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Closure of the Monte Carlo dynamical equations in the spherical Sherrington-Kirkpatrick model
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We study the analytical solution of the Monte Carlo dynamics in the spherical Sherrington-Kirkpatrick
model using the technique of the generating function. Explicit solutions for one-time obserditdethe
energy and two-time observabldgke the correlation and response functi@re obtained. We show that the
crucial quantity which governs the dynamics is the acceptance rate. At zero temperature, an adiabatic approxi-
mation reveals that the relaxational behavior of the model corresponds to that of a single harmonic oscillator
with an effective renormalized mag$0163-18206)00129-4

I. INTRODUCTION (see, for instance, the time series expansion carried out by
Franz, Marinari, and Parisi in case of tipe=3 spherical
The off-equilibrium features of glassy systems constitutespin-glass modé&) this is still an open problem. Recently a
a very interesting field of research. A great deal of attentiorcompletely different approach to the dynamics of glassy sys-
has been paid to the study of the dynamics of exactly solviems has been proposed by Coolen and Sherrin§tdhey
able models of disordered systems where much relevant inntroduce a closure assumpti@ime equipartitioning hypoth-
formation can be gathered even in the mean-field case. Nwesi9 which yields evolution equations for the one-time ob-
merical simulations of short-ranged and long-ranged modelservables. In comparison with the results of simulations they
reveal a similar nature of the off-equilibrium dynamicé.  obtain fairly good results in the short-time regime. However,
The outstanding phenomenon which characterizes the offt is still unclear whether the equipartitioning approximation
equilibrium regime is the presence afing, which has been is applicable for long times and how to proceed where this is
experimentally observed in a large class of physical systemthe caseé®2°
(for instance, in spin glasseas well as in real glass®sThe On the issue of spin-glass dynamics, most of the existing
distinctive feature of the aging phenomenon is that the reworks study Langevin equations. Meanwhile Monte Carlo
sponse of the system to an external perturbation dependlynamics has received less attention notwithstanding its
strongly on the time elapsed since the perturbation was amgreat importance in numerical simulatioffsin particular,
plied. A phenomenological approach was proposed byiven that a major part of the numerical work in spin glasses
Bouchaud where the slow dynamics originates from the uses the Monte Carlo algorithm, we think that it is important
presence of a large number of traps in phase space withta study the Monte Carlo dynamics in itself. Notice that
very broad distribution of lifetimes. Monte Carlo dynamics introduces the concept of an accep-
Much interest has been also devoted to the study of extance rate which has no meaning for the Langevin dynamics.
actly solvable mean-field spin-glass models where informainterestingly, we shall see that the nature of the off-
tion can be obtained from the solution of the dynamicalequilibrium regime strongly depends on the behavior of the
equations. Of particular interest is the study of disorderedcceptance rate. To shed some light on these issues we have
models where replica symmetry is broken in the low-considered the spherical Sherrington-KirkpatridlSK)
temperature phase. In this case, several results have besmdel?! While this model lacks replica symmetry breaking
obtained in the study a-spin model&2°as well as in the in the low-temperature phase, it can be analytically solved.
study of a particle in a random potentfar*® From these In another papethereafter referred ag we introduced a
studies a very interesting connecttdrbetween mean-field method to solve the Monte Carlo dynamics of the spherical
glassy dynamical equations and the mode coupling theory d8K model?® We derived generalized dynamical equations
glasse¥'® has emerged. In this theoretical framework onefor one-time quantities and a closed integro-differential prob-
derives a closed system of integro-differential equations fotem for their generating function. The same method can be
the two-time correlation and response functions. Whereas afluccessfully applied to models with Langevin dynamics. The
the information about the dynamics is contained in this syspurpose of this work is to present the method of the gener-
tem of equations, it is very difficult to ascertain the long-timeating function, give a detailed account of the computations
evolution of one-time observables like the energy or theannounced in I, and discuss some other topics such as the
magnetization. Despite several advances in this directioproperties of two-time correlation and response functions
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and the long-time behavior of dynamical quantities. The eigenvaluea of a random Gaussian symmetric ma-
The paper is organized as follows. In Sec. Il we introducetrix are distributed according to the Wigner semicircular law

the spherical SK model and explain how to solve its Langew(\),?’

vin dynamics by the method of the generating function.

While the results of this section are well kno#t?> their 4—)\°

derivation by means of the generating function serves as a w(N)= 27 6)

clear introduction of this method. Section Ill contains the

main result of this paper, i.e., the solution of the correspond-

ing equations for the Monte Carlo dynamics. Section IV ana-

lyzes the long-time behavior of dynamical quantities at finite Our purpose is to describe the time evolution of certain

and zero temperature and the conditions under which thene-time functions of the solutions of E@). We define the

results of the Langevin dynamics are recovered. Section \#et of moments

contains our conclusions while the Appendixes are devoted

A. Generating function for the one-time quantities

. . 1 — 1 —
to different technical matters. h":N< . Ui(Jk)ijo'j:NE N<o2, @)
() 1y
Il. LANGEVIN APPROACH: A REMINDER Notice thathy=1 (spherical constrainandh,= —2E where
The spherical Sherrington-Kirkpatrick spin-glass model isE 1S the energy. Using the result limy, 7, (t") o\ (t) =2T
defined by the Hamiltonian we get the equation
dhy v
Hol=—3 oo, 1) 7=2hk+1+2/¢hk+ 2T{(\Y)), 8
i<j
where
where the indices,j run from 1 toN (N is the number of
siteg and the spinsr; satisfy the spherical global constraint 2
’ pine, satisty the spherical g o= roowan ©
N
> o?=N. (20 and w(\) is given by Eq.(6). In particular, Eq.(8) for
=1

k=0 gives the Lagrange multiplier as a function of the en-

. ] ) o ) ergy and temperaturegu=2E—T. In order to close these
The interactions];; are Gaussian distributed with zero equations we define the generating function

mean and M variance. The statics of this model reveals the
existence of a thermodynamic second-order phase transition 1 1 * yk
atT=1 (Ref. 21) with a replica-symmetric low-temperature g(Xx,t)= N(Z) cri(eXJ)ijaj=N; e)\xa}‘(t):;o k_lhk(t)'
phase. b '

We will revisit the Langevin dynamics of the spherical (10
SK model in order to introduce the technique of the generThis function vyields all the moments,=(*g(x,t)/

ating function. The Langevin equation is X_o.
We now want to formulate a problem fgy(x,t) (equa-
ao; IH tion, initial, boundary, and subsidiary conditionshich has
ot Jo, +ut)oitni(t), @ a unique solution. Then we will either be able to solvéitd

thus determine thdn,’'s exactly or to infer the long-time
with 7;i(t) a Gaussian white noise, behavior of the moments. By using Ed3), (8), and (10),
7i(Y) (') =2T&; ;8(t—t') (--- stands for average over we find thatg(x,t) satisfies the differential equation
the noisg; w(t) is a time-dependent Lagrange multiplier
which ensures that the spherical constraint, @y, is satis- 29X, :Zag;x,t) F2u(t)gout) + 2T((expxn))), (1)

fied at all times, an@{ is the Hamiltonian defined by E¢l). ot X
We can rewrite the previous equation as a single mode prob-
lem, _J9
mt)=——(0H)~-T. (12)
J
% =\o,+u(t)o, + 7, (1). (4)  These equations have to be solved with the boundary condi-

tion g(0t)=1 (the spherical constrainind an appropriate
initial condition g(x,0)=gy(x) [defined by the initial con-

Here o, and 7, are the projections of the configuration _ ) 2 \ . ) -
{o;} and the original noiséz;} on the basis of eigenvectors figuration {o,(t=0)}]. Besides taking the continuum limit

which diagonalize the interaction matrd; . The{o,} sat- in the definition(10), we see that
isfy the spherical constraif)_,o2=N. The transformation 2
matrix which diagonalizes thé;; is an orthogonal matrix. g(x,t)zf dAw(N)e*g(\,t), (13
Hence, the components, generate a white noise of the type —2
where the spectral transforg(\,t)=0. The latter condition
() (U)=2T 6 \.6(t—t"). (5)  is kept by the dynamics if it holds initially. However, its use



4172 L. L. BONILLA, F. G. PADILLA,

is crucial to distinguish the physically meaningful stationary
solutions from spurious ones. We can solidl) by the

method of characteristics assuming thgt) is given. The
result is

g(x,t)=go(x+ 2t)exr{ ZJOt,u(t’)dt’>

t , t
+2Tf dt’ ((elx+ae-t ””}}exr{ zf M(t”)dt”).
0 t’

14
Inserting(14) in the spherical constraimf(0,t) =1, it is pos-
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dition C,(t',t")=h,(t') where theh,(t) are the one-time
moments previously obtained from the generating function
a(x,t).

We define the generating function

1 1 S —
K(x.t',t)= N“E,-) ai(t') (030 = G2 o (t)an(D)

©

(22)

The generating functioK(x,t’,t) yields the generalized
two-time momentsC,(t’,t) = (K (x,t’,t)/9x"),_, and sat-

sible to derive an integral equation which can be solved bysfies the homogeneous partial differential equation

means of the Laplace transfofh.
It is easy to check thdtl5) is a stationary solution of Eq.
(11 for T>T.=1,
el

0=~ (g

In this case the moments, can be easily computéd,

X\
(15

eq )\k
e (e ) ) "
and the Lagrange multiplier®? is given by
()
O\ BOHRS[) a9

For T<1, u®%=—2, the stationary solution is given by

{5 oo
=g 2y /)
and the momenth, are
1 AK
eq_ _ ok -
h (1 ,8)2 <</3()\—2)>>' (19

Substituting Egs(15) and (18) in Eq. (11) one can easily
check that the right-hand sidRHS) of Eq. (11) is identi-
cally zero.

B. Correlation and response functions

In order to find closed expressions for the correlation
function we define the set of two-time moments,

1 -
N Mooy (0.
(20

1 -
Cu(t =52 oilt) (o5 =

((B))

Note that in this notation the usual two-time correlation
function is given byCy(t’,t). The equation of motion for the
Cy(t',t) reads

JK(x,t’,1)
ax

JK(x,t’,1) 3
at B

+ u(HK(x 1), (23
with the initial conditionK(x,t’,t")=g(x,t") andg(x,t') is
given in Eq.(14).

A similar method is applied to the response function. We
define the set of two-time moments

1

N

(90'1(t) _
an(t')

do(1)
an(t')’
(24

wheret’ <t. In this notation the usual response function is
given by Gy(t’,t). We construct the generating function

Y

N

1
Gt D=2 (3

1 doy(t) _ a JO( )
’ — XJy J = —
Xk
:go k—'Gk(t 1.

(25
The generating functiof'(x,t’,t) yields the generalized
two-time momentsG,(t’,t)= (T (x,t’,t)/9x"),_o. With
the usual regularization of the response function at equal
times the dynamical equation for th&x,t’,t) reads

ar(xt' )

alr'(x,t’,t)
+
ot

ox
+8(t—t"){((exp(x\))).

w(OT(x,t 1)

(26)

To solve this equation we need to impose the causality
conditionI'(x,t’,t)=0 if t<t’. The solution to Eqs(23)
and (26) can be easily found. One gets the results

t
K(Xat',t):9(X+t—t',t’)eprt,Mt”)dt",

F(x,t’,t)=(<e(x+t_"))‘))exp< ft,u(t”)dt”> o(t—t").
t!

(27)
Tt ) , ,
o Crea(U D+ u(DC(T, ), (22) From these generating functions we can extract the usual
two-time correlation and response functions

where we have used the resujf(t')o,(t)=0 for t’'<t.

Colt’,1)=K(Ot’,t) and Go(t’,t)=T(0¢',t). At equilib-

The previous equation has to be solved with the initial contium we can substitute the solutidf5) in (26), obtaining
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K(x,t' ) =K(x t_t,):geo(xH_t,)eMef’(t—v) is a quantity which gives the average number of accepted
Y ' ’ changes. The variatiodE* of the energyE in a Monte
Carlo step is
T (x,t, 1) =T%x,t—t") = ((eX " "N)yer™ =gt —t1), L L
(28) AE*:_\/_NE )\U)\r)\—mE )\I’>2\, (33
A A
Both functions are translationally invariafite., depend
only on the difference of timg¢sand the fluctuation dissipa- while the quantity]O:(l/N)E)\of is changed by the amount
tion theorem for the generating functions also holds,
e ) Ah*=iz o\ +£E r2 (34)
IKEx,t—t") 0 \/N)\ SEENPRES

reqx,t—t')=p P (29

The probabilityP(AE) of having a change of energy is
The off-equilibrium  behavior of the quantities
Co(t',1),Gy(t’,t) has been already studied in the literature
AR Y y P(AE)- [ staE—aEn)aans) T [p(rydr, )
(35

where the last function in the integrand accounts for the
We consider the Monte CarltMC) dynamics with the Spherical constraint and the variatiddE* is given in Eq.

Metropolis algorithm. The idea behind the MC approach is(33).

to postulate a dynamics in which a new configuration is pro- Using the integral representation for tifunction,

posed and accepted with a certain probability. The dynamics

is ergodic at finite temperature and satisfies detailed balance. 8(x) = ifw elxg o (36)

Following | we will consider a particularly simple motion 27 ) '

which makes the dynamics exactly soluble: Take the con- o

figuration{o;} at timet and perform a small random rotation and substituting in35) we get

from that configuration to a new or{e;} where

IIl. MONTE CARLO APPROACH

2 2 2
p O\Vx

P(AE)=f de?]EX[{IMAE— N4 W

Fi

N
and ther; are random numbers extracted from a Gaussian
distribution p(r) of finite variancep,

(30

Ti=0o;+

1 i v5p?
_52 In(l— it (37)
wherey, = u\ +27. After expanding the logarithm and re-
taining the first 1IN correction we getafter some manipula-

(31) tions)

) 1 p( r?
r)= exp — |-
p i ’_2277p 2p2

1 (AE+p%E)?
Let us denote by AE the change of energy P(AE)= mexr{ T T 2,78, ) (38)
AE=E{7}—E{o}. According to the Metropolis algorithm !
we accept the new configuration with probability 1 if with
AE<0 and with probability expfBSAE) if AE>0, where 1
B=1/T is the inverse of the temperatufe B,=h,—4E2(hy=1), hz:N; )\20%_ (39)

A. Probability distribution P(AE
Y (AE) The equation for the energy is obtained by considering the

As before in the Langevin formulation, we want to obtain ayerage variation of energy in a MC step. In this case one
one- and two-time moments. It is useful to work in the baS|q\/|C Step Corresponds 1~ e|ementa|’y moves. In the thermo-

for which the interaction matri¥;; is diagonal. The energy dynamic limit we can write the continuous equations
then reads

1 JE — 0
E{Ux}:—zg No?, (32 o ~AE= fﬁm(A)EP(AE)d(AE)

where theo, are distributed according to E@6). In this
basis, the spin configuration still corresponds to a small ran-
dom rotation; hencer,— o, +r, /N where the new ran-
dom numbers, are extracted from the same Gaussian dis- We can check that equilibrium is a stationary solution of
tribution, Eq.(31). the Monte Carlo dynamics. Using standard static
The basic object we want to compute is the probabilitycalculation$®?! one can show that in equilibrium
P(AE) of having a given variation E of the energyE. This  B;=h,—4E?=—2ET. In this case a straightforward com-

+ fm(AE)exp(—,BAE)P(AE)d(AE). (40
0
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putation shows that detailed balance is fulfilled. This means In order to obtain the time evolution of the acceptance
that, for a given value oAE, the first integral appearing in rate and to solve Eq42) of the time evolution of the energy

the RHS of Eq.(40) cancels the contribution of the second we need to know the enerdy and h, at timet. Unfortu-
integral in the RHS of Eq40) for the same value diE. In  nately, one can see that the time evolution equation for

other words, h,(t) involveshs(t) and so on. This hierarchy of moments
P(—AE)=exp — BAE)P(AE). (41) gan be clcﬁlsed introducicr;g a generatting funk:ﬂ?cas has beefn A
one in the Langevin dynamics. This is the purpose of the
The equation for the energy reads next section.
JE a(t)
ot ThZ(t) +b(OE(), (42) B. Generating function for the one-time quantities
where the coefficienta(t) andb(t) are given by To close the equations of motion we consider the set of
> moments defined in Ed7). The basic object to compute is
a(t):p2Be<p2ﬁ/2)<ﬁBl+2E>Erf< pB __a)’ the joint probability distributiorP(Ah,,AE). This quantity
B: can be written as
1
_ 2
and Erfx) is the complementary error function defined as
Erf(x)=(2/\/;)ffdxexp(—x2) and the parametet is given —AE*)&(AhO)H [p(rydr,], (47
by A
__pE 44 where the lasi function in the integrand accounts for the
@= /_231' (44 spherical constraint and the variatid/E* is given in Eq.
(33) while the variationAh§ is given by
Note that the quantitieg, B;, and « depend on time. )
Also one can compute the acceptance rate as a function of x_ < K i K2
time, which is the probability of accepting a certain change Ahy = \/N; Mot N; AT (48)

of the configuration

Following the same technical steps as in the derivation of

0 o
A(t)= fﬁmP(AE)d(AE)-i- fo exp(— BAE)P(AE)d(AE). P(AE) we obtain the result

49 P(Ahy,AE)=P(AE)P(AhAE), (49)
A straightforward computation shows
A= Erf(a) N Ee(Pzﬁ’z)(ﬁBl*ZE)Erf 0B i_a where P(AE) is the probability distribution, Eq(38), and
2 2 ' P(Ah,AE) is the conditional probability ofAh, given
(46)  AE. The final expression for the conditional probability is
|
1 Ah+ p2(h = ((N5))) +2(By /B1) (AE+ p2E) 1
P(AhJAE) = i ex;{—[ ktp (he—(( 2))) (2k 1( pE)] , 50
V87 p?[C—(BZ/B)] 8p“(Cx—By/B1)
|
with Cy=hy—h2, B=h, 1+2Eh(ho=1, h;=—2E), The solution for a general integral of the previous type is

and the averagé(---)) has been previously defined in shown in Appendix A. The following result is obtained:
Eq. (9).

In order to obtain the dynamical evolution of the moments dh(t) _
; L ——=a(t)h t) +b(t)h(t) +c.(t), 52
h, we have to compute its average variation in a MC step ot (Dhies2(D +DO (D) (D) (52)
over the accepted changes of configuration. In the thermody- , . i
namic limit we can write the continuous equations where the time-dependent quantiteg) andb(t) are given

in Eqg. (43) and the coefficients,(t) are defined by

c(H)=[2E(t)a(t) —b(t) [((\ )y = p?A(t)((\¥)). (53

Here A(t) is the acceptance rate defined in E46). Note
that the rate variation of the momelm¢ depends linearly on

+fmd(AE)exp(—,BAE)P(Ahk,AE) ' (51) the momentsh, and hk_+1, but the_coefficienta(tz, b(t),
0 and c(x,t) are nonlinear functions ofh;=—-3E and

hy

N o 0
W:Ahk: fmd(Ahk)Ahk( f,wd(AE)P(Ahk’AE)
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Blzhz—hf (second cumulant It is thus reasonable to ex- The second condition is the spherical one and the third
pect that the Monte Carlo dynamics is determined by theand fourth define the first and second moments of the set
evolution of the first two moments. By means of the mo-hy. This linear partial differential equation can be readily
ments generating functiog(x,t) of Eq. (10), we obtain from  solved with the method of characteristics. The general solu-
Eqg. (51 tion for a partial differential equation of the previous type,
Eq. (54), is shown in Appendix B.
ag(x,t)
ot

J
=a(t)—g+b(t)g+c(x,t), (54)
ox . .
C. Correlation and response functions
where the time-dependent quantite® are functions of the
two first momentsE(t) and h,(t) (whose relation tag is
indicated below defined in(43) and

In order to find the dynamical equation for the set of
correlation functions, Eq20), we perform a similar compu-
tation as has been done for the moments
c(x,t) =[2E(t)a(t) — b(t) J((e™)) = p2A(t) (™). The elementary move, Eq30), at timet induces a

e (e (55) changeAE* and AC§ in the energy and thk moment of

the correlation functiorC,(t’,t) (in what follows we take
As in the case of Langevin dynamigy(x,t) is a solution  t’<t) defined in Eq.(20),

of Eq. (54) plus the following initial, boundary, and subsid-
iary conditions:

1 1
9(x,0)=go(X), ABY == 2 A (ON (0~ 552 (0,
g0 =1,
) = —2E(t) AC*=i2 Ao, (1) (1), (57)
X x=0 ' \/N A
9%g . .
= =hy(t). (56) The propablllty qf hqvmg a changg of the qum& and
x=0 the correlatiomAC, is given by the joint probability

P(AE,ACK):f 5(AE—AE*)a(Ack—Ac:)a(Aho)l:[ [p(ry)dr,].

Using the integral representation of tAdunction, retaining only the terms of ordem\L/and performing all the Gaussian
integrals we findP(AE,AC,)=P(AE)P(AE|AC,), where

P(AE|ACy) =

1 ox p( - {Ack+<p2/2>ck+(Dlel>[AE—<p2/2)h1]}2)
., ., DI 2p?(hy—Ci— (Di/By)) '
2mp hZK_Ck_B_l

wherehj, =h, (t'), D(t',t)=C.1(t',t) +2E(t)Ci(t',t), andP(AE) is given by Eq.(38).
To solve the equation of motion for thg,(t',t) we write its average variation at tinteover the accepted changes of
configuration,

IC(t',t) ———— o 0 %
k;t ):ACk(t’,t):f Ade(ACk)(j d(AE)P(ACk,AE)—l—j d(AE)EXﬂ—,BAE)P(ACk,AE)>_ (58)
— — 00 0
|
Using the formulas of Appendix A we get the result In order to close the previous hierarchy of equations we
. introduce the generating functiok(x,t’,t) of Eq. (22
IC(t",1) :@ / @ , which yields the generalized two-time moments
Cis1(t', )+ Cy(t't), (59 | " . ’ - o
at 2 2 C(t" D) =[ K (x,t",t)/9xK]—. TheK(x,t’,t) satisfies the

wherea(t),b(t) have been previously defined in Eg3). partial differential equation
Equation (59 is solved with the initial condition
Cy(t',t")=hy(t") [once the time evolution of thk(t) has
been obtained solving the preceding hierarchy corresponding K _a(t) K b(1)

to the set of moments,]. -2 x 2K (60
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together with K(x,t’,t")=g(x,t"). The solution can be The partial differential equatior(®0) and(65) can be also
found by the method of characteristics. A similar procedureeadily solved with the method of characteristisse Appen-
can be used to obtain the generating function for the moeix B) as was done for in case of the one-time quantities.
ments of the response function, E84). In the Monte Carlo  Note that the equations for the generating functigps,I”
dynamics the equivalent quantity is given by the moments [Eqgs.(54), (60), (65)] are formally the same as in the Lange-
vin approach, Eq911), (23), (26), with the time-dependent

1 t t),b(t),c(x,t) gi b
G (t',t)=lim ME AKmy (t) oy (1), (61 parameters(t).b(t).c(x.t) given by
N N
A=0 aLang(t)ZZ- bLang(t)zz(ZE_T): CLang(X1t)
whereA measures the intensity of an applied staggered field = 2T((exp(X\))). (66)

m, . This quantity measures the correlation between the spin

configuration at time and a small staggered magnetic field  The main difference between the MC dynamics and the
m,(t") applied at a previous tim&'. Equation(61) is the  Langevin dynamics relies on the simpler time dependence of
analog of the correlation between the spin configuration athe coefficients,b,c in the last case. This makes the large-
timet and the noise at timg in the Langevin approach. The time behavior of the Langevin dynamics exactly solulsiee
staggered magnetic field, is an uncorrelated annealed ran- Refs. 24,25 while this is a very complicated task in the MC
dom field taken from a Gaussian distribution of variancecase.

A,

IV. ANALYSIS OF THE MONTE CARLO DYNAMICAL

2
P(m)\) — (27TA2)_1/2€X4 _ %) (62) EQUAT|ONS

In this section we proceed to solve the resulting dynami-

at each elementary move in the MC dynamics. The calculacal equations for the MC dynamics. First we analyze the

tion of the response function proceeds in the following way:equilibrium dynamics, showing that it coincides with the
We compute the probability distribution for the variation of Langevin dynamics by an appropriate rescaling of time.
theG,(t’,t) when a small staggered magnetic fiig(t’) is ~ Then we study the off-equilibrium behavior contained in the
applied at an earlier timg in an elementary move, E¢B0), MC dynamics at finite and zero temperature. Since it is also
at timet. We compute the joint probability distribution of our purpose to test the correctness of the solution of our
the variationAG,(t’,t) for an elementary move at tinte equations, we will compare the theory with real Monte Carlo
numerical simulations. Moreover, we will compare the re-
sulting dynamics with that expected in the Langevin case.

P(AE,AGk)=f S(AE—AE*)S(AG—AGE)S8(Ahg)
A. Equilibrium Monte Carlo dynamics

XIT [p(r)Pmy(t))drydmy(t)], (63) Dynamical equations for one-time and two-time quantities

A can be readily solved at equilibrium. Now the observables

whereAhy is given in Eq.(34) and the variations of energy Nk aré independent of time and the two-time functions
and G, are given by Ci(t',1), Gi(t',t) only depend on the differences of time
t—t’. It is easy to check that the coefficients
1 a(t),b(t),c(x,t) of Egs.(43),(55) are time independent and

1 \
AE* = JN; )\ax(t)rh(t)—m; [Ar(1)2 given by

—-m (t/)r (t)] aeq:pzﬁErf(aeq)!
A A '
b®%=p2B(2E— T)Erf( a9,
1
AG} :\/—Ng )\km)\(t’)l’)\(t). (64) CeO(X)=p2<<eXp(X7\)>>El’f(aeq), (67)

with
Finally, we perform the limitA tending to zero for the

intensity of the staggered magnetic field. Performing similar . pE®d (28-1)
computations as in the correlation function case we obtain a®=— oged PN g
for the average variationG,(t’,t)/dt (in the region of times 1
t'<t) Eq.(59), subst.|tut|nng for Gy. Note that t_he d|ﬁer- These coefficients are the same as for the Langevin dy-
ence between the hierarchy of equations associated with theamiCS excent  for  a  rescalin of  time
correlation and the response functions lies in the region OF—W:[ zﬂErf(c?eq)/Z]t AlSo one can sf?om[usin £ )
timest’ >t whereG,(t’,t) =0 while C,(t’,t)=C,(t,t'). P : 9 Eq.

The partial differential equation associated with the gen—(46)] that the acceptance rate is given by

(68)

erating function, Eq(25), is in this case A®9=Erf(a%9). (69)
Jar _ Jr ' Using the previous rescaling of time the equilibrium MC
St~ O Z FhOT+(expixh) ) o(t=t'). (65 dynamical equations coincide with the Langevin offes.
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B. Monte Carlo simulations

In order to check our analytical results for the MC dynam-
ics we have performed some MC simulations for finite sizes.
To simulate enough large sizes we worked in the basis of
eigenvectorsr, . In this way all the information about the
guenched disorder is fully contained in the spectrum of ei-
genvalues\, which occupies much less memory than the full
interaction Gaussian matrid;. The set eigenvalues is
chosen according to the semicircular law, Eg). Typically
we start from a random initial configuratian, = =1 which
fulfills the spherical constraint. Then we perform a small
rotation of this configuration,{ax}—>{ok+rA/\/N} [Eq. 1 10 100 1000 10°
(30)] where ther, are random numbers extracted from the t
Gaussian distribution, E31). To keep invariant the spheri-
cal constraint we normalize the length of the vedtey} in FIG. 1. Relaxation of the enerds(t) — E*?as a function of time
order to make it of length 1. The resulting change of energyfor p=0.1 and temperatures=0.2,0.4,0.6. The points are the MC
Eq. (32, is computed and accepted with probability S|mu!at|ons dataN =500, one samp)_ethe lines are the ana_lyngal
Min(1,exp BAE)). We repeat this process for the new con- solutlo_n of the M_C dynam_lcal equations, and _the dasht_ed line is t_he
figuration and so on. A MC step corresponds\taotations. Iarge_-tlme behawgr de'scrlbed by the Langevin dynamics rescaling
Because an elementary move involves a global change of e time as described in the text.
configuration{o,}, this algorithm isN times slower than a Results for the correlation functionCo(t,,,t,+1t)
usual MC algorithm with only local changes. We are able to=K(0t,,,t,,+1t) are shown in Fig. 2 for different values of
simulate relatively large sizes in the rarlge-500-2000 ina  t,,=1,10,100,1000 at the temperatufe=0.4 with p=0.1

E(t)-14T/2

o
o
=

reasonable amount of computer time. obtained by numerically solving E¢B4). Again we com-
pare the solution with real MC simulations fiir= 500 spins.
C. Finite-temperature dynamics In the figure we also show the asymptotic large-time behav-

. . _ ior in the Langevin case((t,, ,t,+t)~t~ % (see Ref. 25
In case of finite temperature it is relatively easy to solve  Note that in the dynamical regime shown in Fig. 2 there is
MC equations in the large-time limit. All the information on 5 avidence of a plateau g-relaxation process in the cor-
the dynamics is contained in the time evolution of the coef+q|ation function. This process is a signature of the existence
ficients a(t),b(t),c(x,t) which monotonically converge ©© ot 5 ghort-time regime(fluctuation dissipation theorem
their equilibrium values. Then we expect that the dynamic§ynere the system is locally in equilibrium and the
converges to the Langevin dynamics in the large-time I'm'tfluctuation-dissipation theorem applies[ie., the

except by a rescaling of the time Co(ty,tw+1t)=Co(t)]. The reason why the3-relaxation
) process is not seen in Fig. 2 is that the values, p§hown
p BErf(a®) th t Il. In the L in dynamics this regi
tt! = t (70) ere are too small. In the Langevin dynamics this regime
2 usually appears for large values f which become much

larger in the MC case since we have to rescale the time by
At finite temperature and according to the magnitude ofthe paramete(70) (the constant we have to rescale the time
the parametep we distinguish two different regimes de- in Fig. 2 is approximately 87; i.e., 87 MC steps corre-
pending if the acceptance rate is large or small. These two

limits differ in the magnitude of the time scale above which 17
Langevin behavior is recovered.
1. Casep<1 =

In this case Erff)~0O(1) since« is small; i.e., the ac- =5
ceptance is always large. E

Note that in the particular limifp tending to zero the rs
Langevin dynamics is recovered with a rescaling of time

2
t—>t’=¥t. (71) o

10*

In Fig. 1 we show the decay of the energy for different
temperatures for a given value @f=0.1 by numerically FIG. 2. Cyty,ty+t) with p=0.1, T=04 for
solving Eg. (B3). The theoretical prediction is compared { —110,100,1000. The points are the MC simulations data
with real Monte Carlo simulation results féf=500 spins.  (N=500, one samp)e the lines are the analytical solution of the
In the figure we also show the asymptotic large-time behavmc dynamical equations, and the dashed line is the large-time be-

ior in the Langevin casé& (t) — E®%~ 3t~ (see Ref. 2bwith havior described by the Langevin dynamics rescaling the time as
the rescaling of time, E(.70). described in the text.
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dynamics shows interesting similarities.

D. Zero-temperature dynamics

In this subsection we are interested in extracting the large-
time behavior of the dynamical equations at zero tempera-
ture. There is no reason in the zero-temperature case to get
the same large-time behavior as in the Langevin case, the
time-rescaling equatiov0) being ill defined. Because in the
zero-temperature regime the acceptance rate goes monotoni-
cally to zero(i.e., the parametex diverges, the coefficients
0.1 L Lo s a(t),b(t),c(x,t) in Egs. (43),(55 have a nontrivial large-

01 ! 10 100 1000 time limit. Then we expect a dynamical regime much differ-
ent from that predicted in the Langevin dynamics. In fact, we
will see that there is no limiting case in which the Langevin
dynamics is found.

At T=0 the coefficientsa(t),b(t),c(x,t) of Egs.
(43),(55) become

C (t,. ty+1)

FIG. 3. Cy(ty,t,+1) with p=5, T=0.4 fort,,=1,10,100. The
points are the MC simulations dathl € 500, data averaged over 5
sampley and the lines are the analytical solution of the MC dy-
namical equations.

a2
spond to one unit of time in the Langevin dynamids this ar_o(t)=— ZL,
regimep<<1, because Erff) is finite, we expect the, nec- EVm
essary to observe the plateau to scale |ik& times the
needed time in the Langevin case which requires quite large pZEI’f(a) 4ae*a2
values oft,, in the MC case. This off-equilibrium regime br_o(t)=— 2 + 7= )
observed in the case<1 where the acceptance rate is large m
is very similar to that observed in models with a continuous 1
prgakmg of Fhe rephlca symmetry, like the S_K moder Croo(x,) = = pX (€M) Erf( ). (72)
finite-dimensional spin glasse® where no evidence of a 2
plateau is found in the region of values tQf explored.

Also Eq. (45) for the acceptance rate reads

2. Casep>1 Erf(a)
In this case Erf(y)~e‘a2/a since « is large; i.e., the T~ o (73
acceptance is always very small. In this regime the rescaled
time constant, Eq(70), is again small because Edf is Note that the large-time dynamics is governed by the

small (it decreases withp like pe’PZ). For values of time-dependent parameter which diverges in the infinite-
t,<exp(?/p the system is in the short-time regime where atime limit. Unfortunately the dependence of the coefficients
plateau is present and aging is presefite.,, the on « is strongly nonlinear, which makes the mathematical
Co(t, .ty +1) strongly depends ofy,]. This is clearly appre- treatment of the dynamical equations highly nontrivial. How-
ciated in Fig. 3 where we show ti@(t,,,t,,+t) for differ-  ever, we can derive a nonlinear equation for the energy alone
ent values oft,,=1,10,100,1000 af =0.4, p=5, and the by means of the adiabatic approximation explained in the
numerical solution of Eq(B4). In the regimet,,<exp@?)/p  Next subsection. Although a rigorous derivation of the adia-
there is a plateau which increases with and eventually —batic approximation is not known to us, the resulting equa-
converges to the valugga=1—T for timest,, of order tion yields an excellent approximation to the large-time be-
exp(?)/p. This is a transient regime where the decay to théhavior as given by the numerical solutions of the exact
plateau does not satisfy time-translational invariance. Ndglynamical equations.
equivalent regime is found in the Langevin dynamics of the We can analyze qualitatively how the system evolves at
spherical Sherrington-Kirkpatrick model. zero temperature. Suppose the system starts from a random
The behavior shown in Fig. 3 is very similar to that found initial configuration o;==1 such thatE(t=0)=0 and
in systems with strong freezing in the low-temperature reB1(t=0)=1. The energy monotonically decreases to the
gime where the acceptance rate is quite low. Generally thegground-state energf= —Jy,,/2=—1 while B, decreases
are systems with one step of replica symmetry breaking likglso to zero. In the large-time limi¢ diverges and the ac-
the spherical or Isingp-spin model p>2)22° the Potts Ceptance rate goes to zero. There are two different regimes in
glass model withp states p>4)° the random orthogonal the dynamics. The first one is an initial regime wherés
model (ROM),*! and frustrated systems without quenchedsmall and the acceptance rate is nearly 1/2. This corresponds
disorder like the Bernasconi modéland other types of to a GaussiaP(AE) [Eq.(38)] with width p/B; larger than
models®® All these systems are characterized by the presthe position of its centerg?E). In this case, the changes of
ence of a dynamics with very low acceptance rate and théhe configuration which increase or decrease the energy have
existence of a dynamical transition different from the staticathe same probability. The energy decreases fast in this re-
one. While the statics of the aforementioned class of modelgime because the acceptance is large. The second regime
is much different from that of the spherical SK model theappears wheB, is so small in order thatr becomes large.
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FIG. 4. Acceptance ratA(t) at T=0 as a function of time for FIG. 6. Cy(ty,tytt) at T=0 with p=0.1 for
p=0.1,1,5 obtained by solving the MC dynamical equatifimes) tw=1,10,100,100Gfrom bottom to top obtained solving the MC
compared with MC simulationgointg (N=500, one samp)e dynamical equations.

In this case the acceptance is very smfll goes like E(t)+1=0(1/).°> The energy decays like 1/l)( (plus
exp(—a?)/a] and the dynamics is strongly slowed down. Thecorrections as shown below.
system goes very slowly to equilibrium. It is in this second  Figure 6 shows theo(t,, ,ty+1t) as a function oft for
regime where the adiabatic approximation developed in theour different values ot,, by numerically solving the off-
next subsection applies. equilibrium equation(B4) with the coefficients(72). Note
The adiabatic approximation shows that the large-time bethat the large-behavior of theC(t,, ,t,,+t) is strikingly dif-
havior in the Monte Carlo case is quite different from theferent in the MC and the Langevin cases since no trace of the
Langevin case. This is not a surprise. Even for the simplgower law decay 3 is observed and thet,, scaly behav-
harmonic oscillator, one can show that at zero temperaturRy js lost. The correlation function strongly freezés., re-
the dynamics is different in the MC and in the Langevin mains very close to)ifor values oft,, such that the accep-
cases This is related to the nonergodic nature of the dy-tance rate at that time has already jumped to Zeee Fig.
namics at zero temperature in which only the changes which). This is reasonable because a very low number of accepted

decrease the energy are accepted. This is clearly shown ghanges implies a very small change of the correlation func-
Figs. 4, 5, 6, and 7. In Figs. 4 and 5 we show the acceptanggn.

rate and energy as a function of time for three different val-
ues ofp by numerically solving the off-equilibrium equation
(B3) with the coefficientg72). _ o o S

We note two important results. First, as previously said, We now discuss the adiabatic approximation which gives
we observe thatr is the parameter which governs the dy- the correct asymptotic large-time behavior of the energy and
namics. More concretely Fig. 4 shows that the magnitude ofh€ acceptance rate at zero temperature. .
a separates two different regimes. In the regime1 the The equation of the energy, E(2), can be written as a
acceptance rate is 0.5 while it falls down rapidly to zero infunction only of the parameter,
the regimea> 1. Second, the large-time behavior of the en- o 2
ergy shown in Fig. 5 is strikingly different from that ex- if__ E 2 pe

. . . = p Erf(a) + . (74)

pected in the Langevin dynamics at zero temperature where E at 2 2a\/;

100 LR T T T AR T

E. Adiabatic approximation

01 ¢

E(t)+1

01 F

L nl PR 1 1 1 1 0.01 | Il L 1l |
0.01 0.1 1 10 100 1000 10* 0001 001 0.1 1 10 100 1000 10

FIG. 5. EnergyE(t)+1 at T=0 as a function of time for FIG. 7. Ratio—B,/[2E(E+1)] as a function of time aT=0
p=0.1,1,5 obtained solving the MC dynamical equatidlises for different values ofp. The large-time limit yields the effective
compared with MC simulationgointy (N=500, one samp)e parametequ* .
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This is an exact equation for the energy. Unfortunately we V. CONCLUSIONS

cannot solve it because we do not know the time evolution of In this work we have presented the analvtical solution of
a. Oncea is known we also know the time evolution of the IS WOrk W Ve p yu utl

energy, hence also all the mometits. In this sense, the th_e 'V'Of.“e Carlo dyn_amics of the_ sphericgl Sherrington-
parametery, and consequently the acceptance rate, fully de_K|rkpatr|ck model. 1_'h|s IS a very S|_mple spin-glass model
termines the dynamics. In the large-time regime, wheie where full computations can.be carried out. In order to ana-
very large, we can expand the error function lytically solve 'Fhe MC Qynamlcs we ha\{e used the technique
Erf(a)z(ef“zl\/;a)(l—1/2a2) and we get the simple of the generating functlon. Th_e generating _functlon allows us
equation to close the dynamical equations in a sw_mlar way to how |_t
has been done in other glassy models without quenched dis-
order. The present work is a step towards the use of this
10 pe“ powerful technique in the spin-glass context. As an example,
Edt 2Jra® (79 We have solved the Langevin dynamics of the spherical SK
model. In the context of the MC dynamics, the generating

. . . . . .. function has been used to derive closed expressions for one-
We solve this equation using an adiabatic approxmatloq

which turns out to be the correct large-time solution as ontst-lme quantities, like the generalized momehis and for

can check numerically solving EGB3). We replacax by an wo-time quantities such as the correlation or response func-
Y g ) P y tion. The formalism of the generating function may be used

effective parameter which depends on off-equilibrium quan- ! . .
tities via a quasiequilibrium relation. In our case we use thd© compare the results obtained with both dynamics, MC and

uasiequilibrium relation(68) with B=1/T=1/u*(E+1), Langevin. , .
\c/]vhere,:j* is a renormali;(ed)paramgter whichl;a(s the Lhysi- By solving such a simple model, we lose the subtleties of
cal meaning of an effective temperature. Note fh&t=2 in having a replica-broken low-temperature phase where the
the previous equation yields the equilibrium relation PréSence of a large number of metastable states makes dy-
E=—1+T/2 in the low-temperature phase. Substituting in"amMics much more mteresuﬁ@Nevertheless, our results for
(75) and usingB,= — 2 * E(E+ 1) we obtain, in the large- the MC dynamics make it clear how relevant for off-

time limit (i.e., E=—1) and neglecting higher orders in equilibrium dynamics is the acceptance rate, a quantity
Eil o which is absent in Glauber or Langevin dynamics. Since a

major part of the numerical work on glassy systems employs
MC dynamics, its analytical study is of the utmost impor-
tance to be used as a guide when trying to extract conclu-
. (76 sjons from numerics.
One of the most important results which emerges from
this work concerns the importance of the acceptance rate in
In principle, u* is an unknown parameter. In the simplest the off-equilibrium dynamics. We have seen that the main
adiabatic approximation*® =2. This corresponds to equi- differences between the Langevin and the MC dynamics ap-
partitioning in the surface of constant energy where the equipear whenever this rate is small and for times not too large.
librium relationB;=—4E(E+1) is fulfilled at all times. It The Langevin dynamics is obtained in the lirpit>0 with
is possible to shoW that for u* =2 Eq.(76) is the equation an effective rescaling of time—t’=tp2s/2 and the accep-
of the energy for a simple harmonic oscillator with Hamil- tance ratio is always [icf. Egs.(43) and (55)]. For finite p
tonian H=;mw?x?, where mw?=\"*=2. Physically this and finite temperatures we have seen that the Langevin re-
means that the system relaxes as a simple harmonic oscillatgime is found for timeg;zp*? whenp is small and for times
with a value ofmw? determined by the maximum eigenvalue t=exp(p?/p when p is large. In the intermediate regimes
of the spectrum. Physically a value pf <2 means that the very many different behaviors are observed, especially for
system relaxes as an effective single harmonic oscillator withy> 1 where the acceptance is small. The dynamics observed
effective masanw?=4/u* larger than the single oscillator in Fig. 3 reminds one a lot of what is observed in models
massmaw?=23* with one step of breakingsee, for instance, Refs. 36)37
The large-time solution of E76) can be easily worked Furthermore, at zero temperature, the MC dynamics yields a
out. One finds that the parameterdiverges like[In(t)]¥%  completely new behavior where the system rapidly freezes as
the energy decays likE(t)=—1+0(1/In(t)), and the ac- soon as the acceptance goes to zero. No analogous regime is
ceptance rate goes lik&(t)=1/. All these quantities have found in the case of Langevin dynamics where the transition
nontrivial subdominant corrections. In Fig. 7 we show thefrom finite to zero temperature is smooth.
effective parameteu* = —B;/2E(E+ 1) as a function of We would like to comment on three different directions
time obtained by solving EqB3) for different values of. which we think would be interesting to explore. The first
Note that the effective parametgr* converges to a time- concerns the adiabatic approximation which is used to obtain
independent value in the asymptotic large-time limit. By nu-closed equations for one-time moments. As has been shown,
merically solving the adiabatic equatiof¥6) we have this approximation suggests that the system behaves as a
checked that the relaxation of the energy is in excellensystem of uncoupled harmonic oscillators with a renormal-
agreement with the numerical solution of EB3). Thisisa ized mass larger than the maximum mass corresponding to
check of the adiabatic approximation which yields the valueshe largest eigenvalue of the Wigner spectrum. Although this
u*=0.087,0.72,1.65 fop=0.1,1,5, respectively. Note that suggestive approximation works extremely well, it would be
these quoted values @f* are smaller than 2. interesting to understand it better. Future research should

JE p2

.- mM*(H 1)]3’26XF’< T ap*(E+1)
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deal with a systematic derivation of the adiabatic approximae,d,e,f depending on the particular observable. The constant
tion for one-time quantitiegfor instance, understanding the K= (4xb?d?) 2 normalizes the probability distribution.
dependence of the effective parameter as a function of The equation of motion for the observaltleis
p), and its extension to the study of the long-time behavior
of correlation functions. We think that the adiabatic approxi- 90 w w
mation is a consequence of the relevance of entropic effects —:J dxf dyyP(x,y)w(x), (A2)
for the dynamics of the system. In the low-acceptance re- at - -
gime, the system spends a Ior]g_ time searchm_g Con.ﬂguratm%herew(x) =Min(1,e”#¥) is the Boltzmann factor. Straight-
of lower energy in a very inefficient way. In this regirfreot . ;
Lo . . forward computations yield
present when the dynamics is Langevthe adiabatic ap-
proximation works very well. More generally one would like

to improve it in order to find a systematic way to close the 0 1 )

dynamical equations without having to use the full generat- ot = 7| eEM(a)+(e—Tpb%)exy —ap

ing function. The work done by Cooleet al'® and that on

the backgammon modé&lis a step in this direction. The b2B2 /0252

second direction to explore is the study of models with one Tt Erf 2 ¢ (A3)

step of replica symmetry breakir(fike the p-spin spherical

spin-glass mod&l using the technique of the generating wherea=—a/(2b%)?and coincides with Eq44) with the
function. This is an interesting problem whose solutionpreviously quoted values af,b.

would allow us to obtain closed equations for one-time quan- At zero temperature the equation of motion is

tities like the energy and probably a set of higher moments.

At present it is not clear whether this is possible or whether 90 1 2p2

we can only obtain equations which relate the correlation and —= —( eErf(a)—f \/—exp(— a?)
the response functio’s Finally we want to mention that a2 77

the type of differential equations studied hére., semilin-
ear evolution equations like E¢54) whose coefficients de-
pend self-consistently on the first moments of the soldtion
appear often in the study of the dynamics of quite different APPENDIX B: SOLUTION OF THE DIFFERENTIAL
models in statistical physics. Let us cite among others the EQUATION

problems of synchronization of populations of coupled |n this section we present the general solution to the gen-

oscillators?® arrays of Josephson junctioffsand plasmas or  erating functiorg(x,t) in Eq. (54) using the method of char-
self-gravitating systent:**Often these problems can be de- acteristics,

scribed by nonlinear causal equations where the time evolu-
tion of an observable at time depends on all its previous
, . . , - ag(x,t) 79
history plus self-consistent relations for functions appearing =a(t)—+b(t)g+c(x,t). (B1)
in the equations. A general mathematical study of these types ot 2
of equations would be welcome.

. (A

with the same previous definition of the parameter

In order to solve this equation we make the change of
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=b(t)g(u,t)+c(u,t), (B2)

g(X,t) =0Jo

t
x+f a(t’)dt’ |B(t)
APPENDIX A: THE EQUATION OF MOTION 0

In this section we write the general equation of motion c(x+f:,a(t”)dt”,t’)

t
associated with the general joint probability distribution + B(t)f dt’ B(T) , (B3
0
AE—a)? AO—-c)? .
P(AE,A0)= Kexp( e~ ex;{ - %) . where B(t)=exd f5b(t)dt] and go(x)=g(x,t=0) is the

initial condition. Once they(x,t) has been obtained one can
(A1) also get the generating function of the two-time quantities.

wherec=e+f(AE—a), a,b,c,d,e,f are in general time- For instance, thé&(x,t’,t) associated with the correlation

dependent parametersE stands for the energy change, and function in Eq.(60) is given by

AQO is the change of any observablgeneralized moment,

correlation, or response functipnin the MC dynamics

a=—p’E, b?=p?B, [with B; given in Eq. (39)], and K(x,t',t)=g

1 t n " ! B(t) 1/2
X+ Eﬁ/a(t )dt”,t )(_B(t')) . (B4
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