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A unified thermodynamic treatment is presented for reorientation transitions in ultrathin ferromagnetic films,
driven by temperature or thickness variations. Since the physical mechanism underlying such transitions is the
competition between surface, bulk, and shape anisotropy, the natural and proper scenery to examine the
problem is the anisotropy space of the corresponding system. The recently developed anisotropy-flow concept
is then applied to detect and characterize the possible thickness- and temperature-driven reorientation transi-
tions, consistent with the standard, though not universally valid, assumption for the additive separation of the
bulk and surface contributions. Three generic types of transition are easily identified with a number of subcases
each. Each generic scenario is seen to come about as a simple consequence of the route which the system
follows in the anisotropy space under variations of the driving parameter. The relevant characteristic thick-
nesses are easily identified. We find that, as a rule, there existtwo borderlines in the ferromagnetic part of the
T-d diagram of the system; these should lead in principle to a much richer structure of the diagram in question
than has been reported so far.@S0163-1829~96!07329-8#

I. INTRODUCTION

Some ferromagnetic layers of a thickness of a few mono-
layers~ML ! exhibit a remarkable transition accompanied by
a reorientation of the direction of the spontaneous
magnetization.1,2 At fixed temperature below the Curie tem-
peratureTC , the increase in thickness leads to the reorienta-
tion of the magnetization from a perpendicular into an in-
plane direction starting at some critical thickness. At a fixed
and very small thicknessd, the increase of temperature from
values much smaller than the correspondingTC triggers the
same crossover starting at some critical~reorientation! tem-
perature. Reports on the thickness-driven transition come
mostly from the experimental side,2 whereas the
temperature-driven transition has been analyzed theoretically
as well.3–5 In the first case the reorientation appears to be
continuous, while both continuous and discontinuous varia-
tions have been found under variation of temperature. As to
the range in the relevant parameter~thickness or tempera-
ture! over which the reorientation is accomplished, experi-
mental and theoretical evidence agree on a remarkably small
range in the thickness-driven case, but disagree in the
temperature-driven case, where experiment favors relatively
large ranges on the temperature scale2,6,7 in contrast to re-
stricted theoretical evidence.5

Qualitatively, the reorientation transition~RT! in ultrathin
films has been traced back to the competition between bulk,
surface, and dipolar~shape! anisotropies. Only very thin
films stand the chance of generating perpendicular anisot-
ropy which could override the effect of the ultimately large
demagnetization factor (Nz51), characteristic for the direc-
tion perpendicular to a flat specimen.

Quite recently, the notion oftemperature-driven anisot-
ropy flowshas been put forward in the study of the variation
of the bulk magnetic anisotropy of single-ion origin.8 Basi-
cally, the idea boils down to combining the results of a stan-

dard thermodynamic~TD! analysis of the stability of a bulk
system with anisotropies of different orders with the
statistical-mechanical calculation of the variation of the phe-
nomenological anisotropy constants. The microscopics are
valid for a whole class of theories and are underpinned by a
newly found parametric method. The consideration of anisot-
ropy constants of different orders was but a natural ingredi-
ent of the flow analysis in the anisotropy space.

There is little evidence to date of a detailed quantitative
clarification of the microscopic contributions to the different
anisotropies and, hence, of the details of the RT in ultrathin
films. Still, an exhaustive TD analysis of the direction-
dependent part of the free energy can give astonishingly
abundant information under rather minimal assumptions. In
fact, both types of transition are put on equal and general
footing if one analyzes the problem in terms ofthickness-
driven or temperature-drivenanisotropy flows~trajectories!,
characteristic for the anisotropy phase diagram of the respec-
tive thin film. While the idea to implement phenomenologi-
cal free-energy expressions is not new in the thin-film
context,9–11 the formulation we suggest has several advan-
tages and offers insights which should become obvious in the
following and are summarized in the final section.

II. GENERAL FRAMEWORK

Consider a very thin flat film whose easy axis for the
magnetizationM is collinear with the normaln to the sur-
face. Definingu as the angle betweenM andn and assuming
that there is no external magnetic field, one writes down the
phenomenological expression for the direction-dependent
part of the free-energy density as

F05K1sin
2u1K2sin

4u1 1
2 m0M

2cos2u. ~1!

The first two terms involve the first and second anisotropy
contributions in standard notation, while the last term gives

PHYSICAL REVIEW B 1 AUGUST 1996-IIVOLUME 54, NUMBER 6

540163-1829/96/54~6!/4137~9!/$10.00 4137 © 1996 The American Physical Society



the demagnetization energy with the extreme demagnetiza-
tion factor of unity in the perpendicular direction. More com-
plicated angular dependences arising from non-negligible in-
plane anisotropies and involving an additional independent
angular variable can be treated along the lines described be-
low. It proves very advantageous to redefine the zero of the
free energy:

F[F02
1
2 m0M

25K̃1sin
2u1K2sin

4u, ~2!

where now the reference state of zero free energy is the one
with M uun and we have defined

K̃1[K12
1
2 m0M

2. ~3!

Thus, the depolarizing effect of the dipolar self-energy has
been absorbed into an expression which is formally com-
pletely analogous to the bulk phenomenological free energy
with first- and second-order uniaxial anisotropies in the ab-
sence of applied field.

A. Structure of the anisotropy space

Minimization of the free energy of Eq.~2! with respect to
u reveals the possibility for three different TD phases which
are to be distinguished by the corresponding equilibrium val-
ues ofu. The calculation appears so trivial that it is practi-
cally always forgotten to mention the analysis of therelative
stability of the possible phases. We summarize briefly the
results of the exhaustive TD analysis~cf. also Fig. 1!: ~i!
phase 1~perpendicular or magnetization-up phase!, u50;
~ii ! phase 2~in-plane phase!, u5p/2; ~iii ! phase 3~‘‘canted’’
phase!, sin2u52K̃1/2K2 , i.e.,

u5arcsinA2K̃1/2K2 ~0<2K̃1/2K2<1!. ~4!

There is a territorial dispute in the phase diagram between
the first two phases in that there is an overlapping domain
where both of them are minimal. Their relative stability is
decided upon by considering the depths of the respective
minima:

DF21[F~u5p/2!2F~u50!5K̃11K2 . ~5!

Thus, the phase boundaries are given by the thick lines in
Fig. 1, which are defined as follows:

1↔2 K252K̃1 ~K̃1.0!, ~6!

2↔3 K252 1
2 K̃1 ~K̃1,0!, ~7!

3↔1 K̃150 ~K2.0!. ~8!

There are, however, two wedges in the fourth quadrant, de-
fined by

2K̃1<K2<2 1
2 K̃1 ~K̃1.0! ~9!

and

K2<2K̃1 ~K̃1.0!, ~10!

where each neighbor ismetastableacross the boundary
~hatched regions in Fig. 1!.

B. Anisotropy-flow concept

Quite generally, if the anisotropies are functions ofn11
parameters, then any one of them, say,x, would drive a
corresponding evolution or flow with the remainingn param-
eters, say,y1 ,y2 , . . . ,yn , being held fixed:

K̃15K̃1~x;y1 , . . . ,yn!, ~11!

K25K2~x;y1 , . . . ,yn!. ~12!

Varying the flow parameterx between an initial and a final
state will force the system to evolve along a specific trajec-
tory between these two extreme states in the phase diagram.
Provided thatK̃1(x) andK2(x) are monotonic functions at
fixed yp(p51,2, . . . ,n), no horizontal or vertical line~i.e.
no straight line parallel to any of the anisotropy axes! may be
crossed more than once. While this property of the flow
seems rather obvious by simple examination of the diagram,
its consequences are very stringent. Independently, further
severe restrictions on the basin of flow arise, if the sign of
one or both anisotropy constants is conserved under the
x-driven evolution of the system. The picture described in
this paragraph is not restricted to the anisotropy analysis of
thin films only and represents a systematic extension of the
anisotropy-flow analysis of Ref. 8.

For the reorientation in thin films, up to this point we have
profited from incorporating the demagnetization effect into
an anisotropic free energy expression with a shifted zero
point and a redefined first anisotropy constantK̃1 . Expres-
sion ~2! is, however, deceptively simple and already the
metastability phenomenon is an indication of the underlying
complications. The difficulty comes in with the fact that the
relevant TD variables are the thicknessd of the film and its
temperatureT; hence,K̃15K̃1(T,d) and K25K2(T,d) ~at
that, we have assumed a zero external field!. Quite generally,
any of these two TD parameters can serve as the driving
parameter for the anisotropy flow of the system in the phase
diagram of Fig. 1. The experimental situation corresponds to
either fixingd and varyingT or fixing T and varyingd ~the

FIG. 1. Possible phases for the free energy of Eq.~3!. Thick
lines separate different phases. Metastability domains are hatched
~fourth quadrant!. See also Eqs.~6!–~10! in the text.
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variation ofd should not be taken too literally, of course!. In
the first case, one finds a temperature-driven anisotropy flow,
while in the second a thickness-driven anisotropy flow oc-
curs. The situation can be suitably approached starting with a
T2d diagram which has, however, been delineated in a few
experimental cases only such as Fe/Ag~100! ~Ref. 12! and
Fe/Cu3Au~001!.13 In view of the experimental difficulties
involved, these diagrams cannot be expected to be very de-
tailed. Nevertheless, they provide for abundant information
in a condensed form.

In order to move forward with the description of the RT’s
by means of analyzing the anisotropy flows in the anisotropy
space which is now structured by virtue of the TD analysis of
the stability of phases of different easy axes, one has to know
more about the structure of the quantitiesK̃1(d,T) and
K2(d,T).

C. Phenomenologic ansatz for the dependence of anisotropy
on d and T

At this point we introduce the usual phenomenological
assumption about the structure of the anisotropy constants
K1 andK2:

K1~d,T!5K1b~T!1
2K1s~T!

d
, ~13!

K2~d,T!5K2b~T!1
2K2s~T!

d
. ~14!

The subscriptsb and s stand for bulk and surface, respec-
tively. While, admittedly, this is a plausible assumption,
there are at least three groups of arguments in favor of its
large domain of validity.Intuitively, this is the simplest pos-
sible dependence which leads to a correct dimensionality of
the anisotropy as well as to a correct limiting value for very
large thicknesses where the bulk and the dipolar anisotropy
contributions are the only ones.Experimentally,there is a
large number of thin-film ferromagnetic~FM! materials
where the correctness of this assumption is held up.2,14Theo-
retically, general considerations about the thermodynamics
of systems in restricted geometry backed up by statistic-
mechanical investigations on general microscopic models
and by finite-size scaling studies support the assumption~13!
and ~14! with respect to both the additivity of bulk and sur-
face contributionsand to the 1/d form of the latter~cf. Ref.
15 and references therein!.

Note that the thickness dependence thus defined is of the
monotonic type and would bring about the type of general
restriction discussed above. Second, the more exotic thick-
ness dependence is presented in a very simpleexplicit way.
This is in contrast to the temperature dependence which is
implicit even for the bulk case.16 A parametric method for
the computation ofK1b(T) andK2b(T) which is as good as
an explicit one has very recently been propounded for a
whole class of untrivial theories.8,17 Even then the tempera-
ture dependence ofK1s andK2s remains unknown and no
effective theoretical framework has ever been suggested.
This difference~explicit vs implicit! brings about a corre-
sponding difference in the possibilities for deriving definite
results within the framework of the TD analysis by anisot-

ropy flows. Finally, going one level deeper into the structure
of bulk and surface anisotropy constants as given in Eqs.
~13! and ~14!, one may discuss the different sources which
are known by now. Since this point is not directly relevant to
the procedures which follow, we refer to available detailed
discussions.2,9,18–20Still, it is worth emphasizing that what-
ever source contributes toK1 must, in principle, contribute to
K2 as well forbothbulk and surface anisotropy constants. It
is, therefore, amazing that no one has attempted to estimate
the secondsurface magnetocrystalline contribution in the
manner of Ne´el.18

III. REORIENTATION TRANSITIONS
BY THICKNESS-DRIVEN ANISOTROPY FLOWS

We now suppose that the temperature is held fixed and
examine the anisotropy flows induced by varying the thick-
nessd of the ultrathin film. With the simpled dependence of
Eqs.~13! and~14!, one can immediately find the trajectories
in the (K̃1 ,K2)-anisotropy plane. Eliminatingd from Eqs.
~13! and~14!, one finds that the trajectory is a~segment of a!
line:

K25aK̃11b, ~15!

where the slope and the intercept are given by

a5
K2s

K1s
, ~16!

b5
1

K1s
~K2bK1s2K2sK1b1

1
2 m0K2sM

2!. ~17!

The anisotropy flow is completely specified if one knows the
initial and final states. The simple relation~15! with the ac-
companying definitions~16! and ~17! constitutes the basis
for an exhaustive classification as will now be explained.

At this stage, it is advisable to recall the characteristic
features of the RT’s in ultrathin ferromagnetic films in order
to be able to extract the relevant information without ex-
hausting all theoretical possibilities. For very small thick-
nesses, the surface contribution to anisotropy is very large
and dominating. For large thicknesses, the surface contribu-
tion is negligible and the magnetization lies within the plane.
Hence, the initial anisotropy state must be in the domain of
phase 1 in Fig. 1, while the final state is within phase 2. If
K1s , K2s , K1b , K2b , andM are known, the initial and final
states can be exactly positioned in the diagram. The
thickness-driven anisotropy flow is then the segment of the
line between these two points. In fact, the domain where the
final state belongs can be defined fairly exactly, since to do
so one is entitled to neglect the difficult-to-measure surface
anisotropy at the final stage. The final point thus lies within a
relatively small rectangular targetZ of dimensions
2K1b32K2b within the left half of the diagram
in Fig. 2, whose vertices have the coordinates
(2 1

2m0M
26uK1bu,6uK2b). As to the initial point,depend-

ing on the sign of K2, it may be either within the first or
within the portion of the fourth quadrant which belongs to
phase 1. A glimpse at the phase diagram indicates that the
sign of the interceptb in Eq. ~15! is immediately relevant to
the question whether the anisotropy flow traverses theorigin,
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the cantedphase in the second quadrant, or the region with
themetastablephases in the fourth quadrant. In other words,
three generic cases arise corresponding to whether b is zero,
positive, or negative.In each of these, three subcases arise
according to the sign of the slopea. Thus, the anisotropy-
flow concept combined with the explicit thickness depen-
dence ofK̃1 and K2 provides for a simple computational
scheme. The route in the anisotropy space tells one what
phases will be traversed, while the cross points of the trajec-
tory with the borderlines delineating the different phases lead
to simple analytic expressions for the characteristic critical
thicknesses in the problem.

The elementary elimination of the thickness in the above
derivation suggests a considerable generalization: The
thickness-driven flow would be linear for any dependence of
the form

K1~d,T!5K1b12K1sf ~d!, ~18!

K2~d,T!5K2b12K2sg~d!, ~19!

provided thatf (d)[g(d). In other words, if that additive
part ofK1 andK2 which depends on the thickness is of the
same functional form, the anisotropy flow is just as simple as
with the inverse-d dependence@ f (d)5g(d)51/d# and is lin-
ear of the form~15!. This leads to the important consequence
that the existence ofthreegeneric types is guaranteed with
an arbitrary thickness dependence.

A. Anisotropy flow traversing the origin

By Eq. ~15!, such a flow would occur if and only if
b50 @Eq. ~17!# at the given temperatureT,TC we are con-
sidering. Note that the conditionb50 involves implicitly the
temperature and this makes possible, at least in principle,
that the generic type of thickness-driven anisotropy evolution

varies for different fixed temperatures so thatb50 is at-
tained at some particular temperature. Clearly, this case is
not so exceptional and restrictive, since it involves a whole
temperature-parametrized manifold of opportunities.

In the present caseA, the thickness-driven RT occurs
when the trajectory crosses over, upon increasingd, from the
domain of phase 1 to the domain of phase 2 via the origin.
As no intermediate stable or metastable phases are being
traversed, the transition is reversible and abrupt. Analyti-
cally, it takes place atK̃1(dc ,T)50 and by Eq.~13! this
corresponds to a critical thickness given by

dc~T!5
2K1s

1
2 m0M

22K1b

~T,TC!. ~20!

If one can neglect K1b ~or, more precisely, if
uK1bu!m0M

2/2), which is a rather well-satisfied condition
for the first-order bulk anisotropy constant, the critical thick-
ness takes on an especially simple form
dc(T)'4K1s /m0M

2. This quantity sets a first characteristic
scale in the problem. One comes to recognize that its small-
ness and, hence, the smallness of the characteristic thickness
of the ferromagnetic film that would exhibit a RT are dic-
tated by the relative smallness ofK1s with respect to the
dipolar anisotropy energy.

B. Anisotropy flow with a positive intercept „b>0…

All the three subgeneric cases, corresponding toa.0,
a50, or a,0, can be treated on equal footing with the rel-
evantspecifying inequalitieskept in mind@cf. Eqs.~13! and
~14! and Fig. 2!. Thus, the first subcase which is the
most likely to occur in practice is specified by the conditions
K2s /K1s.0,(K2bK1s2K2sK1b1m0K2sM

2/2)/K1s.0. Now
the anisotropy flowA2Z2 in Fig. 2 traverses the domain of
TD stability of the canted phase. As there are no metastable
phases in these precincts, the RT occurs via a continuous
change of the canting angleu. The entrance into and the exit
out of phase 3 upon increasing the thickness are at the cross
points P2 and R2 in Fig. 2, respectively, i.e., at
K̃1(d1 ,T)50 and K2(d2 ,T)52K̃1(d2)/2, where d1 and
d2 correspond to the onset and completion of the reorienta-
tion process, respectively. By Eqs.~13! and ~14!,

d1~T!5dc~T!5
2K1s

1
2 m0M

22K1b

, ~21!

d2~T!5
2~2K2s1K1s!

1
2 m0M

22~K2b12K1b!
. ~22!

The thickness at the entrance to phase 3 has the same formal
appearance as the critical thicknessdc of caseA, since it is
given by the same formal condition (K̃150). Note, however,
that the specifying inequalities are different in both cases.
There are further obvious physical restrictions ond1 and
d2 , namely, 0,d1,d2 , which, by virtue of Eqs.~21! and
~22!, are inequalities involvingK1s , K2s , K1b , K2b , and
M . By Fig. 2, varying the thickness betweend1 and d2
would drive the system across the canted phase between the
points P2 and R2 . The width of the RT is given by the
quantityD(T)[d22d1 .

FIG. 2. Generic scenarios for the thickness-driven flows:~1! via
the origin, ~2! with a positive intercept,~3! with a negative inter-
cept. In each generic case, only one out of three possible subcases is
illustrated. Z is the small target where the anisotropy evolution
terminates.
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If now it may be assumed thatuK1bu!
1
2m0M

2,
u2K2b1K1bu!

1
2m0M

2, then Eqs.~21! and ~22! simplify to
d1(T)'4K1s /m0M

2, d2(T)'4(2K2s1K1s)/m0M
2. The

width of the RT is, correspondingly,D'8K2s /m0M
2. The

last relation defines asecondcharacteristic thickness which
is proportional to thesecondsurface constantK2s . Since
D.0, one finds an additional conditionK2s.0 which must
be examined together with the inequalities formulated above.
The experimental findings in different systems seem to favor
the conclusion that bothdc andD are of the order of a few
ML’s. Even if separate estimates for the two surface con-
stants might appear somewhat risky, there is no doubt that
the relationK1s /K2s'2dc /D is very well founded under the
conditions of negligible bulk anisotropies.Vice versa, if this
relation is found to be significantly violated, this might be
due to bulk contributions, including eventual large magneto-
elastic contributions.

Let us now examine the way in which the canting angle
u(d) evolves along the linear trajectory of the thickness-
driven flow. By the relations specifying thermodynamically
phase 3,u(d) may be recast as

u~d!5arcsinA12a2dc /d

b1D/d
, ~23!

where the dimensionless quantitiesa andb are proportional
to the first and second bulk anisotropy constants, respec-
tively: a[2K1b /m0M

2,b[4K2b /m0M
2. The dependence

in Eq. ~23! would be completely specified if the characteris-
tic quantitiesa, b, dc , andD are known at the given fixed
temperature. The qualitative appearance of a typical curve
u(d) is known10,11,5 ~cf. Fig. 3!. However, one can derive
more precise analytic information. In the first place, one
finds from the general expression~23! thatu(d) has an infi-
nite slope at the onsetd1 and at the endd2 of the transition.
Since the coefficients of proportionality~the amplitudes! for
the diverging slopes are not equal in general, we have an
indication of a certain asymmetry of the curveu(d). Indeed,
the curve is centrosymmetric with respect to the point
G5„(d11d2)/2,u5p/4… in Fig. 3, only if a andb can be
safely set to zero, i.e., provided the bulk anisotropy contri-
butions are much smaller than the dipolar one. In this case,
the centrosymmetric property is readily established, since
u(d)'arcsinA(d2dc)/D . The last expression depends on

the characteristic lengthsdc andD only. This higher symme-
try can also be recognized in the equality of the amplitudes
of the diverging slopes atd1 and d2 in the limit a,b→0.
Altogether, should it be possible to establish the centrosym-
metric property ofu(d) in a given experiment, one immedi-
ate consequence would be thata andb are really very small.
On the contrary, the detection of a considerable asymmetry
signals substantial bulk anisotropy contributions. Such
should inevitably arise from strain-induced anisotropy, if
large misfits, inherent to each specific interface, are
present.2,21 Mismatches of the order of 10% correspond to a
very large strain on the microscopic scale when compared
with typical values, characteristic of bulk strains. Under such
extreme circumstances, the strain-induced anisotropy can
compete by itself with the dipolar anisotropy or, else, act
synchronously with it towards dragging the magnetization
direction into the plane of the film, depending on the sign of
the relevant magnetostriction constant characterizing the
strain-induced anisotropy. Moreover, nonlinear elastic ef-
fects will have to be accounted for.

C. Anisotropy flow with a negative intercept „b<0…

In this generic case, the anisotropy flow traverses domains
of metastability in the phase diagram between the initial
~magnetization-up! and final~in-plane magnetization! states.
The canted phase is now out of play and the reorientation
must take place abruptly. In contrast to the abrupt transition
of caseA, this transition is irreversible. A system which
evolves, uponincreasing the thickness, from a state with
perpendicular magnetization is caught by the local free-
energy minimum and would not leave it until it becomes
absolutely unstable, i.e., until the minimum disappears at the
line K̃150. Such a reorientation scenario has been detected
very recently for Co/Au ultrathin films.22 The effective varia-
tion of thickness has been achieved by using wedge-shape
films. Another scheme which would allow in principle a con-
trollable variation in thickness is the electrochemical deposi-
tion method.

The three possible subgeneric cases witha.0, a,0, or
a50 can be treated on equal footing. We describe in greater
detail only the first subgeneric scenario (b,0 with a,0; cf.
A3Z3 in Fig. 2!. The defining inequalities become
K2s /K1s,0, (K2bK1s2K2sK1b1

1
2m0K2sM

2)/K1s,0 . The
crossover through the domains of metastability is given by
the segmentP3R3 , while the phase boundary is crossed at
the pointQ3 upon increasing the thickness. By metastability,
the flop of the magnetization direction into the plane would
occur atR3 , rather than atQ3 , at the thicknessd̄2 which is
formally given by the same expression asd1 of the previous
generic caseA @Eq. ~21!#, because of the formally identical
defining conditionK̃1(d̄2)50. Note that we keep the sub-
script 2 for the greater of two characteristic thicknesses
which arise in both generic cases. On decreasing the thick-
ness, the in-plane phase would persist up to the pointP3 .
The thicknessd̄1 at which the abrupt RT should occur is
given by the expression ford2 of the previous caseA, i.e.,
formally, d̄15d2 ,d̄25d1 @cf. Eqs.~21! and~22!#. The thick-
nessdm which corresponds to the pointQ3 at the phase
boundary is defined by the conditionK2(d̄m)52K̃1(d̄m).
Hence,

FIG. 3. Evolution ofu(x) ~continuous regime!. x is the driving
parameter (d or T). The slopes at both ends of the RT are infinite.
In the thickness-driven case, the curve is centrosymmetric with re-
spect to the pointG5@(d11d2)/2,p/4# only when the bulk contri-
butions can be neglected.
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d̄m~T!5
2~K1s1K2s!

1
2 m0M

22~K1b1K2b!
. ~24!

The initial defining inequalities are now supplemented by the
natural requirements 0,d̄1,d̄m,d̄2 .

In the limit of negligible bulk anisotropy, the width of the
metastable region is given byD̄5d̄22d̄1528K2s /m0M

2.
The thicknessd̄m corresponding to the borderline between
the two phases is precisely the arithmetic mean of the two
characteristic lengths:d̄m5(d̄11d̄2)/2. Thus, the limit of
negligible bulk anisotropy exhibits once again a higher sym-
metry of the transition. Altogether, one finds that in the ge-
neric scenario with metastability effects the same small char-
acteristic thicknesses which were found in the previous case
control the size of the RT, this time, however, with a differ-
ent physical interpretation.

The evolution of the canting angleu(d) is discontinuous
at the reorientation points~cf. Fig. 4!. The possibility for
three generic scenarios for the variation ofu(d) in the
thickness-driven case with a 1/d thickness dependence has
been recognized in Ref. 11. In view of the generalization of
the last paragraph before Sec. III A above, three generic
types of variation ofu(d) will persist with any thickness
dependence of the anisotropy constants, provided it is of the
same functional form for bothK1 andK2 .

IV. REORIENTATION TRANSITIONS
BY TEMPERATURE-DRIVEN ANISOTROPY FLOWS

Now the thickness is assumed to be held fixed and very
small, while the temperature is the driving parameter for the
flow in the anisotropy space. Experimental examples can be
found in Refs. 2, 6, and 7.

As already discussed at the end of Sec. II, the principal
difficulty in analyzing the temperature-driven transitions lies
with the implicit character of the temperature dependence.
That is, one cannot describe the anisotropy trajectories as

parametrized byT. However, in view of the discussion in the
opening sections and with the help of the analysis of the
anisotropy diagram, one can still predict rather generally
some important features of the reorientation in this case. The
evolution for the cases of interest~transitions from the
magnetization-up to the in-plane states! starts at low tem-
peratures in the domain of phase 1 and finds its way to the
domain of phase 2 via either of three possible ways: via the
origin, via phase 3, or via the mine fields of metastability in
the fourth quadrant. One can safely assume that the variation
of K1s , K2s , K1b , K2b , andM with temperature is mono-
tonic. The general considerations of monotonicity put for-
ward in Sec. II B are then valid. Three typifying trajectories
under the assumption of monotonicity are given in Fig. 5.
The continuity of the flow between the initial and final points
of the temperature-driven evolution gives rise once again to
three generic typesof evolution according to the sign of the
intercept, i.e., the sign ofK2(T) at the point of change of
sign of K̃1(T). For the sake of brevity, we do not consider
each subgeneric case for the temperature-driven anisotropy
flow separately. Rather, we concentrate on some general pre-
dictions which are possible even without knowing the tem-
perature dependence of the anisotropy constants.

First, one can get insights into theu(T) dependence for
the generic scenario via the canted phase~positive intercept!
by using the TD information about the cross points in the
phase diagram where a given trajectory crosses the bound-
aries of phase 3~Fig. 5!. One can prove, for instance, that the
derivatives ofu(T) at the entranceT1 and at the exitT2 of
the RT diverge. The derivation holds in its general form for
the case of the thickness-driven transition as well where we
proved the same property by using the explicit thickness de-
pendence. Indeed, by Eq.~4!,

]

]x
@u~x,y!# uy5 const5A2

2K2

K̃1

1

11K̃1/2K2

1

4~K2!
2 SK2

]K̃1

]x
2K̃1

]K2

]x D
uy5const

. ~25!

FIG. 4. Evolution ofu(x) ~metastable scenario!. The diagram is
valid for bothd- andT- driven RT’s with x5d or x5T, respec-
tively. xm corresponds to the value ofd or T at the borderline
between the phases involved~cf. Fig. 1!.

FIG. 5. Generic scenarios for temperature-driven RT’s. The tra-
jectories are exemplary and are drawn under the assumption of
monotonic variation withT.
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We already did explicitly the case withx[d andy[T. The
same formal expression~25! holds withx[T andy[d. In
both cases the denominators in the first two factors get to
zero at the entrance point into and at the exit point out of the
canted phase by virtue of the defining equations for the TD
boundaries of the neighboring phases involved and regard-
less of whether the transition is driven by thickness or tem-
perature variation. One thus has a proof, based on general
arguments of stability of phases, that the variation of the
angle in either of both cases is very steep with an infinite
slope in the relevant variable at the onset and at the end of
the reorientation. A typical curve foru(T) in this
temperature-driven case would look like the corresponding
curve foru(d) in the thickness-driven case~Fig. 3!, as far as
the qualitative shape and the infinite slopes atT1 andT2 are
concerned. Otherwise, the arcsine curveu(T) would typi-
cally be asymmetric.

Second, one could proceed to analyze the rangeDT over
which the RT is accomplished. One could proceed along the
following lines in order to determine the conditions which
would bring about a small rangeDT, consistent with theo-
retical predictions.5 By now, we observed that a smallDT
means that the portionP3R3 in Fig. 4 is covered at a large
speed or rate of change. Exploiting the implied mechanical
analogy to the full, one may formulate the following crite-
rion: Any portion of a particular trajectoryK2(K̃1) will be
covered ‘‘quickly,’’ if the rate of change as given by the
expression

v~T!5A~K̇2!
21~K̃
˙
1!

2 ~26!

is large along this portion, i.e.,v(T)@v0(T), wherev0(T) is
some reference rate of change. In Eq.~26! and below, the dot
above a given quantity denotes the derivative with respect to
the driving parameter~hereT). A self-suggesting choice for
the reference speed would be to consider the quantity, corre-
sponding to the physical situation under discussion but ne-
glecting the surface terms. Imposing a high rate of change by
the inequalityv2@v0

2 , one can derive the following suffi-
cient conditions for the smallness of DT:
uK̇1su/d@m0M uṀ u,uK̇2su/d@uK̇2bu. That is to say, an expec-
tation of a smallDT would be met if the rates of change of
the first and second surface anisotropy energies are larger
separately than the rates of change of the dipolar anisotropy
energy and the second bulk anisotropy energy, respectively.
All inequalities involving rates of change could be expressed
in terms of the corresponding derivatives with respect to
magnetization, if one assumes, like in the bulk case, that the
temperature dependence enters the various anisotropy terms
only via the magnetization, i.e.,K1s5K1s„m(T)…,
K1b5K1b„m(T)…, etc.

23

Third, we comment briefly on the connection of this type
of analysis with existing theoretical predictions based on
statistic-mechanical calculations. In a series of interesting
papers,5 Moschel and Usadel investigate the temperature-
driven RT in a system of a few ML’s from a statistical-
mechanical point of view. These studies involve the mean-
field analysis of a quantum model of interacting spins,
whereby dipolar and single-ion anisotropies are explicitly ex-
amined. A temperature-driven reorientation was found to
take place only in a narrow window of the microscopic pa-

rameter values. The rangeDT where the reorientation occurs
was also found to be very narrow. These authors determine
u(T) in the region of the reorientation for various relative
magnitudes of the single-ion anisotropy in the different lay-
ers. Both untrivial generic cases of RT’s via the canted phase
of via the metastable region were detected. The first-order
~irreversible! transition was found to occur as an exception
only if all ~microscopic! anisotropy parameters had the same
value. It is obvious from Ref. 5 that the overall, macroscopic
anisotropy constants for their model can be determined, since
these authors dispose of the free energy as a function of the
canting angleu(T).24 It would be of much value to analyze
the temperature dependence of the phenomenological anisot-
ropy constantsK̃1 and K2 from the computed free-energy
dependences and thus give a microscopic support for the TD
analysis or else delineate its shortcomings. It is, however,
beyond doubt that the sign of the intercept of the trajectory in
the (K̃1 ,K2) plane must correlate with the type of RT~posi-
tive for the reversible, negative for the irreversible case!.
This would then mean that a uniform distribution of the
single-ion microscopic anisotropies as given and treated in
their microscopic model invariably produces a negative
second-order anisotropy energyK2 .

V. DISCUSSION

We have demonstrated that the anisotropy-flow concept
combined with the proper account of the structure of the
anisotropy space provides for a unified understanding and
classification of both thickness- and temperature-driven
RT’s. In both cases, there are three generic types of RT de-
pending on the route of the corresponding system in the an-
isotropy space.

In the thickness-driven case, the trajectories are explicitly
seen to be linear in the anisotropy space under the usual
assumption for the 1/d variation of the anisotropy constants.
Thus, three generic scenarios are identified and described
according to the sign of the intercept. Physically, a zero in-
tercept corresponds to a cross point from the perpendicular
into the in-plane phase which coincides with the origin, and
a positive intercept induces a continuous crossover via the
canted phase, while a negative intercept corresponds to an
anisotropy flow via the domains of metastability in the fourth
quadrant~Fig. 1!. In each of the generic cases, there are three
subcases according to the sign of the slope of the linear tra-
jectory. Each particular regime is specified by a set of in-
equalities involvingK1s , K2s , K1b , K2b , andM which con-
stitute an indispensable part of the analysis. These are
supplemented by further natural restrictions for the pertinent
characteristic thicknesses. The necessary condition for an un-
trivial scenario to occur is thus a nonzero intercept~an effec-
tuation of the ‘‘trivial’’ scenario does not require thatK2 be
identically zero; it suffices thatK2 be zero at the crossover
point only!. In both the continuous and the metastable un-
trivial cases,two characteristic thicknesses are identified by
examining the cross points into and out of the intermediate
phases~the canted phase for the continuous, the metastable
domain for the discontinuous case!. These thicknesses are,
conveniently, the critical thicknessdc at which the reorien-
tation begins and the widthD of the RT. Furthermore, the
evolution of the canting angleu(d) has been analytically
described and it has been found that it has divergent slopes at
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both ends of the transition. Provided that the bulk contribu-
tions can be neglected, the characteristic lengths take on an
especially simple form controlled byK1s andK2s , respec-
tively, with the ratio of the first and second surface anisot-
ropy constants being simply expressed as twice the ratio of
dc andD. In the same limit of negligible bulk contributions,
the RT exhibits a higher symmetry:~i! In the continuous
regime, theu(d) curve is centrosymmetric and has equal
amplitudes for the divergences at both ends~Fig. 3!; ~ii ! in
the discontinuous regime, the limits of absolute instability of
the neighboring phases are symmetric with respects to the
phase boundary dividing them~Fig. 4!. This information can
be used in both directions: If it is found in experiment that
the said symmetries exist, then the bulk contributions should
be very small; if a substantial deviation from the above sym-
metries is detected, the bulk contributions are considerable
and non-negligible. The natural formulation in terms of flows
in the anisotropy space allows for a substantial generaliza-
tion. Indeed, the same three generic types of behavior will
occur with any thickness dependence ofK1 andK2 ~and not
only with the usual inverse-d ansatz!, given the natural as-
sumption that the dependence is of the same functional form
for bothK1 andK2 .

In the temperature-driven case, the temperature depen-
dence of the anisotropies involved is not known with suffi-
cient degree of certainty, which is why the anisotropy flows
can be only qualitatively discussed. Still, very general con-
ditions such as monotonicity of the temperature dependence
or the conservation of the sign of one or more anisotropy
constants under the anisotropy flow may serve to locate the
domain in the anisotropy space where the RT takes place.
One finds once again three generic types of behavior corre-
sponding to the intermediate region in the anisotropy space
which is being crossed between the initial and final states. In
the continuous reorientation regime and despite the implicit
character of the temperature dependence, we prove by gen-
eral arguments that the slopes ofu(T) at both ends of the RT
are infinite. The derivation is valid in its general form for the
thickness-driven case as well which is a further generaliza-
tion beyond the 1/d phenomenological assumption. Since ex-
perimental and theoretical evidence diverge on the question
of the relative widthDT of the temperature-driven RT’s, we
derive sufficient conditions for the eventual smallness of
DT by evoking a self-suggesting mechanical analogy.

There is another set of important conclusions which are
related to the construction of the (T,d) diagram of systems
exhibiting a RT. Because of the experimental difficulties,
only one borderline, dividing the perpendicular and the in-
plane phases, can be seen in reported diagrams.12,13 Strictly
speaking, this implies thatK2[0 for all T, so that only the
critical line dc(T) matters. However, as we have seen in
Secs. III B and III C above, there aretwo such critical lines,
namely, the pairsd1(T),d2(T) andd̄1(T),d̄2(T) for the con-
tinuous or discontinuous scenarios, respectively. The first
pair defines the boundaries of the canted phase, while the
second pair delineates the domain of metastability in the
(T,d) representation. In the lack of knowledge of the explicit
temperature dependences, one is free to speculate educatedly
about the relative positioning of the curves within each pair.
A brief thought indicates that both the continuous and the
discontinuous scenarios would occur forthe same ultrathin

systembut in different domains of its (T,d) diagram, if the
critical curves defined above cross at some point (T0 ,d0).
This very point is defined by the conditionsK̃1(T0 ,d0)50,
K2(T0 ,d0)50. One might expect especially intriguing be-
havior in the vicinity of this point, should it happen to occur
in a given particular system. It is precisely at such a point
that there isno anisotropyin the system (K2 is zero, while
K1 is compensated by the dipolar anisotropy!. The (T,d)
diagram of a system with such a point would be split into a
paramagnetic phase, an in-plane ferromagnetic phase, a per-
pendicular phase, a canted phase, and a domain of metasta-
bility. It is clearly seen that both types of presentations@the
one with the anisotropy flows and the one in the (T,d) dia-
gram# are complementary and can be used rather success-
fully for the prediction of new features. This issue will be
further discussed separately.

The anisotropy-flow concept can be further elaborated in
several respects without significant increase in mathematical
complexity. First, ‘‘bilinear’’ angular dependences as found
in the pioneering paper by Ne´el18 for different orientations of
surfaces of bulk cubic materials may be included in the phe-
nomenological free energy. Even in the most complicated
case this would amount to a dependence on one more angu-
lar variable which must then undergo minimization. This is
equivalent to the inclusion of in-plane anisotropies. Second,
the lucid presentation allows one to come to the natural con-
clusion that whatever source of surface or bulk anisotropy
contributes toK1 would inevitably contribute toK2 as well.
In this context, it seems astonishing that the Ne´el contribu-
tion to K2s has not been found theoretically by now. As the
estimateK1s /K2s'2dc /D indicates, if dc'D, which has
indeed been found for a number of systems with a RT, then
K2s must be comparable toK1s and, hence, the same should
be true for the magnetocrystalline~Néel! contributions to
K1s and K2s . Third, the free-energy expression might be
extended to include the third-order anisotropy constant with
the corresponding bulk and surface additive contributions.
This is not an academic option only as can be seen by ex-
amination of certainab initio results~cf. e.g., Fig. 2.7 on p.
46 of Ref. 25!. Fourth, the influence of an externally applied
field on the RT ~field-induced RT! can be systematically
studied. Finally, it is well known that a complicated domain
structure arises in ultrathin ferromagnetic films and that its
description is especially difficult precisely in the region
where the RT takes place.3,6,7,10,26The motivation and the
results of the present paper are especially appealing in the
perspective of understanding the domain structure in systems
with a RT as completely as possible. Apart from the identi-
fication of the peculiar point in the (T,d) diagram, which is
bound to induce peculiarities in the domain structure because
of the effectively nonexistent anisotropy there, one has to
understand the underlying anisotropy-related phenomena be-
fore attempting to explain the much more complex domain
structure.
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