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An important aspect of real ferromagnetic particles is the demagnetizing field resulting from magnetostatic
dipole-dipole interactions, which causes large particles to break up into equilibrium domains. Sufficiently small
particles, however, remain single domain in equilibrium. This makes them particularly promising as materials
for high-density magnetic recording media. In this paper we use analytic arguments and Monte Carlo simula-
tions to quantitatively study the effects of the demagnetizing field on the dynamics of magnetization switching
in two-dimensional, single-domain, kinetic Ising systems. For systems in the weak-field ‘‘stochastic region,’’
where magnetization switching is on average effected by the nucleation and growth of a single droplet, the
simulation results can be explained by a simple model in which the free energy is a function only of magne-
tization. In the intermediate-field ‘‘multidroplet region,’’ a generalization of Avrami’s law involving a
magnetization-dependent effective magnetic field gives good agreement with the simulations. The effects of
the demagnetizing field do not qualitatively change the droplet-theoretical picture of magnetization switching
in highly anisotropic, single-domain ferromagnetic grains, which we recently proposed@J. Magn. Magn. Mater.
150, 37 ~1995!#. @S0163-1829~96!06530-7#

I. INTRODUCTION

The ability of single-domain ferromagnets to preserve an
accurate record of past magnetic fields has several important
applications. For example, fine grains in lava flows preserve
a record of the direction of the geomagnetic field at the time
they cooled, giving valuable insight into continental drift and
the dynamics of the earth’s core.1 Of more direct technologi-
cal importance is the potential application of single-domain
ferromagnets to magnetic recording media,2 such as mag-
netic tapes and disks. Here we present a detailed, quantitative
study of some of the effects that magnetostatic interactions
have on the dynamics of magnetization reversal in such par-
ticles. The treatment is based on a droplet-theoretical picture
of magnetization switching in highly anisotropic, single-
domain ferromagnetic grains, which we recently proposed.3

A. Technological and experimental background

During the magnetic recording process, different regions
of the recording medium are briefly exposed to strong mag-
netic fields, so that each grain is magnetized in the desired
direction.2 Since each grain can in principle store one bit of

data, a greater storage density could ideally be achieved by a
medium containing many small grains than by one contain-
ing a few large grains. However, in order to serve as reliable
storage devices, the grains must be capable of retaining their
magnetizations for long periods of time in weaker, arbitrarily
oriented ambient magnetic fields — i.e., they must have a
high coercivity and a large remanence. Since experiments
show the existence of a particle size at which the coercivity
is maximum~see, e.g., Ref. 4!, there is a tradeoff between
high storage capacity and long-term data integrity which
must give rise to an optimum choice of grain size for any
given material. During both recording and storage, the rela-
tionships between the magnetic field, the size of the grain,
and the lifetime of the magnetization opposed to the applied
magnetic field are therefore of considerable technological in-
terest.

Fine ferromagnetic grains have been studied experimen-
tally for many years, but until recently such particles could
be observed only in powders~see, e.g., Ref. 4!. This made it
difficult to differentiate the statistical properties of single-
grain switching from effects resulting from distributions in
particle sizes, compositions, and local environments, or from
interactions between grains. Techniques such as magnetic
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force microscopy~MFM! ~see, e.g., Refs. 5–10! and Lorentz
microscopy~see, e.g., Ref. 11! now provide means for over-
coming the difficulties in resolving the magnetic properties
of individual single-domain particles.

B. Theoretical treatments of magnetization reversal

The standard theory of magnetization reversal in single-
domain ferromagnets is due to Ne´el12 and Brown.13 In order
to avoid an energy barrier due to exchange interactions be-
tween atomic moments with unlike orientations, Ne´el-Brown
theory assumes uniform rotation of all the atomic moments
in the system. The remaining barrier is caused by magnetic
anisotropy,14 which may have contributions from both the
local atomic environment and the overall shape of the
sample. Anisotropy makes it energetically favorable for each
atomic moment to be aligned along one or more ‘‘easy’’
axes. Buckling, fanning, and curling are, like uniform rota-
tion, theoretical relaxation processes with few degrees of
freedom and global dynamics.2,15

Detailed descriptions of both the static and dynamic prop-
erties of fine ferromagnetic grains have typically been for-
mulated from micromagnetic studies,16 in which uniform ro-
tation, buckling, fanning, and curling emerge as particularly
simple switching modes. This method involves coarse-
graining the physical lattice onto a computational lattice and
then solving the partial differential equations for the evolu-
tion of magnetic structures on the computational lattice. Al-
though micromagnetics provides a good treatment for the
anisotropy and demagnetizing fields, it treats thermal effects
rather crudely, usually just by making the domain-wall en-
ergy temperature-dependent. A somewhat better approxima-
tion for thermal fluctuations within the underlying differen-
tial equations is to include small fluctuations using a
Langevin noise term.17 An even better treatment for thermal
and time-dependent effects on the microscopic scale, is
Monte Carlo simulation~see, e.g., Refs. 3, 18–24!. Even
when the physical phenomena can be accurately simulated,
however, it will be difficult to understand the results without
an adequate theoretical basis.

For materials with sufficiently high anisotropy, we re-
cently proposed an alternative mode of relaxation with typi-
cally much shorter lifetimes than predicted for uniform
rotation.3 This picture of the switching process is based on
the statistical-mechanical droplet theory for the decay of
metastable phases. Small regions of the phase in which the
magnetization is parallel to the applied magnetic field~the
‘‘stable’’ phase! are continually created and destroyed by
thermal fluctuations within the phase in which the magneti-
zation is antiparallel to the field~the ‘‘metastable’’ phase!.
As long as such a region~henceforth referred to as a ‘‘drop-
let’’ ! is sufficiently small, the short-ranged exchange interac-
tion with the surrounding metastable phase imposes a net
free-energy penalty, and the droplet will, with high probabil-
ity, shrink and vanish. Should the droplet become larger than
a critical size, however, this penalty will be less than the
benefit obtained from orienting parallel to the magnetic field,
and this ‘‘supercritical’’ droplet will with a high probability
grow further, eventually consuming the grain.

In systems dominated by short-range interactions, the
critical droplet radius is inversely proportional to the applied
field, whereas the growth velocity of the supercritical drop-

lets is proportional to the field, and the nucleation rate for
critical droplets decreases exponentially as the inverse field
increases. The nature of the metastable decay therefore de-
pends on the relative sizes of the grain, the critical droplet,
the average distance between droplets, and the lattice con-
stant in a rather complicated fashion, as discussed in detail,
e.g., in Refs. 25–28. For sufficiently small grains or weak
fields, the decay occurs via asingle droplet or system-
spanning slab, which grows to fill the whole grain before
another critical fluctuation has time to appear. Since the criti-
cal droplet nucleates randomly in time, this has been termed
the ‘‘stochastic’’ decay region.26 For somewhat larger grains
or stronger fields, however, the nucleation rate is sufficiently
high that many new droplets are likely to nucleate while the
first one is still growing. This has been termed the ‘‘multi-
droplet’’ decay region.26 In Fig. 1 we sketch the regions of
the space of magnetic fields and particle sizes distinguished
by these different behaviors during metastable decay. Snap-
shots of simulations, illustrating typical corresponding spin
configurations, are shown in Fig. 2. For a more complete,
recent review of the droplet theory of metastable decay, see
Ref. 28.

C. Kinetic Ising models and magnetostatic interactions

Because of their simplicity, kinetic nearest-neighbor Ising
models have been extensively studied as prototypes for
metastable dynamics~see Ref. 28 and references cited
therein!. Square- and cubic-lattice Ising systems with peri-
odic boundary conditions have been used to study grain-size
effects in ferroelectric switching.29,30 Of particular signifi-
cance for magnetic systems, kinetic Monte Carlo simulations
of Ising and anisotropic Heisenberg systems with free
boundary conditions, that give results consistent both with
MFM experiments7–10 and with the droplet-theoretical pic-
ture discussed in Sec. I B, have been performed by Serena

FIG. 1. The relationship between the applied fieldH and the
system widthL for a shorter~top solid curve! and a longer~bottom
solid curve! fixed lifetime in a typical metastable magnetic system.
Four regions are distinguished by differing decay processes: the
coexistence~CE! region, the single-droplet~SD! region, the multi-
droplet ~MD! region, and the strong-field~SF! region. The CE and
SD regions, which together form the stochastic region, are sepa-
rated by the thermodynamic spinodal~dotted curve!. The SD and
MD regions are separated by the dynamic spinodal~dash-dotted
curve!. The SF region is separated from the other regions by the
mean-field spinodal~dashed curve!. @After Fig. 1 of Ref. 3.#
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and Garcı`a.21 Magnetization reversal in elongated ferromag-
netic particles has been studied with a one-dimensional
model,31 and a triangular-lattice Ising model with mean-field
magnetostatic interactions has been shown to reproduce well
the switching dynamics in Dy/Fe ultrathin films.22

In Ref. 3 we applied statistical-mechanical droplet theory
and Monte Carlo simulations of two-dimensional Ising sys-
tems to obtain an approximation for the dynamical behavior
of real single-domain particles magnetized opposite to an
applied field. The results of that study were in good qualita-
tive agreement with recent MFM experiments.5–10However,
several simplifying approximations were made, one of which
was the absence of magnetostatic interactions.

In the present article we take magnetostatics into account
by including a small demagnetizing field in an Ising system
otherwise identical to the one studied in Ref. 3. We calculate
analytically the effects of the demagnetizing field on the
magnetization switching dynamics and compare our analytic
results with large-scale Monte Carlo simulations. Specifi-
cally, for systems in the stochastic region~discussed in Sec.
III !, the demagnetizing fields we consider must be suffi-
ciently small that the system consists of a single domain in
equilibrium, whereas in the multidroplet region~discussed in
Sec. IV! it is sufficient to have the demagnetizing field much
smaller than the applied field. Some preliminary results of
this study were presented in Ref. 18, and additional detail
can be found in Ref. 20.

The equilibrium domain structure of two-dimensional di-
pole systems has been extensively investigated.32–37 The
magnetostatic dipole-dipole interaction produces a demagne-
tizing field, which results in the stabilization of a domain
structure in large ferromagnetic particles. In the context of
the present study it is essential to emphasize the difference
between a droplet and a domain. Although they are both
spatially contiguous regions of uniform magnetization, a
domain38 is an equilibrium feature whereasa droplet is a
strictly nonequilibrium entity,which only exists for a limited
time during the switching process.

The purpose of the present paper is to study the effects of
long-range dipole-dipole interactions on thenonequilibrium
phenomenon of magnetization switching in single-domain
ferromagnetic particles. Towards this end we employ a sim-
plified model with a demagnetizing field, in which particles
in equilibrium can have only one or two domains, and we
emphasize the single-domain case. We obtain detailed, quan-
titative results and confirm that the demagnetizing field
causes no qualitative modifications to the droplet-theoretical
picture of magnetization switching.

The organization of the remainder of this paper is as fol-
lows. In Sec. II we define the model and present the numeri-
cal methods employed. In Sec. III we discuss the stochastic
region in terms of an approximate free-energy functional and
give analytical and numerical results. In Sec. IV we general-
ize Avrami’s law,39–41 which describes magnetization
switching in the multidroplet region, to include the effects of
the demagnetizing field, and we compare the analytical re-
sults to numerical simulations. Section V contains conclu-
sions, discussions, and some directions for further work.

II. MODEL AND NUMERICAL METHODS

A. Ising model with a demagnetizing field

The standard Ising model is defined by the Hamiltonian

H052J(
^ i , j &

sisj2HLdm, ~1!

wheresi561 is thez component of the magnetization of
the atom~spin! at sitei , J.0 is the ferromagnetic exchange
interaction, andH is the applied magnetic field times the
single-spin magnetic moment. The sum(^ i , j & runs over all
nearest-neighbor pairs on a square~generallyd-dimensional
hypercubic! lattice of sideL. In this work we do not consider
the effects of grain boundaries, so periodic boundary condi-
tions are imposed.~For recent Monte Carlo simulations of
Ising and Heisenberg systems with open boundary condi-
tions, see Ref. 21.! The dimensionless system magnetization
is given by

m5L2d(
i
si , ~2!

where the sum is over allLd sites. The lattice constant is set
to unity.

Addition of dipole-dipole interactions gives a total Hamil-
tonian ~SI units!

Hdip5H01
m0M

2

4p (
iÞ j

sisj
ur i j u3

F123S r i j
ur i j u

• ẑD 2G , ~3!

whereM is the saturation magnetic dipole moment density
and r i j is the vector from sitei to site j . Unfortunately,
however, the last sum in Eq.~3! slows down Monte Carlo
simulations significantly, which is problematic if a large
number of realizations are desired for good statistics, as is
the case in nonequilibrium studies. The last sum also would
make a perturbative expansion in the demagnetizing field
~adjustable by changingM or the sample shape! difficult. We
therefore instead use the simpler Hamiltonian

HD5H01LdDm2. ~4!

The demagnetizing factorD, which is proportional to the
demagnetizing field, is a function of the crystal symmetry,
the shape of the system, andM . Equations~3! and ~4! are
equivalent for general ellipsoidsuniformlymagnetized along
a principal axis. For the special case of a perpendicularly
magnetized plane with square-lattice symmetry,D
5 2

3m0M
2. For nonuniformly magnetized systems, Eq.~4!

amounts to a mean-field treatment of the effects of the
dipole-dipole interactions. Due to the long-range nature of
the dipole-dipole interactions, this is a reasonable
approximation.22,28

For systems with periodic boundary conditions, the ex-
change and dipole terms of Eq.~4! are equal when the sys-
tem size is given by32

LD'
2s`~T!

D@msp~T!#2
, ~5!
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wheres`(T) is the surface tension along a primitive lattice
vector in the limitL→` andmsp(T) is the spontaneous mag-
netization. For the two-dimensional Ising model,s`(T)
~Ref. 42! and msp(T) ~Ref. 43! are known exactly. The
length scale on which we would expect a transition from a
single-domain to a multidomain equilibrium structure is ap-
proximatelyLD .

The selection of the Ising model is equivalent to requiring
a very large~infinite, in fact! anisotropy constant. Although
magnetic materials used in magnetic recording media require
comparatively large anisotropy constants,2 the microscopic
anisotropy tends to be much smaller than the exchange en-
ergy. However, in some applications, such as many thin
films, it is convenient to use Ising spins to represent the
individual grains which are superferromagnetically coupled
to make up the system~see, e.g., Refs. 22, 44, 45!. If these
coupled grains reverse their magnetization through coherent
rotation, as in Ne´el-Brown theory,12,13 the anisotropy barrier
for a grain is the product of the anisotropy barrier for a
single atomand the grain volume. Thus, although this work
is intended as a step towards a quantitative microscopic
theory, it may equally be used to describe superferromagneti-
cally coupled grains.

Simplicity is our main reason for choosing the two-
dimensional Ising model with periodic boundary conditions,
particularly since many equilibrium properties of the two-
dimensional Ising model in zero field are known exactly42,43

and since the kinetics of metastable decay has been exten-
sively studied for this model.28 As a result, our model sys-
tems may more closely resemble ultrathin magnetic films
with perpendicular magnetization than magnetic grains. A
study of three-dimensional systems is in progress,46 but we
emphasize that droplet theory should apply to almost any
spin model with high anisotropy. Accordingly, equations in
this paper are written in forms appropriate for arbitrary di-
mensionalityd, even though simulations are only carried out
for d52.

B. Simulation of the switching dynamics

The relaxation kinetics is simulated by the single-spin-flip
Metropolis dynamic with updates at randomly chosen sites.
Both the Metropolis47 and Glauber48 algorithms are spatially
local, stochastic dynamics with nonconserved order param-
eter ~the dynamic universality class of model A in the clas-
sification scheme of Hohenberg and Halperin49! and are
therefore expected to differ only in nonuniversal features.~A
derivation from microscopic quantum Hamiltonians of the
Glauber dynamic in the thermodynamic limit and under
somewhat restrictive conditions has been reported.50!

In this study we use the Metropolis dynamic, which is
realized both by the original Metropolis algorithm47 and by
then-fold way algorithm.51 ~For a discussion on the equiva-
lence of the dynamics produced by these two algorithms, see
Ref. 52.! The acceptance probability in the Metropolis algo-
rithm for a proposed flip of the spin at sitea from sa to
2sa is defined as

W~sa→2sa!5min@1,exp~2bDEa!#, ~6!

where DEa is the energy change due to the flip and
b21[kBT is the temperature in units of energy. Then-fold

FIG. 2. Configurations that may occur during the reversal pro-
cess. As in the text, periodic boundary conditions are imposed.~a!
A sketch of a ‘‘slab’’ configuration.~b! A typical realization of a
single droplet in the process of overtaking the system.~The droplet
appears ‘‘chopped up’’ because of the periodic boundary condi-
tions.! Grey squares are ‘‘up’’ spins and black squares are ‘‘down’’
spins. HereL560, H520.08J, D50, T50.8Tc , and t5410
MCSS. @Figure courtesy of S. W. Sides.# ~c! A typical realization
showing the nucleation and growth of several droplets in the pro-
cess of switching the magnetization. HereL5120, H520.2J,
D50, T50.8Tc , and t5114 MCSS.@Reproduced from Fig. 5~b!
of Ref. 3.#
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way algorithm is similar, but involves the tabulation of en-
ergy classes. First an energy class is chosen randomly with
the appropriately weighted probability. A single site is then
chosen from within that class with uniform probability and
flipped with probability one. The number of Metropolis al-
gorithm steps which would be required to achieve this
change is chosen from a geometric probability distribution,52

and the time, measured in Monte Carlo steps per spin
~MCSS!, is incremented accordingly. Then-fold way algo-
rithm is more efficient than the Metropolis algorithm at low
temperatures, where the Metropolis algorithm requires many
attempts before a change is made.

In a single-spin-flip dynamic, the magnetization can only
change by a small amount from one time step to the next.
The dynamical effects of the demagnetizing field thus de-
pend only on thechangein the magnetic part of the Hamil-
tonianHD @Eq. ~4!# between adjacent values of the magne-
tization. It is therefore possible to define aneffective
magnetic field

Heff~H,D,m![
]

]m
~Hm2Dm2!5H22Dm. ~7!

The effective magnetic field is thus site independent. This
fact makes analytic considerations significantly easier and is
our principal reason for using Eq.~4! rather than Eq.~3! as
our model Hamiltonian.

We study the relaxation of the dimensionless system mag-
netization starting from an initial state magnetized opposite
to the applied field@m(t50)511, H,0#. This approach
has been regularly used in simulation studies of metastable
decay, ever since it was introduced by Stoll and Schneider.53

~See Ref. 28 for references.! It corresponds closely to the
procedure followed in MFM switching experiments.5–9 All
simulations presented here were performed atT50.8Tc ,
where the spontaneous magnetization in zero field is close to
unity @msp(0.8Tc)50.9544 . . . ~Ref. 43!#, while the anisot-
ropy in the surface tension is weak.42 Since the applied field
is negative~and generally small!, the stable magnetization is
approximatelymst'2msp and the metastable magnetization
is mms'1msp. We use as an operational definition of the
lifetime t of the metastable phase the mean first-passage
time to a cutoff magnetizationm50:

t[^t~m50!&. ~8!

It has been observed27 that the qualitative results discussed
below are not sensitive to the cutoff magnetization as long as
it is sufficiently less thanmsp. Our choice ofm50 as the
cutoff facilitates comparison with MFM experiments, which
are only capable of measuring thesign of the particle mag-
netization.

A remark on notation: in this paper a numerical subscript
indicates the coefficient in a Taylor expansion inD.
For example, a quantityX may be expanded as
X5X01X1D1X2D

21•••. There are three exceptions from
this rule. ~1! The subscripts in Eq.~26! refer to an iterative
process for evaluating a continued fraction.~2! The sub-
scripts onJ0(T) andJ1(T) @Eq. ~28!# indicate an expan-
sion inH2 and are kept for consistency with the notation in
Ref. 3.~3! Dummy variables in the Appendix@e.g., Eq.~A2!#
may have numerical indices as a matter of convenience.

III. THE STOCHASTIC DECAY REGION

It has been shown54–56 that the dynamics of metastable
decay in the standard two-dimensional Ising model for suf-
ficiently weak applied field can be semiquantitatively de-
scribed by a mean-field-like dynamic in which the free en-
ergy is a function only of the system magnetization. Under
these circumstances switching is abrupt, with a negligible
amount of time being spent in configurations with magneti-
zations significantly different frommms or mst. Switching is
then also a Poisson process, with the lifetime of a metastable
phase given by the typical Van’t Hoff-Arrhenius form

t}exp~bDF !, ~9!

whereDF is the free-energy barrier that must be crossed in
the decay process, or by a simple generalization of Eq.~9! if
more than one equivalent decay path is present@see Eq.
~27!#. This phenomenon, in which the entire system behaves
as though it were a single magnetic moment, is known as
superparamagnetism.14,57 As a consequence of the Poisson
nature of the decay process, the standard deviation of the
switching time for an individual grain is approximately equal
to the mean switching time,t. Because of the random nature
of switching in this region, it has been called26,27 the ‘‘sto-
chastic’’ region. The stochastic region is the union of a ‘‘co-
existence’’ region and a ‘‘single-droplet’’ region~discussed
in Secs. III B and III D, respectively!.

A. The restricted free-energy function

In the spirit of Refs. 54–56 we construct anapproximate
restricted free-energy functionF(m) for the entire system
and use Eq.~9! to illustrate theH andD dependence of the
lifetime:

F~m!5LdDm2

1min$Fu,1~m!,Fu,2~m!,Fd,1~m!,Fd,2~m!,Fsl~m!%

2Fsl~m50!, ~10!

whereFsl(m) is the free energy of a system composed of two
‘‘slabs’’ with magnetizations near6msp @Fig. 2~a! illustrates
a ‘‘slab’’ configuration#, Fd,6(m) is the free energy of a
system with a single droplet with magnetization near7msp
in a background with magnetization near6msp @Fig. 2~b!
illustrates a ‘‘single-droplet’’ configuration#, andFu,6(m) is
the free energy of a system in a ‘‘uniform’’ phase near
m56msp. Figure 3 illustratesbF(m) for L!LD , L5LD ,
andL@LD .

We approximate the free energy of a system in a ‘‘uni-
form’’ phase by

Fu,6~m![2LdHm1Ld
1

2
x21~m7msp!

2, ~11!

wherex is the equilibrium susceptibility per spin. Since an
exact solution for the two-dimensional Ising model in a mag-
netic field has not yet been found, we use instead an estimate
from a series expansion,58 so that for T50.8Tc ,
x'0.05J21.
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Minimizing Fu,2(m)1LdDm2 yields the stable magneti-
zationmst, which is the location of the global minimum of
F(m) for L,LD :

mst'
2msp1Hx

112Dx
~12a!

~remember,H,0). Likewise, for L!LD the next-lowest
minimum of F(m) is obtained by minimizing
Fu,1(m)1LdDm2:

mms'
msp1Hx

112Dx
. ~12b!

Equation~12a! is valid for a wider range ofH than is Eq.
~12b!. We shall refer tomms as the ‘‘metastable magnetiza-
tion’’ and its basin of attraction as the ‘‘metastable phase,’’
since for systems of interest (L,LD) the length of time re-
quired for a system initially prepared in the metastable phase
to escape to the stable phase is much longer than any other

time scale. Note, however, that other, shorter-lived meta-
stable phases may exist, as discussed below.

In cases where the magnetization differs significantly
frommsp (2msp), a lower free energy can often be obtained
by segregating the system into a single localized ‘‘droplet’’
with magnetization nearmst (mms) in a background with
magnetization nearmms (mst).

59 Specifically, the droplet free
energy is approximated by

Fd,1~m![V@ds`R1
d211~mms2mst!HR1

d #2LdHmms

~13a!

and

Fd,2~m![V@ds`R2
d212~mms2mst!HR2

d #2LdHmst

~13b!

subject tomms.m.mst. Here

FIG. 3. The approximate restricted free energy functionF(m) as determined by Eq.~10! with d52, T50.8Tc , and LD5500. ~a!
L55, H50.1J. ~b! L510,H50.1J. ~c! L5500,H50. ~d! L55000,H50.
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R15V21/dLS mms2m

mms2mst
D 1/d ~14a!

is the radius of a droplet of ‘‘down’’~stable! spins in an
‘‘up’’ ~metastable! background,

R25V21/dLS m2mst

mms2mst
D 1/d ~14b!

is the radius of a droplet of ‘‘up’’~metastable! spins in a
‘‘down’’ ~stable! background. ForT'/ 0, the droplet shape
can be found from a Wulff construction. The quantityV,
which gives the volume of the droplet viaV5VRd, can be
found to arbitrary precision for the two-dimensional Ising
model by numerically integrating over the exactly known
surface tension.60,61

Lastly, nearm50 the circumference of the droplet be-
comes larger than twice the cross-section of the system, and
the lowest free energy is obtained by segregating the system
into two slablike configurations.62 The corresponding slab
free energy is approximated by

Fsl~m![2Ld21s`2LdHm. ~15!

Comparison with Eq.~13! shows thatF(m)5Fsl(m) for
mds,1>m>mds,2 , where56,62

mds,15mms2~mms2mst!V
21/~d21!S 2dD

d/~d21!

.0 ~16a!

and

mds,25mst1~mms2mst!V
21/~d21!S 2dD

d/~d21!

,0. ~16b!

Note that for D.H/(2mds,2), a local minimum of
F(m) occurs for a slab configuration atm5H/(2D). For
L,LD it is a metastable phase, but forL>LD and
D.H/mst it is the global minimum ofF(m) and hence the
true stable phase~see Fig. 3!. Other interesting features can
be obtained by solving (d/dm)@LdDm21Fd,6(m)#50,
which can in general be done only numerically. This reveals
that nearL5LD short-lived metastable phases can exist for
m.mds,1 or m,mds,2 .

B. The coexistence region

For L,LD , the system enjoys true coexistence at zero
applied field between two degenerate equilibrium phases
with magnetizationsmms and mst. This leads to the
identification26,27 of a ‘‘coexistence’’ ~CE! region within
which F(mms)'F(mst). Within the CE region, the free-
energy barrier for tunnelling from the metastable phase to the
stable phase is approximately the same as the free-energy
barrier for tunnelling from the stable phase to the metastable
phase, so the decay process is both stochastic and reversible.
Specifically, forL!LD , the lifetime of the metastable phase
is given by Eq. ~9! with DF5F(mds,1)2F(mms), so
that63–65

t~L,H,T!'A~T!exp$b@2s`~T!Ld212LduHu~mms2mds,1!

2LdD~mms
2 2mds,1

2 !#%, ~17!

whereA(T) is a nonuniversal prefactor.
For L'LD , the maximum ofF(m) occurs not atmds,1

but at a larger magnetization corresponding to a single criti-
cal droplet. The size of this droplet, however, is strongly
dependent on the system sizeL. This part of the coexistence
region is further complicated by the increasing importance of
the metastable phase atm5H/(2D) and the aforementioned
possibility of metastable phases nearm5mds,6 .

C. The thermodynamic spinodal

For uHu@D the maximum ofF(m) may correspond to a
critical droplet the size of which is nearly independent of
system size since it is determined by theappliedfield rather
than thedemagnetizingfield. The applied field at which the
CE region crosses over into this ‘‘single droplet’’~SD! re-
gion has been called26,27 the ‘‘thermodynamic spinodal’’
(H thsp). A useful estimate for this crossover is given by
(d/dm)@LdDm21Fd,1(m)#umds,1

50, which yields56

uH thspu'L21V1/~d21!
~d21!s`

mms2mst
S d2D

1/~d21!

22Dmds,1 .

~18!

One practical indication of the thermodynamic spinodal is
a peak in the switching fieldHsw, which is the
L-dependent value ofH needed to produce a fixed value of
t. ~See Fig. 1.! It can be shown20 that Eq.~17! implies that,
for sufficiently large values oft, Hsw(L) has a peak at

L̂[Fd ln~t/A!

2bs`
G

1
d21

, ~19!

so that the peak occurspreciselyon the thermodynamic spin-
odal as given by Eq.~18!. However, becauseL̂ depends so
weakly on t, it is not possible to perform simulations for
which finite-size effects are not important inH thsp. These
finite-size effects can be compensated in a phenomenological
way through reducingL by a weakly temperature dependent
length on the order of unity.20 The estimate for the thermo-
dynamic spinodal given by Eq.~18! is to be preferred over
that used in Refs. 3 and 28 because it is more closely related
to the free-energy barrier.

D. The single-droplet region

In the SD region the first critical droplet to nucleate al-
most always grows to fill the system before any other droplet
nucleates. The average time required to nucleate the first
droplet can be estimated from Eq.~9!, where the free-energy
barrier is determined from Eqs.~11! and~13a!. Since the SD
region is also a region of weakH andD, we can obtain a
good approximation by neglecting terms ofO(xHeff). Then
the magnetization in the metastable background is
mms5msp, and inside the droplet it ismst52msp. In terms
of the droplet radiusR, the difference between the free en-
ergy of a system containing one droplet and that of a uniform
metastable system can then be written as

DF~R!5dVs`~T!Rd2122msp~ uHu12Dmsp!VRd

14Dmsp
2 L2dV2R2d. ~20!
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Differentiating with respect toR, we find the implicit equa-
tion satisfied by the critical droplet radius:

Rc~T,H,D !5
~d21!s`~T!

2mspuHeff,c~H,D !u
, ~21a!

where

uHeff,c~H,D !u5uHu12Dmsp@122V~Rc /L !d# ~21b!

is the effective field evaluated at the magnetization of a sys-
tem containing a single, critical droplet. Note thatHeff,c de-
pends onuHu andD explicitly, as well as implicitly through
Rc . For D50, Eq. ~21! reduces to the standard expression
for Rc .

28 By insertingRc into Eq. ~20! one finds that the
free-energy barrier corresponding to the critical droplet is
also simply given by a standard expression,28 in which uHu
has been replaced byuHeff,cu:

bDFSD5
J0~T!

uHeff,c~H,D !u
, ~22!

where28

J0~T![bV@s`~T!#dS d21

2msp
D d21

. ~23!

Note thatJ0(T) is completely defined by quantities that for
the two-dimensional Ising model are either known exactly
(s` andmsp),

42,43 or can be obtained by numerical integra-
tion of exactly known quantities (V).60,61

The above results indicate that in order to obtain the
nucleation rate for nonzeroD, one only needs to determine
uHeff,cu. This can easily be done to arbitrary numerical pre-
cision via a rapidly convergent, generalized continued-
fraction expansion as follows.

Let x52Dmsp/uHu be the reduced demagnetizing field
andV(x)52V(Rc /L)

d be the volume fraction occupied by
the critical droplet. Then

uHeff,cu5uHu$11x@12V~x!#%[uHuy~x!, ~24!

andV(x) is given by the generalized continued-fraction ex-
pansion,

V~x!5
V0

F 11xS 12
V0

F11xS 12
V0

@•••#dD G
dD G d , ~25!

whereV05V(0). This expansion can be evaluated to desired
precision by the recursion relation,

Vn5
V0

@11x~12Vn21!#
. ~26!

~Here the subscript is proportional to the order of a rational-
fraction approximation to the generalized continued fraction,
rather than denoting the order of a term in a power series in
D, as elsewhere in this paper.!

The lifetime in the SD region can be given in terms of the
nucleation rate per unit volumeI by28

t'@LdI #21. ~27!

For D50 andx'0, I has been shown by field-theoretical
arguments to be given by28,66,67

I ~T,H !'B~T!uHuKexp$2uHu12d@J0~T!1J1~T!H2#%
~28!

whereB(T) is a nonuniversal prefactor, andK should be 3
for the two-dimensional Ising model66,67 ~numerically sup-
ported by Monte Carlo27 and transfer-matrix68 calculations!
and21/3 for the three-dimensional Ising model.67 @The sub-
scripts onJ0(T) andJ1(T) indicate an expansion inH2

rather than inD, and are kept for consistency with the nota-
tion in Ref. 3.# The quantityJ0(T) is given by Eq.~23!, and
we determineJ1(T) from a numerical fit to theH depen-
dence of the lifetime. Note that the lifetime obtained from
Eqs. ~27! and ~28! is quite similar to the Van’t Hoff-
Arrhenius form with the free-energy barrier given by Eq.
~22!. The only differences are the prefactoruHu2K and the
termJ1(T)H

2 in the exponential, which are due to surface
fluctuations on the droplet and to higher-order terms in a
field-theoretical calculation of the free-energy barrier,
respectively.67 We generalize to theDÞ0 case by assuming
that the nucleation rate in the SD region is given by Eq.~28!
with uHu replaced byuHeff,c(H,D)u, as we have already
shown in Eq.~22! for the dominant term in the free-energy
barrier,DFSD. The resulting expression for the relative life-
time for nonzeroD is then given by

t~x!

t~0!
5y~x!2Kexp$2J0uHu12d@12y~x!12d#

2J1uHu32d@12y~x!32d#%, ~29!

wherey(x) is defined in Eq.~24!. This result is shown in
Fig. 4, together with Monte Carlo data, ford52, T
50.8Tc , uHu50.2J, andL510. Except forJ1, the param-
eters needed to evaluatet(x)/t(0) are known exactly or

FIG. 4. The relative lifetime vsx52mspD/uHu in the SD region
as given by Eq.~29!. uHu50.2J, T50.8Tc , andL510. Each Monte
Carlo point represents 47 500 decays. The only parameter which is
not exactly known,J1, was obtained in Ref. 3 from data atD50
and isnot the result of a fit to theD-dependence.
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numerically exactly for the two-dimensional Ising model,
V050.2399~1! andJ050.5062~1!, or from field-theoretical
calculations66,67 of the nucleation rate,K53. The value of
J1 used to produce the data in Fig. 4,J159.1(3)J21, was
obtained in Ref. 3 from theuHu dependence oft for D50 in
the SD region. Thus the good agreement seen in Fig. 4 be-
tween the simulation data and the theoretical prediction is
not the result of a fit to the data, but is determined entirely
from quantities that are either known exactly or measured
with D50.

IV. THE MULTIDROPLET DECAY REGION
For sufficiently strong fields or large systems, decay oc-

curs through many weakly interacting droplets in the manner
described by Kolmogorov,39 Johnson and Mehl,40 and
Avrami.41 Such decay is ‘‘deterministic’’ in the sense that
the standard deviation of the switching time is much less
than its mean~see Refs. 3, 26–28 for details!.

The crossover between the SD region and the multidroplet
~MD! region has been called26,27 the ‘‘dynamic spinodal’’
~DSp!. Since the standard deviation of the lifetime is equal to
its mean in the stochastic region, we estimate this crossover
by the fieldH1/2 at which

A^t2~m50!&2t25
t

2
. ~30!

For asymptoticallylarge L, HDSp;(1/lnL)1/(d21);3,27 how-
ever, prohibitively large system sizes may be required before
this scaling form is observed.56

For even stronger fields, nucleation becomes much faster
than growth and the droplet picture breaks down. The cross-
over to this ‘‘strong-field’’ ~SF! region has been called26,27

the ‘‘mean-field spinodal’’~MFSp!. A conservative estimate
for this crossover field is obtained by setting 2Rc51:

uHMFSpu'
~d21!s`~T!

msp
. ~31!

Little is as yet known quantitatively about the dynamics of
the decay near the mean-field spinodal and in the SF region.
A study from a percolation-theoretical point of view is in
progress.69

A. Time-dependent magnetization in the MD region

Avrami’s law39–41gives the volume fraction of the meta-
stable phase~or equivalently, the magnetization! for systems
in which droplets nucleate with a constant rate~per unit vol-
ume! I 0 and grow at constant velocityv0 without interacting
except for overlaps. In this section we generalize Avrami’s
law to systems with nonzeroD. This generalization allows
for a nucleation rate and velocity that depend on the magne-
tization, and through it on time.

The time-dependent mean system magnetizationm(t) is
given by

m~ t !5~mms2mst!e
2F~ t !1mst. ~32!

Here

F~ t ![E
0

t

I ~ t8!V~ t8,t !dt8 ~33!

is the mean volume fraction of droplets~uncorrected for
overlap! and

V~ t1 ,t2![VF E
t1

t2
v~ t !dtGd ~34!

is the volume occupied by a droplet which nucleates at time
t1 and grows with a time-dependent radial velocityv(t) until
time t2. Here v(t) is the ~nonuniversal! temperature-
dependent radial growth velocity of a droplet, which under a
Lifshitz-Allen-Cahn approximation70–73 is proportional to
the effective field in the limit of large droplets:

v~ t !'nuHeff„H,D,m~ t !…u. ~35!

The time-dependent nucleation rate is given by
I (t)[I @T,Heff„H,D,m(t)…# from Eq. ~28!. Note how this
differs from theD-dependent nucleation rate in the SD re-
gion, discussed in Sec. III D. In the SD region, theD depen-
dence of the nucleation rate comes from the change in sys-
tem magnetization from the nucleation of a single critical
droplet. In the MD region, by contrast, we ignore the change
in system magnetization due to the nucleation of asingle
droplet ~sinceL@Rc), and theD dependence of the nucle-
ation rate comes from the change in system magnetization
due to anensembleof supercritical droplets.

For D50, Eq. ~32! becomes39–41

m0~ t !5~mms,02mst,0!e
2F0~ t !1mst,0, ~36!

where

F0~ t !5 lnSmms,02mst,0

umst,0u
D S tt0D

d11

, ~37!

so thatt0 is the first-passage time tom50 @Eq. ~8!#. Spe-
cifically, t0 is given by39–41

t05F I 0Vv0
d

~d11!lnz0
G ~21/d11!

, ~38!

where

z0[
mms,02mst,0

umst,0u
'2. ~39!

In Eq. ~39! and elsewhere in this section, the estimate for
the metastable magnetization given by Eq.~12b! does not
suffice. Ramoset al. have estimatedmms(uHu) by extrapo-
lating m(t) back to t50 assuming thatm(t) is correctly
described by Avrami’s law.69 ~Since the initial condition is
m051 rather thanm05mms, the earliest times must be dis-
carded.! These estimates are shown in Fig. 5. We fit a
smooth curve through the data, insisting thatmms(0)[msp
and (d/dH)mmsuH505x. The smooth curve allows us to es-
timate the change inmms due toD, but an analytic expres-
sion formms(uHu) is not known.

For D50, the standard deviation of the time-dependent
magnetization has been shown to vanish with increasing sys-
tem size asL2d/2,3,74 i.e., the magnetization is strongly
self-averaging75 in the MD region. This feature is shared by
the more general case ofD>0. In fact, realizations in which
the magnetization chances to decay more rapidly than aver-
age will experience a weaker effective field@Eq. ~7!#, and
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realizations in which the magnetization decays more slowly
than average will experience a stronger effective field. These
effects combine to cause systems withD.0 to have even
smaller standard deviations in their time-dependent magneti-
zations than corresponding systems withD50.

To first order inD, the effective magnetic field@from Eq.
~7!# is given by

Heff„H,D,m~ t !…'H22Dm0~ t ! ~40!

since anyD-dependent terms inm(t) will lead to only
higher-order corrections. We will expandF(t) to first order
in D, so that we can use the known value ofm0(t) instead of
the unknown valuem(t) on the right-hand side of Eq.~33!.
In order to perform the expansion correctly, we must expand
I (t) andV(t1 ,t2) to first order inD. Specifically, the total
volume fraction~uncorrected for overlap! of droplets after a
time t is given by

F~ t !'F0~ t !1F1~ t !D ~41!

where

F1~ t ![FV~ t !1F I~ t !, ~42!

with

FV~ t ![E
0

t

I 0V1~ t8,t !dt8 ~43!

and

F I~ t ![E
0

t

I 1~ t8!V0~ t8,t !dt8. ~44!

Straightforward but cumbersome mathematics gives ex-
plicit expressions forF I(t) and FV(t) @Eqs. ~A12! and
~A14! in the Appendix#. These expressions are inserted into
Eq. ~42! to find F1(t), and Eq.~32! is used to evaluate

m1~ t !5~mms,12mst,1!e
2F0~ t !1mst,1

2~mms,02mst,0!e
2F0~ t !F1~ t !. ~45!

Finding the second-order terms inD proceeds along par-
allel lines. Although it is possible to find an analytic expres-
sion form2(t), this expression is tedious to derive and un-
enlightening. Furthermore, enough approximations have
already been introduced to make the significance of an ana-
lytic expression form2(t) suspect. Consequently, we esti-
matem(t) by integrating Eq.~33! numerically with the ef-
fective field H22D@m0(t)1Dm1(t)#. The resulting
estimate we denotem*(t), and it should be approximately
correct toO(D2). If necessary, this process can be iterated to
find successively better approximations form(t).

Figure 6 shows the time-dependence of the the magneti-
zation, both as approximated above and as simulated by
Monte Carlo. ForJ1 we have usedJ153.0(3), asdeter-
mined in Ref. 3 from theuHu dependence oft for D50 in
the MD region. Note that there is good agreement between
the simulation results and the approximation after an initial
relaxation into the metastable phase, and that the modifica-
tion tom(t) resulting from higher-order terms is minor.

B. Lifetime in the MD region

In order to calculate the effect ofD on the lifetime, we
start withm(t)[0 and expand bothm andt in D. Collect-
ing terms and discarding all terms of higher order thanD2,
we find

FIG. 5. The metastable magnetization vsuHu in the MD region.
The data points were estimated by Ramoset al.69 by extrapolating
the time-dependent magnetization values back tot50, assuming
Avrami’s law. The smooth curve is a useful estimate, but an explicit
expression formms(uHu) is not known except nearH50, where Eq.
~12b! applies. The straight line indicates the approximation Eq.
~12b!.

FIG. 6. The magnetization vs time in the MD region as given by
Eqs.~36! and~45!. uHu50.3J, T50.8Tc , andL550. The two val-
ues ofD displayed areD50 andD50.015. The solid curves are
m0(t)1Dm1(t); the dotted curve~hardly distinguishable on the
scale of this figure! is m*(t). Each Monte Carlo point represents
100 decays.
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05$m0~t0!%1Hm1~t0!1t1
dm0

dt Ut0JD
1Hm2~t0!1t1

dm1

dt Ut0
1t2

dm0

dt Ut0
1
1

2
t1
2d

2m0

dt2 Ut0JD2.

~46!

Since the quantities in the braces are independent ofD and
Eq. ~46! is true for all smallD, by necessitym0(t0)50,

t152m1~t0!Fdm0

dt Ut0G21

, ~47!

and

t252Fm2~t0!1t1
dm1

dt Ut0
1
1

2
t1
2d

2m0

dt2 Ut0GFdm0

dt Ut0G21

.

~48!

Equation ~47! is readily evaluated becauseF0(t) is a
simple function. It is likewise simple to calculate
(d2m0 /dt

2)ut0 for use in Eq.~48!. We have not actually

solved form2(t), but for smallD we can use

m2~ t !'D22$m*~ t !2@m0~ t !1Dm1~ t !#%. ~49!

Finally, (dm1 /dt)ut0 can be evaluated by differentiating

FV(t) @Eq. ~A12!# andF I(t) @Eq. ~A14!# with respect tot.
The results are given in Eqs.~A15! and~A16! in the Appen-
dix, respectively. Inserting these in Eq.~42! we obtain
(dF1 /dt)ut0. Once this is known, differentiating Eq.~45! is

trivial, and t2 can easily be evaluated.
Figure 7 showst vsD for two different values ofH. The

agreement between the theoretical curves and the Monte
Carlo data is again excellent. Once again, the theoretical

curves are not fits to the simulation data, but in addition to
exactly known quantities use only parameters determined for
D50, namely,mms(uHu) ~Ref. 69! andJ1(T).

3

V. DISCUSSION

Due to the importance of magnetic recording technologies
in modern society, magnetic relaxation has been a subject of
study for many years. However, even the equilibrium ther-
modynamics of magnetic materials is very difficult to predict
from first principles and generally has to be approximated
from simpler models~see, e.g., Ref. 76!. As a result, the
most popular method for theoretical investigation of magne-
tization reversal involves setting up and solving differential
equations on a lattice obtained by coarse graining over the
microscopic crystal lattice. This method, known as
micromagnetics,16 often gives very good results, particularly
for equilibrium studies or for multidomain particles. How-
ever, micromagnetic calculations take thermal effects into
account only crudely.

An alternative method is to treat the statistical mechanics
carefully, making simplifications to the model until it can be
well understood. This is the approach we take. In Ref. 3 we
showed that both the switching field and the probability that
the magnetization has not changed sign within a given time,
calculated from Monte Carlo simulations of the two-
dimensional Ising model, are qualitatively similar to the
same quantities measured in isolated, well characterized
single-domain ferromagnets by techniques such as MFM.
Since statistical-mechanical droplet theory successfully ex-
plains the Ising model simulations, it is plausible that droplet
theory could also be applied to the experiments.

In this article we consider the effect of the magnetic
dipole-dipole interaction, which was neglected in Ref. 3. By
treating the dipole-dipole interaction in a mean-field approxi-
mation, we are able to calculate droplet-theory predictions
for the lifetime for systems in which magnetic decay occurs
by means of a single droplet~Fig. 4!. We also obtain both the
time-dependent magnetization~Fig. 6! and the lifetime~Fig.
7! for systems in which magnetic decay occurs through the
action of many droplets. In all of these calculations, all pa-
rameters were either known exactly or determined by mea-
surements atD50, so the excellent agreements between our
analytical expressions and the simulation data are not the
results of curve fitting.

It should be pointed out that the droplet-theory predictions
made in both the single-droplet and multidroplet regions are
large-droplet approximations. Since a critical droplet in the
two-dimensional Ising model atT50.8Tc and uHu50.3J
consists of approximately six overturned spins, it is quite
remarkable that these expressions give the good approxima-
tions they do.

In Ref. 22, Kirby et al. use the two-dimensional Ising
model with mean-field dipole-dipole interactions to simulate
Dy/Fe ultrathin films which they have observed experimen-
tally, obtaining good agreement. The analytic results from
Sec. IV are directly applicable to such films, although differ-
ent values ofT, H, and D must be chosen to make the
comparison. However, care should be used in applying the
results. Specifically, ifuDmsp/Hu is not small, more numeri-
cal iterations of the type described in Sec. IV will be neces-

FIG. 7. The lifetime vsD in the MD region forT50.8Tc with
uHu50.2J anduHu50.3J. The solid curves represent the theoretical
predictions given by combining Eqs.~47! and ~48! and arenot the
result of a fit to theD dependence. Each Monte Carlo point repre-
sents at least 5 000 decays in a system of sizeL5100.@Reproduced
from Fig. 4 of Ref. 18.#

54 4123ANALYTICAL AND COMPUTATIONAL STUDY OF . . .



sary, and ifuHeffu*uHMFSpu @Eq. ~31!#, droplet theory may
not be applicable.

It is a noteworthy conclusion of this study that the mean-
field demagnetizing field does not change the qualitative pre-
dictions of the droplet-theoretical switching model intro-
duced in Ref. 3. In particular, the switching field as a
function of system size is qualitatively similar to that which
was obtained in Ref. 3 and is sketched in Fig. 1. Although
the values of the switching field are reduced, a peak in the
switching field still occurs near the thermodynamic spinodal,
as can be seen by comparing Eqs.~17! and ~27!. Further-
more, the switching field remains roughly independent ofL
in the MD region. What is noticeably absent is any feature at
L5LD : the switching field shows features due to transitions
in the dynamics, but not transitions in the statics. This is
because our droplet-theoretical model assumes that the sys-
tem starts from a single-domain initial condition. Experimen-
tally, the initial condition is typically prepared by applying a
strong field in the1z direction, but forL@LD this will not
be sufficient to produce a single-domain state in equilibrium.
Such a multidomain initial condition means that the lifetime
is limited only by the growth velocity, and no longer by the
nucleation rate. This greatly reducesHsw for systems with
L@LD . However, if the ‘‘optimum’’ grain sizeL̂ @given by
Eq. ~19!# is much smaller thanLD , there will still be a peak
in Hsw due to the crossover between the CE and SD regions.

Even with the addition of the demagnetizing field, the
Ising model remains too crude a model for magnetism to
describe quantitatively real magnetic materials, except per-
haps for some ultrathin films as noted above. Heterogenous
nucleation at boundaries,20,77 quenched disorder,78 and more
realistic anisotropies,78 as well as extensions to three-
dimensional grains46 will therefore be subjects of future stud-
ies.
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APPENDIX: AVRAMI’S LAW FOR D>0

In this appendix we give some of the steps that have been
omitted for clarity in Sec. IV. Beginning with the Lifshitz-

Allen-Cahn approximation70–73for the radial growth velocity
@Eq. ~35!# and with the effective magnetic field toO(D) @Eq.
~7!#, we find

v~ t !'v0F11
2D

uHu
m0~ t !G . ~A1!

Substituting Eq.~50! into Eq. ~34!, we find

V~ t1 ,t2!'Vv0
dH E

t1

t2F11
2D

uHu
m0~ t !GdtJ d'Vv0

dF ~ t22t1!
d

1S d1D 2DuHu ~ t22t1!
d21E

t1

t2
m0~ t !dtG . ~A2!

This enables us to make the identifications

V0~ t1 ,t2!5Vv0
d~ t22t1!

d ~A3!

and

V1~ t1 ,t2!52Vv0
dS d1D uHu21~ t22t1!

d21E
t1

t2
m0~ t !dt.

~A4!

A Taylor expansion of the nucleation rate@Eq. ~28!#

I ~ t !'I 01
dI

dD U
0

D5I 01
dI

duHeffu
U
0

duHeffu
dD U

0

D

5I 01
dI

duHeffu
U
0

@2m0~ t !#D ~A5!

yields

I 1~ t !5l~H !I 0m0~ t !, ~A6!

where

l~H ![2H K

uHu
1uHu2d@~d21!J01~d23!J1H

2#J
~A7!

comes from differentiating Eq.~28! with respect toH.
The evaluation ofF I(t) andFV(t) can be followed more

easily if the reader keeps in mind three basic ‘‘tricks’’:~i! we
apply of the binomial theorem,

~ t2t8!n5 (
k50

n

tk~2t8!n2kS nkD , ~A8!

~ii ! we use Eq.~38! to simplify expressions, and~iii ! we
make changes of variables of the formx5F0(t8). These
lead to expressions such as
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~d11!S lnz0t0
d11D ~n11!/~d11!

tk~ t8!n2kdt85@F0~ t !#
k/~d11!x~n2k2d!/~d11!dx. ~A9!

Using Eq.~36! in Eq. ~53!

V1~ t1 ,t2!'2Vv0
dS d1D uHu21~ t22t1!

d21umst,0u E
t1

t2H z0expF2 ln~z0!S t

t0
D d11G21J dt

52S d1D uHu21umst,0uF2V0~ t1 ,t2!1Vv0
d z0
d11

~ lnz0!
21/~d11!~ t22t1!

d21t0E
F0~ t1!

F0~ t2!

e2xx1/~d11!21dxG
52S d1D uHu21umst,0uS 2V0~ t1 ,t2!1Vv0

d z0
d11

~ lnz0!
21/~d11!~ t22t1!

d21

3t0H gF 1

d11
,F0~ t2!G2gF 1

d11
,F0~ t1!G J D , ~A10!

whereg denotes the incomplete gamma function

g~a,x![E
0

x

ya21e2ydy. ~A11!

Using Eq.~A10! in Eq. ~43!,

FV~ t !'2S d1D uHu21umst,0uS 2F0~ t !1I 0Vv0
d z0
d11

~ lnz0!
21/~d11!t0H tdd gF 1

d11
,F0~ t !G

2E
0

t

~ t2t8!d21gF 1

d11
,F0~ t8!Gdt8J D

52S d1D uHu21umst,0uS 2F0~ t !1z0~ lnz0!
d/~d11!t0

2dH tdd gF 1

d11
,F0~ t !G

2E
0

t

(
k50

d21 S d21

k D tk~2t8!d212kgF 1

d11
,F0~ t8!Gdt8J D

52S d1D uHu21umst,0u H 2F0~ t !1
z0
d

@F0~ t !#
d/~d11!gF 1

d11
,F0~ t !G

1
z0

d11(k50

d21 S d21

k D ~21!d2k@F0~ t !#
k/~d11!AS 2~k11!

d11
,

1

d11
,F0~ t !D J , ~A12!

whereA is given by

A~a,b,x![E
0

x

yag~b,y!dy. ~A13!

BothA and the incomplete gamma functiong are easily evaluated by Taylor series.
It is somewhat easier to evaluateF I(t). From Eq.~44! and Eq.~A6!,

F I~ t !5l~H !I 0Vv0
dE

0

t

m0~ t8!~ t2t8!ddt8

'l~H !
~d11!ln~z0!

t0
d11 umst,0u H 2E

0

t

~ t2t8!ddt81z0E
0

t

expF2 ln~z0!S t8t0
D d11G ~ t2t8!ddt8J

5l~H !umst,0u H 2F0~ t !1
z0~d11!ln~z0!

t0
d11 E

0

t

(
k50

d S dkD tk~2t8!d2kexpF2 ln~z0!S t8t0
D d11Gdt8J

5l~H !umst,0uFz0H (
k50

d S dkD ~21!d2k@F0~ t !#
k/~d11!E

0

F0~ t !
x2k/~d11!e2xdxJ 2F0~ t !G

5l~H !umst,0uFz0H (
k50

d S dkD ~21!d2k@F0~ t !#
k/~d11!gS 12

k

d11
,F0~ t !D J 2F0~ t !G . ~A14!
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The derivatives ofFv(t) andF l(t) with respect tot are needed to obtaint2 in Sec. IV B. These are obtained directly from
Eqs.~A12! and ~A14! above

d

dt
FV~ t !u t5t0

'2~d!uHu21umst,0u
~d11!lnz0

t0
H 211

1

d

z0
d11

~ lnz0!
21/~d11!gS 1

d11
,lnz0D

1
z0

~d11!2(k50

d21 S d21

k D ~21!d2kk~ lnz0!
~k2d21!/~d11!AS 2~k11!

d11
,

1

d11
,lnz0D J ~A15!

and

d

dt
F I~ t !u t5t0

'l~H !umst,0u
~d11!lnz0

t0
F211

z0
d11(k50

d H S dkD ~21!d2kk~ lnz0!
~k2d21!/~d11!gS 12

k

d11
,lnz0D J G .

~A16!
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12L. Néel, Ann. Geophys.5, 99 ~1949!.
13W. F. Brown, J. Appl. Phys.30, 130S~1959!; Phys. Rev.130,

1677 ~1963!.
14I. S. Jacobs and C. P. Bean, inMagnetism, edited by G. T. Rado

and H. Suhl~Academic, New York, 1963!, Vol. 3, p. 271.
15E. Kneller, in Magnetism and Metallurgy, edited by A. E.

Berkowitz and E. Kneller~Academic, New York, 1969!, Vol. 1.
16W. F. Brown, Micromagnetics~Wiley, New York, 1963!; S.

Shtrikman and D. Treves, inMagnetism, edited by G. T. Rado
and H. Suhl~Academic, New York, 1963!, Vol. 3, p. 395.

17A. Lyberatos, D. V. Berkov, and R. W. Chantrell, J. Phys. Con-
dens. Matter5, 8911~1993!.

18H. L. Richards, S. W. Sides, M. A. Novotny, and P. A. Rikvold,
J. Appl. Phys.79, 5749~1996!.

19H. L. Richards, S. W. Sides, M. A. Novotny, and P. A. Rikvold,
in Physical Phenomena at High Magnetic Fields II, edited by R.
Schrieffer, L. Gor’kov, Z. Fisk, and D. Meltzer~World Scien-
tific, Singapore, 1996!.

20H. L. Richards, Ph.D. dissertation, Florida State University, 1996.
21P. A. Serena and N. Garcı´a, inQuantum Tunneling of Magneti-

zation– QTM’94, edited by L. Gunther and B. Barbara~Kluwer,
Dortrecht, 1995!, p. 107.

22R. D. Kirby, J. X. Shen, R. J. Hardy, and D. J. Sellmyer, Phys.
Rev. B49, 10 810~1994!.

23A. Hucht, A. Moschel, and K. D. Usadel, J. Magn. Magn. Mater.
148, 32 ~1995!.

24S. T. Chui and D.-C. Tian, J. Appl. Phys.78, 3965~1995!.
25H. Orihara and Y. Ishibashi, J. Phys. Soc. Jpn.61, 1919~1992!.
26H. Tomita and S. Miyashita, Phys. Rev. B46, 8886~1992!.
27P. A. Rikvold, H. Tomita, S. Miyashita, and S. W. Sides, Phys.

Rev. E49, 5080~1994!.
28P. A. Rikvold and B. M. Gorman, inAnnual Reviews of Compu-

tational Physics I, edited by D. Stauffer~World Scientific, Sin-
gapore, 1994!, p. 149.

29H. M. Duiker and P. D. Beale, Phys. Rev. B41, 490 ~1990!.
30P. D. Beale, Integrat. Ferroelec.4, 107 ~1994!.
31H.-B. Braun, Phys. Rev. Lett.71, 3557~1993!; J. Appl. Phys.75,

4609 ~1994!; Phys. Rev. B50, 16 485 ~1994!; 50, 16 501
~1994!.

32C. Kittel, Phys. Rev.70, 965 ~1946!.
33R. Czech and J. Villain, J. Phys. Condens. Matter1, 619 ~1989!.
34B. Kaplan and G. A. Gehring, J. Magn. Magn. Mater.128, 111

~1993!.
35A. B. MacIsaac, J. P. Whitehead, M. C. Robinson, and K.

De’Bell, Phys. Rev. B51, 16 033~1995!.
36I. Booth, A. B. MacIsaac, J. P. Whitehead, and K. De’Bell, Phys.

Rev. Lett.75, 950 ~1995!.
37K.-O. Ng and D. Vanderbilt, Phys. Rev. B52, 2177~1995!.
38R. Carey and E. D. Isaac,Magnetic Domains and Techniques for

their Observation~Academic, New York, 1966!.
39A. N. Kolmogorov, Bull. Acad. Sci. USSR Mat. Ser.1, 355

~1937!.
40W. A. Johnson and P. A. Mehl, Trans. Am. Inst. Miner. Min.

Eng.135, 365 ~1939!.
41M. Avrami, J. Chem. Phys.7, 1103~1939!; 8, 212~1940!; 9, 177

~1941!.
42L. Onsager, Phys. Rev.65, 117 ~1944!.
43C. N. Yang, Phys. Rev.85, 809 ~1952!.

4126 54RICHARDS, NOVOTNY, AND RIKVOLD



44S. Mo/rup, Hyperfine Interact.90, 171 ~1994!.
45U. Nowak, IEEE Trans. Magn.31, 4169~1995!.
46D. Townsley, M. A. Novotny, and P. A. Rikvold~unpublished!.
47N. Metropoliset al., J. Chem. Phys.21, 1087~1953!.
48R. J. Glauber, J. Math. Phys.4, 294 ~1963!.
49P. C. Hohenberg and B. Halperin, Rev. Mod. Phys.49, 435

~1977!.
50P. A. Martin, J. Stat. Phys.16, 149 ~1977!.
51A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys.

17, 10 ~1975!.
52M. A. Novotny, Comput. Phys.9, 46 ~1995!.
53E. Stoll and T. Schneider, Phys. Rev. A6, 429 ~1972!.
54L. S. Schulman, J. Phys. A13, 237 ~1980!.
55L. S. Schulman, inFinite Size Scaling and Numerical Simulation

of Statistical Systems, edited by V. Privman~World Scientific,
Singapore, 1990!, p. 490.

56J. Lee, M. A. Novotny, and P. A. Rikvold, Phys. Rev. E52, 359
~1995!.

57C. P. Bean and J. D. Livingston, J. Appl. Phys.30, 120S~1959!.
58C. Domb, inPhase Transitions and Critical Phenomena, edited

by C. Domb and J. L. Lebowitz~Academic, New York, 1974!,
Vol. 3.

59H. Furukawa and K. Binder, Phys. Rev. B26, 556 ~1982!.
60C. Rottman and M. W. Wortis, Phys. Rev. B24, 6274~1981!.
61R. K. P. Zia and J. E. Avron, Phys. Rev. B25, 2042~1982!.
62K. Leung and R. K. P. Zia, J. Phys. A23, 4593~1990!.

63K. Binder, Z. Phys. B43, 119 ~1981!.
64K. Binder, Phys. Rev. A25, 1699~1982!.
65B. Berg, U. Hansmann, and T. Neuhaus, Z. Phys. B90, 229

~1993!.
66J. S. Langer, Ann. Phys.41, 108~1967!; Phys. Rev. Lett.21, 973

~1968!; Ann. Phys.54, 258 ~1969!.
67N. J. Günther, D. A. Nicole, and D. J. Wallace, J. Phys. A13,

1755 ~1980!.
68C. C. A. Günther, P. A. Rikvold, and M. A. Novotny, Phys. Rev.

Lett. 71, 3898~1993!; Physica A212, 194 ~1994!.
69R. A. Ramos, S. W. Sides, P. A. Rikvold, and M. A. Novotny

~unpublished!.
70I. M. Lifshitz, Sov. Phys. JETP15, 939 ~1962!.
71S. K. Chan, J. Chem. Phys.67, 5755~1977!.
72S. M. Allen and J. W. Cahn, Acta Metall.27, 1085~1979!.
73J. A. N. Filipe, A. J. Bray, and S. Puri, Phys. Rev. E52, 6082

~1995!.
74K. Sekimoto, Physica A135, 328 ~1986!.
75A. Milchev, K. Binder, and D. W. Heermann, Z. Phys. B63, 521

~1986!.
76D. L. Mills, in Ultrathin Magnetic Structures, edited by J. A. C.

Bland and B. Heinrich~Springer, New York, 1994!, Vol. 1.
77H. L. Richards, M. Kolesik, P.-A. Lindga˚rd, P. A. Rikvold, and

M. A. Novotny ~unpublished!.
78M. Kolesik, M. A. Novotny, and P. A. Rikvold~unpublished!.

54 4127ANALYTICAL AND COMPUTATIONAL STUDY OF . . .


