

hz
~ i !~ t !hz

~q!~ t8!dt dt8, ~6!

where the leftmost and rightmost integrations in each term
apply to t and t8, respectively. Now we need the ensemble
averagêf2& of this quantityf2, given above. First, the fluc-
tuatorshi andhq are assumed to be independent; thus, in the
ensemble average their products fori not equal toq will
vanish. The ensemble average ofhi(t)hi(t8) can be reex-
pressed in terms of the field autocorrelation functiongi(t)
~Refs. 6 and 7! for the i th independent fluctuator:

^hz
~ i !~ t !hz

~q!~ t8!&[gi~ t2t8!d iq , ~7!

thus yielding

^f2&5g2S E
t

2tE
t

2t

2E
t

2tE
0

t

2E
0

tE
t

2t

1E
0

tE
0

t D
3(

i51

V

gi~ t2t8!dt dt8. ~8!

The correlation functionsgi(t) satisfy the conditions that
gi(0)5^(h 0

( i ))2&, thatgi(2t)5gi(t), and thatgi(t) vanishes
in the limit as t approaches infinity. We now introduce the
spectral densityJi~v!, the Fourier transform ofgi(t):
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Ji~v!5E
2`

`

gi~ t !exp~ ivt !dt;

~9!

gi~ t !5
1

2p E
2`

`

Ji~v!exp~2 ivt !dv.

Combining the previous two equations and performing the
integration, we obtain for the mean-square precession phase
at the timet52t of the echo

^f2&
echo
spirit52

g2

p (
i51

V E
2`

`

dv
Ji~v!

v2

3$4 cosvt2cos2vt23%. ~10!

The size of the echo signal can be determined within the
Gaussian approximation from̂f2& via expression~4!.

An analogous result can be derived for thestimulated
echo ~Ref. 3! consisting of the sequence 90-t-90-T-90-t-
acquire. Phase is only accumulated during the timest, and
not during theT interval when the spins are along thez axis.
The mean-square phase is evaluated by replacing the~t,2t!
limits of integration by (t1T,2t1T) in Eq. ~8!:

^f2&
echo
stim.52

g2

p (
i51

V E
2`

`

dv
Ji~v!

v2 ~2 cosvt12 cosv~t1T!

2cosv~2t1T!2cosvT22!. ~11!

III. FLUCTUATING FIELDS WITH EXPONENTIAL
CORRELATION FUNCTIONS

The expressions derived above have an advantage of gen-
erality in that they are written in terms of an unspecified,
general correlation function. As they stand, however, they
are rather unwieldy; it is desirable to demonstrate their ap-
plication for a specific case. The exponential correlation
function has wide applicability, and in fact the expressions
given above reduce to much simpler expressions if the expo-
nential function is taken.

The exponential correlation functiong(t) is given by

gi~ t !5^~h0!
2&expS 2

utu
tc

D ~12!

with correlation timetc . The spectral density in this case is
Lorentzian. For this particular correlation function the ex-
pressions for̂f2& evaluated at the echo peaks become

^f2&
echo
spin52g2(

i51

V

^~h0
~ i !!2&~tc

~ i !!2$@~2t!/tc
~ i !#14e2~2t!/2tc

~ i !
2e2~2t!/tc

~ i !
23%, ~13a!

^f2&
echo
stim.52g2(

i51

V

^~h0
~ i !!2&~tc

~ i !!2H ~2t!/tc
~ i !12 exp~2t/2tc

~ i !!12 exp@2~t1T!/tc
~ i !#

2exp@2~2t1T!/tc
~ i !#2exp~2T/tc

~ i !!22 J . ~13b!

Again taking the Gaussian approximation we can determine
the height of the echo peaks:

M
echo
spin5M0expF2g2(

i51

V

^~h0
~ i !!2&~tc

~ i !!2

3$~2t!/tc
~ i !14e2~2t!/2tc

~ i !
2e2~2t!/tc

~ i !
23%G , ~14a!

M
echo
stim.5

M0

2
expF2g2(

i51

V

^~h0
~ i !!2&~tc

~ i !!2$2t/tc
~ i !12e2t/tc

~ i !

12e2~t1T!/tc
~ i !

2e2~2t1T!/tc
~ i !

2e2T/tc
~ i !

22%G . ~14b!

If only one source of fluctuating field is present@so that
the summation symbol in expression~14a! is unnecessary#,
then expression~14a! is identical to an expression given by
Herzog and Hahn1 and by Abragam,8 using the approach of
Anderson and Weiss21 in which the instantaneousfield dis-
tribution is taken to be Gaussian distributed. It is important
to note, however, that the above results are obtained using
the less stringent condition that thephasedistribution at the
time of the echo maximum is approximated as Gaussian. It is
also important that Eq.~14! and the more general expres-

sions~4!, ~10!, and~11!, do allow the possibility of multiple
sources of fluctuating field, each with its own distinct corre-
lation function. This feature of our result makes application
of the Gaussian approximation more transparent. For the
case of the89Y T2 in YBa2Cu3O7, for example, we will show
that this approach can accurately duplicate the results of nu-
merical simulations.

IV. LIMITING BEHAVIOR AND THE EFFECTIVE
TRANSVERSE RELAXATION TIME T2eff

We now consider limiting behaviors for the case of a
single fluctuating field sourceh(t) with mean-squarez com-
ponenth0

2 and correlation timetc . For this special case re-
sults are well known,8 but we summarize them here for con-
venience:

M'M0expF2
1

12
g2h0

2tc
21~2t!3G for t/tc!1, ~15a!

M'M0exp@2g2h0
2tc~2t!# for t/tc@1. ~15b!

For the short correlation time limit the signal follows a
simple exponential decay withT2 given by Redfield theory
predictions, while for the opposite limit the behavior is ex-
ponential in the quantity~2t!3.
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Expression~14a! for the echo size certainly does not pre-
dict simple exponential behavior. Nevertheless the practical
spectroscopist may wish to estimate an ‘‘effectiveT2’’ de-
fined as the time when the signal drops to 1/e times its full
value. Such an effectiveT2 we call ‘‘T2eff.’’ T2eff can be
obtained from Eq.~13a! by solving for the roots of a tran-
scendental equation. The results for a single fluctuator are
shown in Fig. 1.~Also shown is theT2eff for a free-induction
decay, discussed below.! The qualitative features of Fig. 1
are as expected: For very long correlation timesT2eff for the
spin echo becomes long, since some frequency jump is cer-
tainly required in order to prevent the echo from refocusing
perfectly. For very short correlation times motional narrow-
ing occurs, and againT2eff becomes long. For intermediate
correlation times, where 1/tc is of the order ofgh0, however,
T2eff has a minimum of 3.78tc @equal to 3.25~gh0!

21#, occur-
ring whengh0tc50.86. The minimum inT2eff, occurring for
1/tc of order of thespreadin instantaneous frequencies, is
reminiscent of the well-known minimum inT1,

7 which oc-
curs when a similarly defined correlation rate 1/tc matches
the Larmor frequencyv0.

It is illustrative to compare the behavior of the spin echo
with that of the free-induction decay~FID!.6,1,8Here we must
make assumptions about the static~long tc limit ! line shape.
We take it to be a Gaussian with a second moment~gh0!

2.1,8

Taking the same correlation timegh0tc50.86, we find that
the 1/e time for the FID is 2.2tc @equal to 1.9~gh0!

21#,
substantially shorter than the echo decay time, reflecting the
expected~partial! ‘‘refocusing’’ effect of the 180° pulse. The
T2eff minimum for the free-induction decay occurs in the
limit of tc approaching infinity, and is equal toA2~gh0!

21.

V. SPECIFIC APPLICATIONS

Now having presented the general results for the method,
we turn to two specific examples illustrating its application.
We first consider the transverse decay of89Y in the high-Tc
superconductor YBa2Cu3O7, as it experiences fluctuating di-
polar fields from neighboring63Cu and65Cu nuclei. The re-
sults are shown to agree with numerical calculations which
do not employ the Gaussian approximation, and with experi-
ment. Then we address the problem of diffusion of spins in
an arbitrary field profile, and show that our approach repro-
duces results obtained by Tarczon and Halperin9 and by
Robertson.10 Subsequently in Sec. VI we explore the limits
of the model by applying it to the problem of proton NMR in
the presence of chemical exchange in the molecule dimeth-
ylformamide.

A. The T2 of
89Y in YBa2Cu3O7 as influenced by63Cu T1

We initiated these calculations of spin-echo heights dur-
ing our investigations of vortex dynamics in the high-Tc su-
perconductor YBa2Cu3O7 using

89Y NMR. Suh, Torgenson,
and Borsa13 reported extensiveT2 measurements on

89Y and
found a substantial vortex contribution to the transverse re-
laxation rate~1/T2!; yet 1/T2 effects were present and also
substantial in the normal state, and by our estimates much
faster than could be explained through spin-spin coupling
between the89Y themselves.

We considered the89Y-63,65Cu dipolar coupling effect.
With a resonance frequency of 2.1 MHz/T for89Y and 11.3
MHz/T for 63Cu, these nuclei are clearly ‘‘unlike’’ in the
sense that mutual spin flips do not conserve energy and
hence do not occur. The89Y-63Cu effective dipolar coupling
then consists of only the Hamiltonian term containing the
89Y spin z componentI z ~z points along the applied, static
field, which in our case is along the crystalc axis! and63Cu
spinSz :

89263Hdip.5
89g63g\2

r 3
~123 cos2u!I zSz ~16!

wherer is the magnitude of the position vector connecting
the nuclei andu is the angle made between it and thez axis.
For the 89Y this Hamiltonian gives an effective magnetic
field hz :

hz5
63g\

r 3
~123 cos2u!mz , ~17!

wheremz is thez component of spin for the
63Cu. Of course,

the 89Y has many63Cu neighbors, and thus it experiences
magnetic fields from many sources.63Cu is a spin 3/2
nucleus, and thusmz can take on values23/2,21/2,1/2,3/2.

Upon first consideration it would seem that the effective
field hz as given in expression~17! would have no effect
upon the amplitude of the89Y spin echo—the effects of such
a static magnetic field should berefocusedin a spin-echo
experiment. As Walstedt and Cheong2 have noted, however,
this field is not static on the time scale of the89Y T2~;10
ms! ~or the 17O T2, as in their measurement!, because the
63CuT1 is quite fast~;1 ms!. Walstedt and Cheong simulate

FIG. 1. Effective transverse relaxation timeT2eff, as derived
from the Gaussian-approximation method described in the text, for
the decay of the spin-echo height with 2t, wheret is the spacing
between the 90° and 180° pulses~solid curve!, and for the free
induction decay~Refs. 1 and 8! ~dashed curve!, both plotted as a
function of the dimensionless parametergh0tc . Heregh0 charac-
terizes the low-temperature~long correlation time! NMR linewidth,
andtc is a correlation time~see text for more rigorous definitions!.
T2eff is defined as the time required for the signal to fall to 1/e times
its initial value. The minimum inT2eff for the spin echo occurs
whengh0tc;1, reminiscent of the well-known minimum inT1,

7,8

which occurs whengH0tc;1, wheretc is a similarly defined cor-
relation time, andgH0 is the Larmor frequency. Note thatT2eff for
the spin echo is always greater than or equal to that of the free-
induction decay, reflecting the refocusing effect of the 180° pulse.
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the fluctuating63Cu dipolar field using knownT1 values and
accurately calculate the17O T2 in the lanthanum cuprate su-
perconductors.

Of course, if the89Y-63Cu dipolar interaction does indeed
determine the89Y T2, then one must be quite careful in in-
terpreting the89Y T2 temperature dependence in terms of
vortex dynamics; the63CuT1 varies dramatically as one low-
ers temperature belowTc , and thus one must be concerned
that the89Y T2 variation may result from63Cu T1 variation
rather than the properties of the vortex system.

Thus, we have performed calculations that are analogous
to those of Walstedt and Cheong for89Y in YBa2Cu3O7. The
great advantage of the calculation is that there areno adjust-
able parameters. 63Cu and65Cu T1’s are known,

14 as are the
position vectors of Cu neighbors with respect to the89Y
nucleus. We have shown that, in order to attain accurate
results one must include dipolar fields from the nearest-
neighbor planar Cu nuclei~of which there are eight!, the
nearest-neighbor chain Cu nuclei~eight!, and the next-
nearest-neighbor planar Cu~16!. In the numerical calculation
we consider an ensemble of 100089Y spins, and of course
for each we must simulate the independently fluctuating be-
havior of the 32 near-neighbor Cu atoms. The results of this
numerical calculation in the normal state forT595 K are
shown in Fig. 2. Also shown are the experimental data and
theanalytic formula, which we discuss below. It is clear that
the numerical calculation provides an excellent match with
the experimental data withno adjustable parameters. This
confirms that at 95 K89Y-63Cu dipolar interactions dominate
the 89Y T2. ~We have also found that in the superconduct-
ing state an extra contribution, presumably from vortex dy-
namics effects, is required. We will describe these results in
a future publication.!

Now we turn to a comparison of thenumerical and
analytical calculation results, again shown in Fig. 2. While
the numerical result requires detailed, stochastic simulations
of large ensembles, the analytic result is quite simple. The
application of Eq.~14a! to the problem is a straightforward
procedure. The independent fluctuatorshi(t) are the various
63Cu and 65Cu neighbors of the89Y, and the correlation
timestc

( i ) are precisely the63,65Cu T1’s, asT1 characterizes
the exponential decay of the autocorrelation function
^mz(0)mz(t)& for magnetic relaxation processes. It would at
first appear that a complication arises from the random oc-
cupations of the naturally abundant63Cu ~69% abundant! and
65Cu ~31%!. But in fact this presents no problem: the mean-
square dipolar field of thei th Cu neighbor is given with an
added abundance weighting factor:

63h0
250.69„63g\~123 cos2u!/r 3…2I ~ I11!/3,

65h0
250.31„65g\~123 cos2u!/r 3…2I ~ I11!/3, ~18!

where I53/2 for both63Cu and65Cu. For each atomic site
both of the terms listed above for63Cu and65Cu, respec-
tively, must be included, along with their accompanying fac-
tors that appear in Eq.~14a!. In essence, at each Cu site, we
think of there beingtwo independent fluctuators with weight-
ings 0.69 and 0.31 and having correlation times given by the
63Cu and65CuT1’s. This isnotany additional approximation

beyond the Gaussian approximation that has been used all
along.

The analytical result for the decay of the89Y spin echo
with 2t is shown together with the numerical calculation in
Fig. 2. The agreement is quite remarkable. This might be as
expected in this case—with 32 near neighbors each contrib-
uting one of 24 possible different local fields at the yttrium
site it seems likely that the phase distributionP~f! would
approach a Gaussian for most parameter times. We return to
this point later.

B. Diffusion in arbitrary magnetic-field profiles

Hahn3 addressed the problem of finding the spin-echo
height in the presence of spatial diffusion of the nuclei
within a nonuniform magnetic field. For the case of an effec-
tively infinite sample dimension with a constant applied
magnetic field gradientG, Hahn showed that the echo am-
plitude as a function of twice the pulse spacingt could be
written as

FIG. 2. Spin-echo height vs 2t ~wheret is the spacing between
the 90° and 180° pulses! for 89Y in the normal state of YBa2Cu3O7,
with an applied field of 9 T and temperature 95 K. The hollow
diamonds ~L! are experimental data. The solid dots~d! are
the results of a computerized numerical simulation, which contains
no adjustable parameters. This simulation is fully analogous to
work of Walstedt and Cheong~Ref. 2!, who use this method to
analyze theT2 of

17O in high-Tc cuprates. In the simulation the
echo decay is assumed to be the result of the fluctuating dipolar
field produced by the neighboring63Cu and65Cu spins. The dipolar
field fluctuations are the result of63Cu and65Cu T1 processes, and
theT1 values are well known from experiment. The simulation uses
an ensemble of 100089Y spins~implying approximately 3% statis-
tical error for the early times!, each under the influence of fluctuat-
ing dipolar fields of 32 Cu near neighbors~including both plane and
chain Cu’s, and with appropriate statistical populations of63Cu and
65Cu!. The simulation is in excellent agreement with experiment.
Finally the solid line uses the Gaussian approximation formalism
described in the text. There are 32 sourceshi of fluctuating field,
corresponding to the 32 Cu near neighbors. The field strength of
each of these sources is easily calculated from their known dis-
tances from the89Y spin, and their correlation times are equal to
theirT1’s ~which are different for63Cu and65Cu, and for plane and
chain Cu’s!. The Gaussian approximation, which yields a relatively
simple analytical expression, is in excellent agreement with the nu-
merical simulation.
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M ~2t!}exp@2g2G2D~2t!3/12#, ~19!

where D is the molecular diffusion coefficient andg is
the nuclear gyromagnetic ratio. NMR studies of diffusion
have historically been of great interest, and currently appli-
cations in biomedical physics make the subject even more
timely. The idealized case considered by Hahn of infinite
sample length and uniform gradient, however, is not ad-
equate for many situations of interest. For example, the water
trapped inside a biological cell will experience ‘‘restricted’’
diffusion. Equation~19! may be valid for early times, but
not for times greater thant such thatADt is greater than or
comparable to the sample dimension. Robertson10 used
the Bloch equations to treat the case of a finite cylindrical
sample in a uniform field gradient. Subsequently Neuman12

used the Gaussian approximation to extend the calculat-
ions to samples of noncylindrical shape. Finally Tarczon
and Halperin9 again used the Gaussian approximation to
address the problem of an arbitrary magnetic-field distri-
bution. The Gaussian-approximation formalism which we
use here is a generalization of these approaches, and thus
naturally their results also follow as a consequence of the
formalism.

We consider a one-dimensional sample of lengthL
aligned along thez axis, extending fromz50 to L, and ex-
periencing a magnetic fieldhz(z). Following Wayne and
Cotts,15 we artificially extend the sample in the following
way: First, we extend the sample to include the range for 0 to
2L using the conditionhz(2z)5hz(z). Now this structure
of length 2L is periodically repeated~with period 2L! to
extend the sample from2` to 1`. While in reality a
nuclear spin approaching the sample boundary atz5L
would be reflected back, we consider instead that it instead
moves forward, but experiences the field profile which it
would have had, had it been reflected. In this way the finite
sample may be thought of as infinite, with a periodic mag-
netic field, and the effective field may be written as a Fourier
serieshz(z)5(kh̃(k)e

ikz with k52np/2L.
Now, in order to apply the formalism we must calculate

the correlation function experienced by the nuclear spins dif-
fusing in this magnetic field profile of infinite length. Con-
sider first asubensemble of nuclei which are assumed to
begin at positionz0 at timet, and which experience a field of
hz(z0). The correlation function a timet8 later for this sub-
ensemble is given by

hz~ t !hz~ t1t8!5hz~z0!
E dz hz~z!e2~z2z0!2/4Dt8

E dy e2y2/4Dt8
, ~20!

where the range of integrations is2` to 1`. Then, to find
the ensemble average for the whole system we average over
the equally probable starting positionsz0:

hz~ t !hz~ t1t8!5

E dz0hz~z0!E dz hz~z!e2~z2z0!2/4Dt8

E dz0E dy e2y2/4Dt8
.

~21!

This expression is evaluated to yield

hz~ t !hz~ t1t8!5(
k
h̃~k!h̃~2k!e2k2Dt8. ~22!

Remarkably, this result expresses the field autocorrelation
function as the sum of contributions from independent fluc-
tuators, here indexed by the wave vectork, with mean-square
fields and correlation times given by the following expres-
sions:

^~h0
~k!!2&5h̃~k!h̃~2k!,

1/tc
~k!5k2D. ~23!

Thus we can identify each spatial Fourier component as an
independent fluctuator, and apply the Gaussian-
approximation formalism, using Eq.~14!. This yields the re-
sults obtained by Tarczon and Halperin9 for the spin-echo
height resulting from diffusion in an arbitrary field profile.
Again this result is exact apart from the assumption that the
phase distribution at the time of the echo can be approxi-
mated as a Gaussian.

VI. LIMITS OF APPLICABILITY, AND APPLICATION
TO A SIMPLE MODEL OF CHEMICAL EXCHANGE

The Gaussian-approximation method which we have pre-
sented provides a simple recipe for understanding spin-echo
heights in many cases. Theonly approximation that we have
taken is that the distribution of phase angles is taken to be
Gaussian. Our exact calculation of the second moment of the
phase distribution then fully specifies the distribution and
enables us to compute the signal. There are, however, real-
istic and realizable experimental situations in which the
phase distribution at the time of the echo is distinctlynon-
Gaussian. We consider such a situation, which is also a clas-
sic problem of NMR—the simplest form of chemical ex-
change, whereby a nucleus experiences a chemical shift
which can randomly alternate between two discrete values,
each occurring half the time on average. This kind of system
was considered by Gutowsky, McCall, and Slichter,16 and is
also treated by Slichter,7 and others.17–20

A. Two-site chemical exchange model

The results for the continuous wave absorption curve~or,
equivalently, the Fourier transform of the free-induction-
decay signal! of the two-site chemical exchange model intro-
duced above are well known:7 the low-temperature line
shape consists of two sharp peaks of equal area, located at
frequencies1v0 and2v0 ~where we measure frequencies
from the center of mass of the line shape!. At high tempera-
ture, however, these peaks collapse into one narrow peak at
zero frequency. As the temperature is raised from the low to
high, the peaks gradually broaden and shift towards zero, and
then collapse to zero frequency at temperatures such that the
molecular jumping rate becomes comparable to or faster than
the low-temperature frequency splitting.

Although it has previously been calculated theoretically,20

the behavior of the spin-echo height as a function of pulse
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spacing for this system is not widely known. We will derive
an exact expression for this quantity and then compare and
contrast it with the prediction based on the Gaussian-phase
approximation, which gives the following:

M
echo
spin5M0exp@2v0

2tc
2$~2t!/tc14e2~2t!/2tc

2e2~2t!/tc23%#, ~24!

where 2t is twice the pulse spacing, and the quantitytc is the
correlation time for ‘‘jumps’’ of the NMR frequency be-
tween the values of plus and minusv0. More precisely, if the
frequency is initially1v0, then the probability per unit time
for a jump to2v0 is 1/~2tc!. We will show that Eq.~24! is
highly accurate for short correlation times~v0tc!1!, but
very inaccurate for the opposite limit. In fact, for the case of
longer correlation times the echo height as a function of 2t is
found theoretically, and observed experimentally, to have
beats.

We follow the approach given by Slichter7,16,21 to calcu-
late the free-induction decay, and extend it to calculate the
spin-echo height. We denote the two alternate sites for the
nuclei as sitesA ~having resonance frequency1v0! andB
~2v0!. We may also define the quantitiesM A

1 andM B
1 in

terms of the instantaneous nuclear magnetization vectors as-
sociated with the A and B sites, respectively:
M A

15MAx1 iM Ay ~henceforth we will omit the ‘‘1’’ super-
script!. Now, with a jumping rate 1/2tc between theA andB
sites, the differential equations governing the behavior of the
magnetization are as follows:

d

dt
~MA!5 iv0MA2

1

2tc
~MA2MB!,

d

dt
~MB!52 iv0MB1

1

2tc
~MA2MB!. ~25!

It is helpful to reexpress these equations in terms of the vari-
ables

X[MA1MB ; Y[MA2MB . ~26!

Following the initial pulse, the quantityX, which gives
the signal size, can be taken as one. We assume that the
initial pulse orients the magnetization along thex axis. The
evolution ofX andY at a time t following the initial 90°
pulse~but before the 180° pulse! can be shown to be

X5exp~2t/2tc!Fcosvt1 1

2vtc
sinvt G ,

Y5exp~2t/2tc!F i

v/v0
sinvt G , ~27!

where

v[v0F12S 1

2v0tc
D 2G1/2.

v is the effective oscillation frequency which is reduced by a
damping term. ~We shall also consider the cases ofcritical
damping@v50# andoverdamping@v is imaginary#.! Now,
it is clear by symmetry that thex components of theMA and

MB vectors will remain equal as time evolves, while theiry
components will remain of equal magnitude but opposite
sign. Following a timet a 180° pulse is applied about thex
axis, and the effect is toreverseinstantaneously the sign of
the quantityY while leavingX unchanged. This creates a
new initial condition, and the time evolution may recom-
mence. One can show that the echo height at a time 2t fol-
lowing the initial 90° pulse is given by

M ~2t!5M ~0!exp~22t/2tc!Fcos2 v

2
~2t!

1S 111/Q2

121/Q2D sin2 v

2
~2t!1

1

2vtc
sin@v~2t!#G ,

~28!

where

Q[2v0tc .

Equation~28! is formally correct even for imaginary fre-
quenciesv. It is interesting, however, to consider thelong
correlation timecase, whereQ is large, and to keep only
terms up to first order in 1/Q. That yields the following
simple approximate result, valid for largeQ, and forall val-
ues of the parametert/tc :

M ~2t!'M ~0!exp~22t/2tc!F11
1

2vtc
sin@v~2t!#G .

~29!

This expression demonstrates that the echo has ‘‘beats’’ in
the long correlation time regime. Although the ‘‘beats’’ in
the echo height vs 2t which are discussed here have previ-
ously been demonstrated theoretically,18,20 the present au-
thors are unaware of any experimental verifications. The
molecule dimethylformamide provides a realization.17 Figure
3 illustrates the two molecular orientations leading to the two
discrete chemical shift values experienced by the methyl pro-
tons. The C-N bond has partial double bond character, which
tends to maintain the molecule in a planar configuration. The
methyl protons experience a different instantaneous chemical

FIG. 3. The molecule dimethylformamide. The figure illustrates
the two possible configurations of the molecule with respect to the
methyl protons which we label with a prime~8!. The C-N bond has
partial double bond character, partially hindering ‘‘twisting’’ mo-
tions of the molecule about this axis. In the left panel the formyl
oxygen is opposite the primed methyl protons, but in the right panel
the formyl hydrogen is opposite. These two configurations result in
different chemical shifts for the primed methyl protons. Jumps be-
tween these two configurations then cause the chemical shift of the
methyl proton to be modulated, and this modulation serves to di-
minish the height of the spin echo with increasing 90–180° pulse
spacing.

54 4213GAUSSIAN-APPROXIMATION FORMALISM FOR . . .



shift ~differing by some 0.16 ppm! depending upon whether
they are located opposite the formyl group oxygen or the
formyl hydrogen; however, if the molecule ‘‘twists’’ as
shown in the figure, these shift assignments are reversed.
Gutowsky and Holm17 measure correlation times for the
twist of order of 10–100 ms near and above room tempera-
ture with an activation barrier of;3500 K.

Figure 4 shows the spin-echo height of the methyl protons
vs 2t at a temperature of 393 K.~The echo height is
obtained as follows: We Fourier transform the spin echo,
taking the zero of time to be located at 2t following the
initial 90° pulse. Then to obtain the echo height associated
only with the methyl protons, we measure the area under
their absorption curve, which is easily resolved from the
formyl proton peak which is also present.! The echo clearly
shows the predicted beat structure. Also shown is a fit to Eq.
~29!. We obtain the damped frequency parameterv5234.36
radians/s directly from the Fourier transform of the free-
induction-decay signal~not shown!. The one remaining ad-
justable parametertc can be obtained by fitting the echo
height vs 2t. Figure 4 shows the fit withtc528.1 ms. Note
that a single parametertc determines both the overall decay
rate and the amplitude of the sinusoidal term; thus the ex-
cellent fit obtained is an impressive demonstration of the
concept.

B. Limits of validity of the Gaussian approximation

How might these beats be understood, given that they do
not occur in the Gaussian approximation? As it happens, the
result can be easily understood for the case of largeQ and
small values oft/tc , which we now consider. Figure 5 gives
a semiquantitative illustration, in terms of the expected prob-

ability distribution function for the phase accumulated by a
nuclear spin at the time of the echo.~The Appendix gives a
thorough, systematic approach to calculating the phase prob-
ability distribution for this problem.! The figure shows the
probability distribution of the accumulated phase at the time
of the echo~at a time 2t following the initial 90° pulse,
assuming the long correlation time regimetc@t and
tc@1/v0. The former restriction assures that each spin will
experience few, if any, frequency jumps during the echo se-
quence. The fraction of spins which will experienceno fre-
quency jumps is;12t/tc . These spins will refocus perfectly
at the time of the spin echo. Thus, they contribute to the
phase probability distribution ad function atf50 of weight
12t/tc . The phase accumulated by the spins experiencing
one jump is uniformly distributed between zero~for spins
which experience jumps occurring immediately following
the 90° pulse or immediately prior to the echo! and62v0t
~for jumps occurring at the same time as the 180° pulse! and
contributes a total areat/tc . The signal contribution from the
spins experiencing one jump is obtained by integrating the
phase probability distribution times cosf, which yields the
contribution containing beats:~1/2v0tc!sinv0~2t!. This ap-

FIG. 4. Spin-echo height vs 2t of the methyl protons in dimeth-
ylformamide.t is the spacing between the 90° and 180° pulses. The
echo height clearly shows a beat structure which is predicted in the
text, but which is not consistent with the Gaussian approximation
formalism. Also shown is a fit to Eq.~29!, a solution of the Bloch
equations supplemented with the chemical exchange process as de-
tailed in the text. The damped frequency parameterv5234.36
radians/s is obtained directly from the Fourier transform of the free-
induction-decay signal~not shown!. The one remaining adjustable
parameter istc . The fit shown above yieldstc528.1 ms. Note that
a single parametertc determines both the overall decay rateand the
amplitude of the sinusoidal term.

FIG. 5. Schematic diagram to explain the ‘‘beats’’ which occur
in the spin-echo height vs 2t ~wheret is the pulse spacing! for the
two site chemical exchange problem in the long correlation time
limit. The instantaneous NMR frequency of an ensemble spin can
take on one of two discrete values,1v0 or 2v0. The frequency
jumps between these values randomly with a probability per unit
time 1/~2tc!. This figure shows the probability distribution of the
accumulated phase at the time of the echo~at a time 2t following
the initial 90° pulse, and assume the long correlation time regime
tc@t andtc@1/v0. The fraction of spins which will experience one
frequency jump is«52t/2tc . The spins which experienceno jump
will be refocussed at the time of the echo, and accumulate zero
phase. They contribute ad function of weight 12« at f50. The
phase accumulated by the spins experiencing one jump is uniformly
distributed between zero~for spins which have jumps occurring
immediately following the 90° pulse or immediately prior to the
echo! and62v0t and contributes a total area«. The signal contri-
bution from the spins experiencing one jump is obtained by inte-
grating the probability distribution times cosf, which yields a con-
tribution containing beats:~1/2v0tc!sinv0~2t!.
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proximate expression is quite similar to the second term in
Eq. ~29!, except that it involves the undamped frequencyv0
instead ofv. Clearly the approximation is quite good for
t!tc and forv0tc large.

Although we can understand Eq.~29! for t!tc and for
v0tc large, it is much more difficult to understand Eq.~29!,
in terms of the anticipated phase probability distributions, for
the case oft@tc ~and, again,v0tc@1!. In that case the typi-
cal spin has experienced many frequency jumps, and thus the
simple argument given in the preceding paragraph is not
valid. One can at least understand thefirst term in Eq.~29!. It
results from the dwindling supply of spins which have expe-
riencedno frequency jumps, despite the fact thatt@tc . Note
that this term decays as exp~22t/2tc!, which isdramatically
slowerthan the decay predicted by the Gaussian approxima-
tion for the same limit~t@tc andv0tc@1!: exp@2v0

2tc~2t!#.
It is clear thateven fort@tc , the phase probability distribu-
tion retains important deviations from the Gaussian form,
notably including ad function at zero phase, which cause the
Gaussian-approximation method to fail dramatically.

Overall, how adequate is the Gaussian-phase distribution
approximation to treat this system? Figure 6 shows spin-echo
heights vs v0~2t! calculated using both the Gaussian-
approximation method and the exact solution. The figure
shows that the Gaussian-approximation method is quite good
for small values of the parameterv0~2tc!, but not good at all
for larger values, as discussed above.

For small values ofv0~2tc!, and fort@tc , the typical spin
has experienced approximatelyt/tc frequency jumps, accu-
mulating a phase of order6v0~2tc! each time. This is a
classic ‘‘random-walk’’ situation, and in this limit the phase

probability distribution should indeed approach a Gaussian
with second moment 2v0

2tc~2t!; thus, it is not surprising that
the Gaussian approximation is successful.

Even for large values ofv0~2tc!, Fig. 6 demonstrates that
the Gaussian approximation is accurate for small values of
v0~2t!. This is also easily understood. In this limit the phase
distribution is highly non-Gaussian; however, its full width is
quite small, since the largest values of accumulated phase are
6v0~2t!. In this limit the average valuêcosf& can be ap-
proximated as~12^f2&/2!, which is in agreement with the
expression obtained from the Gaussian approximation,
exp~2^f2&/2!.

The model of chemical exchange presented here might be
considered a ‘‘worst case scenario’’ for application of the
Gaussian approximation, and yet the approximation remains
adequate in most limits. The limit which gives trouble is
v0~2tc!@1, where the phase distribution becomes highly
non-Gaussian. This doesnot indicate, however, that the
Gaussian approximation is invalid for all problems in which
tc much greater than the reciprocal of the low-temperature
linewidth. tc characterizes the amount of time required for a
field change of magnitude comparable to the total linewidth.
In many situations, however, smaller field changes occur on
much smaller time scales. For example, for the case of dif-
fusion in a field gradient, the instantaneous frequency is a
continuous function of time. For any nonzero time interval
each spin experiences continuous range of frequencies with
some random character. It certainly appears more plausible
in this case that the phase distribution would take on a near-
Gaussian form. ~Nevertheless, deviations from the Gauss-
ian approximation in these situations are predicted.22–24!
Similarly, for the case of89Y experiencing dipolar fields
from 63,65Cu—in a timetc ~which is equal to the CuT1!, all
the neighboring Cu’s experience typically oneT1 transition,
so again the field experienced by the89Y is more nearly a
continuous function of time, and thus one expects approxi-
mately Gaussian-phase distributions.

VII. CONCLUSIONS

We have presented a simple and fairly general approxi-
mate formalism which enables one to evaluate spin echo and
stimulated echo heights. The formalism approximates the
phase distributionP~f! at the time of the echo as a Gaussian,
and presents a mathematical method for calculating the
width of the Gaussian, and hence the signal, for situations in
which the spins experience fluctuating longitudinal magnetic
fields having arbitrary time correlation functions. The ap-
proximation is applied successfully~and shown to be in
agreement with numerical calculations not incorporating the
approximation! to the problem of the transverse relaxation of
89Y in the high-Tc superconductor YBa2Cu3O7, where the
89Y experiences fluctuating dipolar fields from63,65Cu neigh-
bors which undergo rapidT1 transitions. Results obtained by
Tarczon and Halperin9 for transverse relaxation of spins
which diffuse in an arbitrary field profile are also shown to
follow from the formalism—not surprisingly, since the for-
malism which we have presented is a generalization of the
approach which they applied to that specific problem. Fi-
nally, we discuss a situation in which the formalism is not
appropriate—the two-site chemical exchange problem,

FIG. 6. Spin-echo heights vsv0~2t! where t is the spacing
between the 90 and 180° pulses, for a model in which the nuclei
experience an instantaneous resonance frequency of either1v0 or
2v0. Jumping between these two discrete frequencies occurs ran-
domly with a probability per unit time 1/~2tc!. The echo height is
calculated using two theoretical methods: the Gaussian approxima-
tion method, and the exact solution, both described in the text. The
figure shows that the Gaussian approximation method is quite good
for small values of the parameterv0~2tc!, but not good at all for
larger values. For large values ofv0~2tc! the phase probability dis-
tribution deviates strongly from a Gaussian form, as illustrated in
Fig. 5; thus it is not surprising that in this case the Gaussian ap-
proximation fails.
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where a nucleus experiences an instantaneous frequency of
either1v0 or 2v0, and over time also experiences transi-
tions between these frequencies occurring with a correlation
time tc . In that situation, we find, both experimentally and
through an exact theoretical solution, that forv0tc@1, oscil-
lations occur in the height of the echo as a function of 2t,
where t is the spacing between the 90° and 180° pulses.
These oscillations are clearly not expected from the
Gaussian-approximation formalism. We discuss the highly
non-Gaussian-phase distribution which is obtained in this
problem. Finally, we discuss the limits of validity of the
approximation; the approximation is expected to be reason-
ably good for all cases in whicheitherDvtc!1 or Dvt!1
~or both!, whereDv characterizes theinstantaneousdistribu-
tion of NMR frequencies. Finally, the approximation may be
reasonably good even forDvtc@1 andDvt@1 if the instan-
taneous frequencies are nearly continuous functions of time,
and do not experience the large~of orderDv! and effectively
instantaneous~occurring in times much faster than 1/Dv!
frequency ‘‘jumps’’ which occur in the two-site chemical
exchange problem.
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APPENDIX

In this appendix we present an approach to calculate the
probability distribution for the phase angle accumulated by a
nuclear spin at the time of the spin echo for the two-site

chemical exchange model discussed in Sec. VI. We calculate
the distribution including the effects of up to seven fre-
quency jumps; hence the calculation should yield accurate
results for small values of the parametert/tc , which charac-
terizes the typical number of frequency jumps experienced
by a nuclear spin. The methodology of the calculation can, in
principle, be used to calculate the distribution to an arbitrary
number of jumps and arbitrarily larget/tc .

We first define the functionn(Dt)5(12e2Dt/2tc), the av-
eragefraction of spins whose precession frequency switches
at least once during any time intervalDt. Consider a suben-
semble of spins whose precession frequencies jumpj times
before the 180° pulse~with the first jump occurring at time
t1, the second jump at timet2, . . . and thej th jump at t j
where 0,t1,t2,•••,t j,t! and an additionalk times ~at
times t,t j11,t j12, . . . ,t j1k,2t! after the 180° but prior
to the time of the echo. We label this subensemble asBjAk,
whereB stands for ‘‘before’’ andA stands for ‘‘after.’’ If the
spin has an initial frequency of6v0 then its accumulated
phase at the time of the echo is6fBjAk, wherefBjAk is
given by

fBjAk~$t i%!52v0(
i51

j

~21! i t i22v0 (
i5 j11

j1k

~21! i t i

22v0t~21! j@12~21!k#. ~A1!

Note that the accumulated phase is a function of the random
set of transitions times$t i%. Below we list a few examples:

f050,

fA52v0t124v0t, fB522v0t1 ,

fAA52v0t122v0t2 , fBA522v0t122v0t214v0t,

fBB522v0t112v0t2 ,

fAAA52v0t122v0t212v0t324v0t. ~A2!

One can show that the average differential number of
spins dNBjAj(t1 ,t2 , . . . ,t j1k21 ,t j1k) in the subensemble
BjAk at the time of the echo is given by

dNBjAk~ t1 ,t2 , . . . ,t j1k21 ,t j1k!

5dt1ṅ~ t1!3dt2ṅ~ t22t1!3dt3ṅ~ t32t2!3•••dtj1k21ṅ~ t j1k212t j1k22!3dtj1kṅ~ t j1k2t j1k21!3$12n~2t2t j1k!%

5~2tc!
2~ j1k!dt1dt2•••dtj1k21dtj1ke

22t/2tc, ~A3!

whereṅ(Dt)5(2tc)
21exp(2Dt/2tc) is the derivative ofn(Dt). The differentialdNBjAj(t1 ,t2 , . . . ,t j1k21 ,t j1k) contributes

to the phase probability distribution,d functions of weight (1/2)(2tc)
2( j1k)dt1dt2•••dtj1k21dtj1ke

22t/2tc occurring at the
phases6fBjAk($t i%), wherefBjAk($t i%) is given in Eq.~A1!. The phase distribution for the entire subensembleBjAk is then
given by

PBjAk~f!5
1

2~2tc!
j1k E

0

t

dt1E
t1

t

dt2•••E
t j21

t

dtjE
t

2t

dtj11E
t j11

2t

dtj12•••E
t j1k21

2t

dtj1k$d~f2fBjAk$t i%!

1d~f1fBjAk$t i%!%e22t/2tc. ~A4!
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By summing the phase distribution functionsPBjAk(f) for
all the subensemblesBjAk which havej1k5n, we obtain
the contribution to the phase probability distribution function
Pn~f! of the subensemble of spins which execute exactlyn
jumps during the spin-echo sequence~without regard to the
timing of the jumps!. One can verify that thePn~f! are ap-
propriately normalized in that their integrals yield the Pois-
son distribution functionsNn , the fraction of spins which
experiencen jumps within the time interval 2t ~with jumps
occurring with probability per unit time of 1/2tc!. Nn is
given by the following relation:

Nn5
e22t/2tc~2t/2tc!

n

n!
. ~A5!

Equation ~A6! gives the appropriately normalized suben-
semble phase distribution functions up ton57, all of which
are nonzero only in the range22v0t,f,2v0t :

P0~f!5e22t/2tcd~f!,

P4~f!5
e22t/2tc

12~2v0tc!
4 ~4v0

3t323v0tf21ufu3!,

P1~f!5
e22t/2tc

4v0tc
,

P5~f!5
e22t/2tc

128~2v0tc!
5 ~16v0

4t428v0
2t2f21f4!,

P2~f!5
e22t/2tc

2~2v0tc!
2 ~2v0t2ufu!,

~A6!

P6~f!5
e22t/2tc

960~2v0tc!
6 ~48v0

5t5240v0
3t3f2

115v0tf424ufu5!,

P3~f!5
e22t/2tc

8~2v0tc!
3 ~4v0

2t22f2!,

P7~f!5
e22t/2tc

4608~2v0tc!
7 ~64v0

6t6248v0
4t4f2

112v0
2t2f42f6!.

Summing these functions yields the phase probability distri-
bution function, accounting for the effects up to seven jumps.
The expression should be accurate for situations in which the
parametert/tc is small.

P0~f! is a d function containing exp~22t/2tc! spins,
while the function P1~f! is a box of height
exp~22t/2tc!/4v0tc ; each of these terms are discussed in
Sec. VI in the main body of this paper. These terms alone
would lead to a signal given by Eq.~28! ~but withv replaced
byv0!. It is certainly not easy to understand why inclusion of
the remaining terms in phase probability distribution expan-
sion @as they appear up ton57 in Eq. ~A1!# should result in
the very simple~and exact! expression for the signal size
which is given in Eq.~28!.
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