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The phase transition in antiferromagnetic stacked triangular lattices with classicalXY spins interacting via
antiferromagnetic nearest- and next-nearest-neighbor bonds,J1 and J2, is studied by means of extensive
histogram Monte Carlo simulations. WhenJ250, the transition is of second order with critical exponents
slightly different from those given by other authors. It is shown that in a range ofJ2, the transition is of first
order. The general phase diagram in the (J2 ,T) space (T, temperature! is shown and discussed.
@S0163-1829~96!03530-8#

I. INTRODUCTION

Various properties of frustrated spin systems have been
extensively investigated during the last 15 years.1 In particu-
lar, the nature of the phase transition in these systems has
been and is still a subject of controversy. Established theo-
ries failed to give correct critical properties of frustrated sys-
tems. An example is the much studied stacked triangular
antiferromagnet~STA!. In the case of the Ising model on the
STA with nearest-neighbor~NN! interaction, some recent pa-
pers show that the transition is ofXY universality class2 in
contradiction with the suggestion of a new universality class3

or with the tricriticality proposed earlier.4 In the case of
Heisenberg spins on the STA, the controversy was even
more embarassing.5–7Monte Carlo~MC! simulations8,9,5,10,11

showed that the transition is of second order with critical
exponents different from those of known universality
classes. Using a renormalization group~RG! technique in a
42e perturbative expansion,12 Kawamura has suggested a
new universality class for that transition. However, the RG
technique for a nonlinears ~NLS! model with a 21e expan-
sion showed that the transition, if not of first order or mean-
field tricritical, is of second order with the known O~4! uni-
versality class.13–15Moreover, a recent paper by Antonenko
and Sokolov16 by a RG technique in three dimensions~3D!
with a resummation technique shows that the transition in 3D
is clearly of first order for both theXY and Heisenberg cases.
The scenarios of Azariaet al. as well as the prediction of
Antonenko and Sokolov are in contradiction with both the
suggestion by Kawamura12 and recent MC results for the
Heisenberg case.9,5,10,11

For theXY case, Kawamura has also suggested a new
universality class from MC and RG calculations.12,9 The
critical exponents of the transition obtained by Kawamura
from standard MC simulations aren50.5460.02,
b50.25360.01,g51.1360.05, anda50.3460.06.9 How-
ever, for theXY spins on the bct lattice, the transition was
found to be weakly of first order.17 Furthermore, recent MC
results18 using the histogram technique19,20 showed that
n50.5060.01, b50.2460.02, g51.0360.04, and
a50.4660.10 suggesting that the transition is mean-field
tricritical (n50.5, b50.25,g51, anda50.5). Antonenko
and Sokolov16 on the other hand conclude in favor of a first-
order transition.

Given these disagreements and in view of the controversy
on the nature of the transition in the Ising and Heisenberg
cases, it would be desirable to clarify the situation in the
XY case.

The purpose of this paper is to study by the MC histogram
technique19,20 the phase transition of theXY STA with anti-
ferromagnetic NN and next-nearest-neighbor~NNN! interac-
tions,J1 andJ2, respectively.

WhenJ250, we find that the transition has an aspect of
second order, in agreement with earlier MC results. We ob-
tain by the highly accurate histogram method the following
exponentsn50.4860.02, b50.2560.02, g51.1560.05,
anda50.4660.10 which are, exceptn, only slightly differ-
ent from those obtained by Kawamura given above. Our re-
sults are also similar to those given by Plumeret al.18 except
a marked difference in the value ofg. We will discuss this
point later.

Furthermore, we find in this work the existence of a first-
order transition at a finite temperature in the interval ofJ2
where collinear spin configuration exists. This is clearly seen
by using the histogram method.

Section II is devoted to the description of the model and
the MC method. Results are shown and discussed in Sec. III.
Concluding remarks are given in Sec. IV.

II. MODEL AND METHOD

We consider a system composed of the triangular lattices
stacked along thez axis. The Hamiltonian is given by

H5(
~ i j !

Ji jSi •Sj , ~1!

where Si is an XY spin of unit length occupying thei th
lattice site and the sum runs over NN and NNN pairs in the
xy planes~perpendicular to the stacking directionz) and
over NN pairs in thez direction. All interactions are antifer-
romagnetic (.0) with Ji j5J1 for the NN in-plane interac-
tion andJi j5J2 for the NNN in-plane interaction. For sim-
plicity, the NN interaction along the stacking direction is
assumed to beJi j5J1. Hereafter, the energy and temperature
will be measured in units ofJ1.

For XY spins ~also for Heisenberg spins!, the classical
ground state~g.s.! can be determined by minimizing the
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energy.21 It is given as follows: for 0,J2,0.125J1, the clas-
sical g.s. is the 120° structure, for 0.125J1,J2,J1 the clas-
sical g.s. degeneracy is continuous, the collinear configura-
tions ~one line up, one line down! are particular g.s.
configurations in this range of parameters~see Fig. 1!. For
J2.J1, the g.s. is incommensurate with threefold degen-
eracy: spins on each line are parallel and two neighboring
spin lines form an angleu given by cosu52~11a)/2a
wherea5J2 /J1.

We use in this work the histogram MC technique which
has been recently developed by Ferrenberg and
Swendsen.19,20 The reader is referred to these papers for de-
tails. We have used the systems ofN5L3 spins where
L512, 18, 24, 30, 36, and 42, with periodic boundary con-
ditions. In addition to these sizes, we used alsoL514, 28,
and 50 in the collinear phase. In general, we discarded 1–2
million MC steps per spin for equilibrating the system and
calculated the energy histogram as well as other physical
quantities over the next 2 million MC steps. We first estimate
as precisely as possible ‘‘transition’’ temperatureT0 at each
size and calculate atT0 the energy histogramP(E) (E is the
system energy! as well as the following quantities:

^C&5
~^E2&2^E&2!

NkBT
2 , ~2!

^x&5
N~^O2&2^O&2!

kBT
, ~3!

^~O!8&5^OE&2^O&^E&, ~4!

^~O2!8&5^O2E&2^O&2^E&, ~5!

^~ lnO!8&5
^OE&

^O&
2^E&, ~6!

^~ lnO2!8&5
^O2E&

^O2&
2^E&, ~7!

V512
^E4&
3^E2&2

, ~8!

^U&512
^O4&
3^O2&2

, ~9!

^~U !8&5^UE&2^U&^E&, ~10!

whereT is the temperature,O the order parameter,C the
specific heat per site,x the magnetic susceptibility per site,
U the fourth-order cumulant,V the fourth-order energy cu-
mulant,^•••& means the thermal average, and the prime de-
notes the derivative with respect tob51/(kBT). Note that
the order parameterO is defined in this work as

^O&5K (
i

UOiU L /N, ~11!

whereOi ( i51,2,3) is thei th sublattice magnetization. This
definition is equivalent to the ‘‘noncollinear staggered mag-
netization’’ obtained by making a rotation of1120°
(2120°) for the second~third! magnetization before sum-
ming over the three sublattice magnetizations. UsingP(E)
calculated atT0, one can calculate physical quantities at
neighboring temperatures, and thus the ‘‘real transition’’
temperature at each size is known with precision.19,20

III. RESULTS

Let us show first the case whereJ250. The transition is
clearly of second order. The energy cumulantV tends to

FIG. 1. Ground state configuration for 0.125,a,1. u is arbi-
trary ~see text!.

FIG. 2. ~a! The fourth-order energy cumulant vsL21 calculated
at the critical temperatureT51.4580~see text!. The horizontal line
is V* , the value of V extrapolated at infinite size which is
0.666 63~3!. ~b! ln-ln plot of V*2V vs L. The slope is 2.52. See
text for comments.
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2/3 at the transition for increasing size as it should be in a
second-order transition. We show in Fig. 2~a! V as a function
of L21. The extrapolated value at infinite size
V*50.666 63~3! is indeed very close to 2/3. Using this
value, we plot in Fig. 2~b! ln(V*2V) versus lnL. As ex-
pected, the points lie on a straight line with a slope equal to
2.52. This slope, which is not 3, means thatV is not volume
dependent, hence the transition is not of first order. We have
varied the simulation temperatureT0 to detect bimodal en-
ergy distribution, but we did not find it so. This indicates
again that the transition is not of first order. Note however
that for extremely weak first-order transitions, simulations at
finite sizes cannot give a definite answer. Figure 3 shows
P(E) for various sizes atT51.4580 the extrapolated value
of the critical temperature at the infinite size~see below!.

Using the finite-size scaling for the maxima of^C&, ^x&,
^(lnO)8&, etc.,19,20 we obtained the critical temperature for
the infinite system which isTc(`)51.458060.0005 which
is the same as that obtained by Kawamura9 and slightly
smaller than that given by Plumeret al.which is 1.4584~6!.18

The exponentn can be obtained from the inverse of the slope
of ^(lnO)8&max and^(lnO)2)8&max versus lnL. This is shown
in Fig. 4 wheren50.4860.02. The critical exponentsg and
b are obtained by plotting ln̂O&max and ln̂ x&max versus
lnL, respectively. They areb50.25060.02~not shown! and
g51.1560.05 ~see Fig. 5!.

The critical exponents obtained here are similar to those
given by Kawamura9 exceptn. They are also very close to
those given by Plumeret al.18 exceptg. While Kawamura
suggested a new universality class for this transition, Plumer
et al.argued that it would be mean-field tricritical since their
values ofn andg are close to 0.5 and 1, markedly different
from the values given by Kawamura~see the Introduction!.
Our results show that, whilen is close to 0.5, the value of
g is not that of mean-field tricriticality. The difference be-
tween our value ofg and that of Plumeret al. comes cer-
tainly from simultaneously the estimate ofn andTc(`). In
addition, the highly accurate MC results do not indicate a
first-order transition in disagreement with the prediction of
Antonenko and Sokolov.16

The phase diagram in the (T,a) is shown in Fig. 6 where
the result using the mean-field theory22,23is also displayed. A
comparison will be made below. Now, the transition from
the collinear ordered phase to the paramagnetic state is of
first order. Figure 7 shows the energy distribution at the tran-
sition temperature fora50.12. The double peaks observed
here even for a very smallL indicate the first-order character.

FIG. 3. Energy histogramP(E), E being energy per spin, for
different linear lattice sizesL512 ~diamonds!, 18 ~triangles!, and
30 ~circles!, at Tc(`)51.4580.

FIG. 4. ^(lnO)8& vs lnL. The slope of the curve is equal to
1/n52.08. ^(lnO2)8& vs lnL ~not shown! gives the same slope.

FIG. 5. Maximum of susceptibilityx as a function ofL in a
ln-ln scale. The slope yieldsg/n52.413.

FIG. 6. Phase diagram in the plane (a,T) by Monte Carlo simu-
lations ~solid circles!. Solid lines are guide to the eye. Phases I, II,
III, and IV denote the 120° state, the collinear state, the incommen-
surate state, and the paramagnetic phase, respectively. The mean-
field result is shown by dotted lines. See text for comments.
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With increasing sizes, these two peaks are separated by a
region of zero probability@Fig. 7~b!#, indicating a disconti-
nuity of the energy at the transition. The same thing is found
for a51. However, the first-order character at the middle of
the line (a50.5, for example! is much more difficult to de-
termine. The first-order character is seen only at a very large
size. Figure 8 shows the results from standard MC runs for
L530 andL550. As seen, the discontinuity is seen only at
L550. The first-order nature is confirmed by histogram MC
simulations shown in Fig. 9 where the double peaks are ob-
served. It is interesting at this stage to note that the correla-
tion length at a first-order transition, though finite, may be
rather long compared with the lattice size used in simula-
tions. Therefore, care should be taken to make sure that the
continuous aspect of the transition is not due to a finite size
effect. Otherwise, critical exponents determined from the as-
sumption of a second-order transition are only effective ex-
ponents which may not correspond to known universality
classes. To be sure that the second-order character observed
in the case ofJ250 does not come from small sizes, we
have done standard simulation forL560. The results confirm
the second order aspect in all physical quantities as shown
earlier.

Let us note that in Fig. 6 the critical line issued from
a50.125 is canted to the left and that issued froma51
canted to the right, indicating again that the collinear state is
favored over the neighboring noncollinear phases at finite
temperatures.

Now, let us discuss the mean-field result shown dotted
lines in Fig. 6. This result is obtained in each phase by cal-
culating the critical temperatureTc as a function ofa ~for the
method, see Gabayet al.22 and Zhanget al.23 First, although
the values ofTc are close to those of MC simulations, the
nature of first-order transition cannot be seen by mean field.
Second, the lines issued froma50.125 and froma51 are
vertical, unlike the MC lines which are canted as discussed
above.

IV. CONCLUDING REMARKS

We have calculated by MC simulations the phase diagram
of the STA withXY spins. The effect of nnn interactionJ2 is
shown to cause the existence of a region of first-order tran-
sition. We have also reconsidered the caseJ250. No evi-
dence of a first-order transition was found for this case, in
contradiction with the prediction of Antonenko and
Sokolov.16 Our results for the critical exponents are rather

FIG. 7. ~a! Energy distribution at three temperatures in the tran-
sition region in the casea50.120 andL512. The double peaks are
observed for these temperatures, indicating that the transition is of
first order with a wide transition region.~b! With increasing sizes,
the dip between the double peaks goes to zero, indicating that the
energy is discontinuous at the transition.

FIG. 8. Finite size effect on the internal energy per spinE for
a50.5. The open~solid! triangles are results forL530 ~50!. See
text for comments.

FIG. 9. Bimodal energy distribution at the transition temperature
in the casea50.5 andL550. See text for comments.
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close to those of Kawamura exceptn and to those of Plumer
et al. exceptg as discussed above. It is worthwhile at this
stage to discuss the difference between our results and the
previous ones. Forn, the two histogram works~the present
and that by Plumeret al.18! give the same exponents except
g. In our opinion, this may be due to the slightly different
value ofTc(`) used in the two works. The smallerTc(`) is,
the largerg and probablyb are. This has been seen in the
Ising case.2 Furthermore, due to the proximity of the first-
order line to the controversial point (J250), it is possible
that the exponents determined at this point are somewhat
affected by the first-order region, giving it some tricritical
features. This interpretation may reconcile the previous con-
tradictory conclusions. Another interesting finding in this pa-
per is the fact that the collinear configurations are preferred
at finite temperatures over the infinite number of GS in the
range 0.125,a,1. This phenomenon, which has been
called order by disorder,24 was predicted for vector spin sys-

tems by Henley.25 Finally, let us note that the first-order
transition between the collinear phase and the paramagnetic
phase can be explained as follows: in the collinear phase the
degeneracy is three, apart from the infinite degeneracy due to
global rotation, since there are three ways to choose the an-
tiparallel spin pairs in a triangle. This threefold degeneracy is
reminiscent of the three-state Potts model in three dimen-
sions which is known to undergo a first-order transition. This
may be the origin of the first-order line observed here.
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