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We study the analytical solution of the Monte Carlo dynamics in the spherical Sherrington-Kirkpatrick
model using the technique of the generating function. Explicit solutions for one-time observables~like the
energy! and two-time observables~like the correlation and response function! are obtained. We show that the
crucial quantity which governs the dynamics is the acceptance rate. At zero temperature, an adiabatic approxi-
mation reveals that the relaxational behavior of the model corresponds to that of a single harmonic oscillator
with an effective renormalized mass.@S0163-1829~96!00129-4#

I. INTRODUCTION

The off-equilibrium features of glassy systems constitute
a very interesting field of research. A great deal of attention
has been paid to the study of the dynamics of exactly solv-
able models of disordered systems where much relevant in-
formation can be gathered even in the mean-field case. Nu-
merical simulations of short-ranged and long-ranged models
reveal a similar nature of the off-equilibrium dynamics.1–4

The outstanding phenomenon which characterizes the off-
equilibrium regime is the presence ofaging, which has been
experimentally observed in a large class of physical systems
~for instance, in spin glasses5 as well as in real glasses6!. The
distinctive feature of the aging phenomenon is that the re-
sponse of the system to an external perturbation depends
strongly on the time elapsed since the perturbation was ap-
plied. A phenomenological approach was proposed by
Bouchaud7 where the slow dynamics originates from the
presence of a large number of traps in phase space with a
very broad distribution of lifetimes.

Much interest has been also devoted to the study of ex-
actly solvable mean-field spin-glass models where informa-
tion can be obtained from the solution of the dynamical
equations. Of particular interest is the study of disordered
models where replica symmetry is broken in the low-
temperature phase. In this case, several results have been
obtained in the study ofp-spin models8–10 as well as in the
study of a particle in a random potential.11–13 From these
studies a very interesting connection14 between mean-field
glassy dynamical equations and the mode coupling theory of
glasses15,16 has emerged. In this theoretical framework one
derives a closed system of integro-differential equations for
the two-time correlation and response functions. Whereas all
the information about the dynamics is contained in this sys-
tem of equations, it is very difficult to ascertain the long-time
evolution of one-time observables like the energy or the
magnetization. Despite several advances in this direction

~see, for instance, the time series expansion carried out by
Franz, Marinari, and Parisi in case of thep53 spherical
spin-glass model17! this is still an open problem. Recently a
completely different approach to the dynamics of glassy sys-
tems has been proposed by Coolen and Sherrington.18 They
introduce a closure assumption~the equipartitioning hypoth-
esis! which yields evolution equations for the one-time ob-
servables. In comparison with the results of simulations they
obtain fairly good results in the short-time regime. However,
it is still unclear whether the equipartitioning approximation
is applicable for long times and how to proceed where this is
the case.19,20

On the issue of spin-glass dynamics, most of the existing
works study Langevin equations. Meanwhile Monte Carlo
dynamics has received less attention notwithstanding its
great importance in numerical simulations.22 In particular,
given that a major part of the numerical work in spin glasses
uses the Monte Carlo algorithm, we think that it is important
to study the Monte Carlo dynamics in itself. Notice that
Monte Carlo dynamics introduces the concept of an accep-
tance rate which has no meaning for the Langevin dynamics.
Interestingly, we shall see that the nature of the off-
equilibrium regime strongly depends on the behavior of the
acceptance rate. To shed some light on these issues we have
considered the spherical Sherrington-Kirkpatrick~SK!
model.21 While this model lacks replica symmetry breaking
in the low-temperature phase, it can be analytically solved.

In another paper~hereafter referred as I! we introduced a
method to solve the Monte Carlo dynamics of the spherical
SK model.23 We derived generalized dynamical equations
for one-time quantities and a closed integro-differential prob-
lem for their generating function. The same method can be
successfully applied to models with Langevin dynamics. The
purpose of this work is to present the method of the gener-
ating function, give a detailed account of the computations
announced in I, and discuss some other topics such as the
properties of two-time correlation and response functions
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and the long-time behavior of dynamical quantities.
The paper is organized as follows. In Sec. II we introduce

the spherical SK model and explain how to solve its Lange-
vin dynamics by the method of the generating function.
While the results of this section are well known,24,25 their
derivation by means of the generating function serves as a
clear introduction of this method. Section III contains the
main result of this paper, i.e., the solution of the correspond-
ing equations for the Monte Carlo dynamics. Section IV ana-
lyzes the long-time behavior of dynamical quantities at finite
and zero temperature and the conditions under which the
results of the Langevin dynamics are recovered. Section V
contains our conclusions while the Appendixes are devoted
to different technical matters.

II. LANGEVIN APPROACH: A REMINDER

The spherical Sherrington-Kirkpatrick spin-glass model is
defined by the Hamiltonian

H$s%52(
i, j

Ji js is j , ~1!

where the indicesi , j run from 1 toN (N is the number of
sites! and the spinss i satisfy the spherical global constraint

(
i51

N

s i
25N. ~2!

The interactionsJi j are Gaussian distributed with zero
mean and 1/N variance. The statics of this model reveals the
existence of a thermodynamic second-order phase transition
at T51 ~Ref. 21! with a replica-symmetric low-temperature
phase.

We will revisit the Langevin dynamics of the spherical
SK model in order to introduce the technique of the gener-
ating function. The Langevin equation is

]s i

]t
52

]H
]s i

1m~ t !s i1h i~ t !, ~3!

with h i(t) a Gaussian white noise,
h i(t)h j (t8)52Td i , jd(t2t8) (••• stands for average over
the noise!; m(t) is a time-dependent Lagrange multiplier
which ensures that the spherical constraint, Eq.~2!, is satis-
fied at all times, andH is the Hamiltonian defined by Eq.~1!.
We can rewrite the previous equation as a single mode prob-
lem,

]sl

]t
5lsl1m~ t !sl1hl~ t !. ~4!

Here sl and hl are the projections of the configuration
$s i% and the original noise$h i% on the basis of eigenvectors
which diagonalize the interaction matrixJi j . The $sl% sat-
isfy the spherical constraint(l51

N sl
25N. The transformation

matrix which diagonalizes theJi j is an orthogonal matrix.
Hence, the componentshl generate a white noise of the type

hl~ t !hl8~ t8!52Tdl,l8d~ t2t8!. ~5!

The eigenvaluesl of a random Gaussian symmetric ma-
trix are distributed according to the Wigner semicircular law
w(l),27

w~l!5
A42l2

2p
. ~6!

A. Generating function for the one-time quantities

Our purpose is to describe the time evolution of certain
one-time functions of the solutions of Eq.~4!. We define the
set of moments

hk5
1

N(
~ i , j !

s i~J
k! i js j5

1

N(
l

lksl
2. ~7!

Notice thath051 ~spherical constraint! andh1522E where
E is the energy. Using the result limt→t8hl(t8)sl(t)52T
we get the equation

]hk
]t

52hk1112mhk12T^^lk&&, ~8!

where

^^ f ~l!&&5E
22

2

f ~l!w~l!dl ~9!

and w(l) is given by Eq.~6!. In particular, Eq.~8! for
k50 gives the Lagrange multiplier as a function of the en-
ergy and temperature,m52E2T. In order to close these
equations we define the generating function

g~x,t !5
1

N(
~ i , j !

s i~e
xJ! i js j5

1

N(
l

elxsl
2~ t !5 (

k50

`
xk

k!
hk~ t !.

~10!

This function yields all the momentshk5(]kg(x,t)/
]xk)x50 .

We now want to formulate a problem forg(x,t) ~equa-
tion, initial, boundary, and subsidiary conditions! which has
a unique solution. Then we will either be able to solve it~and
thus determine thehk’s exactly! or to infer the long-time
behavior of the moments. By using Eqs.~7!, ~8!, and ~10!,
we find thatg(x,t) satisfies the differential equation

]g~x,t !

]t
52

]g~x,t !

]x
12m~ t !g~x,t !12T^^exp~xl!&&, ~11!

m~ t !52
]g

]x
~0,t !2T. ~12!

These equations have to be solved with the boundary condi-
tion g(0,t)51 ~the spherical constraint! and an appropriate
initial condition g(x,0)5g0(x) @defined by the initial con-
figuration $sl(t50)%#. Besides taking the continuum limit
in the definition~10!, we see that

g~x,t !5E
22

2

dlw~l!exlĝ~l,t !, ~13!

where the spectral transformĝ(l,t)>0. The latter condition
is kept by the dynamics if it holds initially. However, its use
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is crucial to distinguish the physically meaningful stationary
solutions from spurious ones. We can solve~11! by the
method of characteristics assuming thatm(t) is given. The
result is

g~x,t !5g0~x12t !expS 2E
0

t

m~ t8!dt8D
12TE

0

t

dt8^^e@x12~ t2t8!#l&&expS 2E
t8

t

m~ t9!dt9D .
~14!

Inserting~14! in the spherical constraintg(0,t)51, it is pos-
sible to derive an integral equation which can be solved by
means of the Laplace transform.25

It is easy to check that~15! is a stationary solution of Eq.
~11! for T.Tc51,

geq~x!52 K K exl

b~l1meq! L L . ~15!

In this case the momentshk can be easily computed,21

hk
eq52 K K lk

b~l1meq! L L , ~16!

and the Lagrange multipliermeq is given by

152 K K 1

b~l1meq! L L . ~17!

For T<1, meq522, the stationary solution is given by

geq~x!5S 12
1

b De2x2 K K exl

b~l22! L L , ~18!

and the momentshk are

hk
eq5S 12

1

b D2k2 K K lk

b~l22! L L . ~19!

Substituting Eqs.~15! and ~18! in Eq. ~11! one can easily
check that the right-hand side~RHS! of Eq. ~11! is identi-
cally zero.

B. Correlation and response functions

In order to find closed expressions for the correlation
function we define the set of two-time moments,

Ck~ t8,t !5
1

N(
~ i , j !

s i~ t8!~Jk! i js j~ t !5
1

N(
l

lksl~ t8!sl~ t !.

~20!

Note that in this notation the usual two-time correlation
function is given byC0(t8,t). The equation of motion for the
Ck(t8,t) reads

]Ck~ t8,t !

]t
5Ck11~ t8,t !1m~ t !Ck~ t8,t !, ~21!

where we have used the resulthl(t8)sl(t)50 for t8,t.
The previous equation has to be solved with the initial con-

dition Ck(t8,t8)5hk(t8) where thehk(t) are the one-time
moments previously obtained from the generating function
g(x,t).

We define the generating function

K~x,t8,t !5
1

N(
~ i , j !

s i~ t8!~exJ! i js j~ t !5
1

N(
l

elxsl~ t8!sl~ t !

5 (
k50

`
xk

k!
Ck~ t8,t !. ~22!

The generating functionK(x,t8,t) yields the generalized
two-time momentsCk(t8,t)5(]kK(x,t8,t)/]xk)x50 and sat-
isfies the homogeneous partial differential equation

]K~x,t8,t !

]t
5

]K~x,t8,t !

]x
1m~ t !K~x,t8,t !, ~23!

with the initial conditionK(x,t8,t8)5g(x,t8) andg(x,t8) is
given in Eq.~14!.

A similar method is applied to the response function. We
define the set of two-time moments

Gk~ t8,t !5
1

N(
~ i , j !

~Jk! i j
]s j~ t !

]h i~ t8!
5
1

N(
l

lk
]sl~ t !

]hl~ t8!
,

~24!

where t8,t. In this notation the usual response function is
given byG0(t8,t). We construct the generating function

G~x,t8,t !5
1

N(
~ i , j !

~exJ! i j
]s j~ t !

]h i~ t8!
5
1

N(
l

elx
]sl~ t !

hl~ t8!

5 (
k50

`
xk

k!
Gk~ t8,t !.

~25!

The generating functionG(x,t8,t) yields the generalized
two-time momentsGk(t8,t)5(]kG(x,t8,t)/]xk)x50 . With
the usual regularization of the response function at equal
times the dynamical equation for theG(x,t8,t) reads

]G~x,t8,t !

]t
5

]G~x,t8,t !

]x
1m~ t !G~x,t8,t !

1d~ t2t8!^^exp~xl!&&. ~26!

To solve this equation we need to impose the causality
condition G(x,t8,t)50 if t,t8. The solution to Eqs.~23!
and ~26! can be easily found. One gets the results

K~x,t8,t !5g~x1t2t8,t8!expE
t8

t

m~ t9!dt9,

G~x,t8,t !5^^e~x1t2t8!l&&expS E
t8

t

m~ t9!dt9D u~ t2t8!.

~27!

From these generating functions we can extract the usual
two-time correlation and response functions
C0(t8,t)5K(0,t8,t) and G0(t8,t)5G(0,t8,t). At equilib-
rium we can substitute the solution~15! in ~26!, obtaining
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K~x,t8,t !5Keq~x,t2t8!5geq~x1t2t8!emeq~ t2t8!,

G~x,t8,t !5Geq~x,t2t8!5^^e~x1t2t8!l&&emeq~ t2t8!u~ t2t8!.
~28!

Both functions are translationally invariant~i.e., depend
only on the difference of times! and the fluctuation dissipa-
tion theorem for the generating functions also holds,

Geq~x,t2t8!5b
]Keq~x,t2t8!

]t8
. ~29!

The off-equilibrium behavior of the quantities
C0(t8,t),G0(t8,t) has been already studied in the literature
~see Refs. 24,25!.

III. MONTE CARLO APPROACH

We consider the Monte Carlo~MC! dynamics with the
Metropolis algorithm. The idea behind the MC approach is
to postulate a dynamics in which a new configuration is pro-
posed and accepted with a certain probability. The dynamics
is ergodic at finite temperature and satisfies detailed balance.
Following I we will consider a particularly simple motion
which makes the dynamics exactly soluble: Take the con-
figuration$s i% at timet and perform a small random rotation
from that configuration to a new one$t i% where

t i5s i1
r i

AN
~30!

and ther i are random numbers extracted from a Gaussian
distributionp(r ) of finite variancer,

p~r i !5
1

A2pr2
expS 2

r i
2

2r2D . ~31!

Let us denote by DE the change of energy
DE5E$t%2E$s%. According to the Metropolis algorithm
we accept the new configuration with probability 1 if
DE,0 and with probability exp(2bDE) if DE.0, where
b51/T is the inverse of the temperatureT.

A. Probability distribution P„DE…

As before in the Langevin formulation, we want to obtain
one- and two-time moments. It is useful to work in the basis
for which the interaction matrixJi j is diagonal. The energy
then reads

E$sl%52
1

2(l
lsl

2 , ~32!

where thesl are distributed according to Eq.~6!. In this
basis, the spin configuration still corresponds to a small ran-
dom rotation; hencesl→sl1r l /AN where the new ran-
dom numbersr l are extracted from the same Gaussian dis-
tribution, Eq.~31!.

The basic object we want to compute is the probability
P(DE) of having a given variationDE of the energyE. This

is a quantity which gives the average number of accepted
changes. The variationDE* of the energyE in a Monte
Carlo step is

DE*52
1

AN(
l

lslr l2
1

2N(
l

lr l
2 , ~33!

while the quantityh05(1/N)(lsl
2 is changed by the amount

Dh0*5
2

AN(
l

slr l1
1

N(
l

r l
2 . ~34!

The probabilityP(DE) of having a change of energy is

P~DE!5E d~DE2DE* !d~Dh0* !)
l

@p~r l!drl#,

~35!

where the lastd function in the integrand accounts for the
spherical constraint and the variationDE* is given in Eq.
~33!.

Using the integral representation for thed function,

d~x!5
1

2pE2`

`

eiaxda, ~36!

and substituting in~35! we get

P~DE!5E dmdhexpF imDE2
r2

2N(
l

sl
2gl

2

~12 igl
2r2/N!

2
1

2(l
lnS 12

igl
2r2

N D G , ~37!

wheregl5ml12h. After expanding the logarithm and re-
taining the first 1/N correction we get~after some manipula-
tions!

P~DE!5
1

A2pr2B1

expS 2
~DE1r2E!2

2r2B1
D , ~38!

with

B15h224E2~h051!, h25
1

N(
l

l2sl
2 . ~39!

The equation for the energy is obtained by considering the
average variation of energy in a MC step. In this case one
MC step corresponds toN elementary moves. In the thermo-
dynamic limit we can write the continuous equations

]E

]t
5DE5E

2`

0

~D!EP~DE!d~DE!

1E
0

`

~DE!exp~2bDE!P~DE!d~DE!. ~40!

We can check that equilibrium is a stationary solution of
the Monte Carlo dynamics. Using standard static
calculations28,21 one can show that in equilibrium
B15h224E2522ET. In this case a straightforward com-
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putation shows that detailed balance is fulfilled. This means
that, for a given value ofDE, the first integral appearing in
the RHS of Eq.~40! cancels the contribution of the second
integral in the RHS of Eq.~40! for the same value ofDE. In
other words,

P~2DE!5exp~2bDE!P~DE!. ~41!

The equation for the energy reads

]E

]t
52

a~ t !

2
h2~ t !1b~ t !E~ t !, ~42!

where the coefficientsa(t) andb(t) are given by

a~ t !5r2be~r2b/2!~bB112E!ErfS rbA 2

B1
2a D ,

b~ t !52
1

2
@r2Erf~a!1~4E2T!a~ t !#, ~43!

and Erf(x) is the complementary error function defined as
Erf(x)5(2/Ap)*x

`dxexp(2x2) and the parametera is given
by

a52
rE

A2B1

. ~44!

Note that the quantitiesE, B1 , anda depend on time.
Also one can compute the acceptance rate as a function of
time, which is the probability of accepting a certain change
of the configuration

A~ t !5E
2`

0

P~DE!d~DE!1E
0

`

exp~2bDE!P~DE!d~DE!.

~45!

A straightforward computation shows

A~ t !5
Erf~a!

2
1
1

2
e~r2b/2!~bB112E!ErfS rbA 2

B1
2a D .

~46!

In order to obtain the time evolution of the acceptance
rate and to solve Eq.~42! of the time evolution of the energy
we need to know the energyE and h2 at time t. Unfortu-
nately, one can see that the time evolution equation for
h2(t) involvesh3(t) and so on. This hierarchy of moments
can be closed introducing a generating function23 as has been
done in the Langevin dynamics. This is the purpose of the
next section.

B. Generating function for the one-time quantities

To close the equations of motion we consider the set of
moments defined in Eq.~7!. The basic object to compute is
the joint probability distributionP(Dhk ,DE). This quantity
can be written as

P~Dhk ,DE!5E d~Dhk2Dhk* !d~DE

2DE* !d~Dh0!)
l

@p~r l!drl#, ~47!

where the lastd function in the integrand accounts for the
spherical constraint and the variationDE* is given in Eq.
~33! while the variationDhk* is given by

Dhk*5
2

AN(
l

lkslr l1
1

N(
l

lkr l
2 . ~48!

Following the same technical steps as in the derivation of
P(DE) we obtain the result

P~Dhk ,DE!5P~DE!P~DhkuDE!, ~49!

whereP(DE) is the probability distribution, Eq.~38!, and
P(DhkuDE) is the conditional probability ofDhk given
DE. The final expression for the conditional probability is

P~DhkuDE!5
1

A8pr2@Ck2~Bk
2/B1!#

expS 2
@Dhk1r2~hk2^^lk&&!12~Bk /B1!~DE1r2E!#2

8r2~Ck2Bk
2/B1!

D , ~50!

with Ck5h2k2hk
2 , Bk5hk1112Ehk (h051, h1522E),

and the averagê^•••&& has been previously defined in
Eq. ~9!.

In order to obtain the dynamical evolution of the moments
hk we have to compute its average variation in a MC step
over the accepted changes of configuration. In the thermody-
namic limit we can write the continuous equations

]hk
]t

5Dhk5E
2`

`

d~Dhk!DhkS E
2`

0

d~DE!P~Dhk ,DE!

1E
0

`

d~DE!exp~2bDE!P~Dhk ,DE! D . ~51!

The solution for a general integral of the previous type is
shown in Appendix A. The following result is obtained:

]hk~ t !

]t
5a~ t !hk11~ t !1b~ t !hk~ t !1ck~ t !, ~52!

where the time-dependent quantitiesa(t) andb(t) are given
in Eq. ~43! and the coefficientsck(t) are defined by

ck~ t !5@2E~ t !a~ t !2b~ t !#^^lk&&5r2A~ t !^^lk&&. ~53!

HereA(t) is the acceptance rate defined in Eq.~46!. Note
that the rate variation of the momenthk depends linearly on
the momentshk and hk11 , but the coefficientsa(t), b(t),
and c(x,t) are nonlinear functions ofh152 1

2E and
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B15h22h1
2 ~second cumulant!. It is thus reasonable to ex-

pect that the Monte Carlo dynamics is determined by the
evolution of the first two moments. By means of the mo-
ments generating functiong(x,t) of Eq. ~10!, we obtain from
Eq. ~51!

]g~x,t !

]t
5a~ t !

]g

]x
1b~ t !g1c~x,t !, ~54!

where the time-dependent quantitiesa,b are functions of the
two first momentsE(t) and h2(t) ~whose relation tog is
indicated below! defined in~43! and

c~x,t !5@2E~ t !a~ t !2b~ t !#^^exl&&5r2A~ t !^^exl&&.
~55!

As in the case of Langevin dynamics,g(x,t) is a solution
of Eq. ~54! plus the following initial, boundary, and subsid-
iary conditions:

g~x,0!5g0~x!,

g~0,t !51,

]g

]x U
x50

522E~ t !,

]2g

]x2 U
x50

5h2~ t !. ~56!

The second condition is the spherical one and the third
and fourth define the first and second moments of the set
hk . This linear partial differential equation can be readily
solved with the method of characteristics. The general solu-
tion for a partial differential equation of the previous type,
Eq. ~54!, is shown in Appendix B.

C. Correlation and response functions

In order to find the dynamical equation for the set of
correlation functions, Eq.~20!, we perform a similar compu-
tation as has been done for the momentshk .

The elementary move, Eq.~30!, at time t induces a
changeDE* andDCk* in the energy and thek moment of
the correlation functionCk(t8,t) ~in what follows we take
t8,t) defined in Eq.~20!,

DE*52
1

AN(
l

lsl~ t !r l~ t !2
1

2N(
l

lr l~ t !2,

DCk*5
1

AN(
l

lksl~ t8!r l~ t !. ~57!

The probability of having a change of the energyDE and
the correlationDCk is given by the joint probability

P~DE,DCk!5E d~DE2DE* !d~DCk2DCk* !d~Dh0!)
l

@p~r l!drl#.

Using the integral representation of thed function, retaining only the terms of order 1/N, and performing all the Gaussian
integrals we findP(DE,DCk)5P(DE)P(DEuDCk), where

P~DEuDCk!5
1

A2pr2S h2k8 2Ck
22

Dk
2

B1
D expS 2

$DCk1~r2/2!Ck1~Dk /B1!@DE2~r2/2!h1#%
2

2r2~h2k8 2Ck
22~Dk

2/B1!! D ,
whereh2k8 5h2k(t8), Dk(t8,t)5Ck11(t8,t)12E(t)Ck(t8,t), andP(DE) is given by Eq.~38!.

To solve the equation of motion for theCk(t8,t) we write its average variation at timet over the accepted changes of
configuration,

]Ck~ t8,t !

]t
5DCk~ t8,t !5E

2`

`

DCkd~DCk!S E
2`

0

d~DE!P~DCk ,DE!1E
0

`

d~DE!exp~2bDE!P~DCk ,DE! D . ~58!

Using the formulas of Appendix A we get the result

]Ck~ t8,t !

]t
5
a~ t !

2
Ck11~ t8,t !1

b~ t !

2
Ck~ t8,t !, ~59!

wherea(t),b(t) have been previously defined in Eq.~43!.
Equation ~59! is solved with the initial condition

Ck(t8,t8)5hk(t8) @once the time evolution of thehk(t) has
been obtained solving the preceding hierarchy corresponding
to the set of momentshk#.

In order to close the previous hierarchy of equations we
introduce the generating functionK(x,t8,t) of Eq. ~22!
which yields the generalized two-time moments
Ck(t8,t)5@]kK(x,t8,t)/]xk#x50 . TheK(x,t8,t) satisfies the
partial differential equation

]K

]t
5
a~ t !

2

]K

]x
1
b~ t !

2
K ~60!

54 4175CLOSURE OF THE MONTE CARLO DYNAMICAL . . .



together with K(x,t8,t8)5g(x,t8). The solution can be
found by the method of characteristics. A similar procedure
can be used to obtain the generating function for the mo-
ments of the response function, Eq.~24!. In the Monte Carlo
dynamics the equivalent quantity is given by the moments

Gk~ t8,t !5 lim
D→0

1

ND(
l

lkml~ t8!sl~ t !, ~61!

whereD measures the intensity of an applied staggered field
ml . This quantity measures the correlation between the spin
configuration at timet and a small staggered magnetic field
ml(t8) applied at a previous timet8. Equation~61! is the
analog of the correlation between the spin configuration at
time t and the noise at timet8 in the Langevin approach. The
staggered magnetic fieldml is an uncorrelated annealed ran-
dom field taken from a Gaussian distribution of variance
D,

P~ml!5~2pD2!21/2expS 2
ml
2

2D2D ~62!

at each elementary move in the MC dynamics. The calcula-
tion of the response function proceeds in the following way:
We compute the probability distribution for the variation of
theGk(t8,t) when a small staggered magnetic fieldml(t8) is
applied at an earlier timet8 in an elementary move, Eq.~30!,
at time t. We compute the joint probability distribution of
the variationDGk(t8,t) for an elementary move at timet,

P~DE,DGk!5E d~DE2DE* !d~DGk2DGk* !d~Dh0!

3)
l

@p~r l!P„ml~ t8!…drldml~ t8!#, ~63!

whereDh0 is given in Eq.~34! and the variations of energy
andGk are given by

DE*52
1

AN(
l

lsl~ t !r l~ t !2
1

2N(
l

@lr l~ t !2

2ml~ t8!r l~ t !#,

DGk*5
1

AN(
l

lkml~ t8!r l~ t !. ~64!

Finally, we perform the limitD tending to zero for the
intensity of the staggered magnetic field. Performing similar
computations as in the correlation function case we obtain
for the average variation]Gk(t8,t)/]t ~in the region of times
t8,t) Eq. ~59!, substitutingCk for Gk . Note that the differ-
ence between the hierarchy of equations associated with the
correlation and the response functions lies in the region of
times t8.t whereGk(t8,t)50 while Ck(t8,t)5Ck(t,t8).

The partial differential equation associated with the gen-
erating function, Eq.~25!, is in this case

]G

]t
5a~ t !

]G

]x
1b~ t !G1^^exp~xl!&&d~ t2t8!. ~65!

The partial differential equations~60! and~65! can be also
readily solved with the method of characteristics~see Appen-
dix B! as was done for in case of the one-time quantities.
Note that the equations for the generating functionsg,K,G
@Eqs.~54!, ~60!, ~65!# are formally the same as in the Lange-
vin approach, Eqs.~11!, ~23!, ~26!, with the time-dependent
parametersa(t),b(t),c(x,t) given by

aLang~ t !52, bLang~ t !52~2E2T!, cLang~x,t !

52T^^exp~xl!&&. ~66!

The main difference between the MC dynamics and the
Langevin dynamics relies on the simpler time dependence of
the coefficientsa,b,c in the last case. This makes the large-
time behavior of the Langevin dynamics exactly soluble~see
Refs. 24,25! while this is a very complicated task in the MC
case.

IV. ANALYSIS OF THE MONTE CARLO DYNAMICAL
EQUATIONS

In this section we proceed to solve the resulting dynami-
cal equations for the MC dynamics. First we analyze the
equilibrium dynamics, showing that it coincides with the
Langevin dynamics by an appropriate rescaling of time.
Then we study the off-equilibrium behavior contained in the
MC dynamics at finite and zero temperature. Since it is also
our purpose to test the correctness of the solution of our
equations, we will compare the theory with real Monte Carlo
numerical simulations. Moreover, we will compare the re-
sulting dynamics with that expected in the Langevin case.

A. Equilibrium Monte Carlo dynamics

Dynamical equations for one-time and two-time quantities
can be readily solved at equilibrium. Now the observables
hk are independent of time and the two-time functions
Ck(t8,t), Gk(t8,t) only depend on the differences of time
t2t8. It is easy to check that the coefficients
a(t),b(t),c(x,t) of Eqs.~43!,~55! are time independent and
given by

aeq5r2bErf~aeq!,

beq5r2b~2E2T!Erf~aeq!,

ceq~x!5r2^^exp~xl!&&Erf~aeq!, ~67!

with

aeq52
rEeq

A2B1
eq

5rA~2b21!

8
. ~68!

These coefficients are the same as for the Langevin dy-
namics except for a rescaling of time,
t→t85@r2bErf(aeq)/2#t. Also one can show@using Eq.
~46!# that the acceptance rate is given by

Aeq5Erf~aeq!. ~69!

Using the previous rescaling of time the equilibrium MC
dynamical equations coincide with the Langevin ones.26
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B. Monte Carlo simulations

In order to check our analytical results for the MC dynam-
ics we have performed some MC simulations for finite sizes.
To simulate enough large sizes we worked in the basis of
eigenvectorssl . In this way all the information about the
quenched disorder is fully contained in the spectrum of ei-
genvaluesl, which occupies much less memory than the full
interaction Gaussian matrixJi j . The set eigenvaluesl is
chosen according to the semicircular law, Eq.~6!. Typically
we start from a random initial configurationsl561 which
fulfills the spherical constraint. Then we perform a small
rotation of this configuration,$sl%→$sl1r l /AN% @Eq.
~30!# where ther l are random numbers extracted from the
Gaussian distribution, Eq.~31!. To keep invariant the spheri-
cal constraint we normalize the length of the vector$sl% in
order to make it of length 1. The resulting change of energy,
Eq. ~32!, is computed and accepted with probability
Min„1,exp(2bDE)…. We repeat this process for the new con-
figuration and so on. A MC step corresponds toN rotations.
Because an elementary move involves a global change of the
configuration$sl%, this algorithm isN times slower than a
usual MC algorithm with only local changes. We are able to
simulate relatively large sizes in the rangeN5500–2000 in a
reasonable amount of computer time.

C. Finite-temperature dynamics

In case of finite temperature it is relatively easy to solve
MC equations in the large-time limit. All the information on
the dynamics is contained in the time evolution of the coef-
ficients a(t),b(t),c(x,t) which monotonically converge to
their equilibrium values. Then we expect that the dynamics
converges to the Langevin dynamics in the large-time limit
except by a rescaling of the time

t→t85
r2bErf~aeq!

2
t. ~70!

At finite temperature and according to the magnitude of
the parameterr we distinguish two different regimes de-
pending if the acceptance rate is large or small. These two
limits differ in the magnitude of the time scale above which
Langevin behavior is recovered.

1. Caser<1

In this case Erf(a);O(1) sincea is small; i.e., the ac-
ceptance is always large.

Note that in the particular limitr tending to zero the
Langevin dynamics is recovered with a rescaling of time

t→t85
r2b

2
t. ~71!

In Fig. 1 we show the decay of the energy for different
temperatures for a given value ofr50.1 by numerically
solving Eq. ~B3!. The theoretical prediction is compared
with real Monte Carlo simulation results forN5500 spins.
In the figure we also show the asymptotic large-time behav-
ior in the Langevin case,E(t)2Eeq; 3

8t
21 ~see Ref. 25! with

the rescaling of time, Eq.~70!.

Results for the correlation functionC0(tw ,tw1t)
5K(0,tw ,tw1t) are shown in Fig. 2 for different values of
tw51,10,100,1000 at the temperatureT50.4 with r50.1
obtained by numerically solving Eq.~B4!. Again we com-
pare the solution with real MC simulations forN5500 spins.
In the figure we also show the asymptotic large-time behav-
ior in the Langevin case,C(tw ,tw1t);t23/4 ~see Ref. 25!.

Note that in the dynamical regime shown in Fig. 2 there is
no evidence of a plateau orb-relaxation process in the cor-
relation function. This process is a signature of the existence
of a short-time regime~fluctuation dissipation theorem!
where the system is locally in equilibrium and the
fluctuation-dissipation theorem applies @i.e., the
C0(tw ,tw1t).C0(t)#. The reason why theb-relaxation
process is not seen in Fig. 2 is that the values oftw shown
there are too small. In the Langevin dynamics this regime
usually appears for large values oftw which become much
larger in the MC case since we have to rescale the time by
the parameter~70! ~the constant we have to rescale the time
in Fig. 2 is approximately 87; i.e., 87 MC steps corre-

FIG. 1. Relaxation of the energyE(t)2Eeqas a function of time
for r50.1 and temperaturesT50.2,0.4,0.6. The points are the MC
simulations data (N5500, one sample!, the lines are the analytical
solution of the MC dynamical equations, and the dashed line is the
large-time behavior described by the Langevin dynamics rescaling
the time as described in the text.

FIG. 2. C0(tw ,tw1t) with r50.1, T50.4 for
tw51,10,100,1000. The points are the MC simulations data
(N5500, one sample!, the lines are the analytical solution of the
MC dynamical equations, and the dashed line is the large-time be-
havior described by the Langevin dynamics rescaling the time as
described in the text.
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spond to one unit of time in the Langevin dynamics!. In this
regimer!1, because Erf(a) is finite, we expect thetw nec-
essary to observe the plateau to scale liker22 times the
needed time in the Langevin case which requires quite large
values of tw in the MC case. This off-equilibrium regime
observed in the caser!1 where the acceptance rate is large
is very similar to that observed in models with a continuous
breaking of the replica symmetry, like the SK model3 or
finite-dimensional spin glasses2,22 where no evidence of a
plateau is found in the region of values oftw explored.

2. Caser>1

In this case Erf(a);e2a2/a since a is large; i.e., the
acceptance is always very small. In this regime the rescaled
time constant, Eq.~70!, is again small because Erf(a) is
small ~it decreases withr like re2r2). For values of
tw!exp(r2)/r the system is in the short-time regime where a
plateau is present and aging is present@i.e., the
C0(tw ,tw1t) strongly depends ontw#. This is clearly appre-
ciated in Fig. 3 where we show theC0(tw ,tw1t) for differ-
ent values oftw51,10,100,1000 atT50.4, r55, and the
numerical solution of Eq.~B4!. In the regimetw!exp(r2)/r
there is a plateau which increases withtw and eventually
converges to the valueqEA512T for times tw of order
exp(r2)/r. This is a transient regime where the decay to the
plateau does not satisfy time-translational invariance. No
equivalent regime is found in the Langevin dynamics of the
spherical Sherrington-Kirkpatrick model.

The behavior shown in Fig. 3 is very similar to that found
in systems with strong freezing in the low-temperature re-
gime where the acceptance rate is quite low. Generally these
are systems with one step of replica symmetry breaking like
the spherical or Isingp-spin model (p.2),9,29 the Potts
glass model withp states (p.4),30 the random orthogonal
model ~ROM!,31 and frustrated systems without quenched
disorder like the Bernasconi model32 and other types of
models.33 All these systems are characterized by the pres-
ence of a dynamics with very low acceptance rate and the
existence of a dynamical transition different from the statical
one. While the statics of the aforementioned class of models
is much different from that of the spherical SK model the

dynamics shows interesting similarities.

D. Zero-temperature dynamics

In this subsection we are interested in extracting the large-
time behavior of the dynamical equations at zero tempera-
ture. There is no reason in the zero-temperature case to get
the same large-time behavior as in the Langevin case, the
time-rescaling equation~70! being ill defined. Because in the
zero-temperature regime the acceptance rate goes monotoni-
cally to zero~i.e., the parametera diverges!, the coefficients
a(t),b(t),c(x,t) in Eqs. ~43!,~55! have a nontrivial large-
time limit. Then we expect a dynamical regime much differ-
ent from that predicted in the Langevin dynamics. In fact, we
will see that there is no limiting case in which the Langevin
dynamics is found.

At T50 the coefficients a(t),b(t),c(x,t) of Eqs.
~43!,~55! become

aT50~ t !52
2 ae2a2

EAp
,

bT50~ t !52S r2Erf~a!

2
1
4ae2a2

Ap
D ,

cT50~x,t !5
1

2
r2^^exl&&Erf~a!. ~72!

Also Eq. ~45! for the acceptance rate reads

A~ t !5
Erf~a!

2
. ~73!

Note that the large-time dynamics is governed by the
time-dependent parametera which diverges in the infinite-
time limit. Unfortunately the dependence of the coefficients
on a is strongly nonlinear, which makes the mathematical
treatment of the dynamical equations highly nontrivial. How-
ever, we can derive a nonlinear equation for the energy alone
by means of the adiabatic approximation explained in the
next subsection. Although a rigorous derivation of the adia-
batic approximation is not known to us, the resulting equa-
tion yields an excellent approximation to the large-time be-
havior as given by the numerical solutions of the exact
dynamical equations.

We can analyze qualitatively how the system evolves at
zero temperature. Suppose the system starts from a random
initial configuration s i561 such thatE(t50)50 and
B1(t50)51. The energy monotonically decreases to the
ground-state energyE52Jmax/2521 while B1 decreases
also to zero. In the large-time limita diverges and the ac-
ceptance rate goes to zero. There are two different regimes in
the dynamics. The first one is an initial regime wherea is
small and the acceptance rate is nearly 1/2. This corresponds
to a GaussianP(DE) @Eq. ~38!# with width rAB1 larger than
the position of its center (r2E). In this case, the changes of
the configuration which increase or decrease the energy have
the same probability. The energy decreases fast in this re-
gime because the acceptance is large. The second regime
appears whenB1 is so small in order thata becomes large.

FIG. 3. C0(tw ,tw1t) with r55, T50.4 for tw51,10,100. The
points are the MC simulations data (N5500, data averaged over 5
samples! and the lines are the analytical solution of the MC dy-
namical equations.
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In this case the acceptance is very small@it goes like
exp(2a2)/a# and the dynamics is strongly slowed down. The
system goes very slowly to equilibrium. It is in this second
regime where the adiabatic approximation developed in the
next subsection applies.

The adiabatic approximation shows that the large-time be-
havior in the Monte Carlo case is quite different from the
Langevin case. This is not a surprise. Even for the simple
harmonic oscillator, one can show that at zero temperature
the dynamics is different in the MC and in the Langevin
cases.34 This is related to the nonergodic nature of the dy-
namics at zero temperature in which only the changes which
decrease the energy are accepted. This is clearly shown in
Figs. 4, 5, 6, and 7. In Figs. 4 and 5 we show the acceptance
rate and energy as a function of time for three different val-
ues ofr by numerically solving the off-equilibrium equation
~B3! with the coefficients~72!.

We note two important results. First, as previously said,
we observe thata is the parameter which governs the dy-
namics. More concretely Fig. 4 shows that the magnitude of
a separates two different regimes. In the regimea!1 the
acceptance rate is 0.5 while it falls down rapidly to zero in
the regimea@1. Second, the large-time behavior of the en-
ergy shown in Fig. 5 is strikingly different from that ex-
pected in the Langevin dynamics at zero temperature where

E(t)11.O(1/t).25 The energy decays like 1/ln(t) ~plus
corrections! as shown below.

Figure 6 shows theC0(tw ,tw1t) as a function oft for
four different values oftw by numerically solving the off-
equilibrium equation~B4! with the coefficients~72!. Note
that the large-t behavior of theC(tw ,tw1t) is strikingly dif-
ferent in the MC and the Langevin cases since no trace of the
power law decayt23/4 is observed and thet/tw scaly behav-
ior is lost. The correlation function strongly freezes~i.e., re-
mains very close to 1! for values oftw such that the accep-
tance rate at that time has already jumped to zero~see Fig.
4!. This is reasonable because a very low number of accepted
changes implies a very small change of the correlation func-
tion.

E. Adiabatic approximation

We now discuss the adiabatic approximation which gives
the correct asymptotic large-time behavior of the energy and
the acceptance rate at zero temperature.

The equation of the energy, Eq.~42!, can be written as a
function only of the parametera,

1

E

]E

]t
52

1

2
r2Erf~a!1

r2e2a2

2aAp
. ~74!

FIG. 4. Acceptance rateA(t) at T50 as a function of time for
r50.1,1,5 obtained by solving the MC dynamical equations~lines!
compared with MC simulations~points! (N5500, one sample!.

FIG. 5. EnergyE(t)11 at T50 as a function of time for
r50.1,1,5 obtained solving the MC dynamical equations~lines!
compared with MC simulations~points! (N5500, one sample!.

FIG. 6. C0(tw ,tw1t) at T50 with r50.1 for
tw51,10,100,1000~from bottom to top! obtained solving the MC
dynamical equations.

FIG. 7. Ratio2B1 /@2E(E11)# as a function of time atT50
for different values ofr. The large-time limit yields the effective
parameterm* .
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This is an exact equation for the energy. Unfortunately we
cannot solve it because we do not know the time evolution of
a. Oncea is known we also know the time evolution of the
energy, hence also all the momentshk . In this sense, the
parametera, and consequently the acceptance rate, fully de-
termines the dynamics. In the large-time regime, wherea is
very large, we can expand the error function
Erf(a).(e2a2/Apa)(121/2a2) and we get the simple
equation

1

E

]E

]t
5

r2e2a2

2Apa3
. ~75!

We solve this equation using an adiabatic approximation
which turns out to be the correct large-time solution as one
can check numerically solving Eq.~B3!. We replacea by an
effective parameter which depends on off-equilibrium quan-
tities via a quasiequilibrium relation. In our case we use the
quasiequilibrium relation~68! with b51/T51/m* (E11),
wherem* is a renormalized parameter which has the physi-
cal meaning of an effective temperature. Note thatm*52 in
the previous equation yields the equilibrium relation
E5211T/2 in the low-temperature phase. Substituting in
~75! and usingB1522m*E(E11) we obtain, in the large-
time limit ~i.e., E.21) and neglecting higher orders in
E11,

]E

]t
52

2

rAp
@m* ~E11!#3/2expS 2

r2

4m* ~E11! D . ~76!

In principle,m* is an unknown parameter. In the simplest
adiabatic approximationm*52. This corresponds to equi-
partitioning in the surface of constant energy where the equi-
librium relationB1524E(E11) is fulfilled at all times. It
is possible to show34 that form*52 Eq.~76! is the equation
of the energy for a simple harmonic oscillator with Hamil-
tonianH5 1

2mv2x2, wheremv25lmax52. Physically this
means that the system relaxes as a simple harmonic oscillator
with a value ofmv2 determined by the maximum eigenvalue
of the spectrum. Physically a value ofm*,2 means that the
system relaxes as an effective single harmonic oscillator with
effective massmv254/m* larger than the single oscillator
massmv252.34

The large-time solution of Eq.~76! can be easily worked
out. One finds that the parametera diverges like@ ln(t)#1/2,
the energy decays likeE(t)5211O(1/ln(t)), and the ac-
ceptance rate goes likeA(t).1/t. All these quantities have
nontrivial subdominant corrections. In Fig. 7 we show the
effective parameterm*52B1/2E(E11) as a function of
time obtained by solving Eq.~B3! for different values ofr.
Note that the effective parameterm* converges to a time-
independent value in the asymptotic large-time limit. By nu-
merically solving the adiabatic equation~76! we have
checked that the relaxation of the energy is in excellent
agreement with the numerical solution of Eq.~B3!. This is a
check of the adiabatic approximation which yields the values
m*.0.087,0.72,1.65 forr50.1,1,5, respectively. Note that
these quoted values ofm* are smaller than 2.

V. CONCLUSIONS

In this work we have presented the analytical solution of
the Monte Carlo dynamics of the spherical Sherrington-
Kirkpatrick model. This is a very simple spin-glass model
where full computations can be carried out. In order to ana-
lytically solve the MC dynamics we have used the technique
of the generating function. The generating function allows us
to close the dynamical equations in a similar way to how it
has been done in other glassy models without quenched dis-
order. The present work is a step towards the use of this
powerful technique in the spin-glass context. As an example,
we have solved the Langevin dynamics of the spherical SK
model. In the context of the MC dynamics, the generating
function has been used to derive closed expressions for one-
time quantities, like the generalized momentshk , and for
two-time quantities such as the correlation or response func-
tion. The formalism of the generating function may be used
to compare the results obtained with both dynamics, MC and
Langevin.

By solving such a simple model, we lose the subtleties of
having a replica-broken low-temperature phase where the
presence of a large number of metastable states makes dy-
namics much more interesting.35 Nevertheless, our results for
the MC dynamics make it clear how relevant for off-
equilibrium dynamics is the acceptance rate, a quantity
which is absent in Glauber or Langevin dynamics. Since a
major part of the numerical work on glassy systems employs
MC dynamics, its analytical study is of the utmost impor-
tance to be used as a guide when trying to extract conclu-
sions from numerics.

One of the most important results which emerges from
this work concerns the importance of the acceptance rate in
the off-equilibrium dynamics. We have seen that the main
differences between the Langevin and the MC dynamics ap-
pear whenever this rate is small and for times not too large.
The Langevin dynamics is obtained in the limitr→0 with
an effective rescaling of timet→t85tr2b/2 and the accep-
tance ratio is always 1@cf. Eqs.~43! and ~55!#. For finite r
and finite temperatures we have seen that the Langevin re-
gime is found for timest.r22 whenr is small and for times
t.exp(r2)/r when r is large. In the intermediate regimes
very many different behaviors are observed, especially for
r.1 where the acceptance is small. The dynamics observed
in Fig. 3 reminds one a lot of what is observed in models
with one step of breaking~see, for instance, Refs. 36,37!.
Furthermore, at zero temperature, the MC dynamics yields a
completely new behavior where the system rapidly freezes as
soon as the acceptance goes to zero. No analogous regime is
found in the case of Langevin dynamics where the transition
from finite to zero temperature is smooth.

We would like to comment on three different directions
which we think would be interesting to explore. The first
concerns the adiabatic approximation which is used to obtain
closed equations for one-time moments. As has been shown,
this approximation suggests that the system behaves as a
system of uncoupled harmonic oscillators with a renormal-
ized mass larger than the maximum mass corresponding to
the largest eigenvalue of the Wigner spectrum. Although this
suggestive approximation works extremely well, it would be
interesting to understand it better. Future research should
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deal with a systematic derivation of the adiabatic approxima-
tion for one-time quantities~for instance, understanding the
dependence of the effective parameterm* as a function of
r), and its extension to the study of the long-time behavior
of correlation functions. We think that the adiabatic approxi-
mation is a consequence of the relevance of entropic effects
for the dynamics of the system. In the low-acceptance re-
gime, the system spends a long time searching configurations
of lower energy in a very inefficient way. In this regime~not
present when the dynamics is Langevin! the adiabatic ap-
proximation works very well. More generally one would like
to improve it in order to find a systematic way to close the
dynamical equations without having to use the full generat-
ing function. The work done by Coolenet al.18 and that on
the backgammon model38 is a step in this direction. The
second direction to explore is the study of models with one
step of replica symmetry breaking~like the p-spin spherical
spin-glass model9! using the technique of the generating
function. This is an interesting problem whose solution
would allow us to obtain closed equations for one-time quan-
tities like the energy and probably a set of higher moments.
At present it is not clear whether this is possible or whether
we can only obtain equations which relate the correlation and
the response functions.9,10 Finally we want to mention that
the type of differential equations studied here@i.e., semilin-
ear evolution equations like Eq.~54! whose coefficients de-
pend self-consistently on the first moments of the solution#
appear often in the study of the dynamics of quite different
models in statistical physics. Let us cite among others the
problems of synchronization of populations of coupled
oscillators,39 arrays of Josephson junctions,40 and plasmas or
self-gravitating systems.41,42Often these problems can be de-
scribed by nonlinear causal equations where the time evolu-
tion of an observable at timet depends on all its previous
history plus self-consistent relations for functions appearing
in the equations. A general mathematical study of these types
of equations would be welcome.
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APPENDIX A: THE EQUATION OF MOTION

In this section we write the general equation of motion
associated with the general joint probability distribution

P~DE,DO!5KexpS 2
~DE2a!2

2b2 DexpS 2
~DO2c!2

2d2 D ,
~A1!

where c5e1 f (DE2a), a,b,c,d,e, f are in general time-
dependent parameters,DE stands for the energy change, and
DO is the change of any observable~generalized moment,
correlation, or response function!. In the MC dynamics
a52r2E, b25r2B1 @with B1 given in Eq. ~39!#, and

c,d,e, f depending on the particular observable. The constant
K5(4pb2d2)21/2 normalizes the probability distribution.

The equation of motion for the observableO is

]O

]t
5E

2`

`

dxE
2`

`

dyyP~x,y!w~x!, ~A2!

wherew(x)5Min(1,e2bx) is the Boltzmann factor. Straight-
forward computations yield

]O

]t
5
1

2 FeErf~a!1~e2 fbb2!expS 2ab

1
b2b2

2 DErfSAb2b2

2
2a D G , ~A3!

wherea52a/(2b2)1/2 and coincides with Eq.~44! with the
previously quoted values ofa,b.

At zero temperature the equation of motion is

]O

]t
5
1

2 S eErf~a!2 fA2b2

p
exp~2a2! D , ~A4!

with the same previous definition of the parametera.

APPENDIX B: SOLUTION OF THE DIFFERENTIAL
EQUATION

In this section we present the general solution to the gen-
erating functiong(x,t) in Eq. ~54! using the method of char-
acteristics,

]g~x,t !

]t
5a~ t !

]g

]x
1b~ t !g1c~x,t !. ~B1!

In order to solve this equation we make the change of
variablesx→u(t)5x1*0

t a(t8)dt8 and Eq.~B1! becomes

dĝ~u,t !

dt
5b~ t !ĝ~u,t !1c~u,t !, ~B2!

which is a linear differential equation easily solvable. The
final result is

g~x,t !5g0S x1E
0

t

a~ t8!dt8DB~ t !

1B~ t !E
0

t

dt8
c„x1* t8

t a~ t9!dt9,t8…

B~ t8!
, ~B3!

where B(t)5exp@*0
t b(t8)dt8# and g0(x)5g(x,t50) is the

initial condition. Once theg(x,t) has been obtained one can
also get the generating function of the two-time quantities.
For instance, theK(x,t8,t) associated with the correlation
function in Eq.~60! is given by

K~x,t8,t !5gS x1
1

2Et8
t

a~ t9!dt9,t8D S B~ t !

B~ t8! D 1/2. ~B4!
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