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Phase diagram ofXY antiferromagnetic stacked triangular lattices
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The phase transition in antiferromagnetic stacked triangular lattices with claxsicgpins interacting via
antiferromagnetic nearest- and next-nearest-neighbor bandand J,, is studied by means of extensive
histogram Monte Carlo simulations. Whéa=0, the transition is of second order with critical exponents
slightly different from those given by other authors. It is shown that in a rangl,dhe transition is of first
order. The general phase diagram in tha,,) space [, temperature is shown and discussed.
[S0163-182696)03530-9

[. INTRODUCTION Given these disagreements and in view of the controversy
on the nature of the transition in the Ising and Heisenberg
Various properties of frustrated spin systems have beepases, it would be desirable to clarify the situation in the
extensively investigated during the last 15 yeams particu- XY case.
lar, the nature of the phase transition in these systems has The purpose of this paper is to study by the MC histogram
been and is still a subject of controversy. Established theatechniqué®?°the phase transition of th¢Y STA with anti-
ries failed to give correct critical properties of frustrated sys-ferromagnetic NN and next-nearest-neightdNN) interac-
tems. An example is the much studied stacked triangulations, J; andJ,, respectively.
antiferromagnetSTA). In the case of the Ising model onthe ~ WhenJ,=0, we find that the transition has an aspect of
STA with nearest-neighbdNN) interaction, some recent pa- second order, in agreement with earlier MC results. We ob-
pers show that the transition is &fY universality classin  tain by the highly accurate histogram method the following
contradiction with the suggestion of a new universality dlass exponents v=0.48+0.02, 8=0.25+0.02, y=1.15+0.05,
or with the tricriticality proposed earliér.In the case of anda=0.46+0.10 which are, except, only slightly differ-
Heisenberg spins on the STA, the controversy was eveent from those obtained by Kawamura given above. Our re-
more embarassiny.’ Monte Carlo(MC) simulation§®51%11  sylts are also similar to those given by Plureeal*® except
showed that the transition is of second order with criticala marked difference in the value ¢f We will discuss this
exponents different from those of known universality point later.
classes. Using a renormalization gro@ipG) technique in a Furthermore, we find in this work the existence of a first-
4— € perturbative expansiolf, Kawamura has suggested a order transition at a finite temperature in the intervallgf
new universality class for that transition. However, the RGwhere collinear spin configuration exists. This is clearly seen
technique for a nonlinear (NLS) model with a 2+ e expan- by using the histogram method.
sion showed that the transition, if not of first order or mean- Section Il is devoted to the description of the model and
field tricritical, is of second order with the known(® uni-  the MC method. Results are shown and discussed in Sec. Ill.
versality clasg3~1°Moreover, a recent paper by Antonenko Concluding remarks are given in Sec. IV.
and Sokolo¥® by a RG technique in three dimensiof&D)
with a resummation technique shows that the transition in 3D Il. MODEL AND METHOD
is clearly of first order for both th¥Y and Heisenberg cases.
The scenarios of Azariat al. as well as the prediction of We consider a system composed of the triangular lattices
Antonenko and Sokolov are in contradiction with both thestacked along the axis. The Hamiltonian is given by
suggestion by K?\l/geiTulr%\and recent MC results for the
Hellzstfrn?r?eriiacszzse Kawamura has also su H:E %S - S, @
; ggested a new & i
universality class from MC and RG calculatiols. The
critical exponents of the transition obtained by Kawamurawhere § is an XY spin of unit length occupying théth
from standard MC simulations arer=0.54+0.02, lattice site and the sum runs over NN and NNN pairs in the
B=0.253+0.01, y=1.13+0.05, anda=0.34+0.06° How- Xy planes(perpendicular to the stacking directia) and
ever, for theXY spins on the bct lattice, the transition was over NN pairs in thez direction. All interactions are antifer-
found to be weakly of first ordéf. Furthermore, recent MC romagnetic 0) with Jij=J; for the NN in-plane interac-
results® using the histogram technigtié® showed that tion andJ;;=J, for the NNN in-plane interaction. For sim-
v=0.50+0.01, B=0.24+0.02, y=1.03+0.04, and plicity, the NN interaction along the stacking direction is
«=0.46+0.10 suggesting that the transition is mean-fieldassumed to b&;=J,. Hereafter, the energy and temperature
tricritical (v=0.5, 8=0.25, y=1, anda=0.5). Antonenko  will be measured in units af;.
and Sokolo¥® on the other hand conclude in favor of a first-  For XY spins (also for Heisenberg spihsthe classical
order transition. ground state(g.s) can be determined by minimizing the

0163-1829/96/5#)/41655)/$10.00 54 4165 © 1996 The American Physical Society



4166 E. H. BOUBCHEUR, D. LOISON, AND H. T.

FIG. 1. Ground state configuration for 0.X28<1. 6 is arbi-
trary (see text

energy?! It is given as follows: for 8<J,<0.125),, the clas-
sical g.s. is the 120° structure, for 0.125:J,<J, the clas-
sical g.s. degeneracy is continuous, the collinear configura-
tions (one line up, one line downare particular g.s.
configurations in this range of parametésee Fig. 1. For
J,>J,, the g.s. is incommensurate with threefold degen-
eracy: spins on each line are parallel and two neighboring
spin lines form an angled given by co®=-—(1+a)/2a
wherea=J,/J;.

We use in this work the histogram MC technique which
has been recently developed by Ferrenberg and
Swendsert®?° The reader is referred to these papers for de-
tails. We have used the systems Nft=L3 spins where
L=12, 18, 24, 30, 36, and 42, with periodic boundary con-
ditions. In addition to these sizes, we used dlsel4, 28,
and 50 in the collinear phase. In general, we discarded 1-2
million MC steps per spin for equilibrating the system and
calculated the energy histogram as well as other physical
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quantities over the next 2 million MC steps. We first estimate  F|G. 2. (a) The fourth-order energy cumulant is * calculated
as precisely as possible “transition” temperatdigat each  at the critical temperaturé=1.4580(see text The horizontal line
size and calculate &, the energy histograrR(E) (E isthe is v*,

system energyas well as the following quantities:

_(E)—=(E)?

the value ofV extrapolated at infinite size which is

0.666 633). (b) In-In plot of V*
text for comments.

—V vs L. The slope is 2.52. See

(C)= NkBT2 ' @) where T is the temperatureQ the order parameteC the
specific heat per sitey the magnetic susceptibility per site,
N({0?%)—(0)?) U the fourth-order cumulany/ the fourth-order energy cu-
(x)= keT ’ 3 mulant,(- - -) means the thermal average, and the prime de-
notes the derivative with respect = 1/(kgT). Note that
((0)"Y=(OE)—(O)(E), (4)  the order parameted is defined in this work as
2y7\ — 2\ 2
((0%))=(0%E)—(0)¥(E), ©) <o>:<z ‘Oi>/N, a1
I
._(OE)
((In0)")= W_< E). 6)  whereO; (i=1,2,3) is theith sublattice magnetization. This

definition is equivalent to the “noncollinear staggered mag-

obtained by making a rotation oft-120°

(O%E) netization”
((In0?)"y= 0% —(E), (7)  (—120°) for the secondthird) magnetization before sum-
ming over the three sublattice magnetizations. Udh{f)
(E% calculated atT,, one can calculate physical quantities at
V=1— 8 neighboring temperatures, and thus the “real transition
, (8) ighbori d th he “real ition”
3(E%) temperature at each size is known with precisiof?.
04
(Uy=1- <—2>2 9) IIl. RESULTS
3(0%)

Let us show first the case whedg=0. The transition is
((U)"y=(UE)—(UXE), (10)  clearly of second order. The energy cumulahttends to
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FIG. 5. Maximum of susceptibilityy as a function ofL in a
FIG. 3. Energy histogran®(E), E being energy per spin, for In-In scale. The slope yieldg/v=2.413.
different linear lattice sizet =12 (diamonds, 18 (triangles, and

30 (circles, at Te(>) =1.4580. The critical exponents obtained here are similar to those

iven by Kawamuraexcepty. They are also very close to
hose given by Plumeet al!® excepty. While Kawamura
suggested a new universality class for this transition, Plumer
et al. argued that it would be mean-field tricritical since their
values ofy andy are close to 0.5 and 1, markedly different
from the values given by Kawamugaee the Introduction
Dur results show that, while is close to 0.5, the value of
is not that of mean-field tricriticality. The difference be-
een our value ofy and that of Plumeet al. comes cer-

2/3 at the transition for increasing size as it should be in
second-order transition. We show in FigaRV as a function
of L~ The extrapolated value at infinite size
V*=0.666 633) is indeed very close to 2/3. Using this
value, we plot in Fig. &) In(V*—V) versus I. As ex-
pected, the points lie on a straight line with a slope equal t
2.52. This slope, which is not 3, means thais not volume
dependent, hence the transition is not of first order. We hav%v

varied the simulation temperatuiig to detect bimodal en- tainly from simultaneously the estimate ofand To(<). In

ergy distribution, bu_t.we_d|d not f'.nd it so. This indicates addition, the highly accurate MC results do not indicate a
again that the transition is not of first order. Note however,

that f " | K first-order t " imulati tfirst—order transition in disagreement with the prediction of
at for extremely weak first-order transitions, simulations aty 0oy 0 o0 4 S0 olot

finite sizes cannot give a definite answer. Figure 3 shows The phase diagram in thd (a) is shown in Fig. 6 where

Pf(ItEh) for_t\_/ar;(?[us S'ZeSE ar= tlif]'SB.Of.th.f extrapoLat:ad value yhe result using the mean-field the&r¢°is also displayed. A
of the critical temperature at the infinite siggee below comparison will be made below. Now, the transition from

IUOsir)g the f{Q,iZ‘c?‘Size gc"’.‘"”g f(r)]r the_ .”"'aIX‘ma@)’ <X>’f the collinear ordered phase to the paramagnetic state is of
<f(1 n’ )f'>'1 etc., Wehc_) rt]a_lne t_e critica temperatuhr_ehor first order. Figure 7 shows the energy distribution at the tran-
the infinite system which i () =1.4580- 0.0005 which gy temperature for=0.12. The double peaks observed

is the same as that obtained by Kawaniuaad slightly h f Al indi ,
. o te the first-order ch ter.
smaller than that given by Plumet al.which is 1.45846).1° ere even for a very smadindicate the first-order character

The exponent can be obtained from the inverse of the slope
of ((INO)" ) max @NA{(INO)?)" ) ax VErsus Ih.. This is shown 25
in Fig. 4 wherev=0.48+0.02. The critical exponentg and T
B are obtained by plotting () yax and 10 x)mayx VErsus ¢
InL, respectively. They ar8=0.250+ 0.02 (not shown and
y=1.15+0.05(see Fig. 5.

-A 5
O 45}
=
S 4
v
35 ¢
3 L
25 | ] a
22,4 216 2:3 3 3:2 3:4 3:6 3.8 FIG. 6. Phase diagram in the plaree T) by Monte Carlo simu-

Ln(L) lations (solid circles. Solid lines are guide to the eye. Phases I, II,
I, and IV denote the 120° state, the collinear state, the incommen-
FIG. 4. {(InO)’) vs InL. The slope of the curve is equal to surate state, and the paramagnetic phase, respectively. The mean-
1/v=2.08.{(In0?)") vs InL (not shown gives the same slope. field result is shown by dotted lines. See text for comments.



4168

E. H. BOUBCHEUR, D. LOISON, AND H. T. DIEP 54
3000 T T T T _1.06 T T T T
PE) | " A E L ah
2500 &% . ¢ Te=09650 -1.09 + 4 A2 1
: ". o © 2 A
* . [ ]
2000 | "ﬁi, :é@%.' 1 L2k Al ]
A & a ]
] *p i ? K F'S
1500 SRS ] 116 [ A 1
'A' % s A
L N4 .2 1
1000 E L 119} A ]
I3 o2
.A. 2@ A
L :' e 1 A
500 g % A T ISy 1S3 lsa 155 156
. | ﬁ . . . . . T .

-5800 -5400  -5000 -4600  -4200 -3800

FIG. 8. Finite size effect on the internal energy per dpiffior
a=0.5. The open(solid) triangles are results fdr =30 (50). See
7000

P (E) T .[ . L;IS,T%Q%& text for comments.
6000 - (b) ¢ L=14Tc=09671 ]
] & L=12,Tc=0.9675 Let us note that in Fig. 6 the critical line issued from
5000 L :: ] a=0.125 is canted to the left and that issued fram 1
H canted to the right, indicating again that the collinear state is
4000 F :: 1 favored over the neighboring noncollinear phases at finite
2000 | : E ] temperatures. _
. Now, let us discuss the mean-field result shown dotted
2000 12 E lines in Fig. 6. This result is obtained in each phase by cal-
culating the critical temperatufg, as a function of (for the
1000 ] method, see Gabast al??> and Zhanget al?® First, although
the values ofT, are close to those of MC simulations, the
(_’3"3 3 _2"6 23 ) nature of first-order transition cannot be seen by mean field.

E Second, the lines issued froa=0.125 and froma=1 are

vertical, unlike the MC lines which are canted as discussed
FIG. 7. (a) Energy distribution at three temperatures in the tran-above.

sition region in the casa=0.120 and_=12. The double peaks are
observed for these temperatures, indicating that the transition is of
first order with a wide transition regiorib) With increasing sizes, IV. CONCLUDING REMARKS

the dip between the double peaks goes to zero, indicating that the \y/e have calculated by MC simulations the phase diagram
energy is discontinuous at the transition. of the STA withXY spins. The effect of nnn interactidh is

o ) ) shown to cause the existence of a region of first-order tran-
With increasing sizes, these two peaks are separated bysgion. We have also reconsidered the cdse0. No evi-

region of zero probabilitfFig. 7(b)], indicating a disconti-  dence of a first-order transition was found for this case, in
nuity of the energy at the transition. The same thing is founcttontradiction with the prediction of Antonenko and

for a=1. However, the first-order character at the middle ofsokolovi® Our results for the critical exponents are rather
the line @=0.5, for exampleis much more difficult to de-

termine. The first-order character is seen only at a very large

size. Figure 8 shows the results from standard MC runs for 3000

L=30 andL=50. As seen, the discontinuity is seen only at P(E)

L =50. The first-order nature is confirmed by histogram MC 2500 ¢ ‘ ]
simulations shown in Fig. 9 where the double peaks are ob- ‘

served. It is interesting at this stage to note that the correla- 2000 ¢ $ ]
tion length at a first-order transition, though finite, may be '!

rather long compared with the lattice size used in simula- 1500 ¢ ’t ]
tions. Therefore, care should be taken to make sure that the ]

continuous aspect of the transition is not due to a finite size 1000 ! ]
effect. Otherwise, critical exponents determined from the as-

sumption of a second-order transition are only effective ex- 500 ]
ponents which may not correspond to known universality

classes. To be sure that the second-order character observed v

) : -3%0000 -304000 -288000 -272000 -256000 -240000
in the case of]J,=0 does not come from small sizes, we

have done standard simulation for=60. The results confirm

the second order aspect in all physical quantities as shown FIG. 9. Bimodal energy distribution at the transition temperature
earlier. in the casea=0.5 andL =50. See text for comments.
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close to those of Kawamura exceptind to those of Plumer tems by Henley® Finally, let us note that the first-order

et al. excepty as discussed above. It is worthwhile at this transition between the collinear phase and the paramagnetic
stage to discuss the difference between our results and thghase can be explained as follows: in the collinear phase the
previous ones. For, the two histogram workgthe present degeneracy is three, apart from the infinite degeneracy due to
and that by Plumeet al'®) give the same exponents except global rotation, since there are three ways to choose the an-
- In our opinion, this may be due to the slightly different tiparallel spin pairs in a triangle. This threefold degeneracy is

value of T¢() used in the two works. The small€g(=) is,  reminiscent of the three-state Potts model in three dimen-
the largery and probablyg are. This has been seen in the sjons which is known to undergo a first-order transition. This

Ising casé. Furthermore, due to the proximity of the first- may be the origin of the first-order line observed here.
order line to the controversial pointl{=0), it is possible

that the exponents determined at this point are somewhat

affected by .th(_a first—orde_r region, giving it some t(icritical ACKNOWLEDGMENTS

features. This interpretation may reconcile the previous con-

tradictory conclusions. Another interesting finding in this pa- This paper was completed while one of the authors
per is the fact that the collinear configurations are preferredH.T.D.) stayed at Kobe University. He is indebted to Pro-
at finite temperatures over the infinite number of GS in thefessor O. Nagai for hospitality and financial support and for
range 0.125a<1. This phenomenon, which has beenthe fruitful collaboration and excellent relationship over the
called order by disordéef, was predicted for vector spin sys- past 20 years.
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