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An important aspect of real ferromagnetic particles is the demagnetizing field resulting from magnetostatic
dipole-dipole interactions, which causes large patrticles to break up into equilibrium domains. Sufficiently small
particles, however, remain single domain in equilibrium. This makes them particularly promising as materials
for high-density magnetic recording media. In this paper we use analytic arguments and Monte Carlo simula-
tions to quantitatively study the effects of the demagnetizing field on the dynamics of magnetization switching
in two-dimensional, single-domain, kinetic Ising systems. For systems in the weak-field “stochastic region,”
where magnetization switching is on average effected by the nucleation and growth of a single droplet, the
simulation results can be explained by a simple model in which the free energy is a function only of magne-
tization. In the intermediate-field “multidroplet region,” a generalization of Avrami’'s law involving a
magnetization-dependent effective magnetic field gives good agreement with the simulations. The effects of
the demagnetizing field do not qualitatively change the droplet-theoretical picture of magnetization switching
in highly anisotropic, single-domain ferromagnetic grains, which we recently propaskthgn. Magn. Mater.

150, 37 (1995]. [S0163-182696)06530-1

[. INTRODUCTION data, a greater storage density could ideally be achieved by a
medium containing many small grains than by one contain-

The ability of single-domain ferromagnets to preserve aring a few large grains. However, in order to serve as reliable
accurate record of past magnetic fields has several importastorage devices, the grains must be capable of retaining their
applications. For example, fine grains in lava flows preservenagnetizations for long periods of time in weaker, arbitrarily
a record of the direction of the geomagnetic field at the timeoriented ambient magnetic fields — i.e., they must have a
they cooled, giving valuable insight into continental drift and high coercivity and a large remanence. Since experiments
the dynamics of the earth’s cotédf more direct technologi- show the existence of a particle size at which the coercivity
cal importance is the potential application of single-domainis maximum(see, e.g., Ref. )4 there is a tradeoff between
ferromagnets to magnetic recording metlislich as mag- high storage capacity and long-term data integrity which
netic tapes and disks. Here we present a detailed, quantitativeust give rise to an optimum choice of grain size for any
study of some of the effects that magnetostatic interactiongiven material. During both recording and storage, the rela-
have on the dynamics of magnetization reversal in such pationships between the magnetic field, the size of the grain,
ticles. The treatment is based on a droplet-theoretical picturand the lifetime of the magnetization opposed to the applied
of magnetization switching in highly anisotropic, single- magnetic field are therefore of considerable technological in-
domain ferromagnetic grains, which we recently proposed. terest.

Fine ferromagnetic grains have been studied experimen-
tally for many years, but until recently such particles could
be observed only in powde(see, e.g., Ref.)4This made it

During the magnetic recording process, different regiondifficult to differentiate the statistical properties of single-
of the recording medium are briefly exposed to strong maggrain switching from effects resulting from distributions in
netic fields, so that each grain is magnetized in the desirefdarticle sizes, compositions, and local environments, or from
direction? Since each grain can in principle store one bit ofinteractions between grains. Techniques such as magnetic

A. Technological and experimental background
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force microscopyMFM) (see, e.g., Refs. 5-1@nd Lorentz
microscopy(see, e.g., Ref. JInow provide means for over-
coming the difficulties in resolving the magnetic properties
of individual single-domain particles.

B. Theoretical treatments of magnetization reversal

The standard theory of magnetization reversal in single-
domain ferromagnets is due to &¥ and Brown'® In order
to avoid an energy barrier due to exchange interactions be-
tween atomic moments with unlike orientations @NBrown
theory assumes uniform rotation of all the atomic moments
in the system. The remaining barrier is caused by magnetic
anisotropy'* which may have contributions from both the
local atomic environment and the overall shape of the _ ) o
sample. Anisotropy makes it energetically favorable for each F!G- 1. The relationship between the applied fiéldand the
atomic moment to be aligned along one or more “easy” SYStem WidthL for a shorter(top solid curve and a longefbottom
axes. Buckling, fanning, and curling are, like uniform rota- S0 curve fixed lifetime in a typical metastable magnetic system.
tion, theoretical relaxation gs_rlgcesses with few degrees oic??iisrfegr:gg(ség)r?eg:f)tr;n?ﬁész;?n%Iz?ldr(i)lgli(rgg) ?:;;{1 ptf:?nsjﬁis_ : the
freedom and global dynamics: ’ '

. L . . droplet(MD) region, and the strong-fiel(EF) region. The CE and
Detailed descriptions of both the static and dynamic Propsp regions, which together form the stochastic region, are sepa-

erties of fine ferromagnetic grains have typically been for- ;.4 by the thermodynamic spinodalotted curve The SD and
mulated from micromagnetic studi&sin which uniform ro- regions are separated by the dynamic spinddaish-dotted
tation, buckling, fanning, and curling emerge as particularlycrvg. The SF region is separated from the other regions by the
simple switching modes. This method involves coarseean-field spinodaldashed curve [After Fig. 1 of Ref. 3]
graining the physical lattice onto a computational lattice and
then solving the partial differential equations for the evolu-jets is proportional to the field, and the nucleation rate for
tion of magnetic structures on the computational lattice. Al-critical droplets decreases exponentially as the inverse field
though micromagnetics provides a good treatment for thgncreases. The nature of the metastable decay therefore de-
anisotropy and demagnetizing fields, it treats thermal effectpends on the relative sizes of the grain, the critical droplet,
rather crudely, usually just by making the domain-wall en-the average distance between droplets, and the lattice con-
ergy temperature-dependent. A somewhat better approximaant in a rather complicated fashion, as discussed in detail,
tion for thermal fluctuations within the underlying differen- e.g., in Refs. 25-28. For sufficiently small grains or weak
tial equations is to include small fluctuations using afie|ds, the decay occurs via single droplet or system-
Langevin noise term’ An even better treatment for thermal spanning slab, which grows to fill the whole grain before
and time-dependent effects on the microscopic scale, ignother critical fluctuation has time to appear. Since the criti-
Monte Carlo simulation(see, e.g., Refs. 3, 18—-R4Even 4| droplet nucleates randomly in time, this has been termed
when the physical phenomena can be accurately simulateghe “stochastic” decay regiof? For somewhat larger grains
however, it will be difficult to understand the results without or stronger fields, however, the nucleation rate is sufficiently
an adequate theoretical basis. . high that many new droplets are likely to nucleate while the
For materials with sufficiently high anisotropy, we re- first one is still growing. This has been termed the “multi-
cently proposed an aI_terr_1ative mode of re_:laxation with typi'droplet” decay regiorf® In Fig. 1 we sketch the regions of
cally much shorter lifetimes than predicted for uniform {he space of magnetic fields and particle sizes distinguished
This picture of the switching process is based onpy these different behaviors during metastable decay. Snap-

Switching Field H,

rotation:

the statistical-mechanical droplet theory for the decay okhots of simulations, illustrating typical corresponding spin

magnetization is parallel to the applied magnetic fight  yacent review of the droplet theory of metastable decay, see
“stable” phase are continually created and destroyed byRef. 28.

thermal fluctuations within the phase in which the magneti-
zation is antiparallel to the fiel@¢he “metastable” phase
As long as such a regiofnenceforth referred to as a “drop-
let”) is sufficiently small, the short-ranged exchange interac- Because of their simplicity, kinetic nearest-neighbor Ising
tion with the surrounding metastable phase imposes a nehodels have been extensively studied as prototypes for
free-energy penalty, and the droplet will, with high probabil- metastable dynamicgsee Ref. 28 and references cited
ity, shrink and vanish. Should the droplet become larger thatherein. Square- and cubic-lattice Ising systems with peri-
a critical size, however, this penalty will be less than theodic boundary conditions have been used to study grain-size
benefit obtained from orienting parallel to the magnetic field,effects in ferroelectric switching:*° Of particular signifi-
and this “supercritical” droplet will with a high probability cance for magnetic systems, kinetic Monte Carlo simulations
grow further, eventually consuming the grain. of Ising and anisotropic Heisenberg systems with free
In systems dominated by short-range interactions, théoundary conditions, that give results consistent both with
critical droplet radius is inversely proportional to the appliedMFM experiment§™1° and with the droplet-theoretical pic-
field, whereas the growth velocity of the supercritical drop-ture discussed in Sec. | B, have been performed by Serena

C. Kinetic Ising models and magnetostatic interactions
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and Garaa?* Magnetization reversal in elongated ferromag- [l. MODEL AND NUMERICAL METHODS
netic particles has been studied with a one-dimensional
model®! and a triangular-lattice Ising model with mean-field _ ) _ o
magnetostatic interactions has been shown to reproduce well The standard Ising model is defined by the Hamiltonian
the switching dynamics in Dy/Fe ultrathin film3%.
In Ref. 3 we applied s’gatistical—mechanicql droplgt theory Ho= —JE SiS;— HLm, 1)

and Monte Carlo simulations of two-dimensional Ising sys- i
tems to obtain an approximation for the dynamical behavior . L

bp y heres,=*1 is thez component of the magnetization of

of real single-domain particles magnetized opposite to a . L ) .
applied field. The results of that study were in good qualita-f[he atom(spin at sitei, J>0 is the ferromagnetic exchange

tive agreement with recent MFM experiments® However, interaction, antH is the applied magnetic field times the
single-spin magnetic moment. The sufy ;, runs over all

several simplifying approximation.s were mgde, one of WhiChnearest-neighbor pairs on a squégenerallyd-dimensional
was the absence of magnetostatic interactions. hypercubig lattice of sideL. In this work we do not consider

I.n the present article we tak(_a _mag_neto_stancs |_nto accounhe effects of grain boundaries, so periodic boundary condi-
by including a small demagnetizing field in an Ising systemyons are imposed(For recent Monte Carlo simulations of

A. Ising model with a demagnetizing field

4w & rl®

otherwise identical to the one studied in Ref. 3. We calculate;sing and Heisenberg systems with open boundary condi-
analytically the effects of the demagnetizing field on thetions, see Ref. 21 The dimensionless system magnetization
magnetization switching dynamics and compare our analyti¢s given by

results with large-scale Monte Carlo simulations. Specifi-

cally, for systems in the stochastic regi@iscussed in Sec.

), the demagnetizing fields we consider must be suffi- m=L" s, 2
ciently small that the system consists of a single domain in '

equilibrium, whereas in the multidroplet regi¢discussed in  where the sum is over all® sites. The lattice constant is set
Sec. IV it is sufficient to have the demagnetizing field much to unity.

smaller than the applied field. Some preliminary results of Addition of dipole-dipole interactions gives a total Hamil-
this study were presented in Ref. 18, and additional detaitonian (S| unit9

can be found in Ref. 20.

The equilibrium domain structure of two-dimensional di- ,qu2 SiSj TN 2
pole systems has been extensively investigitet|. The Haip=Hot > 1-3 mz )
magnetostatic dipole-dipole interaction produces a demagne-
tizing field, which results in the stabilization of a domain whereM is the saturation magnetic dipole moment density
structure in large ferromagnetic particles. In the context ofand rj; is the vector from sitd to site j. Unfortunately,
the present study it is essential to emphasize the differendeowever, the last sum in E¢3) slows down Monte Carlo
between a droplet and a domain. Although they are bottsimulations significantly, which is problematic if a large
spatially contiguous regions of uniform magnetization, anumber of realizations are desired for good statistics, as is
domairt® is an equilibrium feature whereas droplet is a  the case in noneq_uilibrium stL_Jdie_s. The last sum a_ls_o Wo_uld
strictly nonequilibrium entitywhich only exists for a limited Make a perturbative expansion in the demagnetizing field
time during the switching process. (adjustabl_e by changinigl or.the sample §hapd|ﬁ|cult. We

The purpose of the present paper is to study the effects dherefore instead use the simpler Hamiltonian
long-range dipole-dipole interactions on thenequilibrium _ d~ o2
phenomenon of magnetization switching in single-domain Hp=Ho+L"Dm". @
ferromagnetic particles. Towards this end we employ & Simthe gemagnetizing factob, which is proportional to the
plified model with a demagnetizing field, in which particles demagnetizing field, is a function of the crystal symmetry,
in equilibrium can have only one or two domains, and Wethe shape of the system, ail. Equations(3) and (4) are
emphasize the single-domain case. We obtain detailed, quagguivalent for general ellipsoidsiformly magnetized along
titative results and confirm that the demagnetizing fielda principal axis. For the special case of a perpendicularly
causes no qualitative modifications to the droplet-theoreticahagnetized plane with square-lattice symmetrj)
picture of magnetization switching. =2uoM?2. For nonuniformly magnetized systems, Hd)

The organization of the remainder of this paper is as fol-amounts to a mean-field treatment of the effects of the
lows. In Sec. Il we define the model and present the numeridipole-dipole interactions. Due to the long-range nature of
cal methods employed. In Sec. Il we discuss the stochastithe dipole-dipole interactions, this is a reasonable
region in terms of an approximate free-energy functional andpproximatiort.2®
give analytical and numerical results. In Sec. IV we general- For systems with periodic boundary conditions, the ex-
ize Avrami's law®*~*' which describes magnetization change and dipole terms of E¢t) are equal when the sys-
switching in the multidroplet region, to include the effects of tem size Is given
the demagnetizing field, and we compare the analytical re-
sults to numerical simulations. Section V contains conclu- - 204(T)
sions, discussions, and some directions for further work. D D[msp(T)]Z’

®
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whereo.(T) is the surface tension along a primitive lattice
vector in the limitL —c andmg(T) is the spontaneous mag-
netization. For the two-dimensional Ising modet,.(T)
(Ref. 42 and mgT) (Ref. 43 are known exactly. The
length scale on which we would expect a transition from a
single-domain to a multidomain equilibrium structure is ap-
proximatelyLp .

The selection of the Ising model is equivalent to requiring
a very large(infinite, in fach anisotropy constant. Although
magnetic materials used in magnetic recording media require
comparatively large anisotropy constaftie microscopic
anisotropy tends to be much smaller than the exchange en-
ergy. However, in some applications, such as many thin
films, it is convenient to use Ising spins to represent the
individual grains which are superferromagnetically coupled
to make up the systeltsee, e.g., Refs. 22, 44, 15f these
coupled grains reverse their magnetization through coherent
rotation, as in Nel-Brown theory!*3the anisotropy barrier
for a grain is the product of the anisotropy barrier for a
single atomand the grain volume. Thus, although this work
is intended as a step towards a quantitative microscopic
theory, it may equally be used to describe superferromagneti-
cally coupled grains.

Simplicity is our main reason for choosing the two-
dimensional Ising model with periodic boundary conditions,
particularly since many equilibrium properties of the two-
dimensional Ising model in zero field are known exatfy/
and since the kinetics of metastable decay has been exten-
sively studied for this modéf As a result, our model sys-
tems may more closely resemble ultrathin magnetic films
with perpendicular magnetization than magnetic grains. A
study of three-dimensional systems is in progfédsyt we
emphasize that droplet theory should apply to almost any
spin model with high anisotropy. Accordingly, equations in
this paper are written in forms appropriate for arbitrary di-
mensionalityd, even though simulations are only carried out
for d=2.

B. Simulation of the switching dynamics

The relaxation kinetics is simulated by the single-spin-flip
Metropolis dynamic with updates at randomly chosen sites.
Both the Metropoli4’ and Glaubé¥ algorithms are spatially
local, stochastic dynamics with nonconserved order param-
eter (the dynamic universality class of model A in the clas-
sification scheme of Hohenberg and Halp&inand are
therefore expected to differ only in nonuniversal featu(As.
derivation from microscopic quantum Hamiltonians of the
Glauber dynamic in the thermodynamic limit and under
somewhat restrictive conditions has been repotfed.

FIG. 2. Configurations that may occur during the reversal pro- In this study we use the Metropolis dynamic, which is
cess. As in the text, periodic boundary conditions are impogd. realized both by the original Metropolis algoritAfrand by

A sketch of a “slab” configuration(b) A typical realization of a
single droplet in the process of overtaking the syst€rhe droplet

the n-fold way algorithm>* (For a discussion on the equiva-
lence of the dynamics produced by these two algorithms, see

appears “chopped up” because of the periodic boundary condiRef. 52) The acceptance probability in the Metropolis algo-
tions) Grey squares are “up” spins and black squares are “down” rithm for a proposed flip of the spin at site from s, to

spins. HereL=60, H=-0.08, D=0, T=0.8T,, and t=410
MCSS. [Figure courtesy of S. W. Siddsg(c) A typical realization

—s, is defined as

showing the nucleation and growth of several droplets in the pro- W(s,— —s,)=min[1,exg — BAE,)], (6)

cess of switching the magnetization. Helre=120, H=—0.2],
D=0, T=0.8T;, andt=114 MCSS.[Reproduced from Fig. (6)

of Ref. 3]

where AE, is the energy change due to the flip and
B 1=kgT is the temperature in units of energy. Thdold
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way algorithm is similar, but involves the tabulation of en- Ill. THE STOCHASTIC DECAY REGION

ergy classes. First an energy class is chosen randomly with
the appropriately weighted probability. A single site is then
chosen from within that class with uniform probability and
flipped with probability one. The number of Metropolis al-
gorithm steps which would be required to achieve this
change is chosen from a geometric probability distributfon,
and the time, measured in Monte Carlo steps per spi
(MCS9, is incremented accordingly. Thefold way algo-
rithm is more efficient than the Metropolis algorithm at low
temperatures, where the Metropolis algorithm requires man
attempts before a change is made.

In a single-spin-flip dynamic, the magnetization can only
change by a small amount from one time step to the next.
The dynamical effects of the demagnetizing field thus de
pend only on thehangein the magnetic part of the Hamil-
tonianHp [EqQ. (4)] between adjacent values of the magne-
tization. It is therefore possible to define asffective
magnetic field

It has been showf~>° that the dynamics of metastable
decay in the standard two-dimensional Ising model for suf-
ficiently weak applied field can be semiquantitatively de-
scribed by a mean-field-like dynamic in which the free en-
ergy is a function only of the system magnetization. Under
IIlhese circumstances switching is abrupt, with a negligible
amount of time being spent in configurations with magneti-
zations significantly different frorm,,,s or mg,. Switching is
then also a Poisson process, with the lifetime of a metastable
%hase given by the typical Van't Hoff-Arrhenius form

Teexp( BAF), (9)

whereAF is the free-energy barrier that must be crossed in
the decay process, or by a simple generalization of(&qf
more than one equivalent decay path is pregsee Eq.
(27)]. This phenomenon, in which the entire system behaves
as though it were a single magnetic moment, is known as
P superparamagnetisti®’ As a consequence of the Poisson
Hen(H,D,m)= —(Hm—-Dm?)=H-2Dm. (7) nature of the decay process, the standard deviation of the
Jm switching time for an individual grain is approximately equal

The effective magnetic field is thus site independent. Thid the mean switching time;. Because of the random nature

fact makes analytic considerations significantly easier and igf switching in this region, it has been calféd’ the “sto-

our principal reason for using E¢) rather than Eq(3) as chgstlc” region. The stochgstlc region is the union of a “co-

our model Hamiltonian. existence” region and a “single-droplet” regiafiscussed
We study the relaxation of the dimensionless system mag! Secs. Il B and Il D, respective)y

netization starting from an initial state magnetized opposite

to the applied field m(t=0)=+1, H<O0]. This approach A. The restricted free-energy function

has been regularly used in simulation studies of metastable

decay, ever since it was introduced by Stoll and Schnéitler.

(See Ref. 28 for referencedt corresponds closely to the

procedure followed in MFM switching experimenits, All

In the spirit of Refs. 54—-56 we construct approximate
restricted free-energy functior(m) for the entire system
and use Eq(9) to illustrate theH andD dependence of the

simulations presented here were performedTat0.8T, lifetime:

where the spontaneous magnetization in zero field is close tlg(m)= LIDm2

unity [mg(0.8T;)=0.9544. .. (Ref. 43], while the anisot-

ropy in the surface tension is we#&kSince the applied field +min{F, . (m),F, _(m),Fq . (m),Fq_(m),Fq(m)}
is negative(and generally small the stable magnetization is ' ' ' '
approximatelymg~ —mg, and the metastable magnetization —Fy(m=0), (10)

is mpe~+mg,. We use as an operational definition of the

lifetime 7 of the metastable phase the mean first—passag@herepsl(m) is the free energy of a system composed of two
time to a cutoff magnetizatiom=0: “slabs” with magnetizations neat: mg, [Fig. 2(a) illustrates
a “slab” configuratior], F4.(m) is the free energy of a

7=(t(m=0)). (8) system with a single droplet with magnetization neams,
It has been observétithat the qualitative results discussed in @ background with magnetization neamg, [Fig. 2(b)
below are not sensitive to the cutoff magnetization as long allustrates a “single-droplet” configuratidnandF .. (m) is
it is sufficiently less tharmg,. Our choice ofm=0 as the the free energy of a system in a “uniform” phase near
cutoff facilitates comparison with MEM experiments, which M= *Msp. Figure 3 illustrateggF(m) for L<Lp, L=Lp,
are only capable of measuring teign of the particle mag- andL>Lp.
netization. We approximate the free energy of a system in a “uni-

A remark on notation: in this paper a numerical subscripform” phase by

indicates the coefficient in a Taylor expansion D.
For example, a quantityX may be expanded as
X=Xo+X;D+X,D2+ - - .. There are three exceptions from
this rule. (1) The subscripts in E(.26) refer to an iterative
process for evaluating a continued fractid®@) The sub- wherey is the equilibrium susceptibility per spin. Since an
scripts onZo(T) and Z2,(T) [Eq. (28)] indicate an expan- exact solution for the two-dimensional Ising model in a mag-
sion inH? and are kept for consistency with the notation in netic field has not yet been found, we use instead an estimate
Ref. 3.(3) Dummy variables in the Appendfe.g., Eq(A2)] from a series expansiof, so that for T=0.8T,
may have numerical indices as a matter of convenience. x~0.05"1.

1
Fu-(m)=—L%Hm+ Ldz)(‘l(mi Msp)?, (11)
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Minimizing Fu,_(m)+LdDm2 yields the stable magneti- time scale. Note, however, that other, shorter-lived meta-
zation mg,, which is the location of the global minimum of stable phases may exist, as discussed below.
F(m) for L<Lp: In cases where the magnetization differs significantly
from mg, (—mgy), a lower free energy can often be obtained
by segregating the system into a single localized “droplet”
with magnetization neamg; (m,,9 in a background with
magnetization nean,,,s (Mgy).>° Specifically, the droplet free
energy is approximated by

— Mgt Hyx

Ms™ 12Dy

(129
(remember,H<0). Likewise, for L<Lp the next-lowest
minimum of F(m) is obtained by minimizing
Fu.(m)+L9Dm?

' Fa+(M=0[do.RI + (mps— My HRE ] — LIHM 6
Mgpt Hx (133
Mpp™ 1+2Dy " (12b

and
Equation(123 is valid for a wider range oH than is Eq.
(12b). We shall refer tan,,,s as the “metastable magnetiza- 41 g g
tion” and its basin of attraction as the “metastable phase,” Fd-(M=Q[do.RT "~ (Mys— Mgy HRZ ] = L"HmMg
since for systems of interest €L ) the length of time re- (13b
quired for a system initially prepared in the metastable phase
to escape to the stable phase is much longer than any othsubject tom,,o>m>mg. Here
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(149 For L~Lp, the maximum ofF (m) occurs not aimgs ;
but at a larger magnetization corresponding to a single criti-
is the radius of a droplet of “down’(stable spins in an cal droplet. The size of this droplet, however, is strongly

Mps— M )”d whereA(T) is a nonuniversal prefactor.

“up” (metastablgbackground, dependent on the system sizeThis part of the coexistence
1 region is further complicated by the increasing importance of
R =i m— Mg ) (14b) the metastable phaserat=H/(2D) and the aforementioned
Mys— Mgy possibility of metastable phases nea# my; . .

is the radius of a droplet of “up”(metastable spins in a
“down” (stable background. FoiT#0, the droplet shape
can be found from a Wulff construction. The quantity, For |H|>D the maximum ofF(m) may correspond to a
which gives the volume of the droplet via=QRY, can be critical droplet the size of which is nearly independent of
found to arbitrary precision for the two-dimensional Ising system size since it is determined by #ygpliedfield rather
model by numerically integrating over the exactly knownthan thedemagnetizindield. The applied field at which the
surface tensiofi®®! CE region crosses over into this “single droplet3D) re-
Lastly, nearm=0 the circumference of the droplet be- gion has been callé¥?’ the “thermodynamic spinodal”
comes larger than twice the cross-section of the system, ar(tHy,s). A useful estimate for this crossover is given by
the lowest free energy is obtained by segregating the syste/dm)[LYDm?+ de+(m)]|md . =0, which yields®
into two slablike configuration® The corresponding slab >

free energy is approximated by 1= (d—1)o, (d|¥d-D
| chsd ~L Mis— Mgt

C. The thermodynamic spinodal

2 _2Dmd5’+ .

Fo(m)=2L"1o,,—LHm. (15) (18
Comparison with Eq.13) shows thatF(m)=Fg(m) for

Mgs + =M= M, wher&b:62 One practical indication of the thermodynamic spinodal is
S+~ = S,— !

a peak in the switching fieldHg,, which is the
d/(d—1) L-dependent value dfi needed to produce a fixed value of
Mas + = Mms— (Mins— msoﬂl’(dl)(a) >0 (163 . (See Fig. 1.1t can be showf? that Eq.(17) implies that,
for sufficiently large values of, Hg,(L) has a peak at
and 1
a1
; (19

2\ d/(d—1) [=|d
<0. (16b

In(7/A)
2P0,

so that the peak occupseciselyon the thermodynamic spin-

Note that for D>H/(2mys_), a local minimum of odal as given by Eq(18). However, becausk depends so
F(m) occurs for a slab configuration a=H/(2D). For  weakly on 7, it is not possible to perform simulations for
L<Lp it is a metastable phase, but fdr=Lp, and which finite-size effects are not important i,s,. These
D>H/mg it is the global minimum ofF(m) and hence the finite-size effects can be compensated in a phenomenological
true stable phasesee Fig. 3. Other interesting features can way through reducindg. by a weakly temperature dependent
be obtained by solving dfdm)[LDm?+ Fa-(m)]=0, length on the order of unit§f The estimate for the thermo-
which can in general be done only numerically. This revealslynamic spinodal given by Eq18) is to be preferred over
that nearL=Lp short-lived metastable phases can exist forthat used in Refs. 3 and 28 because it is more closely related
m>mMgys 4+ OF M<Mgg_ . to the free-energy barrier.

d

_ —1/(d-1
mds,f - mst+ (mms_ mst)Q ( )

B. The coexistence region D. The single-droplet region

For L<Lp, the system enjoys true coexistence at zero In the SD region the first critical droplet to nucleate al-
applied field between two degenerate equilibrium phasemost always grows to fill the system before any other droplet
with magnetizationsm,,; and mg. This leads to the nucleates. The average time required to nucleate the first
identificatiorf®?” of a “coexistence” (CE) region within  droplet can be estimated from E§), where the free-energy
which F(m,,9~F(mg). Within the CE region, the free- barrier is determined from Eqél1) and(139. Since the SD
energy barrier for tunnelling from the metastable phase to theegion is also a region of weak and D, we can obtain a
stable phase is approximately the same as the free-energyod approximation by neglecting terms ©f yH). Then
barrier for tunnelling from the stable phase to the metastabléhe magnetization in the metastable background is
phase, so the decay process is both stochastic and reversibte,,.=mg,, and inside the droplet it iBig= —mg,. In terms
Specifically, forL<L, the lifetime of the metastable phase of the droplet radiu®, the difference between the free en-
is given by Egq.(9) with AF=F(mg.)—F(mpg, SO ergy of a system containing one droplet and that of a uniform
that>-%° metastable system can then be written as

7(L,H, T)=A(T)exp{ B[ 20..(T)LY 1= LIYH|(mps— Mys + ) AF(R)=dQo.(T)RY 1—2mgf|H|+2Dmg) QR?
—LD(mZ—mis. )1}, 17 +4DmZ . ~0%R%, (20)
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Differentiating with respect tdR, we find the implicit equa-

tion satisfied by the critical droplet radius: 1.0 -
R(TH.D)= — a4 DoelT) (21a : ]
oo 2msp|Heff,c(HvD)| ’ : :
where 0.9 — —
[Hegro(H,D)|=|H|+2Dmgf 1- 20 (R,/L)%] (21b) E [ ]
is the effective field evaluated at the magnetization of a sys- t 0.8 —
tem containing a single, critical droplet. Note théf; . de- i i
pends orlH| andD explicitly, as well as implicitly through i i
R.. ForD=0, Eq.(21) reduces to the standard expression - .
for R..%® By insertingR, into Eq. (20) one finds that the 0.7 —
free-energy barrier corresponding to the critical droplet is i ]
also simply given by a standard expressidim which |H| T
has been replaced B g o|: 0.00 0.05 0.10 0.15 0.20
=,(T) x = 2my,D/[H|
BAFsp=1r— 1 (22
|Heﬁ,c(HiD)| . e . .
o FIG. 4. The relative lifetime vg=2m¢D/|H| in the SD region
wheré as given by Eq(29). |H|=0.2J, T=0.8T, andL =10. Each Monte
1)d-1 Carlo point represents 47 500 decays. The only parameter which is
= _ al v not exactly known=,, was obtained in Ref. 3 from data Bt=0
So(N=p0=(T)] (2m5p> 23 and isnot the result of a fit to thdd-dependence.

Note that_EO(T) _is completely defined by quantities that for g5, p=o andy~0, | has been shown by field-theoretical
the two-dimensional Ising model are either known exaCtlyarguments to be given B}6:67

(0.. andmgy),****or can be obtained by numerical integra-
tion of exactly known quantities(¥).%%6* 1(T,H)~B(T)|H|Kexp{— [H|* [ Eo(T) + EL(T)H2]}
The above results indicate that in order to obtain the (28)

nucleation rate for nonzer, one only needs to determine whereB(T) is a nonuniversal prefactor, ar should be 3
|Hett ¢|. This can easily be done to arbitrary numerical pre- . . >al p 67 .
' for the two-dimensional Ising mod&®” (numerically sup-

?rlzz:ct)ir(])nwe?(pgn;i)plidg fc(:)(ﬁr;:,/vesrgent, generalized Cormmmd'ported by Monte Carfd and transfer-matrf¢ calculationg

Let x=2Dm,,/[H| be the reduced demagnetizing field and — 1/3 for the three-dimensional Ising modé[The sub-

. : ‘:’ . . . . 2
V) S0 b e o e by Sy 0= ST e e
the critical droplet. Then ' p y

tion in Ref. 3] The quantity=,(T) is given by Eq(23), and
[Hett o/ = [H[{1+X[ 1= V(x)T}=|H]y(x), (24) ~ we determine=,(T) from a numerical fit to thed depen-

’ dence of the lifetime. Note that the lifetime obtained from
andV(x) is given by the generalized continued-fraction ex- Egs. (27) and (28) is quite similar to the Van't Hoff-
pansion, Arrhenius form with the free-energy barrier given by Eqg.
(22). The only differences are the prefactét| ¥ and the

V(x)= Vo 25 term Z,(T)H? in the exponential, which are due to surface
(X) 3, (25 . \ ;
1ex] 1- Vo fluctuations on the droplet and to higher-order terms in a
X Vo \]° field-theoretical calculation of the free-energy barrier,
1+x{1- B respectively’’ We generalize to th® #0 case by assuming

that the nucleation rate in the SD region is given by )
whereV,=V(0). This expansion can be evaluated to desiredwith |H| replaced by|Hex(H,D)|, as we have already

precision by the recursion relation, shown in Eq.(22) for the dominant term in the free-energy
barrier,AFgp. The resulting expression for the relative life-
V.= Vo _ (26) time for nonzerd is then given by
" [14+X(1-Vy-1)]
(Here the subscript is proportional to the order of a rational- ) _ (x) Kexp{— Eo|H|* T1-y(x)1 9]
fraction approximation to the generalized continued fraction, (0)
rather than denoting the order of a term in a power series in —E|HF [ 1—y(x)3 9}, (29)

D, as elsewhere in this papgr. i . . i i )
The lifetime in the SD region can be given in terms of theWherey(x) is defined in Eq.(24). This result is shown in
nucleation rate per unit volurmeby?® Fig. 4, together with Monte Carlo data, fal=2, T

=0.8T., |H|=0.2], andL=10. Except forZ,, the param-
r~[L9]" L. (270  eters needed to evaluat€x)/7(0) are known exactly or
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numerically exactly for the two-dimensional Ising model, is the mean volume fraction of dropletsincorrected for
V(;=0.23991) and Z,=0.50621), or from field-theoretical overlap and
calculation§®®7 of the nucleation rateK =3. The value of

=, used to produce the data in Fig.#&;=9.1(3)J" %, was V(ty,t,)=0
obtained in Ref. 3 from thiH| dependence of for D=0 in 12
the SD region. Thus the good agreement seen in Fig. 4 be- . . .
tween the simulation data and the theoretical prediction i s the volume o_ccupl_ed by a droplet Wh.'Ch nucl_eates a_t time
not the result of a fit to the data, but is determined entirely 1 and grows with a time-dependent radial veloaity) untl

from quantities that are either known exactly or measured' M€ t2- Here' v(h) is the (nonumversal temperature—
with D=0 dependent radial growth velocity of a droplet, which under a

Lifshitz-Allen-Cahn approximatiof?~"® is proportional to
the effective field in the limit of large droplets:

ty d
f v(t)dt} (39
ty

IV. THE MULTIDROPLET DECAY REGION
For sufficiently strong fields or large systems, decay oc- v(t)=~v|H(H,D,m(t))]. (35

curs through many weakly interacting droplets in the manner, _ . . .
described by Kolmogoro¥® Johnson and MeHf and The time-dependent nucleation rate is given by
Avrami L Such decay is “deterministic” in the sense that | () =ILT.Hes(H,D,m(1))] from Eg. (28). Note how this

the standard deviation of the switching time is much lesdlifférs from theD-dependent nucleation rate in the SD re-

than its mear(see Refs. 3, 26—28 for details gion, discussed in Sec. Il D. In the SD region, hedepen-
The crossover between the SD region and the multidroplef€nce of the nucleation rate comes from the change in sys-

(MD) region has been call®’ the “dynamic spinodal” tem magnetization from the nucleation of a single critical

(DSp. Since the standard deviation of the lifetime is equal todroPIet. In the MD region, by contrast, we ignore the change

its mean in the stochastic region, we estimate this crossovéd SyStém magnetization due to the nucleation odirgle
by the fieldH ., at which droplet(sinceL>R;), and theD dependence of the nucle-

ation rate comes from the change in system magnetization
due to anensembleof supercritical droplets.

,
V(t9(m=0))—7°= > (30 For D=0, Eq.(32) become¥®
For asymptoticallylarge L, Hpgy~(1/nL)*@~ ;327 how- Mo(t) = (Mps o~ Mgt €~ PV +myg; g, (36)

ever, prohibitively large system sizes may be required beforg\lhere
this scaling form is observet.
For even stronger fields, nucleation becomes much faster Mpms o— Mstol [ £ 1972
than growth and the droplet picture breaks down. The cross- Do(t)= m(W) (—) : (37)
over to this “strong-field” (SP region has been call&’ st 70
the “mean-field spinodal”(MFSp). A conservative estimate so thatr, is the first-passage time tw=0 [Eq. (8)]. Spe-

for this crossover field is obtained by setting2=1: cifically, 7o is given by*=*!
(d—1)o..(T) 1oQuv§ [T

Hyesd~————. 31 =

| MFSpI msp ( ) 70 (d+ 1)|nZO ’ (38)
Little is as yet known quantitatively about the dynamics ofwhere
the decay near the mean-field spinodal and in the SF region.
A study from a percolation-theoretical point of view is in _ Mms,0~ Mt 0
progres$? =" d ~2. (39

. St,
A. Time-dependent magnetization in the MD region In Eq. (39) and elsewhere in this section, the estimate for

_ o_al - _ the metastable magnetization given by E#2b does not
Avrami's law*®~ “gives the volume frqctu_)n of the meta- g ffice. Ramost al. have estimatedn,,{|H|) by extrapo-
§tablg phaséor equivalently, Fhe magnetizatipfor systems lating m(t) back tot=0 assuming tham(t) is correctly
in which droplets nucleate with a constant rgter unit vol- - gegcribed by Avrami's la® (Since the initial condition is
ume |, and grow at constant vel_ocnyo without interacting mo=1 rather thamy=m,., the earliest times must be dis-
except for overlaps. In this section we generalize Avram"scarded) These estimates are shown in Fig. 5. We fit a
law to systems with nonzerD. This generalization allows ¢mooth curve through the data, insisting that{0)=m
for a nucleation rate and velocity that depend on the magnegq @/dH)Mdp—o= x. The smooth curve allows us tc?pes-
e ) . maH= .
tization, and through it on time. L timate the change im,,s due toD, but an analytic expres-
The time-dependent mean system magnetizat@t) is  gion form ([H]) is not known
: m .
given by For D=0, the standard deviation of the time-dependent
(32 magnetization has been shown to vanish with increasing sys-
tem size asL 9237 je., the magnetization is strongly
Here self-averagin® in the MD region. This feature is shared by
. the more general case bf=0. In fact, realizations in which
q)(t)zf L(t)V(t' t)dt’ (33) the ma_lgnetization chances to decay'mor.e rapidly than aver-
0 age will experience a weaker effective fidlqg. (7)], and

m(t)=(Mps— mst)e_¢(t)+ Mg
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FIG. 5. The metastablg ma%ngtization|lf‘e||6i9nbthe MD relg]iqn. FIG. 6. The magnetization vs time in the MD region as given by
The data points were estimated by Ranebsl.” by extrapolating Egs.(36) and (45). |H|=0.3), T=0.8T,, andL=50. The two val-

the time-dependent magnetization values back=t®, assuming ues ofD displayed ard =0 andD=0.015. The solid curves are

.tmo(t)+Dm1(t); the dotted curve(hardly distinguishable on the
scale of this figurgis m;(t). Each Monte Carlo point represents
100 decays.

expression fomy,,{|H|) is not known except neat =0, where Eq.
(12b) applies. The straight line indicates the approximation Eg.
(12b).

. . . L Straightforward but cumbersome mathematics gives ex-
realizations in which the magnetization decays more slowly licit expressions ford,(t) and dy(t) [Egs. (A12) and

than average'will experience a stronger effective field. Thes A14) in the Appendis. These expressions are inserted into
effects combine to cause systems \_MDh>O to have even Eq. (42) to find ®,(t), and Eq.(32) is used to evaluate
smaller standard deviations in their time-dependent magneti-

zations than corresponding systems vtk 0. My ()= (Mps 1~ Mg D~ P00 +mg;
To first order inD, the effective magnetic fieldfrom Eq.
(7)] is given by —(Mps g~ Mg ge” Po0dy(t). (45)
Her(H,D,m(t))~H—2Dmjg(t) (40) Finding the second-order terms [ih proceeds along par-

allel lines. Although it is possible to find an analytic expres-
since anyD-dependent terms im(t) will lead to only  sion for m,(t), this expression is tedious to derive and un-
higher-order corrections. We will expardl(t) to first order  enlightening. Furthermore, enough approximations have
in D, so that we can use the known valuengf(t) instead of  already been introduced to make the significance of an ana-
the unknown valuen(t) on the right-hand side of E¢33). lytic expression form,(t) suspect. Consequently, we esti-
In order to perform the expansion correctly, we must expananate m(t) by integrating Eq(33) numerically with the ef-
[(t) andV(t,,t,) to first order inD. Specifically, the total fective field H—2D[my(t)+Dm;(t)]. The resulting
volume fraction(uncorrected for overlapof droplets after a  estimate we denoten((t), and it should be approximately

timet is given by correct toO(D?). If necessary, this process can be iterated to
find successively better approximations fo(t).
D(t)~Dgo(t) +Py(t)D (41 Figure 6 shows the time-dependence of the the magneti-

zation, both as approximated above and as simulated by
Monte Carlo. ForE,; we have usedE;=3.0(3), asdeter-
mined in Ref. 3 from theH| dependence of for D=0 in
P1()=Dy()+Dy(1), (42) the MD region. Note thit t|herepis good agreement between
with the simulation results and the approximation after an initial
relaxation into the metastable phase, and that the modifica-
t tion to m(t) resulting from higher-order terms is minor.

®V(t)5folovl(t,,t)dt, (43)

where

B. Lifetime in the MD region

and In order to calculate the effect @ on the lifetime, we
start withm(7)=0 and expand botm and 7 in D. Collect-
®,(t)= ftll(t’)Vo(t"t)dt'- (44) :,r\:g ]:[i?]rdms and discarding all terms of higher order tfisfh

0
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FIG. 7. The lifetime veD in the MD region forT=0.8T; with

4123

curves are not fits to the simulation data, but in addition to
exactly known quantities use only parameters determined for
D=0, namely,m,{|H|) (Ref. 69 andZ(T).2

V. DISCUSSION

Due to the importance of magnetic recording technologies
in modern society, magnetic relaxation has been a subject of
study for many years. However, even the equilibrium ther-
modynamics of magnetic materials is very difficult to predict
from first principles and generally has to be approximated
from simpler models(see, e.g., Ref. 76 As a result, the
most popular method for theoretical investigation of magne-
tization reversal involves setting up and solving differential
equations on a lattice obtained by coarse graining over the
microscopic crystal lattice. This method, known as
micromagnetic$? often gives very good results, particularly
for equilibrium studies or for multidomain particles. How-
ever, micromagnetic calculations take thermal effects into
account only crudely.

An alternative method is to treat the statistical mechanics

|H|=0.2J and|H| =0.3. The solid curves represent the theoretical carefully, making simplifications to the model until it can be

predictions given by combining Eq&}7) and (48) and arenot the

result of a fit to theD dependence. Each Monte Carlo point repre-

sents at least 5 000 decays in a system of lsizd 00.[Reproduced
from Fig. 4 of Ref. 18]
o

dmg

TS

dmg

0={mg(7)}+ | My(7p)+ eTe

dm;

1 ,d’mg
m2(70)+71W

+ AT

o
’TO -

(46)

Since the quantities in the braces are independeit ahd
Eq. (46) is true for all smallD, by necessityngy(7,) =0,

dmg| |71
1=~ ml( TO) dt |7 ’ (47)
and
dm, 1 ,d’my| J[dmg| |71
7'2=—[m2(7'0)+7'1w ot §T§ﬁ2— TOHW | -
(48)

Equation (47) is readily evaluated becausk(t) is a
simple function. It is likewise simple
(d’mo/dt?)|, for use in Eq.(48). We have not actually

solved forms,(t), but for smallD we can use

my(t)~D~2{m(t)—[mo(t) +Dmy(t)]}. (49

Finally, (dmlldt)|T0 can be evaluated by differentiating

dy(t) [Eq. (A12)] and® (1) [Eq. (A14)] with respect ta.
The results are given in EqéA15) and(A16) in the Appen-
dix, respectively. Inserting these in E¢42 we obtain
(dfblldt)lfo. Once this is known, differentiating E€45) is

trivial, and 7, can easily be evaluated.
Figure 7 shows vs D for two different values of. The

to calculate

well understood. This is the approach we take. In Ref. 3 we
showed that both the switching field and the probability that
the magnetization has not changed sign within a given time,
calculated from Monte Carlo simulations of the two-
dimensional Ising model, are qualitatively similar to the
same quantities measured in isolated, well characterized
single-domain ferromagnets by techniques such as MFM.
Since statistical-mechanical droplet theory successfully ex-
plains the Ising model simulations, it is plausible that droplet
theory could also be applied to the experiments.

In this article we consider the effect of the magnetic
dipole-dipole interaction, which was neglected in Ref. 3. By
treating the dipole-dipole interaction in a mean-field approxi-
mation, we are able to calculate droplet-theory predictions
for the lifetime for systems in which magnetic decay occurs
by means of a single dropléFig. 4). We also obtain both the
time-dependent magnetizatigRig. 6) and the lifetime(Fig.

7) for systems in which magnetic decay occurs through the
action of many droplets. In all of these calculations, all pa-

rameters were either known exactly or determined by mea-
surements ab =0, so the excellent agreements between our
analytical expressions and the simulation data are not the
results of curve fitting.

It should be pointed out that the droplet-theory predictions
made in both the single-droplet and multidroplet regions are
large-droplet approximations. Since a critical droplet in the
two-dimensional Ising model aT=0.8T, and |H|=0.3]
consists of approximately six overturned spins, it is quite
remarkable that these expressions give the good approxima-
tions they do.

In Ref. 22, Kirby et al. use the two-dimensional Ising
model with mean-field dipole-dipole interactions to simulate
Dy/Fe ultrathin films which they have observed experimen-
tally, obtaining good agreement. The analytic results from
Sec. IV are directly applicable to such films, although differ-
ent values ofT, H, and D must be chosen to make the
comparison. However, care should be used in applying the

agreement between the theoretical curves and the Montesults. Specifically, ifDmg,/H| is not small, more numeri-
Carlo data is again excellent. Once again, the theoreticalal iterations of the type described in Sec. IV will be neces-
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sary, and if|Heg|=|Hyesd [Eq. (3], droplet theory may Allen-Cahn approximatiofi~"3for the radial growth velocity
not be applicable. [Eq. (35] and with the effective magnetic field @(D) [Eq.

It is a noteworthy conclusion of this study that the mean-(7)], we find
field demagnetizing field does not change the qualitative pre-
dictions of the droplet-theoretical switching model intro-
duced in Ref. 3. In particular, the switching field as a v(t)~vg
function of system size is qualitatively similar to that which
was obtained in Ref. 3 and is sketched in Fig. 1. AIthoughS
the values of the switching field are reduced, a peak in the
switching field still occurs near the thermodynamic spinodal,
as can be seen by comparing E@¢s7) and (27). Further- t 0 g
more, the switching field remains roughly independent of aod) 2 Ao d
in the MD region. What is noticeably absent is any feature atv(tl’tZ)NQU°| ftl 1+ |H_|m°(t)}dt} NQUO[(tZ_tl)
L=Lp: the switching field shows features due to transitions
in the dynamics, but not transitions in the statics. This is
because our droplet-theoretical model assumes that the sys-
tem starts from a single-domain initial condition. Experimen-
tally, the initial condition is typically prepared by applying a
strong field in the+z direction, but forL>L this will not
be sufficient to produce a single-domain state in equilibrium.
Such a multidomain initial condition means that the lifetime
is limited only by the growth velocity, and no longer by the
nucleation rate. This greatly reducks,, for systems with and
L>Lp. However, if the “optimum” grain size. [given by
Eq. (19)] is much smaller thahy, there will still be a peak
in Hg,, due to the crossover between the CE and SD regions. _ d 1 P

Even with the addition of the demagnetizing field, the Vi(ty,12) =200, 1 [HI™ (t—t) J't mo(t)dt.
Ising model remains too crude a model for magnetism to ! (A4)
describe quantitatively real magnetic materials, except per-
haps for some ultrathin films as noted above. Heterogenous
nucleation at boundari€8;’’ quenched disord€f and more
realistic anisotropie® as well as extensions to three-

2D
1+ 7—=mg(t)

IH] . (A1)

ubstituting Eq(50) into Eq. (34), we find

d
1

2D

—(t,—t )‘Hfzm (t)dt} (A2)
| 2 1 4 0 .

+ | H

This enables us to make the identifications

Vo(ty,t)=Qud(t,—t;)° (A3)

A Taylor expansion of the nucleation rdteq. (28)]

dimensional grairf§ will therefore be subjects of future stud- dai| dl | d|He
i O~lot gp5| P=lo* Gia | ~db
ies. o [H el 0 o
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APPENDIX: AVRAMI'S LAW FOR D=0 . . . . ..
(i) we use EQ.(38) to simplify expressions, andii) we

In this appendix we give some of the steps that have beemake changes of variables of the foms ®y(t'). These
omitted for clarity in Sec. IV. Beginning with the Lifshitz- lead to expressions such as
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tK(t) KAt =[ D (1) ]9+ D=k (d+ Dy (A9)

—l]dt

d 4 20 Dy(tp)
=2| . |[H] Y mgd _Vo(tl,tz)+Qvo_(|n20)71/(d+1)(t2_tl)dilTof e XxM@+ D 1gx
1 d+1 Do(ty)

Inzg | (" D/(d+1)
(d+1) —d+—1)
7o

Using Eq.(36) in Eqg. (53
d ty t d+1
Vl(t17t2)%29Ug< )|H|1(t2_t1)dl|mst,0|J' [Zoex —In(zo)(—>
1 ty 7o

d Zo
=2 1) |H|1|mst,&( _Vo(tl,tz)+Qvgm(lnzo)fl/(dﬂ)(tz_tl)dfl

1
a1 Polta)|— O(tl)” ) (A10)

X To[ Y
wherey denotes the incomplete gamma function

X
y(a,x)= f y2 e Vdy. (A11)
0
Using Eq.(A10) in Eq. (43),

d Z td
q’v(t)~2( 1) |H|_1|mstd< _‘Do(t)+|oQUg(H_1(|nZO)_l/(d+l)To[ a?

J’(t /)d 1 d+l O(t/)}dt/])
td

d
=2 1)|H|l|mst,o|( D (1) +2o(Inzp) ¥4+ 7, d[ qY

ool

1
d+—1-‘1)o(t)

1
a1 P

d-1
t d—1

_ E ( )tk(_t/)dlk,y
ok=0 |\ Kk

=2 i)lHl‘llmst,a[ Do(t) + [ o(1)] dll-‘bo(t)}
7o %t [d-1 ) —(k+1) 1
leio( ‘ )(—1)" Too()]¥ VAl — 7 ,d+—1,<bo<t>)], (A12)
where A is given by
A(a,b,x)zfoxyay(b,y)dy. (A13)

Both A and the incomplete gamma functionare easily evaluated by Taylor series.
It is somewhat easier to evaluaig(t). From Eq.(44) and Eq.(A6),

q),(t):x(HnOQvgftmo(t’)(t—t')ddt'
0
y\d+1
~A<H)m—+1d)+"l(—z°)l std[ f(t t)ddt“‘ZOJ exr{ |n(zo)(t) }(t—t’)ddt']

o

S\ d+1
—7\(H)|mstd[ tHLderlgllnﬂ E ( )k(—t’)d_kexﬁ{—ln(zo)<7—o)

d /d
= )\(H)|mst,d{zo[ 2 ( k) ( _ 1)d*k[q)o(t)]k/(d+l)f®0(t)xfk/(d+l)efxdx
0

k=0

_q)o(t)}

:)\(H)|mst,d

d k
Zo[k ( )( 1)4 K dy(t) W@+ (1_d+_1 ‘po(t))]—‘bo(t)}- (A14)

=0
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The derivatives ofb,(t) and®,(t) with respect td are needed to obtairp in Sec. IV B. These are obtained directly from

Egs.(A12) and (A14) above

d (d+ 1)Inz0 Zy 1
el -1 1Ud+1)
dtq)V(t)|t:TO d)|H| |m5t& [ d d+1(|n20) Y d+1 Inzo)
d-1
%0 d-1 d—k (kd-prary 4 Z(kFD 1
+(d+—1)2k20( . )( 1)97*Kk(Inzy) Al =51 951" (A15)
and
d
(d+1)Inz k
(I)l(t)|t:1_0%)\(H)|mst’d 0 2 {( )( 1)d kk(lnz )(k d— l/(d+l);y(1 d+l,|nzo
(Al6)
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