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We have investigated Haldane’s conjecture for theS52 antiferromagnetic quantum spin chain with nearest-
neighbor exchangeJ. Using a density matrix renormalization group algorithm for chains up toL5350 spins,
we find in the thermodynamic limit a finite gap ofD50.085(5)J and a finite spin-spin correlation length
j549(1) lattice spacings. We have confirmed the gap value by a zero-temperature quantum Monte Carlo
study. We show that the ground state has a hidden topological order that is revealed in a nonlocal string
correlation function which saturates to a nonzero value in the thermodynamic limit. We investigate the behav-
ior of the spin-2 chain under an easy-plane anisotropyD(Si

z)2, D.0, and find that the Haldane and the large-
D phase are separated by anXY phase. The string correlation function vanishes only in theD→` limit and
does not distinguish between the Haldane phase and the perturbative large-D phase. An analysis of the
transition mechanism and of theS52 phase diagram in the presence of easy-plane and exchange anisotropy,
markedly different from theS51 phase diagram, allow us to conjecture how the classical limit is reached from
increasing integer spins.@S0163-1829~96!00430-4#

I. INTRODUCTION

Interest in one-dimensional quantum spin chains has
greatly increased in the last decade, after Haldane’s
conjecture1 that the physical properties of antiferromagnetic
quantum spin chains depend crucially on whether the spin is
integer or half-integer. This challenged the conventional wis-
dom that the properties of these chains were generically
given by the Bethe Ansatz solution of the spin-1/2 chain,
which has a gapless excitation spectrum and an infinite cor-
relation length. Haldane’s prediction of a ground state with a
finite spin-spin correlation length and a finite gap to spin
excitations for integer quantum spin chains has been studied
in numerous works. Numerical methods have served to es-
tablish quantitative results where analytical work had to rely
on often uncontrolled approximations. Both the existence of
a finite gap between a ground state singlet and excited states
~calledDS for a generic spin valueS andD in theS51 case!
and of a finite correlation length are well established for the
S51 isotropic antiferromagnetic quantum spin chain.2–6 The
correlation length isj'6 lattice spacings and the gap is
'0.41J for the nearest-neighbor isotropic Heisenberg chain
with exchangeJ ~in the following, we measure energies in
units of J and distances in lattice spacings!. The spin wave
velocity is c5Dj52.475(5), to becompared to the semi-
classical valuec52S52. The Haldane phenomenon is
known7 to happen also in a general class of integer spin
chain Hamiltonians, the so-called valence-bond-solid~VBS!
Hamiltonians, with a simple ground state, a finite correlation
length, as well as a gap to spin excitations. They moreover
show no magnetic order, but a form of hidden topological
long-range order, which is well understood8–10 for S51. In
the case of the spin-1 chain it is well established by now that
the VBS Hamiltonian is close to the Heisenberg Hamiltonian
in the sense that it qualitatively captures all relevant physical
features of the Heisenberg chain. It is therefore also interest-
ing to investigate whether this generic behavior is also ob-

served for theS52 chain. If so, many physical properties of
theS52 chain could be at least qualitatively understood and
the claim that the VBS Hamiltonian and the Heisenberg
Hamiltonian are generically the same for allS further sup-
ported. Due to the asymptotic form1 DS'S2exp(2pS), the
investigation of theS52 case is hindered by the fact that one
expects DS52!DS51 and jS52@jS51 . One may guess
DS52'0.07 and jS52'70. The much larger correlation
length makes finite size extrapolations feasible only for
much longer chains than in theS51 case; furthermore, the
inherent statistical or systematical imprecisions of all nu-
merical methods become more worrisome due to the small
size of the gap. At the same time, the number of states per
site rises from three to five, greatly reducing the length of
numerically tractable chains. To our knowledge, the largest
chains treated by exact diagonalization11 had length 12.

We have used an implementation of the density matrix
renormalization group~DMRG! that is described in Sec. II.
Our estimates for the Haldane gap and ground state energy
are contained in Sec. III. These are confirmed by a zero-
temperature quantum Monte Carlo in Sec. IV. The spin cor-
relation length is studied in Sec. V. In Sec. VI, we discuss
the hidden topological order as well as the effect of anisotro-
pies, single-ion and exchange anisotropy: we investigate the
expected transition to a large-D phase under the introduction
of a single-ion easy-plane anisotropyD(Si

z)2, D.0. We find
that the string correlation function that reveals the nonlocal
order vanishes only in the limitD→` and therefore is not a
useful order parameter to discriminate between the Haldane
and the large-D phase. Our conclusions are given in Sec. VI.
We show that Haldane’s conjecture is obeyed: the Haldane
gap also exists forS52, further supporting that the gap ex-
ists for all integer spins. Our results for the correlation length
and the spin wave velocity also fit Haldane’s picture of the
integer spin chain. We establish the nonzero expectation
value of a string correlation function in the thermodynamic
limit. Contrary toS51, the Haldane and large-D phases are
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not separated by a transition point, but a whole critical phase.
Our results indicate that this is generic for allS>2 and
S51 thus a special case. The critical phase seems to replace
both the Haldane phase and the large-D phase forS→`,
smoothly recovering the classical limit. We find no evidence
of a cascade ofS phase transitions, as proposed by Ref. 12.
Investigating theS52 phase diagram in the presence of an
easy plane and an exchange anisotropy, we find forS52 a
phase diagram close to the classical limit, but substantially
different from theS51 case. We conjecture therefore that
theS52 case is generic for integer spin chains, whereas the
S51 case is special. Some of these results appeared already
in a letter.13

II. THE DMRG METHOD

The choice of the density matrix renormalization group
algorithm was determined by the fact that this method allows
one to treat very long chains by comparison to exact diago-
nalization methods while retaining good precision for ener-
gies and expectation values. The DMRG is however special
in that it contains a number of free parameters which have to
be chosen carefully to obtain the desired accuracy at reason-
able computational cost and to get a satisfying estimate of
the precision actually obtained. We do not aim at a complete
description of the DMRG; for this the reader is referred to
Refs. 14 and 15. This method is extremely successful in the
S51 case.16 We will just briefly outline the method and
highlight the available fine-tuning parameters which we will
have to consider in the calculations that follow.

We consider the following general one-dimensional prob-
lem: a short-range interaction HamiltonianH on a chain of
lengthL with N states per site and arbitrary boundary con-
ditions. The low-temperature~especiallyT50) physics will
be well captured by the ground state and the lowest excited
states. These can be obtained by diagonalizing a matrix of
sizeNL using techniques like the Lanczos iterative diagonal-
ization algorithm. The tractable chain lengths are severely
limited by the geometrical increase of the matrix size. The
DMRG surmounts this difficulty by diagonalizing chains of
linearly increasing length, until the desired system size is
reached, while retaining only a fixed numberM of states out
of the growing Hilbert space after each diagonalization, thus
treating an approximate system. In the standard version,
chains are composed out of a left block of spins, which is
described byM states, two spins in the center, and a right
block of spins. This hybrid system is diagonalized, or more
precisely speaking, the targeted state~ground state, first ex-
cited state! determined. Two new blocks are now formed
from the old blocks plus the adjacent site. The new block has
initially MN states, of whichM states are retained. TheM
states to be retained are those which contribute most to the
projection of the targeted state on the new block, i.e., the
eigenvectors of the reduced density matrix obtained from
this projection belonging to theM largest eigenvalues of the
reduced density matrix. As( i51

MNl i51, the truncation error
12( i51

M l i is a good measure of the precision of the results:
it tells us how much of the projection of the targeted state we
are losing by the truncation. We find a proportionality be-
tween errors in chain energies and the truncation error. For
other quantities, the connection is more intricate. The next

chain is formed from the new blocks and two sites added in
the center, thusL→L12, and the procedure repeated. After
the chain has grown to the desired length, one may calculate
expectation values of observables relative to the targeted
state, for which purpose one has to keep matrix elements of
the desired observables in the basis of the truncated Hilbert
space, which have to be updated at each truncation.

We want to outline three major problems that one may
encounter in the application of the DMRG: The system con-
sidered is an open system, which, while interesting in its own
respect, leads a slower convergence to the bulk limit contrary
to a periodic chain. As has been shown in Ref. 14, periodic
~in general closed! systems are tractable, but the precision
obtained is largely inferior. Manipulating the exchange cou-
plings at the chain ends while retaining the bulk couplings
may change the open boundary conditions such that certain
properties of systems with periodic boundary conditions are
mimicked. This is not in general straightforward: some
physical properties are strongly dependent on the coupling
strengths at the chain ends.

Another problem is that the choice of the states to be kept
using the reduced density matrix is, in a certain sense, opti-
mal for the chain that has just been diagonalized. However,
what one really wants are those states that give the maximum
contribution to the chain of the next iteration, which is
slightly longer. The states chosen are just the most probable
ones if we rely on the assumption that the projection of a
chain state on a subsection of the chain~a block! does not
depend crucially on small variations of the total chain length.
This is certainly well obeyed for long chains, but not for the
short chains at the beginning of the growth. We therefore
accumulate errors coming from ‘‘bad’’ truncations at the be-
ginning of the buildup. White14 has given a solution to this
problem, which is to let a chain grow to its full size, and then
to recalculate the small blocks of the beginning of the growth
process, using the~approximative! knowledge on the total
system. As we are working in a long system now, this pro-
cedure will give better truncations, and lead to new predic-
tions for the total system. These, in turn, can again be used to
ameliorate the description of the blocks. This process is time
expensive, and we will have to investigate whether it is nec-
essary to iterate, and after how many iterations the return-on-
investment, precision for time, will still be worthwhile.

Furthermore, the errors introduced by the DMRG have a
systematic, not statistical, character. While this is useful to
give error estimates and control the algorithm, this may lead
to serious problems, if results are not extrapolated carefully:
unless the precision obtained is such that numerical results
for a givenM are more or less the exact ones, it is not correct
to extrapolate results inL for a givenM : the systematic
errors may introduce artefacts into the convergence behavior
which may be difficult to separate from the real convergence
behavior~an example will be given below!. It is therefore in
general necessary to extrapolate first carefully inM to
M5` ~equivalent to the exact result! and only then inL to
L5`. We have thus decided to perform a quantum Monte
Carlo study as discussed in Sec. IV: there are also systematic
errors in this method but they are completely different. Com-
patibility of the results is expected to be a good check of the
error control.
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III. THE HALDANE GAP FOR S52

A. Choice of the end couplings

Throughout this study we are guided by the so-called
valence-bond-solid~VBS! wave functions.7 They are exact
ground states of very special spin Hamiltonians:

HVBS5 (
i51

L21

(
k5S11

2S

akPk~Si1Si11!, ~1!

wherePk is the projector on theS25k(k11) subspace and
ak.0. ForS52, the VBS Hamiltonian reads explicitly

HVBS~a3 ,a4!5 (
i51

L21

@~a31a4!~Si•Si11!
41~10a3114a4!

3~Si•Si11!
31~7a3163a4!~Si•Si11!

2

1~2162a3190a4!~Si•Si11!2360a3#.

~2!

The ground state can be constructed by replacing each spin
S by 2S symmetrized spin-1/2 andS singlet links going to
each neighboring site, linking two spin 1/2 each. In this ex-
actly solvable model, all correlations can be calculated: One
finds17 a correlation lengthj5(ln3)21'0.91 for S51 and
j5(ln2)21'1.44 forS52. It is clear from this picture that in
an open chain there areS free spin-1/2 on each end, leading
to an effective free spinS/2 on each end of the chain. There
is an effective interaction between these free spins, which
vanishes in the limitL→`. We are therefore left with an
(S11)2-fold degenerate ground state in the thermodynamic
limit.

The Haldane gap is properly defined as the energy gap
between the ground state and the first excited state of a pe-
riodic chain in the thermodynamic limit, where the ground
state is not degenerate. For the openS52 VBS Hamiltonian,
it is the gap between the manifolds ofS52 andS53 states.
In the following we will assume that the essential physics of
the S52 Heisenberg Hamiltonian is captured by theS52
VBS Hamiltonian described in the last section and show that
a consistent picture emerges. Following White and Huse,15

we pick one state out of the manifold created by the free end
spins, by adding a spinS/2 to each chain end and coupling
them antiferromagnetically to the chain. We consider an
open S52 chain with a spin 1 at each end (S15SL51,
Si52 otherwise!:

H5JendS1•S21J(
i52

L22

Si•Si111JendSL21•SL . ~3!

The degeneracy is lifted if the end couplingJend exceeds a
critical value'DS /S: If the coupling is below this value, the
lowest excitation is obtained by exciting one end bond into
its triplet state, which costsJendS energy. The excitation is
then localized in the ends. To obtain the bulk excitation,
which costs an energyDS , the end state excitation must be
energetically disfavored.

One still has to find a suitableJend in the allowed regime.
We have investigated 0.2,Jend,2.5, considering chains up
to lengthL590 and keepingM590 states. We find that for
all J end considered, the gap curves~energy difference be-

tween the ground states in theStotal
z 50 andStotal

z 51 sub-
spaces! decrease and converge towards each other for
L→`; all J end are well beyond the expected bulk-to-edge
excitation crossover value ofJend'0.05~Fig. 1! and the first
excitation for very long chains clearly independent ofJend.
There is a small deflection of the gap curve towards larger
values, which is barely noticeable forL→90 for Jend>0.5
and obvious forJend50.2: this is an artefact of the DMRG
due to the lack of extrapolation inM . At least for
0.5<Jend<2.5, where the truncation errors are very close
~see below!, this artefact leads to the same overestimation of
the gap ('0.01 for L590! for all Jend, which is why we did
not extrapolate to remove the small artefact. ForJend50.2,
the error is'0.02.

This ensures that the gap we are calculating is a bulk
property of the chain and does not depend on the manipula-
tions of the chain ends. The corresponding diagram for
S51 is given in Fig. 2 where we established the crossover
value to beJend'0.5: above the critical coupling, all gap
curves meet~as the correlation length forS51 is much
smaller than forS52, the convergence is faster!. Below the
critical coupling, the gap increases for increasingL and satu-
rates to a valueD'Jend, as expected.

Our choice ofJend for the high-precision calculations is
determined by two competing factors, the faster convergence
to the limiting gap value forL→` for small Jend, and a
substantial increase in the truncation error
P(M )5(12( i51

M l i) for small J end. To understand these
competing factors, we consider the ‘‘local gap’’ defined as
D i5Ji@^Si•Si11&exc2^Si•Si11&gs#, the difference in the lo-
cal bond energies for the first excited and the ground state.
ObviouslyD5( iD i . In Fig. 3, we show (D i1D i11)/2 ~to
reduce dimerization effects discussed below! for different
Jend in a chain of length 90. In a periodic system, the distri-
bution of the gap energy would be uniform. Here, for in-
creasingJend the gap energy is more and more localized in
the center of the chain, as exciting the end bonds costs in-

FIG. 1. Gap behavior for theS52 chain with spin-1 ends and
various end couplingsJend. All curves were calculated with
M590 states. The small curvature upwards forL→90 is an artifact
~see text!. The label on the right is the value ofJend.
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creasing energy. This argument is valid only for not too big
Jend: For Jend→` the two end spins at each end will form an
unexcitable singlet, and we are effectively left with a chain
shortened by two sites andJend51. There is thus a limit to
localization. Our results seem to indicate that the picture for
Jend51 and forJ end52.5 is very similar and the limit thus
attained. We mention that the central dip in the averaged gap
energy is not physical, but an artefact of the DMRG: The
effect is of the order,1024 and only visible as the local gap
energy is the small difference of two large energies, which

themselves can be shown to be overestimated per bond by an
order of 1024, where the error in the excitation energy is
much larger. Bond energies in the chain center are calculated
very precisely, as the bond is in the center of a long chain
and no truncation occurs. The result is therefore extremely
precise. Bond energies away from the center pick up the
above error due to truncation effects, leading to an overesti-
mation of the local gap of the order of the error. This is why
systematically a dip is observed in the local gap energy. The
dip is more pronounced for longer chains, where the local
gap is smaller. By increasingM , it can be arbitrarily re-
duced.

In short chains, excitations of the end bonds are more
important than in long chains and lead to the large discrep-
ancies in the gap values for short chains. For weak end cou-
plings, the excitation will be increasingly shifted towards the
chain ends, which provide a hard boundary. This leads to a
dimerization of the gap energy: in Fig. 4, we show the two-
bond average of the local gap and the local gap for
J end51.0 and Jend50.2. For small couplings, there is a
strong period of two in the local gap due to the boundary
conditions: forJend50.2 the oscillation amplitude is about
four times the local averaged gap, whereas it is negligible for
Jend51. Looking at the local bond energies, one sees that the
dimerization is by far more important for the first excitation
than for the ground state. The open boundary conditions,
similar to a finite potential step, lead to a scattering of the
excited state into other excited states, and thus a beat of
period two.15 The problem of dimerization is that the bonds
develop alternating character, implying that the truncation
information obtained by creating a bond of type 1 is used to
select states which will be used in the next step to build a
bond of type 2 and the quality of truncation thus reduced.
We effectively observe a steep increase in the truncation er-
ror P(M ) for the first excitation for smallJ end in chains of
lengthL590, as given in Table I.

The effect on the truncation error for long chains is even
worse, as the numbers given above are for a chain length

FIG. 2. Gap behavior for theS51 chain with spin-1/2 ends and
end couplingsJend. All curves were calculated withM550 states.
Note the different gap behavior depending on whetherJend is
smaller or bigger than a criticalJend'0.51. The label on the right is
the value ofJend.

FIG. 3. Difference between the two-bond averaged bond ener-
gies for the first excited and the ground state~local gap! for differ-
ent Jend. M590 andL590. Note the compression of the excitation
for increasingJend. The small central dip is an artefact due to the
truncation errors of the DMRG and only visible due to the very
small local gap. The central label is the value ofJ end.

FIG. 4. Local gap energies as in Fig. 3, both two-site averaged
~solid line! and unaveraged~dashed line!. Observe the strong dimer-
ization of the excitation for a small end couplingJend50.2.
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L590, where the truncation errors have not yet saturated to
their infinite chain length value, and their difference is still
increasing. A similar, but less pronounced, phenomenon can
be observed for the ground states. As the error in the total
energy is found to be proportional toLP(M ), even small
increases in the truncation error severely limit the precision
of the obtained gap values for largeL, making extrapolations
much more difficult. As the convergence of the various gap
curves towards each other is fast, the choice in a region of,
say, 0.7<Jend<1.5, is basically free and we arbitrarily chose
Jend51, which seemed to us a reasonable compromise. In
any case, the final outcome is not affected, apart from
changes in the error estimate.

B. Energy estimates

We calculated the gap by subtraction of the energy of the
lowest eigenstate in theStot

z 50 subspace, the true singlet
ground state, from the energy of the lowest eigenstate in the
Stot
z 51 subspace, one of the states of the first excitation trip-
let. Due to the structure of the Hilbert space and the proper-
ties of the Lanczos algorithm the second eigenstate in the
Stot
z 50 subspace is only approximately degenerate with the
first state in theStot

z 51 subspace, and always slightly higher
in energy. We did not follow the approach of White and
Huse for the spin-1 chain to make energy and spin density as
uniform as possible in the center of a long spin chain and

calculate the gap from this information. Their chains were
typically of the orderL5100; as we will find that forS52
the correlation length increases by a factor of about 8, this
means chains of the orderL5800, beyond our possibilities.

To calculate the gap it is important to note that the un-
modified infinite system algorithm given by White isnot
suitable to calculate theS52 gap because of the truncation
problem for short chains, and that extrapolations inM have
to be done before extrapolations inL. In Fig. 5 we show the
gap for a chain of lengthL taken from the difference of the
two considered energies for fixed numberM of kept states. It
is obvious that for eachM the gap curve becomes inflected
away from anL21 behavior at some point, and the gap
seems to follow a parabolic curve. We will discuss later that
one actually must expect such a gap behavior. Nevertheless
we are only observing an artefact of the DMRG, which is

TABLE II. Gap values vs chain lengthL and kept statesM . First line, results without iteration; second
line, with iteration. Results forM5` are obtained by extrapolation.

gap L560 L590 L5120 L5150 L5210 L5270

M550 0.1728
0.1616

M570 0.1655 0.1463
0.1609 0.1372

M590 0.1632 0.1412 0.1332 0.1314
0.1604 0.1352 0.1238 0.1183

M5120 0.1606 0.1356 0.1244 0.1190 0.1162
— 0.1336 0.1209 0.1139 0.1076

M5150 0.1600 0.1342 0.1217 0.1149 0.1087 0.1071
— — 0.1202 0.1127 0.1052 0.1020

M5180 0.1598 0.1336 0.1207 0.1134 0.1062 0.1033
— — — — 0.1040 0.1002

M5210 0.1597 0.1334 0.1203 0.1127 0.1049 0.1013
— — — — — 0.0995

M5` 0.1597~1! 0.1333~1! 0.1202~1! 0.1124~2! 0.1034~3! 0.0985~5!

TABLE I. Truncation errorsP(M ) as a function of the end
couplingJend for a chain of lengthL590.

Jend P(M )

2.5 0.5231025

1.5 0.5331025

1.0 0.5431025

0.7 0.5631025

0.5 0.5931025

0.2 0.8431025

FIG. 5. Gap energies derived from uniterated energies of the
ground and excited states for variousM . Note the monotonic de-
crease of the gap withM and the deviation from anL21 line which
occurs later for largerM .
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reduced for increasingM ~i.e., increasing precision!. The
variational character of the method, which considers sub-
spaces of the total Hilbert space, leads to a systematic over-
estimation of both energies considered, where for the first
excitation the error is empirically found to be much more
important: therefore, at each step, a finitepositiveerror d is
added to the true gap. For long chainsd saturates. The accu-
mulated gap error will first slow down the decrease of the
gap and eventually lead to an increase in the calculated gap,
when d is larger than the decrease of the true gap for an
increase in chain length. For anS51 chain, this effect is of
minor importance, asd can be made extremely small for
numerically manageableM , and can be ignored. This is, as
shown in Fig. 5, not the case forS52. We therefore had to
use the much more time-consuming finite size algorithm,
which reduces the effects of truncation errors and substan-
tially diminishesd. This algorithm can be in principle re-
peatedad libitum, but the corrections become rapidly very
small and are outborn by numerical round-off errors. Inves-
tigating the iteration correction both for the ground state and
the first excitation, we found that the most important contri-
bution comes from the first iteration of the first excitation.
All other corrections were typically at least a factor of 10
smaller and did not justify the computational effort. We
therefore consider uniterated ground state energies and first
excitation energies which have been iterated once. Our re-
sults indicate that the errord is thus reduced by a factor of
the order of 3, allowing one to treat, for a given desired
precision, chains three times longer.

We have calculated the gap forL560, 90, 120, 150, 210,
and 270, retaining up toM5210 states. Our calculations
were performed on a CRAY C94, reaching up to 180 Mega-
Flops forM5210. The calculation of the ground state prop-
erties forL5270 andM5210 took 10 322 sec of one CPU;
calculation time was approximately linear inL and between
quadratic and cubic inM . Memory usage was linear inL and
quadratic inM . To extract the gap in the thermodynamic
limit, we have to proceed in two steps:~i! For eachL, the
results are extrapolated toM5`, i.e., the exact gap for chain
lengthL. ~ii ! The ‘‘exact’’ results for each L are extrapolated
to L→`. In Table II, we give the gap results: in the first line,
without iteration of the energy of the first excitation, in the
second line, if calculated, with iteration of the energy of the
first excitation.

The extrapolation inM is not carried out for the gap di-
rectly but for the energies. We find that for largeL the en-
ergies can be well approximated by

E~M !5E1aLP~M !, ~4!

whereP(M ) is the truncation error for the last step in the
growth process of the chain.P(M ) decreases monotonically
with M . We finda to be hardly dependent ofL in the range
considered and to be of the order 10 both for the ground state
and the first excitation~the closeness of the twoa is a pure
coincidence!. For the uniterated excitation energy,a'30.
The energies found are given in Tables III–VI. The trunca-
tion error we find as in Table VII.E is then the extrapolation
of the energy forM→` asP(`)50.

The ground state energy results allow us to calculate the
ground state energy per siteE0 /L. Two effects have to be
considered: first, the ground state energy per bond will con-
verge to its bulk value only for sufficientL@j. This effect is

TABLE III. Ground state energies forL560,90,120 vsM .

E0 L560 L590 L5120

M550 -277.363431 — —
M570 -277.370690 -420.205654 —
M590 -277.372328 -420.208818 -563.045334
M5120 -277.322798 -420.209801 -563.046851
M5150 -277.372958 -420.210187 -563.047487
M5180 -277.372997 -420.210275 -563.047632
M5210 -277.373014 -420.210320 -563.047708

TABLE IV. Energy of the first excited state forL560,90,120 vs
M . First line, results without iteration; second line, with iteration.

E1 L560 L590 L5120

M550 -277.190606 — —
-277.201845 — —

M570 -277.205122 -420.059362 —
-277.209792 -420.068504 —

M590 -277.209163 -420.067665 -562.912119
-277.211962 -420.073580 -562.921505

M5120 -277.212152 -420.074121 -562.922455
— -420.076194 -562.925939

M5150 -277.212918 -420.076014 -562.925787
— — -562.927308

M5180 -277.213176 -420.076664 -562.926926
— — —

M5210 -277.213283 -420.076953 -562.927456
— — —

TABLE V. Ground state energies forL5150,210,270 vsM .

E0 L5150 L5210 L5270

M590 -705.881848 — —
M5120 -705.883904 -991.558009 —
M5150 -705.884795 -991.559411 -1277.234028
M5180 -705.884999 -991.559735 -1277.234471
M5210 -705.885107 -991.559907 -1277.234707

TABLE VI. Energy of the first excited state for
L5150,210,270 vsM . First line, results without iteration; second
line, with iteration.

E1 L5150 L5210 L5270

M590 -705.750495 — —
— — —

M5120 -705.764901 -991.441835 —
-705.769971 -991.450422 —

M5150 -705.769910 -991.450671 -1277.126966
-705.772093 -991.454243 -1277.132010

M5180 -705.771600 -991.453583 -1277.131213
— -991.455722 -1277.134216

M5210 -705.772409 -991.455040 -1277.234707
— — -1277.135242
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enhanced by the open boundary conditions. Second, we will
variationally overestimate the energy for finiteM , with in-
creasing precision with increasingM . We therefore first let
the energy per bond for a givenM converge inL; these
infinite-chain results are then extrapolated inM . We find that
for L'120 for eachM<210 considered the ground state
energy per site has converged to a precision of 1026. Taking
those energies as infinite-chain results, we find the results of
Table VIII. The extrapolated result was again obtained from
a linear dependence of the energies on the truncation error
P(M ).

C. Gap estimate

To obtain now the gap in the thermodynamic limit, we
can extrapolate our results for 90<L<270 toL5` by fit-
ting anL21 law ~Fig. 1 of Ref. 13! and obtain a gap estimate
of 0.081(1) forL5`. We note that deviations from perfect
linear behavior are extremely small in the range of chain
length we have considered. However it is important to note
that the asymptotic behavior of the gap in an open chain is
expected to be 1/L2: the massive quasiparticles have disper-
sion Ek5AD`

21c2(k2p)2'D`1c2(k2p)2/2D` near the
bottom of the band. On an open chain, the quasiparticle can-
not stay in a stationary state withk5p but instead
k2p'p/L as a particle in a box since there is no transla-
tional invariance. This means that the lowest excited state

has a gapD`1c2p2/2D`L
21O(1/L3). This behavior has

not yet been reached forL5270. Thus there must be a cross-
over point to parabolic behavior ofD(L). As a consequence
we can obtain an upper bound on the gap by assuming that
the parabolic behavior sets in immediately beyondL5270.
We match a parabolic curveD(L)5D`1aL22 to our ex-
trapolated linear gap curve atL5270 such that up to the first
derivative the two regimes meet continuously. This leads to
D`50.090~anda'620!. We have also estimated the corre-
lation length ~see below! to be '50 and thus
c5jD`'4.2. This gives an estimate of the coefficient of the
1/L2 parabolic term. Using this estimate (a0'1024! we now
say that there is a crossover lengthL0 at which asymptotic
behaviourD(L)5D`1a0 /L

2 sets in. Matching the para-
bolic curve to the straight line requiresD`50.085 and
L0'450. This is a perfectly consistent set of results. We thus
choose as a central value for the gapD`50.085 the lower
bound being fixed by the linear fit of our data and the upper
bound being 0.09. We quote our final result as
D50.085(5).

Our result, while in agreement with the estimate by Deisz
et al.,18 deviates sensibly from the result given by Nishiyama
et al.,19 who, from chains up to lengthsL'70 andM<110
and assuming a L21 behavior of the gap, give
D50.05560.015. As theL21 behavior is valid in the range
of L they considered, we would expect that their result gives
at least a lower boundary of the gap, which itself may be
slightly higher than ours because of the small value ofM .
This is not the case. We expect that their approach to directly
calculate the gap as the difference between the energies of
the ground state and tenth excited state in an unmodified
open chain without spin-1 sites at the end is too difficult for
the DMRG for theM considered~due to computation time
limits, we could not check what happens if we repeat their
calculations with our code for greaterM ). As we observed
‘‘variational’’ behavior in all quantities we have considered,
i.e., monotonous increase or decrease withM , we feel that
the fact that their gap results do not show such behavior
indicates problems in the application of the method.

TABLE VII. Truncation errors for the last step as a function ofL andM . First line, ground state; second
line, first excited state. Digits in parenthesis give powers of 10.

P(M ) L560 L590 L5120 L5150 L5210 L5270

M550 0.10~-4!

0 . . .
M570 0.44~-5! 0.50~-5!

0.71~-5! 0.10~-4!

M590 0.13~-5! 0.16~-5! 0.17~-5! 0.18~-5!

0.35~-5! 0.54~-5! 0.69~-5! 0.80~-5!

M5120 0.48~-6! 0.66~-6! 0.72~-6! 0.74~-6! 0.75~-6!

0.90~-6! 0.17~-5! 0.24~-5! 0.30~-5! 0.39~-5!

M5150 0.15~-6! 0.23~-6! 0.26~-6! 0.28~-6! 0.29~-6! 0.29~-6!

0.30~-6! 0.60~-6! 0.88~-6! 0.11~-5! 0.15~-5! 0.18~-5!

M5180 0.71~-7! 0.12~-6! 0.14~-6! 0.15~-6! 0.16~-6! 0.16~-6!

0.13~-6! 0.28~-6! 0.43~-6! 0.56~-6! 0.76~-6! 0.92~-6!

M5210 0.37~-7! 0.64~-7! 0.81~-7! 0.92~-7! 0.94~-7! 0.94~-7!

0.67~-7! 0.15~-6! 0.24~-6! 0.32~-6! 0.44~-6! 0.53~-6!

TABLE VIII. Energies per bond for the isotropicS52 chain
and truncation errors as a function ofM.

M E0 /L P(M )

90 -4.7612172 0.1831025

120 -4.7612351 0.7531026

150 -4.7612436 0.2931026

180 -4.7612456 0.1631026

210 -4.7612467 0.9531027

` -4.761248~1! —
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IV. ZERO-TEMPERATURE QUANTUM
MONTE CARLO STUDY

In this section, we present a study of theS52 gap by a
zero-temperature quantum Monte Carlo study. Here we de-
scribe shortly the Monte Carlo method; the reader can find
more details in a previous article.20 We think it is important
to check the DMRG results by comparison with a totally
different numerical method because it is difficult to known
whether or not one controls the systematic errors.

We consider only the isotropic Heisenberg model for a
periodic chain ofN quantum spin 2:

H5(
i51

L

SiW •SW i11 , ~5!

with L11[1. The symmetries are the conservation of total
spin SW T5( iSiW , the translationi→ i11 and the reflection
i→L2 i . In this section, only the conservation ofST

z5( iSi
z

is explicitly used, but the quantum states generated are im-
plicitly invariant by translation and reflection.

From a numerical point of view,H is a real, symmetric
and sparse matrix, when expressed on the usual base
us&5us1 , . . . ,sL& defined bySi

zus&5si us&. The simplest
method to compute the dominant eigenvalue is theiteration
~or power! method: a initial vectorV0 is iterated by

H•Vt5g~ t !Vt11 , ~6!

where g(t)5uH•Vtu and the eigenvaluel is given by
l5 limt→`g(t) with eigenvector limt→`Vt . We use the pro-
jection over an arbitrary vector F and
l5 limt→`(F•H•Vt)/(F•Vt). With conserved symmetries,
the matrix is block diagonal and the iteration method gives
the dominant eigenvalue of the block containing the initial
vectorV0 . For the integer spin chain, the ground state is a
singletST50 and the first excitation is a tripletST51. Then
the gap is obtained from two runs with two different initial
vectors : one withST

z50 and one withST
z51. For spin 2,

exact results have been published11,21,22,4,23for sizes up to
L512. By comparison, for spin 1, exact computations up to
L522 are possible.24

The Monte Carlo method we use is the stochastic imple-
mentation of the direct iteration~6!. It is a variant of the
method of Nightingale and Blo¨te5 and an improvement on
our previous work.20 A general presentation of this kind of
method is given in Ref. 25. It is azero-temperaturemethod
because one obtains a representation of the ground state
only, by opposition to the world-line Monte Carlo methods
dealing with exp(2bH). Formally, in the iteration~6! the
deterministic vectorVt11 is replaced by a stochastic one. We
impose that Eq.~6! is now true inaverage:

H•Vt5g~ t !^Vt11&, ~7!

where g(t) is a normalization factor and̂•& denotes the
average over the stochastic stepVt→Vt11 . This stochastic
iteration is repeated several thousand times. Whent is large,
the sequences ofVt and g(t) have a limiting probability
distribution. The expectation values obtained by such a pro-
cedure are close but definitely not equal to the true ground

stateC gs and its energylgs. There is a systematic bias that

has been studied in depth.26,27Hetherington proposed the use
of the following estimators :

l~n!5
( tF•H•Vt1n•g~ t1n21!•••g~ t11!g~ t !

( tF•Vt1n•g~ t1n21!•••g~ t11!g~ t !
, ~8!

where F is an arbitrary fixed vector. As the number of
Monte Carlo stepst becomes large (n is fixed!, both sums
become equal to their averages over the limiting probability
distribution of Vt . This average is denoted bŷ̂•&&. By
using Eq.~7! n times

limt→`l~n!5
F•Hn11^^Vt&&
F•Hn^^Vt&&

. ~9!

This sequence of estimators ‘‘corrects’’ the systematic bias
Cgs2^^Vt&& and

limn→`l~n!5lgs. ~10!

By a similar formula the ground stateCgs can be obtained.
26

The choice of the arbitrary vectorF is very important. The
variance~or fluctuations! and the bias are reduced ifF is
close to the true ground stateCgs. We will choose it by
minimization of a variational form, described in detail in
Ref. 5. With this choice ofF, the error bars are reduced by
a factor of order 4 with respect to the projection onto the
vector ^1u with all coordinates equal to one.

Many choices are possible for an algorithm which repro-
duces Eq.~7!. In this work, the stochastic vector is a sum of
W random ‘‘walkers’’ us r& r51,W where us r& is one of the
basis state. The walkers evolve during the time and the ele-
ments of matrixH are considered as probability transition
from a basis state to an another basis state. We refer the
reader to Ref. 20, in which a precise description of the algo-
rithm is given. The main difference with the implementation
of Refs. 5, 25, 28, and 29 is the fact we keep the number of
walkers constant during the time. In both cases~constant or
fluctuating around a fixed target!, correlations appear be-
tween walkers which are difficult to analyze.

To reduce fluctuations ofVt , it is very effective
25,29to use

the representationH8 of the Hamiltonian on the trans-
formed basis F(s)us& where F(s)5^Fus&, i.e.,
H8(s,t)5F(s)H(s,t)F(t)21 whereF is the variational
approximation of the ground state described above. In other
words, this transformation can be seen as the stochastic it-
eration of the initial matrixH but with weighted walkers
F(s r)

21us r&. By this trick, we observe a reduction of the
error bars by a factor of between 2 and 4. In this work, the
weightsF(s)21 depend only on the states, but in Refs. 25,
28, and 29, they are multiplied by another weighting process
during the decimation phase of walkers. We are not con-
vinced by the utility of this last trick and we do not use it. To
estimate the standard deviation, several independent simula-
tions were done. Then the independent results are averaged
in the usual way.

We have used a Cray T3D parallel machine with 128
processors alpha. Each processor computes the evolution of a
subset of walkers, and the processors with the most prolifer-
ating population give walkers to the processors with a poor
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population, in order to keep a balanced working. Our pro-
gram written for an arbitrary value of the spinS and length
L needsL32 ms by walker3 iteration. For the longest chain
L580, 21 independent samples with 186 880 walkers and
100 000 iterations were done in 120 h~i.e., 1.7 yr of single
processors!. We give in Table IX a compilation of exact
results obtained for short chains and Monte Carlo results.
The digits in parenthesis are the Monte Carlo fluctuations
~one standard error deviation!. The systematic errors~includ-
ing the Hetherington bias! must be added.

The ground state energyE0 /L is determined with a good
precision. Without extrapolation, one findsE0 /L'24.76. A
finite size extrapolation in 1/L2 is adequate, leading to
E0 /L524.7609(2). Thedigit in parenthesis represents only
the Monte Carlo fluctuations and the error due to the ex-
trapolation, butnot the systematic bias. Our DMRG result is
E0 /L524.761 248(1): this indicates a bias of order
10.0003 per bond, thus10.024 forL580. It is positive as
shown in Ref. 27. It is clear that the DMRG is much more
precise than the QMC.

The Haldane gapG5E12E0 is obtained by subtraction
of two independent quantities. The absolute errorDG is of
the same order, but the relative errorDG/G is bigger. For
sizes less than 80, the behavior is 1/L. Then the extrapolation
gives 0.06(1). This value is slightly smaller than the DMRG
result 0.085(5). Oneshould consider that the extrapolation
with a 1/N asymptotic law is a lower bound. The systematic
bias is difficult to estimate. We conclude that there is no
incompatibility between the DMRG and the Monte Carlo
results.

V. CORRELATION FUNCTIONS
IN THE S52 QUANTUM SPIN CHAIN

To calculate the correlation length, we partially lift the
ground state degeneracy of the open chain by adding a spin 1
on oneend of theS52 chain (SL51; Si52 otherwise!:

H5J(
i51

L22

Si•Si111J endSL21•SL . ~11!

The ground state will then be a spin 1 triplet; at the spin-2
end of the chain~position 1! one expects an effective free

spin 1. If we consider the ground state withStotal
z 51, it is

expected that̂ Si
z& decays purely exponentially15 from a

value around61:

^Si
z&}~21! i21exp@2~ i21!/j#. ~12!

We choose this approach, as from this equation, the correla-
tion lengthj can be obtained much more precisely than from
the decay ofC(u i2 j u)5^Si•Sj&. This is because this ap-
proach partially suppresses systematic errors of the DMRG
due to an effective fixed boundary condition~see below! and
because there is a partial cancellation for errors, whereas
they build up for the two-point correlations, as correlated
states in each half-chain are systematically neglected at the
same time, underestimatingj. This was already shown by
White and Huse:15 they calculated the correlation length for
S51 using both approaches, and showed that the results are
equivalent. We assume that this is a generic property of spin-
S chains which are in the same phase as the VBS-
Hamiltonian. In theS51 case this seems numerically di-
rectly established forj; in theS52 case, all results indicate
that the spin-2 Heisenberg chain shares the properties of the
VBS chain.

Though theS51 chain is much less critical than the
S52 chain and the numberM of states necessary to describe
the excitation spectrum mediating the correlation much
smaller, the conventional correlation length was found15 to
be jS51'5.15 for M548 @and a truncation error
P(M )54.1331029# and jS51'5.45 for M5110
@P(M )51.27310211# as to be compared to the boundary
correlation lengthj56.03, which itself is in good agreement
with other estimates~whereas the smaller values are not!. In
our calculations, forM5210, we findP(M )59.431028,
which is much larger, and we must expect even worse results
for S52 using the conventional approach. To get an esti-
mate, we have evaluated the correlation length from the de-
cay of the spin-spin correlation using a chain ofL5270 and
M5150 @P(M )52.931026#, and foundj'33, which is a
lower bound on the actual correlation length~and about 68%
of the limiting value!.

Computing now the correlation length using the spin-1
end approach, we have to perform an extrapolation ofj with

TABLE IX. EnergyE0 of the ground stateS50, E1 of the first excitationS51, energy per unit length
E0/L, and the gap valueE12E0 for a periodic chain ofL spins 2. The values forL<10 are obtained by
exact diagonalization;N512 was published by Lin~Ref. 11!; L>20 are the results of Monte Carlo simula-
tions. The standard error deviations are shown in parentheses.

L E0 E1 E0/L Gap

4 -20. -19. -5. 1.0
6 -29.164693200754 -28.467398659937 -4.860782200126 0.697294540817
8 -38.521869135413 -37.976299855143 -4.815233641927 0.545569280270
10 -47.948445740133 -47.495220966136 -4.794844574013 0.453224773997
12 -57.40817 -57.01747 -4.784014 0.39070

20 -95.3754~4! -95.1134~3! -4.76877~2! 0.2620~5!

30 -142.927~1! -142.7330~4! -4.76423~3! 0.194~1!

50 -238.104~3! -237.964~1! -4.76208~6! 0.140~3!

80 -380.907~4! -380.805~4! -4.76134~5! 0.102~6!
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respect toM because of the slow increase of precision with
M for S52. At the same time we consider chains of length
L5270 and repeat some calculations forL5350, to study
possible finite size effects. We find that those are minor, as
are effects of the choice ofJend, and concentrate on the
extrapolation inM . In Fig. 2 of Ref. 13, we give lnu^Si

z&u vs
i . The generic behavior is the same for allM : After the
expected decay ofuSzu, there is a small increase towards the
other end of the chain~greatly exaggerated by the logarith-
mic scale!. With increasingM , the minimum shifts to the
right, the spin expectation value at the right end of the chain
is greatly reduced, the decay becomes more exponential and
approaches a limiting curve which we take to be theM5`
result. We do not know numerically whether the decay will
become exponential over the total chain length. TheS51
case seems to indicate that with sufficient precision, i.e., very
largeM , this will be the case: there, forM590, the decay is
perfectly exponential to the end of the chain. It is worthwhile
to retain that here we have a case where the same quantity is
determined with very variable precision depending on the
site, and where reliance on a small truncation error may be
entirely misleading: the error has, in our analysis, the follow-
ing source: The ground state we are considering has effec-
tively fixed boundary conditions at the left end~the presence
of the spin 1! and free boundary conditions at the right end.
The ground state of the chain is mainly determined by the
left end. This can be seen from the fact that drastical changes
in Jend hardly influence^Si

z& even at the right end of the
chain. The nonzeroStotal

z expectation value is therefore com-
municated from the left end towards the right end by corre-
lations, which we are partially neglecting due to the finite-
ness ofM . On truncation, we systematically neglect states
where the half-chains have high totaluSzu; this implies that
uSzu values are reduced while their value is transmitted
through the chain. To conserveStotal

z of the chain, each single
uSzu is overestimated to make good this effective reduction.
The smallerM , the more the absolute value ofSz is overes-

timated, as we observe numerically. As the spin values are
effectively fixed by the left chain end, the overestimation
effect becomes increasingly important towards the right end,
because more truncations have taken place.

To derive j, we give in Fig. 6 the local decay length
2/(lnuSi

zu2lnuSi12
z u) ~averaged over two neighboring sites to

reduce odd-even site oscillations!. One sees that at the spin-2
end of the chain, the correlation length is first rather short,
but saturates to its bulk value~the shoulder!. For M5180,
the convergence ofj for M→` can be well established, and
we find a correlation lengthj549(1) in a system which has
thus lengthL'5.5j, which is consistent with minor finite
size effects. At the same time, we find that^S1

z& converges
towards 1.13(1), supporting the picture of an effective free
spin 1 at the end of the chain. The result is not very sensitive
to M , as can be seen in Table X. For the calculation of the
correlation length the question naturally arises whether we
are really calculating the bulk correlation length when we are
regarding a decay which is due to a particular end state of the
chain. To investigate this question, we varied the coupling
between the first spin~the effective free spin 1! and the sec-
ond spin. We found that there is considerable variation of the
Sz expectation value for the first few spins, whereas the cor-
relation length remains~for our precision! unaffected, which
we consider to support our claim that actually the bulk cor-
relation length is calculated. This can be understood by con-
sidering the two limits of a very strong and very weak anti-
ferromagnetic coupling of the first spin to the chain: For a
very strong coupling, the first and second spin will form a
singlet than cannot be excited (^S1

z&50); effectively the
chain is shortened by 2, and we obtain the unmodified chain
from site 3 onwards which will show the decay behavior
described above. For the shortened chain, we will observe a
small increase inu^Si

z&u, as the decay curve is shifted.
In the other limit, the first spin will be weakly linked to a

chain which has total spin 1; the spin plus chain compound
will also have total spin 1. Calculating theS total

z 51 ground
state of the compound system, one sees that^S1

z&51.5, the
maximum valuê S1

z& can obtain in the system under study.
The chain will again be like an unmodified chain shortened
by one site, showing the observed decay behavior and decay
length, whereas theu^Si

z&u will be reduced: the shortened
chain is not in aStot

z 51 state; one findsStot
z 520.5. We are

dealing with a superposition of the three degenerate ground
states of the chain, which show all the same correlation

FIG. 6. Two-site average of the local correlation length
2/(lnu^Si

z&u2lnu^Si12
z &u) vs site i for i,125 for the same chain as in

Fig. 2. The deviations from the shoulder in the center of the dia-
gram are finite size and finite precision effects~for the right end!.

TABLE X. Average valuê uS1
zu& for the first spin of anS52

chain with an effective free spin-1 at one end, in the ground state
with Stotal

z 51.

M P(M ) ^S1
z&

50 0.1431024 1.1924
74 0.3731025 1.1709
95 0.1531025 1.1552
126 0.6131026 1.1420
150 0.2631026 1.1376
180 0.1631026 1.1334
` 0 1.13~1!
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length. We have observed this increase of^S1
z& and decrease

of ^Si
z& ( i>2) for reduced couplings numerically.

The free spin-1 picture is therefore consistent with the
fact that the decay length is unaffected by changes in the first
coupling, but that̂S1

z& can be tuned continuously. The value
1.13~1! is just valid for an open chain with constant cou-
plings; a similar argument holds of course for the value
0.53~1! given for the ends of openS51 chains by White;14,15

here the minimum value is also 0, the maximum value 2/3.
Our correlation length@j21'0.0204(4)# deviates seri-

ously from the estimatej2150.012(2) given by Hatano and
Suzuki.30 We think that this difference is due to the fact that
the DMRG is much more suited to extract the correlation
length than a quantum Monte Carlo algorithm.

VI. HIDDEN TOPOLOGICAL ORDER AND THE ROLE
OF ANISOTROPIES

A. Hidden order in the isotropic chain

In theS51 chain it is known that there is a hidden topo-
logical long-range order that is revealed in a nonlocal string
correlation function. This order is simply understood in the
surface language of Ref. 8. In the Haldane phase the antifer-
romagnetism is diluted in the following sense: the values
Sz561 alternates in a strict antiferromagnetic as one moves
along the chain but an arbitrary number of valuesSz50 may
appear between nonzero values. This can be measured by the
following correlation function:

Gp~m,n!5K Smz expF ip (
k5m11

n21

Sk
zGSnzL . ~13!

The order parameter is thus limun2mu→`Gp(n,m)5Op . It is
related to the breakdown of aZ23Z2 symmetry which is
also nonlocal.10 This nonlocal symmetry cannot be extended
straightforwardly to higher-spin chains. This is easily seen
from the ground state degeneracy of open chains. An open
VBS spin-S chain has exactly (S11)2 ground states due to
the S/2 free spins at the end. For theS51 chain, thefour
ground states are related by the operations of theZ23Z2
group. The spontaneous breakdown ofZ23Z2 cannot how-
ever explain the (S11)2 degeneracy whenS.1. Neverthe-
less, the VBS wave functions do have a hidden topological
long-range order for all integer spins: in the surface lan-
guage, the spin-S wave function has a height that varies at
most byS steps. This can be measured by the following
correlation:

Gp/S~m,n!5K Smz expS i ~p/S! (
k5m11

n21

Sk
zDSnzL . ~14!

Calculations by Refs. 31 and 32 indicate that
lim un2mu→` Gp/2(n,m)5Op/2 is nonzero for theS52 spin
chain. For the Affleck-Kennedy-Lieb-Tasaki~AKLT ! model
it is easily shown thatOp/2521 in the thermodynamic
limit. For the numerical calculation of the parameterOp/2 for
the isotropic Heisenberg chain, one has to extrapolate, in
analogy to the gap and the correlation length, inM andL.
We have studied several systems, up toM5150 and
L5270. We find that contrary to the case of the correlation
length, the convergence inM is good and allows for an es-

timation of the exact value better than 1%. Since this quan-
tity Op/2 is not simply related to the breakdown of a discrete
symmetryZ23Z2 , contrary to the spinS51 case, it is not
clear in what sense it is an order parameter. This is what we
investigate here.

In Fig. 7, we show our results forM5100, L5100;
M5100, L5150; andM5150, L5270. We find that the
effect ofL andM finite is in both cases an overestimation of
Op/2 . The overestimation due to the finite size is easily ex-
plained: the correlations fall for large distances, before rising
again foru i2 j u→L: this is the effect of the boundary condi-
tions; whereas the added boundary spins are not directly cor-
related, they effectively have partially the effect of periodic
boundary conditions, as they force into the same end states.
This gives a close resemblance to a periodic system, where
the string order parameter is symmetric aroundL/2. The
string order diminishes withM , as more fluctuations are
taken into account. We find thatOp/2 has reached its ther-
modynamic limit forL5270. There is a nonzero expectation
value, which we estimate from the behavior inM as
Op/2520.726(2). The nonlocal order is thus common to
the VBS wave function and the ground state of the Heisen-
bergS52 chain.

B. The role of anisotropies

The hidden order can be destroyed in several ways: it can
be replaced by an antiferromagnetic Ising order, by introduc-
ing an Ising anisotropyJz.1, and by a so-called large-D
phase, whereSi

z50 for all i in the limit of D→`, by intro-
ducing an anisotropyD(Si

z)2, D.0. The anisotropic Hamil-
tonian is then

H5(
i
Si
xSi11

x 1Si
ySi11

y 1JzSi
zSi11

z 1D(
i

~Si
z!2. ~15!

For S51, the phase diagram with these two anisotropies is
well known.8 We now discuss the correspondingS52 phase
diagram and the behavior of the string order parameter.

FIG. 7. Absolute value of theS52 string order parameter for
the isotropic Heisenberg chain for variousL andM . The flat curve
for L5270 shows that this order parameter is long range.
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For S.1, a bosonization study indicates33 that there is a
transition from a gapped Haldane phase to a gapped large-
D phase qualitatively similar to theS51 case. On the other
hand, Oshikawa12 has conjectured that there might be a cas-
cade ofS transitions in general. He proposes that by increas-
ing D, successively the valuesSi

z56S, Si
z56(S21) and

so on are suppressed. In the VBS picture, this corresponds to
a successive dissolution of singlet bonds withd/21n5S,
with N the number of remaining singlet bonds between two
sites, andn the number of spins 1/2 on every site without
bond, that form symmetrized states with total magnetization
0. One might therefore expect a cascade ofS transitions to
the large-D phase: each transition will be described by a
change of the behavior ofOp : for n odd, it is nonzero in the
thermodynamic limit, forn even, it is zero. Such a cascade
of transitions has already been proposed by Affleck and
Haldane34 for the dimerization of chains. For the special case
S52, a suppression ofSi

z562 ~for Jz51) would effectively
lead, because of the transition elements forS6, to an effec-
tive S51 Hamiltonian with Ising anisotropy. Following Ref.
8, this S51 Hamiltonian should be in the Haldane phase,
supposing that theD that suppressesSi

z562 is still suffi-
ciently small not to place this Hamiltonian directly into the
large-D phase forS51. One should therefore find a nonva-
nishing string order parameterOp , whereas it vanishes for
the original chain forD50.

As we do not know which phases to expect, it is essential
to prepare the open spin-2 chain such that the low-lying ex-
citations are bulk excitations~see the discussion above! and
end artefacts eliminated. We attach two spins 1 to the chain
ends, to eliminate the degeneracy of the ground state in the
Haldane phase. As we have seen, the end couplingJendmust
be sufficiently strong to push the energy costs of an edge
excitation beyond that of the lowest bulk excitation. For
largeD, one expects a gap of the orderD between ground
and first excited state.Jendmust therefore be chosen on this
scale, as we know nothinga priori on the ground state of the
chain as a function ofD. We will see that the system tries to
minimize the gap by giving antiferromagnetic energy to
compensate the energy cost caused byD. A strong end cou-
pling contains a lot of compensation energy, and has thus a
tendency to localize the excitation in the ends. It is therefore
also necessary to increase the cost of an edge excitation due
to D by increasingD on the end sites. We have chosen
Dend'20D on the two first and last sites. To check whether
these manipulations are sufficient to obtain the bulk excita-
tions, we have calculated̂Si

z& for the first excitation given
byStotal

z 561, and checked that the excitation is not localized
on the ends, which would be indicated by a strong increase
of ^Si

z& towards the ends. All results given below are bulk
results.

We have calculated the gap, the spin-spin correlations and
the string correlation functionsOp andOp/2 as well as the
truncation error for 0<D<6. To calculate the gap, we con-
sider chains up toL5120 and keepM5110 states. For an
isotropic chain, the first excitation~total spin 1! is a degen-
erate triplet. In the presence of an anisotropyDÞ0, this de-
generacy is lifted: one obtains a doubletStotal

z 561 and a
singletStotal

z 50. The doublet is lower in energy than the sin-
glet forD.0 ~and inversely forD,0).35 ForD.0 the gap

can therefore be calculated by taking the energy difference
between the ground states forStotal

z 50 and Stotal
z 51; for

D,0, one has to take the difference between the first two
states withStotal

z 50.
We find the gap behavior shown in Fig. 8. For

D50.025 the correlation length is already very large. A
L21 extrapolation gives us a lower bound, which is nonzero;
due to the relatively small slope of the gap curve, we have
taken this value as gap estimation. For 0.05,D,3.0 we find
gap curves that do not show a systematic deviation from the
L21 behavior as in Fig. 5, though the truncation error was
rather large (1028). This is due to the fact that the truncation
errors associated with the two energies are nearly identical
and the systematic errors thus largely compensate. An ex-
trapolation inL21 towardsL→` seems thus permitted, and
gives vanishing gaps in the whole regime. By taking the gap
obtained for L5120 as the thermodynamic limit, which
gives a seriously overestimated result, we obtain in the
whole region upper bounds of the order of 0.02. For
D.3.0, a gap develops, the correlation lengths become in-
creasingly short and the truncation error diminishes by sev-
eral orders of magnitude. The gap estimations become again
very precise. We find thus a gap for very smallD: it vanishes
for 0.025,D,0.05. We find then a rather largecritical
phase, terminating atD53.0(1). Thesystem is then gapped,
with a small growth of the gap just aboveD53.0. These
results are surprising; they indicate that there is a whole criti-
cal phase between the Haldane and the large-D phase,
whereas there was just a single critical point35 for S51, as
predicted by bosonization.33 Of course, these results are
within our actual precision and we do not expect simple gap
scaling to give precise phase boundaries.

We have no indication of a degeneracy of the ground state
in the critical phase, which could then exhibit a gapped spec-
trum despite our results. The indirect indications that the
phase is truly critical are very strong: the truncation error
diminishes slowly withD, but remains rather large, whereas
it diminishes quickly as soon as the gap sets in. Our other
calculations indicate that a simple degeneracy of the ground

FIG. 8. Gaps for theS52 Heisenberg chain with single-ion
easy-plane anisotropyD.
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state in a gapped spectrum does not lead to a big increase in
the truncation error: the DMRG chooses quickly one of those
states and ignores the others. A more physical and stronger
argument is given by the very slow decrease of the spin-spin
correlations, which also indicates the presence of a critical
phase. Correlation lengths we estimated on system lengths
L5150 were systematically bigger than the system size.

C. Hidden order in the large-D phase

We now turn to the string correlation functionsOp and
Op/2 . We find for allD that the long-range expectation value
of Op is always less than 1024 to 1025 for distances
'150. The presence of an intermediate phase with the char-
acteristics as predicted by Oshikawa12 seems therefore ex-
cluded. The situation is completely different forOp/2 ~Fig.
9!. We find that for allD it has a nonvanishing thermody-
namic limit, which goes to 0 monotonically forD→`. The
slope is very large for smallD: for D50.2,Op/2 is less than
10% of theD50 value. The analysis ofOp/2 is different in
the various phases: it is very easy for the large-D phase,
where the small truncation error makes the results very pre-
cise and where the short correlation length assures a fast
convergence to the thermodynamic limit. The values thus
obtained have a relative precision of at least 1024, and there
is thus no doubt thatOp/2 is nonzero in the large-D phase
and vanishes only in theD→` limit.

In the critical phase, the analysis is more complicated due
to the relatively large truncation errors (1028), but mainly
because of the power-law correlations: the thermodynamic
limit has not yet been reached for the lengths we consider.
We find that our results can be reasonably extrapolated in
this regime asL21, and that the effects ofM finite are rela-
tively small for theM considered. It cannot be excluded
however thatOp/2 decays algebraically to zero in this inter-
mediate phase. Since we have good evidence thatOp/2 is
nonzero forD large enough, we consider this possibility as
unlikely. We conclude thatOp/2 is not an order parameter in
the sense that it is not zero in the thermodynamic limit for

the large-D phase~it is not zero either in an antiferromag-
netically ordered phase, but becomes zero, if the antiferro-
magnetic order parameter is subtracted!. This quantity can-
not discriminate between the Haldane and the large-D phase.

D. The S52 phase diagram

Finally we have mapped out the boundaries of theXY
critical phase by adding also exchange anisotropy. We find
that the critical phase extends to the Ising AF phase that
appears whenJz is large enough. To the precision of our
measurements, we find that the Haldane phase is confined in
a narrow region around the isotropic point: see Fig. 3 of Ref.
13. We have performed 20 measurements to fix the bound-
aries of the Haldane phase which is the most crucial. There
are five measurement points on the line betweenXY and the
ferromagnetic phase and also five points on the line between
the large-D and theXY phases. Bosonization predicts33 that
there aretwo XY phases separated by an Ising transition:
these phases differ by the way spin correlations decay. Since
we measured gaps to locate the phase boundaries, we cannot
discriminate between these two phases. The phase diagram
we find is a topological distortion of the bosonization result.
This distortion is a large one and brings the system closer to
the classical limit. Indeed, whenS→`, the phase boundaries
are straight lines: 11D5Jz (2Jz) for Jz.0 (Jz,0) be-
tweenXY and AF~F! and the vertical axisJz50 between F
and AF. This is already very close to Fig. 3 of Ref. 13,
simply the Haldane and large-D phase have to disappear.
This suggests that theS-XY boundary will be pushed to in-
finity whenS→` and the Haldane region becomes increas-
ingly smaller, collapsing around the isotropic point since the
Haldane gap vanishes exponentiallyD'exp@2pS# and is
thus easier to destroy. We thus suggest that the phase dia-
gram for S52 is generic for higher spins, contrary to the
peculiar case ofS51.

VII. CONCLUSION

We have established numerical values for the gap and
correlation length of the isotropic HeisenbergS52 spin
chain, in agreement with the Haldane conjecture. We have
measured a nonlocal parameter inspired by the VBS wave
function and shown that it is nonzero in the Haldane phase.
We have also studied single-ion and exchange anisotropies.
The corresponding phase diagram is topologically different
from that of spin 1 and leads to a simple conjecture about the
classical limit. The nonlocal string order parameter is non-
zero in the whole Haldane phase but also at least in the large-
D phase and most likely in theXY phase: it is not a good
order parameter to discriminate between these phases.

Finally we give simple arguments to interpret the phase
diagram. There is a critical anisotropyDc1

limiting the

Haldane phase whenD increases from zero. ForS52,
0.025,Dc1

,0.05. Its value is ruled by the value of the

Haldane gap forD50. The gap energy is balanced by the
anisotropy D energy, which is of the order
D@S22(S21)2#5 D(2S21). We therefore estimate
Dc1

'DS /S. As DS→0 for S→`, Dc1
diminishes monoto-

nously withS and is zero in the classical limit. There is also
a critical anisotropyDc2

that limits the large-D phase from

FIG. 9. S52 string correlation functionOp/2 for the Heisenberg
chain vs single-ion easy-plane anisotropyD.
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the large-D limit. To estimateDc2
, we consider the limit

D→`. In that limit, the ground state is given bySi
z50 on

all sitesi and energy 0. The first excitation is constructed by
putting Si

z561 on one site. These spin flips disperse in a
band due to the exchange term. A first-order perturbation
calculation from theD5` limit gives the dispersion

E~k!5D1JS~S11!cosk. ~16!

The gap is thusD2JS(S11). We estimateDc2
by the con-

dition that the gap vanishes andDc2
'S(S11): this is the

softening of the excitations. We thus findDc1
52 and

Dc2
56 for S51 andS52, to be compared to the numerical

values 0.99~1! and 3.0~1!. We overestimateDc2
, but seem to

capture the essential; a more involved perturbation
calculation36 does not change anything fundamental. For
S→`, Dc2

→`: the large-D phase disappears. Let us point
out that these arguments in fact give immediately the classi-

cal limit: Dc1
50 andDc2

5`; the system is always critical.

For D.0, the system exhibits a spectrum without gap: the
spins are in theXY plane.

Nothing in these arguments introduces a difference be-
tween different sorts of spins forS>2. We conjecture there-
fore, that forS>2 the Haldane phase and the large-D phase
are separated by a critical phase, whose lower limit tends to
D50 for S→` and is essentially determined by the Haldane
gap, whereas the upper limit tends toD5` for S→` and is
essentially determined by'S2. TheS51 case therefore ap-
pears as a special case:Dc1

5Dc2
. We note that the phase

diagram we have proposed is in agreement with an earlier
proposal of Khveshchenko and Chubukov.37
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