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We have investigated Haldane’s conjecture for$se2 antiferromagnetic quantum spin chain with nearest-
neighbor exchangé. Using a density matrix renormalization group algorithm for chains up=+850 spins,
we find in the thermodynamic limit a finite gap &f=0.085(5)) and a finite spin-spin correlation length
£=49(1) lattice spacings. We have confirmed the gap value by a zero-temperature quantum Monte Carlo
study. We show that the ground state has a hidden topological order that is revealed in a nonlocal string
correlation function which saturates to a nonzero value in the thermodynamic limit. We investigate the behav-
ior of the spin-2 chain under an easy-plane anisot@p$’)2, D>0, and find that the Haldane and the large-
D phase are separated by ¥l phase. The string correlation function vanishes only inDhe « limit and
does not distinguish between the Haldane phase and the perturbativeDlgsbase. An analysis of the
transition mechanism and of ti&=2 phase diagram in the presence of easy-plane and exchange anisotropy,
markedly different from th&=1 phase diagram, allow us to conjecture how the classical limit is reached from
increasing integer spingS0163-182606)00430-4

[. INTRODUCTION served for thes=2 chain. If so, many physical properties of
the S=2 chain could be at least qualitatively understood and
Interest in one-dimensional quantum spin chains hashe claim that the VBS Hamiltonian and the Heisenberg
greatly increased in the last decade, after Haldane'slamiltonian are generically the same for Slifurther sup-
conjecture that the physical properties of antiferromagneticported. Due to the asymptotic fofm g~ SPexp(— 7S, the
quantum spin chains depend crucially on whether the spin igwvestigation of thes=2 case is hindered by the fact that one
integer or half-integer. This challenged the conventional wisexpects Ag_,<Ag_; and és_,>€és-;. One may guess
dom that the properties of these chains were genericallag_,~0.07 and é5_,~70. The much larger correlation
given by the Bethe Ansatz solution of the spin-1/2 chainlength makes finite size extrapolations feasible only for
which has a gapless excitation spectrum and an infinite colmuch longer chains than in tte=1 case; furthermore, the
relation length. Haldane’s prediction of a ground state with a@nherent statistical or systematical imprecisions of all nu-
finite spin-spin correlation length and a finite gap to spinmerical methods become more worrisome due to the small
excitations for integer quantum spin chains has been studiesize of the gap. At the same time, the number of states per
in numerous works. Numerical methods have served to essite rises from three to five, greatly reducing the length of
tablish quantitative results where analytical work had to I’e|ynumerica||y tractable chains. To our knowledge, the largest
on often uncontrolled approximations. Both the existence othains treated by exact diagonalizafibhad length 12.
a finite gap between a ground state singlet and excited states We have used an implementation of the density matrix
(calledAg for a generic spin valu€ andA intheS=1 cas¢  renormalization grougDMRG) that is described in Sec. II.
and of a finite correlation length are well established for theOur estimates for the Haldane gap and ground state energy
S=1 isotropic antiferromagnetic quantum spin ch&ifiThe  are contained in Sec. Ill. These are confirmed by a zero-
correlation length isé~6 lattice spacings and the gap is temperature quantum Monte Carlo in Sec. IV. The spin cor-
~0.41) for the nearest-neighbor isotropic Heisenberg chairfelation length is studied in Sec. V. In Sec. VI, we discuss
with exchange] (in the following, we measure energies in the hidden topological order as well as the effect of anisotro-
units of J and distances in lattice spacing¥he spin wave Ppies, single-ion and exchange anisotropy: we investigate the
velocity isc=A¢&=2.4755), to becompared to the semi- €xpected transition to a larg2-phase under the introduction
classical valuec=2S=2. The Haldane phenomenon is of a single-ion easy-plane anisotropySf)?, D>0. We find
known’ to happen also in a general class of integer spirthat the string correlation function that reveals the nonlocal
chain Hamiltonians, the so-called valence-bond-sOiBS) order vanishes only in the limD —o and therefore is not a
Hamiltonians, with a simple ground state, a finite correlationuseful order parameter to discriminate between the Haldane
length, as well as a gap to spin excitations. They moreoveand the largdd phase. Our conclusions are given in Sec. VI.
show no magnetic order, but a form of hidden topologicalWe show that Haldane’s conjecture is obeyed: the Haldane
long-range order, which is well understdot for S=1. In  gap also exists foB=2, further supporting that the gap ex-
the case of the spin-1 chain it is well established by now thaists for all integer spins. Our results for the correlation length
the VBS Hamiltonian is close to the Heisenberg Hamiltonianand the spin wave velocity also fit Haldane’s picture of the
in the sense that it qualitatively captures all relevant physicainteger spin chain. We establish the nonzero expectation
features of the Heisenberg chain. It is therefore also intereswalue of a string correlation function in the thermodynamic
ing to investigate whether this generic behavior is also oblimit. Contrary toS=1, the Haldane and lard@-phases are
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not separated by a transition point, but a whole critical phasechain is formed from the new blocks and two sites added in
Our results indicate that this is generic for &2 and the center, thuk —L+2, and the procedure repeated. After
S=1 thus a special case. The critical phase seems to repladiee chain has grown to the desired length, one may calculate
both the Haldane phase and the laephase forS— o, expectation values of observables relative to the targeted
smoothly recovering the classical limit. We find no evidencestate, for which purpose one has to keep matrix elements of
of a cascade o8 phase transitions, as proposed by Ref. 12the desired observables in the basis of the truncated Hilbert
Investigating theS=2 phase diagram in the presence of angpace, which have to be updated at each truncation.

easy plane and an exchange anisotropy, we findfe a We want to outline three major problems that one may
p_hase diagram close to the classical_limit, but substantiallyncounter in the application of the DMRG: The system con-
different from theS=1 case. We conjecture therefore that sigered is an open system, which, while interesting in its own
the S=2 case is generic for integer spin chains, whereas thgsgpect, leads a slower convergence to the bulk limit contrary
S=1 case is special. Some of these results appeared alreagly 3 periodic chain. As has been shown in Ref. 14, periodic

H 13
in a letter: (in general closedsystems are tractable, but the precision
obtained is largely inferior. Manipulating the exchange cou-
Il. THE DMRG METHOD plings at the chain ends while retaining the bulk couplings

The choice of the density matrix renormalization groupmay change the open boundary conditions such that certain

algorithm was determined by the fact that this method aIIowéJr.Operties of systems with periodic boundary conditions are

one to treat very long chains by comparison to exact diagom'm'Cked' This is not in general straightforward: some

nalization methods while retaining good precision for enerPhysical properties are strongly dependent on the coupling
gies and expectation values. The DMRG is however speciatiréngths at the chain ends. _
in that it contains a number of free parameters which have to Another problem is that the choice of the states to be kept
be chosen carefully to obtain the desired accuracy at reasoHsing the reduced density matrix is, in a certain sense, opti-
able computational cost and to get a satisfying estimate ohal for the chain that has just been diagonalized. However,
the precision actually obtained. We do not aim at a complet&hat one really wants are those states that give the maximum
description of the DMRG; for this the reader is referred tocontribution to the chain of the next iteration, which is
Refs. 14 and 15. This method is extremely successful in thelightly longer. The states chosen are just the most probable
S=1 caset® We will just briefly outline the method and ones if we rely on the assumption that the projection of a
highlight the available fine-tuning parameters which we will chain state on a subsection of the ché&nblock does not
have to consider in the calculations that follow. depend crucially on small variations of the total chain length.
We consider the following general one-dimensional prob-This is certainly well obeyed for long chains, but not for the
lem: a short-range interaction Hamiltonighon a chain of  short chains at the beginning of the growth. We therefore
lengthL with N states per site and arbitrary boundary con-accumulate errors coming from “bad” truncations at the be-
ditions. The low-temperaturespeciallyT=0) physics will  ginning of the buildup. Whité has given a solution to this
be well captured by the ground state and the lowest excitegroblem, which is to let a chain grow to its full size, and then
states. These can be obtained by diagonalizing a matrix ab recalculate the small blocks of the beginning of the growth
sizeN" using techniques like the Lanczos iterative diagonalprocess, using théapproximativeé knowledge on the total
ization algorithm. The tractable chain lengths are severelgystem. As we are working in a long system now, this pro-
limited by the geometrical increase of the matrix size. Thecedure will give better truncations, and lead to new predic-
DMRG surmounts this difficulty by diagonalizing chains of tions for the total system. These, in turn, can again be used to
linearly increasing length, until the desired system size isameliorate the description of the blocks. This process is time
reached, while retaining only a fixed numbdrof states out  expensive, and we will have to investigate whether it is nec-
of the growing Hilbert space after each diagonalization, thugssary to iterate, and after how many iterations the return-on-
treating an approximate system. In the standard versionpvestment, precision for time, will still be worthwhile.
chains are composed out of a left block of spins, which is  Furthermore, the errors introduced by the DMRG have a
described byM states, two spins in the center, and a rightsystematic, not statistical, character. While this is useful to
block of spins. This hybrid system is diagonalized, or moregive error estimates and control the algorithm, this may lead
precisely speaking, the targeted stedeound state, first ex- to serious problems, if results are not extrapolated carefully:
cited statg determined. Two new blocks are now formed unless the precision obtained is such that numerical results
from the old blocks plus the adjacent site. The new block hasor a givenM are more or less the exact ones, it is not correct
initially MN states, of whichM states are retained. Thé to extrapolate results ih for a given M: the systematic
states to be retained are those which contribute most to therrors may introduce artefacts into the convergence behavior
projection of the targeted state on the new block, i.e., thevhich may be difficult to separate from the real convergence
eigenvectors of the reduced density matrix obtained frombehavior(an example will be given belowlt is therefore in
this projection belonging to thkl largest eigenvalues of the general necessary to extrapolate first carefully Nin to
reduced density matrix. A§i"i’\{)\i:1, the truncation error M= (equivalent to the exact resukind only then in_ to
1-3M |\ is a good measure of the precision of the resultsL =x«. We have thus decided to perform a quantum Monte
it tells us how much of the projection of the targeted state weCarlo study as discussed in Sec. IV: there are also systematic
are losing by the truncation. We find a proportionality be-errors in this method but they are completely different. Com-
tween errors in chain energies and the truncation error. Fqpatibility of the results is expected to be a good check of the
other guantities, the connection is more intricate. The nexerror control.
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IIl. THE HALDANE GAP FOR S=2
A. Choice of the end couplings
Throughout this study we are guided by the so-called 0.6[
valence-bond-solidVBS) wave functions. They are exact
ground states of very special spin Hamiltonians:
L-1 2S 04
Hyes=2 2 aPlS+S.1), (DI
I=1 k=S+1 a0
whereP, is the projector on th&=k(k+1) subspace and
a>0. ForS=2, the VBS Hamiltonian reads explicitly ozl
L-1 .
Hes(@s,a0)= 2 [(@s+@a)(§-§ 1)+ (1005 + 14ay)
X(S- 3+ (7az+63 : 2 0 : ' ' :
(S-S0 (Tagt6324)(S-S+) 0 002 0050 0075 0100 0.125
+(— 162053+ 900,4) (S-S, 1)— 360as3]. 1/length

2) FIG. 1. Gap behavior for th&=2 chain with spin-1 ends and

The ground state can be constructed by replacing each spuarious end couplingsle,q. All curves were calculated with
S by 2S symmetrized spin-1/2 an8 singlet links going to M =90 states. The small curvature upwardslfer 90 is an artifact
each neighboring site, linking two spin 1/2 each. In this ex-(see text The label on the right is the value df.q.
actly solvable model, all correlations can be calculated: One _
finds” a correlation lengthé=(In3)1~0.91 for S=1 and tween the ground states in t&,,=0 and S{;,=1 sub-
£=(In2)"1~1.44 forS=2. Itis clear from this picture thatin SPacep decrease and converge towards each other for
an open chain there a@free spin-1/2 on each end, leading L —>; all Jeng are well beyond the expected bulk-to-edge
to an effective free spi/2 on each end of the chain. There €xcitation crossover value df,¢~0.05(Fig. 1) and the first
is an effective interaction between these free spins, whicl§xcitation for very long chains clearly independentJgfy.
vanishes in the limil.—o. We are therefore left with an There is a small deflection of the gap curve towards larger
(S+1)2-fold degenerate ground state in the thermodynami¢/alues, which is barely noticeable for— 90 for Jen=0.5
limit. and obvious fordg,;~ 0.2: this is an artefact of the DMRG

The Haldane gap is prope”y defined as the energy gague to the lack of eXtrapOlation irM. At least for
between the ground state and the first excited state of a pf-5<Jend<2.5, Where the truncation errors are very close
riodic chain in the thermodynamic limit, where the ground (See below this artefact leads to the same overestimation of
state is not degenerate. For the ofen2 VBS Hamiltonian, the gap ¢0.01 for L=90) for all Je,g, Which is why we did
it is the gap between the manifolds 82 andS=3 states. Not extrapolate to remove the small artefact. Bgy~=0.2,
In the following we will assume that the essential physics ofthe error is~0.02.
the S=2 Heisenberg Hamiltonian is captured by tfe 2 This ensures that the gap we are calculating is a bulk
VBS Hamiltonian described in the last section and show thaproperty of the chain and does not depend on the manipula-
a consistent picture emerges. Following White and Hase, tions of the chain ends. The corresponding diagram for
we pick one state out of the manifold created by the free end=1 is given in Fig. 2 where we established the crossover
spins, by adding a spiB/2 to each chain end and coupling value to beJe,s~0.5: above the critical coupling, all gap

them antiferromagnetically to the chain. We consider arfurves meet(as the correlation length fo=1 is much
open S=2 chain with a spin 1 at each en®,=S =1, smaller than foiS=2, the convergence is fasteBelow the
S, =2 otherwisg: critical coupling, the gap increases for increadingnd satu-
rates to a valud\ ~J,,q4, as expected.

Our choice ofJ,,q for the high-precision calculations is
determined by two competing factors, the faster convergence
to the limiting gap value folL—o for small J.,4, and a
The degeneracy is lifted if the end couplidg,q exceeds a substantial increase  in  the  truncation error
critical value~Ag/S: If the coupling is below this value, the P(M)=(1—3=M \;) for small Joq. To understand these
lowest excitation is obtained by exciting one end bond intocompeting factors, we consider the “local gap” defined as
its triplet state, which cost3e,¢S energy. The excitation is  Aj=Ji[(S- Sis1)exc (S-Si+1)gsl, the difference in the lo-
then localized in the ends. To obtain the bulk excitation,cal bond energies for the first excited and the ground state.
which costs an energlts, the end state excitation must be Obviously A=X;A;. In Fig. 3, we show §;+A;,)/2 (to
energetically disfavored. reduce dimerization effects discussed beldar different

L-2

H:Jendsl-szﬂgz S SiitdenS-1°SL. (3

One still has to find a suitablg,,4in the allowed regime.
We have investigated 0<2).,4<2.5, considering chains up
to lengthL =90 and keepingvl =90 states. We find that for
all J .4 considered, the gap curvéenergy difference be-

Jengin @ chain of length 90. In a periodic system, the distri-
bution of the gap energy would be uniform. Here, for in-
creasinglq,q the gap energy is more and more localized in
the center of the chain, as exciting the end bonds costs in-



54 S=2 ANTIFERROMAGNETIC QUANTUM SPIN CHAIN 4041

0.7 0.020 : T T
i
! S=2, L=90, M=90
0.6 0.015 p
0.5 I 0.010 H -
g
g04T = 0.005 i .
8 ::"Ii; 1.0 y e
- ‘::II"II‘Hl'\' ! (] l“l"‘ﬂ"""
- RSP AT e R o i b e T o
03 0 w".'i".‘.-'u"u'w’mv VT T T
;,."”,. 0.2 Ty
e ? \ i i
L v !
02 -0.005 [ ~—two-bond averaged ;
L not averaged !
0.1
1 1 | Il _0010 " 1 N N 1
0 0.025 0.050 0.075 0.100 0.125 30 60
1/length bond number

FIG. 2. Gap behavior for th8=1 chain with spin-1/2 ends and FIG. 4. Local gap energies as in Fig. 3, both two-site averaged
end couplingsl.,. All curves were calculated witM =50 states.  (solid line) and unaverage@ashed ling Observe the strong dimer-
Note the different gap behavior depending on whetbgy is ization of the excitation for a small end couplidg,~= 0.2.
smaller or bigger than a criticdl,,+~0.51. The label on the right is

the value ofJeng. themselves can be shown to be overestimated per bond by an

order of 104, where the error in the excitation energy is
creasing energy. This argument is valid only for not too bigmuch larger. Bond energies in the chain center are calculated
Jend: FOrJeng— the two end spins at each end will form an very precisely, as the bond is in the center of a long chain
unexcitable singlet, and we are effectively left with a chainand no truncation occurs. The result is therefore extremely
shortened by two sites ant{,s=1. There is thus a limit to precise. Bond energies away from the center pick up the
localization. Our results seem to indicate that the picture fombove error due to truncation effects, leading to an overesti-
Jend=1 and forJ ¢n=2.5 is very similar and the limit thus mation of the local gap of the order of the error. This is why
attained. We mention that the central dip in the averaged gagystematically a dip is observed in the local gap energy. The
energy is not physical, but an artefact of the DMRG: Thedip is more pronounced for longer chains, where the local
effect is of the ordexx 10~ and only visible as the local gap gap is smaller. By increasinlyl, it can be arbitrarily re-
energy is the small difference of two large energies, whichduced.

In short chains, excitations of the end bonds are more
important than in long chains and lead to the large discrep-
ancies in the gap values for short chains. For weak end cou-
plings, the excitation will be increasingly shifted towards the
chain ends, which provide a hard boundary. This leads to a
dimerization of the gap energy: in Fig. 4, we show the two-
bond average of the local gap and the local gap for
Jeng=1.0 and J.,=0.2. For small couplings, there is a
strong period of two in the local gap due to the boundary
conditions: forJ.,—0.2 the oscillation amplitude is about
four times the local averaged gap, whereas it is negligible for
Jen= 1. Looking at the local bond energies, one sees that the
S=2, 1=90, M=90 ‘ dimerization is by far more important for the first excitation
than for the ground state. The open boundary conditions,
similar to a finite potential step, lead to a scattering of the
excited state into other excited states, and thus a beat of

period two'® The problem of dimerization is that the bonds

-0.5 ' ’ 3'0 6'0 ' develop alternating character, implying that the truncation
bond number information obtained by creating a bond of type 1 is used to
select states which will be used in the next step to build a

FIG. 3. Difference between the two-bond averaged bond eneffond of type 2 and the quality of truncation thus reduced.
gies for the first excited and the ground stdteal gap for differ- ~ We effectively observe a steep increase in the truncation er-
ent Jeng. M =90 andL = 90. Note the compression of the excitation ror P(M) for the first excitation for small ¢4 in chains of
for increasingle,g. The small central dip is an artefact due to the lengthL =90, as given in Table I.
truncation errors of the DMRG and only visible due to the very  The effect on the truncation error for long chains is even
small local gap. The central label is the valuelqf,. worse, as the numbers given above are for a chain length

25 1
20}
15 N
10

0.5

local (two—bond average) [1073]
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TABLE I. Truncation errorsP(M) as a function of the end : . ; T

couplingJeng for a chain of length. =90. 0.175 -
‘]end P(M)
25 0.5 10°° 0.150
15 0.5 10°°
1.0 0.54x10°°
0.7 0.56<10°° 501251
0.5 0.59<10°°
0.2 0.84<10°°
0.100 -
L =90, where the truncation errors have not yet saturated to
their infinite chain length value, and their difference is still 0.0%5 |
increasing. A similar, but less pronounced, phenomenon can
be observed for the ground states. As the error in the total 0 0(;05 : 0610 : 0615 0.020

energy is found to be proportional 1oP(M), even small
increases in the truncation error severely limit the precision
of the obtained gap values for large making extrapolations FIG. 5. Gap energies derived from uniterated energies of the

much more difficult. As the convergence of the various gaFground and excited states for varioks Note the monotonic de-
curves towards each other is fast, the choice in a region obrease of the gap it and the deviation from ab ™ line which

say, 0.& Jeng< 1.5, is basically free and we arbitrarily chose occurs later for largeM.
Jen= 1, which seemed to us a reasonable compromise. In

any case, the final outcome is not affected, apart frontalculate the gap from this information. Their chains were

1/length

changes in the error estimate. typically of the order.=100; as we will find that foiS=2
the correlation length increases by a factor of about 8, this
B. Energy estimates means chains of the order=800, beyond our possibilities.

} To calculate the gap it is important to note that the un-
We calculated the gap by subtraction of the energy of thengdified infinite system algorithm given by White et

lowest eigenstate in th&,=0 subspace, the true singlet gyjtable to calculate th8=2 gap because of the truncation
ground state, from the energy of the lowest eigenstate in thgroblem for short chains, and that extrapolationd/irhave
Sior=1 subspace, one of the states of the first excitation tripto be done before extrapolationslin In Fig. 5 we show the
let. Due to the structure of the Hilbert space and the propergap for a chain of length taken from the difference of the
ties of the Lanczos algorithm the second eigenstate in thévo considered energies for fixed numiérof kept states. It
Sti=0 subspace is only approximately degenerate with thgs obvious that for eacM the gap curve becomes inflected
first state in theS;,= 1 subspace, and always slightly higher away from anL~! behavior at some point, and the gap
in energy. We did not follow the approach of White and seems to follow a parabolic curve. We will discuss later that
Huse for the spin-1 chain to make energy and spin density asne actually must expect such a gap behavior. Nevertheless
uniform as possible in the center of a long spin chain andve are only observing an artefact of the DMRG, which is

TABLE Il. Gap values vs chain length and kept stateM. First line, results without iteration; second
line, with iteration. Results foM =« are obtained by extrapolation.

gap L=60 L=90 L=120 L=150 L=210 L=270
M =50 0.1728
0.1616
M=70 0.1655 0.1463
0.1609 0.1372
M =90 0.1632 0.1412 0.1332 0.1314
0.1604 0.1352 0.1238 0.1183
M =120 0.1606 0.1356 0.1244 0.1190 0.1162
— 0.1336 0.1209 0.1139 0.1076
M =150 0.1600 0.1342 0.1217 0.1149 0.1087 0.1071
— — 0.1202 0.1127 0.1052 0.1020
M =180 0.1598 0.1336 0.1207 0.1134 0.1062 0.1033
— — — — 0.1040 0.1002
M =210 0.1597 0.1334 0.1203 0.1127 0.1049 0.1013
— — — — — 0.0995

M=o 0.15911) 0.13331) 0.12021) 0.11242) 0.10343) 0.098%5)
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TABLE lll. Ground state energies fdr=60,90,120 vaM.
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TABLE V. Ground state energies fdr=150,210,270 viJ.

Eo L=60 L=90 L=120 Eq L=150 L=210 L=270

M =50 -277.363431 — — M =90 -705.881848 — —

M=70 -277.370690 -420.205654 — M=120 -705.883904 -991.558009 —
M=90 -277.372328 -420.208818 -563.045334 M =150 -705.884795 -991.559411 -1277.234028
M=120 -277.322798 -420.209801 -563.046851 M =180 -705.884999 -991.559735 -1277.234471
M =150 -277.372958 -420.210187 -563.047487 M =210 -705.885107 -991.559907 -1277.234707
M=180 -277.372997 -420.210275 -563.047632

M=210 -277.373014 -420.210320 -563.047708

We have calculated the gap fbe=60, 90, 120, 150, 210,
and 270, retaining up tdM =210 states. Our calculations
reduced for increasing/ (i.e., increasing precisionThe  were performed on a CRAY C94, reaching up to 180 Mega-
variational character of the method, which considers subgjops forM =210. The calculation of the ground state prop-
spaces of the total Hilbert space, leads to a systematic ovegrties forL =270 andM =210 took 10 322 sec of one CPU:
estimation of both energies ConSiderEd, where for the firSéa|0u|ation time was approxima’[e|y linear linand between
excitation the error is empirically found to be much more quadratic and cubic iM. Memory usage was linear lnand
important: therefore, at each step, a fiqesitiveerror §is  quadratic inM. To extract the gap in the thermodynamic
added to the true gap. For long chaifisaturates. The accu- |imit, we have to proceed in two step§) For eachL, the
mulated gap error will first slow down the decrease of theresults are extrapolated M =, i.e., the exact gap for chain
gap and eventually lead to an increase in the calculated gapngthL . (i) The “exact” results for each L are extrapolated
when & is larger than the decrease of the true gap for ang | .. In Table Il, we give the gap results: in the first line,
increase in chain length. For &= 1 chain, this effect is of ithout iteration of the energy of the first excitation, in the
minor importance, ass can be made extremely small for second line, if calculated, with iteration of the energy of the
numerically manageablil, and can be ignored. This is, as first excitation.
shown in Fig. 5, not the case f&@=2. We therefore had to  The extrapolation iV is not carried out for the gap di-

use the much more time-consuming finite size algorithmrecuy but for the energies. We find that for largethe en-
which reduces the effects of truncation errors and substarergies can be well approximated by

tially diminishes 8. This algorithm can be in principle re-
peatedad libitum, but the corrections become rapidly very
small and are outborn by numerical round-off errors. Inves- ) ) )
tigating the iteration correction both for the ground state angvhere P(M) is the truncation error for the last step in the
the first excitation, we found that the most important contri-growth process of the chaif(M) decreases monotonically
bution comes from the first iteration of the first excitation. With M. We find « to be hardly dependent &f in the range
All other corrections were typ|ca||y at least a factor of 10 considered and to be of the order 10 both for the ground State
smaller and did not justify the computational effort. We and the first excitatiorithe closeness of the twe is a pure
therefore consider uniterated ground state energies and firggincidence For the uniterated excitation energyq~30.
excitation energies which have been iterated once. Our refhe energies found are given in Tables IlI-VI. The trunca-
sults indicate that the erraf is thus reduced by a factor of tion error we find as in Table VIE is then the extrapolation
the order of 3, allowing one to treat, for a given desiredof the energy foM —c asP(«)=0.
precision, chains three times longer. The ground state energy results allow us to calculate the
ground state energy per siE, /L. Two effects have to be
TABLE IV. Energy of the first excited state far=60,90,120 vs  considered: first, the ground state energy per bond will con-
M. First line, results without iteration; second line, with iteration. verge to its bulk value only for sufficieht> ¢. This effect is

E(M)=E+aLP(M), (4)

E, L=60 L=90 L=120

TABLE VI. Energy of the first excited state for
M =50 -277.190606 . . IT:15Q’21.0'27.0 veM. First line, results without iteration; second
-277.201845 . . line, with iteration.
M=70 -277.205122 -420.059362 — E, L =150 L=210 L=270
-277.209792 -420.068504 —
M=90 -277.209163 -420.067665 -562.912119 M=90 -705.750495 — —
-277.211962 -420.073580 -562.921505 — — —
M=120 -277.212152 -420.074121 -562.922455 M=120 -705.764901 -991.441835 —
— -420.076194 -562.925939 -705.769971 -991.450422 —
M =150 -277.212918 -420.076014 -562.925787 M=150 -705.769910 -991.450671 -1277.126966
— — -562.927308 -705.772093 -991.454243 -1277.132010
M =180 -277.213176 -420.076664 -562.926926 M =180 -705.771600 -991.453583 -1277.131213
— — — — -991.455722 -1277.134216
M=210 -277.213283 -420.076953 -562.927456 M=210 -705.772409 -991.455040 -1277.234707

-1277.135242
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TABLE VII. Truncation errors for the last step as a functionLodindM. First line, ground state; second
line, first excited state. Digits in parenthesis give powers of 10.

P(M) L=60 L=90 L=120 L=150 L=210 L=270
M =50 0.1G-4)
0...
M=70 0.44-5) 0.50-5)
0.71-5) 0.10-4)
M =90 0.13-5) 0.16-5) 0.17-5) 0.18-5)
0.35-5) 0.54-5) 0.69-5) 0.80-5)
M =120 0.48-6) 0.66-6) 0.72-6) 0.74-6) 0.75-6)
0.90-6) 0.17-5) 0.24-5) 0.30-5) 0.39-5)
M =150 0.1%-6) 0.23-6) 0.26-6) 0.29-6) 0.29-6) 0.29-6)
0.30-6) 0.60-6) 0.89-6) 0.11-5) 0.15-5) 0.18-5)
M =180 0.71-7) 0.12-6) 0.14-6) 0.15-6) 0.16-6) 0.16-6)
0.13-6) 0.29-6) 0.43-6) 0.56-6) 0.76-6) 0.92-6)
M =210 0.37-7) 0.64-7) 0.81-7) 0.92-7) 0.94-7) 0.94-7)
0.67-7) 0.15-6) 0.24-6) 0.32-6) 0.44-6) 0.53-6)

enhanced by the open boundary conditions. Second, we willas a gapA,.+c?7%/2A,,L2+O(1/L3). This behavior has
variationally overestimate the energy for finité, with in-  not yet been reached far=270. Thus there must be a cross-
creasing precision with increasing. We therefore first let over point to parabolic behavior &(L). As a consequence
the energy per bond for a giveM converge inL; these we can obtain an upper bound on the gap by assuming that
infinite-chain results are then extrapolatedn We find that  the parabolic behavior sets in immediately beydnd270.
for L~120 for eachM <210 considered the ground state We match a parabolic curva(L)=A.+alL " ? to our ex-
energy per site has converged to a precision 0f°1Taking  trapolated linear gap curve at= 270 such that up to the first
those energies as infinite-chain results, we find the results aferivative the two regimes meet continuously. This leads to
Table VIII. The extrapolated result was again obtained fromA.,=0.090(anda~620). We have also estimated the corre-
a linear dependence of the energies on the truncation errdmtion length (see below to be ~50 and thus
P(M). c=¢A,.~4.2. This gives an estimate of the coefficient of the
1/L.2 parabolic term. Using this estimatag~1024 we now

C. Gap estimate say that there is a crossover lendth at which asymptotic
behaviourA(L)=A.+ay/L? sets in. Matching the para-
bolic curve to the straight line requires,,=0.085 and
Lo~450. This is a perfectly consistent set of results. We thus
choose as a central value for the gap=0.085 the lower

To obtain now the gap in the thermodynamic limit, we
can extrapolate our results for 8. <270 toL=o by fit-
ting anL ~* law (Fig. 1 of Ref. 13 and obtain a gap estimate

qf 0.081(1) fprL:oo. We note that deylatlons from perfect' bound being fixed by the linear fit of our data and the upper
linear behavior are extremely small in the range of Cha'rbound being 009. We quote our final result as
length we have considered. However it is important to note g 2L q

) : ; . A=0.0855).

that the asymptotic behawor.of the gap In an open chaln 'S" Our result, while in agreement with the estimate by Deisz
e.xpected to be ll.f: the n;asswe qgaSIpartzlcles have OIISper'et al,'8 devialtes sensibly from the result given by Nishiyama
sion E= A+ (k=) ~A,+c(k—m)7/2A, near the o4 5 19 \ho from chains up to lengths~70 andM <110
bottom of the band. On an open chain, the quasiparticle cangq assuming alL~! behavior of the gap, give
not stay in a stationary state with=m but instead A _q o55+0.015. As theL 1 behavior is valid in the range
k__ 77%_77“' asa part!cle in & box since there is no transla-g¢ | they considered, we would expect that their result gives
tional invariance. This means that the lowest excited statg; |aast a lower boundary of the gap, which itself may be
slightly higher than ours because of the small valuaviof
This is not the case. We expect that their approach to directly
calculate the gap as the difference between the energies of

TABLE VIII. Energies per bond for the isotropi§=2 chain
and truncation errors as a function Mt

M Eo/L P(M) the ground s;ate and_tenth excited state _in an gn_modified
open chain without spin-1 sites at the end is too difficult for
90 -4.7612172 0.1810° the DMRG for theM considereddue to computation time
120 -4.7612351 0.7810°° limits, we could not check what happens if we repeat their
150 -4.7612436 0.2910°° calculations with our code for greatét). As we observed
180 -4.7612456 0.1610°° “variational” behavior in all quantities we have considered,
210 -4.7612467 0.9810 7 i.e., monotonous increase or decrease Withwe feel that
o -4.7612481) — the fact that their gap results do not show such behavior

indicates problems in the application of the method.
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IV. ZERO-TEMPERATURE QUANTUM stateW 4 and its energy\ 4. There is a systematic bias that

MONTE CARLO STUDY . .
has been studied in deptfi?” Hetherington proposed the use

In this section, we present a study of t8e2 gap by a of the following estimators :

zero-temperature quantum Monte Carlo study. Here we de- Sd-H-V,. -a(t+n—1)---a(t+1a(t
scribe shortly the Monte Carlo method; the reader can find  \(n)= ¢ ten N1 g )9(t)
more details in a previous articl We think it is important 2@ Vigp-g(t+n=1)---g(t+1)g(t)

to check the DMRG results by comparison with a totally

different numerical method because it is difficult to known Monte Carlo steps becomes largen( is fixed), both sums

whether or not one controls the systematic errors. ; e o
: . ; : become equal to their averages over the limiting probabilit
We consider only the isotropic Heisenberg model for a q g gp y

o ) A distribution of V,. This average is denoted k¥-)). By
periodic chain of N quantum spin 2: using Eq.(7) n times

(8

where ® is an arbitrary fixed vector. As the number of

L
_S .8 : @-H" (V)
H 21 S SJrl’ (5) Ilmtﬁw)\(n)= W (9)

with L+1=1. The symmetries are the conservation of totalThis sequence of estimators “corrects” the systematic bias
spin $;=3,;S, the translationi—i+1 and the reflection W g—((V,)) and

i—L—i. In this section, only the conservation 8f==;S’

is explicitly used, but the quantum states generated are im- limp_ A (N)=Ags. (10
plicitly invariant by translation and reflection.

From a numerical point of viewil is a real, symmetric
and sparse matrix, when expressed on the usual ba
|o)=|s1,...,s.) defined byS|o)=s;|o). The simplest
method to compute the dominant eigenvalue isitaeation
(or powep method: a initial vecto is iterated by

By a similar formula the ground stat,s can be obtainet®

él' e choice of the arbitrary vectadp is very important. The
variance(or fluctuation$ and the bias are reduced df is
close to the true ground statéy. We will choose it by
minimization of a variational form, described in detail in
Ref. 5. With this choice ofb, the error bars are reduced by

_ a factor of order 4 with respect to the projection onto the
H-Vi=9(t)Vi;1, 6 ) .
=0(OVin © vector (1| with all coordinates equal to one.
where g(t)=|H-V,| and the eigenvalue\ is given by Many choices are possible for an algorithm which repro-

A =lim,_..g(t) with eigenvector lim_..V,. We use the pro- duces Eq(7). In this work, the stochastic vector is a sum of
jecton over an arbitrary vector ® and W random “walkers” |o),—1w where|o,) is one of the
A=lim_ (P -H-V)/(P-V,). With conserved symmetries, basis state. The walkers evolve during the time and the ele-
the matrix is block diagonal and the iteration method givegnents of matrixH are considered as probability transition
the dominant eigenvalue of the block containing the initialffom a basis state to an another basis state. We refer the
vectorV,. For the integer spin chain, the ground state is aeader to Ref. 20, in which a precise description of the algo-
singletS;=0 and the first excitation is a tripl&=1. Then  fithm is given. The main difference with the implementation
the gap is obtained from two runs with two different initial Of Refs. 5, 25, 28, and 29 is the fact we keep the number of
vectors : one withS2=0 and one withS2=1. For spin 2, walkers constant during the time. In both cagesnstant or
exact results have been publisheth22423for sizes up to fluctuating around a fixed targetcorrelations appear be-
L=12. By comparison, for spin 1, exact computations up tdween walkers which are difficult to analyze. 5 20
L=22 are possiblé&* To reduce fluctuations df, , it is very effectivé®>?°to use

The Monte Carlo method we use is the stochastic implethe representatiorH’ of the Hamiltonian on the trans-
mentation of the direct iteratio6). It is a variant of the formed basis ®(a)|a) vy?ere d(o)=(P|o), e,
method of Nightingale and Bte’ and an improvement on H'(0,7)=®(o)H(a,7)®@(7)"~ whered is the variational
our previous work® A general presentation of this kind of @pproximation of the ground state described above. In other
method is given in Ref. 25. It is zero-temperaturenethod ~ Words, this transformation can be seen as the stochastic it-
because one obtains a representation of the ground steféation 10f the initial matrixH but with weighted walkers
only, by opposition to the world-line Monte Carlo methods ®(ov) *|ov). By this trick, we observe a reduction of the
dealing with exp{-BH). Formally, in the iteration6) the ~ €rror bars byfal factor of between 2 and 4. In this work, the
deterministic vecto¥,  , is replaced by a stochastic one. We Weights® (o) ~* depend only on the state, but in Refs. 25,

impose that Eq(6) IS now true inaverage 28, and 29, they are multlplled by another We|ght|ng process
during the decimation phase of walkers. We are not con-
H-Vi=g(t)(Vi;1), (7)  vinced by the utility of this last trick and we do not use it. To

estimate the standard deviation, several independent simula-
where g(t) is a normalization factor and-) denotes the tions were done. Then the independent results are averaged
average over the stochastic stép—V,,,. This stochastic in the usual way.
iteration is repeated several thousand times. Whisrlarge, We have used a Cray T3D parallel machine with 128
the sequences d¥; and g(t) have a limiting probability —processors alpha. Each processor computes the evolution of a
distribution. The expectation values obtained by such a prosubset of walkers, and the processors with the most prolifer-
cedure are close but definitely not equal to the true grounating population give walkers to the processors with a poor
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TABLE IX. Energy EO of the ground stat&=0, E1 of the first excitatior5= 1, energy per unit length
EO/L, and the gap valu&El—EO for a periodic chain of. spins 2. The values fdr<10 are obtained by
exact diagonalization\= 12 was published by LiiRef. 11; L=20 are the results of Monte Carlo simula-
tions. The standard error deviations are shown in parentheses.

L EO E1l EO/L Gap

4 -20. -19. -5. 1.0

6 -29.164693200754 -28.467398659937 -4.860782200126 0.697294540817
8 -38.521869135413 -37.976299855143 -4.815233641927 0.545569280270
10 -47.948445740133 -47.495220966136 -4.794844574013 0.453224773997
12 -57.40817 -57.01747 -4.784014 0.39070

20 -95.37544) -95.11343) -4.7687712) 0.262@5)

30 -142.9271) -142.73304) -4.764233) 0.1941)

50 -238.1043) -237.9641) -4.762086) 0.14Q073)

80 -380.9074) -380.80%4) -4.761345) 0.1036)

population, in order to keep a balanced working. Our pro-spin 1. If we consider the ground state Wif,,=1, it is

gram written for an arbitrary value of the spihand length  expected that(S?) decays purely exponentialfy from a
L needd. X2 us by walkeixiteration. For the longest chain ,51ue around* 1:

L=80, 21 independent samples with 186 880 walkers and
100 000 iterations were done in 12Q(ike., 1.7 yr of single
processors We give in Table IX a compilation of exact
results obtained for short chains and Monte Carlo results.
The digits in parenthesis are the Monte Carlo fluctuation
(one standard error deviatipriThe systematic erroanclud-
ing the Hetherington biaanust be added.

The ground state enerdy, /L is determined with a good
precision. Without extrapolation, one findg/L~ —4.76. A

(Shec(—1)'"texd — (i—1)/€]. (12

e choose this approach, as from this equation, the correla-
tion length& can be obtained much more precisely than from
the decay ofC(|i—j|)=(S-S;). This is because this ap-
proach partially suppresses systematic errors of the DMRG
due to an effective fixed boundary conditisee belowand

- - L ; - because there is a partial cancellation for errors, whereas
finite size extrapolation in LP is adequate, leading to they build up for the two-point correlations, as correlated

5]%/LMZOE,[:'?:rglloz1[@&?;82;”;%%?e;fo:eg;isfg ttshgngx_states in each half-chain are systematically neglected at the

lati h ic bias. DMR Itis Same time, underestimating This was alrea(jy shown by
tEr?‘/:)f 3'_02’7%]1“;;%5 -S){c?]tiimialfldciclz?ess O; ' bias %frezjdtelrs White and Husé? they calculated the correlation length for

+0.0003 per bond, thus-0.024 forL =80. It is positive as S=1 using both approaches, and showed that the results are

shown in Ref. 27. It is clear that the DMRG is much more ;qm;:a]ent. V\r/? ﬁssume.thatththls ISa genﬁrlc propeg]y ofvsglsn-
precise than the QMC. chains which are in the same phase as the -

The Haldane gas=E,— E, is obtained by subtraction Hamiltonian. In theS=1 case this seems numerically di-
of two independent quanltitieso The absolute ef@ is of  'ectly established fog; in the S=2 case, all results indicate

the same order, but the relative er®G/G is bigger. For that the spin-2 Heisenberg chain shares the properties of the

; i ; VBS chain.
sizes less than 80, the behavior ik 1Then the extrapolation _ o "
gives 0.061). This value is slightly smaller than the DMRG S:-rzhgﬁgiﬁ]q ;medstﬁelnﬁrr;at;gnlifrgtgzs lﬁ:ieggg?a[[otzzr;ctr?bee
result 0.08%5). Oneshould consider that the extrapolation the excitation spectrum mediating the corrglation much
with a 1IN asymptotic law is a lower bound. The systematic ller. th P tional lati 9 lenath trio
bias is difficult to estimate. We conclude that there is noo 2 o € conventional corretation fength was
be ¢s-;~5.15 for M=48 [and a truncation error

incompatibility between the DMRG and the Monte Carlo P(M)=4.13x10°°] and £ ,~545 for M=110

results. [P(M)=1.27x10 %] as to be compared to the boundary
correlation lengthié=6.03, which itself is in good agreement

V. COR_RELAﬂON FUNCTIONS with other estimate$whereas the smaller values are)ndn

INTHE S=2 QUANTUM SPIN CHAIN our calculations, folM =210, we findP(M)=9.4x 108,

To calculate the correlation length, we partially lift the Which is much larger, and we must expect even worse results
ground state degeneracy of the open chain by adding a spinf@r S=2 using the conventional approach. To get an esti-
ononeend of theS=2 chain § =1; $;=2 otherwise: mate, we have evaluated the correlation length from the de-

cay of the spin-spin correlation using a chainLet 270 and
L-2 M=150[P(M)=2.9x 10 ¢], and foundé~33, which is a
H=32 S SiitJdend 1S (1) lower bound on the actual correlation lengémd about 68%
=t of the limiting valus.
The ground state will then be a spin 1 triplet; at the spin-2 Computing now the correlation length using the spin-1
end of the chainposition ) one expects an effective free end approach, we have to perform an extrapolatioé wfth
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TABLE X. Average value(|S}|) for the first spin of anS=2

—L=270,74<M<1£30 ‘ chain with an effective free spin-1 at one end, in the ground state
70 - L=350,M=150 with S%,=1.
Z
5 60 M P(M) (SD)
g 50 0.14< 1074 1.1924
P Z 74 0.37%10°° 1.1709
S50l /e ] 95 0.15¢10°° 1.1552
& 126 0.61x10°® 1.1420
8 150 0.26x10°© 1.1376
g 40 180 0.16<10°¢ 1.1334
- 0 0 1.131)
30t
. , timated, as we observe numerically. As the spin values are
25 5'0 7'5 100 125 effectively fixed by the left chain end, the overestimation
site effect becomes increasingly important towards the right end,

because more truncations have taken place.
FIG. 6. Two-site average of the local correlation length  To derive ¢, we give in Fig. 6 the local decay length

2/(InKSH|—=InKS.2)]) vs sitei for i<125 for the same chain as in 2/(IN|S|—In|,,]) (averaged over two neighboring sites to
Fig. 2. The deviations from the shoulder in the center of the dia_reduce odd-even site oscillation®ne sees that at the spin-2
gram are finite size and finite precision effe(fsr the right endl. P

end of the chain, the correlation length is first rather short,

respect taM because of the slow increase of precision withbUt saturates to its bulk valughe shouldex For M =180,

M for S=2. At the same time we consider chains of Iengththe convergence Fﬁfor M—co can b_e well establishgd, and
L=270 and repeat some calculations o350, to study & find a correlation lengt§=49(1) in a system which has

possible finite size effects. We find that those are minor, a{Us lengthL~5.5¢, which is consistent with minor finite
are effects of the choice af.,q, and concentrate on the Size effects. At the same time, we find th&) converges
extrapolation inM. In Fig. 2 of Ref. 13, we give I§S?)| vs ~ towards 1.181), supporting the picture of an effective free
i. The generic behavior is the same for MI: After the  SPin 1 atthe end of the chain. The result is not very sensitive
expected decay 47, there is a small increase towards the ©© M, as can be seen in Table X. For the calculation of the

other end of the chaifgreatly exaggerated by the logarith- correlation Iength. the question natur.ally arises whether we
mic scald. With increasingM, the minimum shifts to the are really calculating the bulk correlation length when we are

right, the spin expectation value at the right end of the chaif€garding a decay which is due to a particular end state of the
is greatly reduced, the decay becomes more exponential afff@in- To investigate this question, we varied the coupling
approaches a limiting curve which we take to be ke betwee_n the first spifthe effec'glve freg spin)land _the sec-
result. We do not know numerically whether the decay willond spin. We found that therg is conadgrable variation of the
become exponential over the total chain length. Brel $ expectation value' for the first fe.vv. spins, whereas th_e cor-
case seems to indicate that with sufficient precision, i.e., verjelation length remaingfor our precision unaffected, which
largeM, this will be the case: there, fofl =90, the decay is W€ c_on5|der to_support our cla|_m that actually the bulk cor-
perfectly exponential to the end of the chain. It is worthwhile "€lation length is calculated. This can be understood by con-
to retain that here we have a case where the same quantity§idering the two limits of a very strong and very weak anti-
determined with very variable precision depending on thd€romagnetic coupling of the first spin to the chain: For a
site, and where reliance on a small truncation error may b¥ery strong coupling, the first and second spin will form a
entirely misleading: the error has, in our analysis, the follow-Singlet than cannot be excited)=0); effectively the

ing source: The ground state we are considering has effe€hain is shortened by 2, and we obtain the unmodified chain
tively fixed boundary conditions at the left efttie presence from site 3 onwards which will show the decay behavior
of the spin 1 and free boundary conditions at the right end.described above. For the shortened chain, we will observe a
The ground state of the chain is mainly determined by thémall increase i(Sy)|, as the decay curve is shifted.

left end. This can be seen from the fact that drastical changes In the other limit, the first spin will be weakly linked to a

in Jeng hardly influence(S?) even at the right end of the chain which has total spin 1; the spin plus chain compound
chain. The nonzers%,, expectation value is therefore com- Will also have total spin 1. Calculating tr,,=1 ground
municated from the left end towards the right end by corre-state of the compound system, one sees ¢Bgt=1.5, the
lations, which we are partially neglecting due to the finite-maximum valug(S7) can obtain in the system under study.
ness ofM. On truncation, we systematically neglect statesThe chain will again be like an unmodified chain shortened
where the half-chains have high tot&|; this implies that by one site, showing the observed decay behavior and decay
|S? values are reduced while their value is transmittedength, whereas th¢(S’)| will be reduced: the shortened
through the chain. To conser& ., of the chain, each single chain is not in aS,=1 state; one find$;,= —0.5. We are

|SY is overestimated to make good this effective reductiondealing with a superposition of the three degenerate ground
The smalletM, the more the absolute value 8f is overes-  states of the chain, which show all the same correlation
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length. We have observed this increasé $f) and decrease 0.9
of (S) (i=2) for reduced couplings numerically. L=100,M=100
The free spin-1 picture is therefore consistent with the
fact that the decay length is unaffected by changes in the first
coupling, but thatS;) can be tuned continuously. The value
1.131) is just valid for an open chain with constant cou-
plings; a similar argument holds of course for the value
0.531) given for the ends of ope®=1 chains by Whitd#*°
here the minimum value is also 0, the maximum value 2/3.
Our correlation lengt £ 1~0.0204(4) deviates seri-
ously from the estimaté—1=0.012(2) given by Hatano and
Suzuki®® We think that this difference is due to the fact that
the DMRG is much more suited to extract the correlation
length than a quantum Monte Carlo algorithm.

L=150,M=100
0.8

ok L=270,M=150

06 .

string order parameter O(x /2)

VI. HIDDEN TOPOLOGICAL ORDER AND THE ROLE 05

OF ANISOTROPIES 50 100 150 200 250
distance

A. Hidden order in the isotropic chain

In the S=1 chain it is known that there is a hidden topo- __F!C- 7. Absolute value of th&=2 string order parameter for
logical long-range order that is revealed in a nonlocal strin 2? l'_sftzr(;g'Zrie'ze%t;?r%.zhs:gg?r ;‘:‘;’;‘éi?qsw:égh?afrl]atecurve
correlation function. This order is simply understood in the a W ! P ! g range.
fggzcié?gﬁ]uasge df?f tlzgf'.:' thet?;I';al.?]ange’l):;a;etgge ZTt';e{i'mation of the exact value better than 1%. Since this quan-

. gneti IS diiu in following sense: valu %ity 0.2 is not simply related to the breakdown of a discrete
S?=+1 alternates in a strict antiferromagnetic as one movegymmetryz X Z,, contrary to the spirs=1 case, it is not
2X L3, = ;

along the chain but an arbitrary num_ber of val§és 0 may lear in what sense it is an order parameter. This is what we
appear between nonzero values. This can be measured by Q/estigate here

following correlation function: In Fig. 7, we show our results foM =100, L=100;
n-1 M =100, L=150; andM =150, L=270. We find that the
G, (m,n)= < aneXF{ i E S er}> . (13) effect ofL andM finite is in both cases an overestimation of
k=m+1 O,». The overestimation due to the finite size is easily ex-
The order parameter is thus iy .G .(n,m) =0, Itis pIair_med: the c_:orrelatio_ns_ fall for large distances, before ris_ing
related to the breakdown of Z,X Z, symmetry which is 2dain for|i —j|—L: this is the effect of f[he boundary condi-
also nonlocal® This nonlocal symmetry cannot be extended!0ns; whereas the added boundary spins are not directly cor-
straightforwardly to higher-spin chains. This is easily seer[aelated' they effectively have partially the effect of periodic
from the ground state degeneracy of open chains. An ope ogndgry conditions, as they force into the same end states.
VBS spinS chain has exactly$+1)2 ground states due to This gives a close resembla_nce to a pe.I’IOdIC system, where
the S/2 free spins at the end. For ti&=1 chain, thefour e string order parameter is symmetric arour@. The
ground states are related by the operations of Zb& Z, string .order diminishes \{Vlth\/l, as more quctuatlpns are
group. The spontaneous breakdownZgfx Z, cannot how- taken into account. We find th@w,'z has reached its thgr-
ever explain the $+ 1)? degeneracy wheS>1. Neverthe- modynamp limit forL=.270. There is a nonzero expectation
less, the VBS wave functions do have a hidden topologicaY2!ue, Which we estimate from the behavior M as
long-range order for all integer spins: in the surface lan-Ow2= —0.7262). The nonlocal order is thus common to
guage, the spits wave function has a height that varies at the VBS wave function and the ground state of the Heisen-
most by S steps. This can be measured by the followingP€r9S=2 chain.
correlation:

B. The role of anisotropies

n—-1
|« ; 7| oz The hidden order can be destroyed in several ways: it can
Gms(mn) <Smexp< I(W/S)k:§+1 Sk) S”> - 14 be replaced by an antiferromagnetic Ising order, by introduc-

ing an Ising anisotropy*>1, and by a so-called larde-

phase, wher& =0 for all i in the limit of D—, by intro-

ducing an anisotrop (S?)2, D>0. The anisotropic Hamil-
tonian is then

Calculations by Refs. 31 and 32 indicate that
lim n e Gaa(n,m)=0_, is nonzero for theS=2 spin
chain. For the Affleck-Kennedy-Lieb-TasaldKLT ) model

it is easily shown thatO_,=—1 in the thermodynamic
limit. For the numerical calculation of the parame®y,, for
the isotropic Heisenberg chain, one has to extrapolate, in  H=2, S'S;+ 'S, +J,5S,,+D > (SH2. (19
analogy to the gap and the correlation lengthMnand L. ! '

We have studied several systems, up Nb=150 and For S=1, the phase diagram with these two anisotropies is
L=270. We find that contrary to the case of the correlationwell known® We now discuss the correspondiBe 2 phase
length, the convergence M is good and allows for an es- diagram and the behavior of the string order parameter.
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For S>1, a bosonization study indicaféghat there is a : : ;
transition from a gapped Haldane phase to a gapped large- g | I
D phase qualitatively similar to th8=1 case. On the other /
hand, Oshikaw¥ has conjectured that there might be a cas- !

cade ofS transitions in general. He proposes that by increas- 05 /

ing D, successively the valuegg’==S, S'==(S-1) and /

so on are suppressed. In the VBS picture, this corresponds to 041 ! |
a successive dissolution of singlet bonds witf2+n=S, & /

with N the number of remaining singlet bonds between two 0.3 | / 1
sites, andn the number of spins 1/2 on every site without ,-'

bond, that form symmetrized states with total magnetization 0.2k / _
0. One might therefore expect a cascadesdfansitions to /
the largeb phase: each transition will be described by a /

change of the behavior @ . : for n odd, it is nonzero in the o1y // ]
thermodynamic limit, fom even, it is zero. Such a cascade s
of transitions has already been proposed by Affleck and o : - 3’ ‘; 5

Haldané* for the dimerization of chains. For the special case
S=2, a suppression & = =2 (for J*=1) would effectively
lead, because of the transition elementsS$0r to an effec- FIG. 8. Gaps for theS=2 Heisenberg chain with single-ion
tive S=1 Hamiltonian with Ising anisotropy. Following Ref. easy-plane anisotropy.

8, this S=1 Hamiltonian should be in the Haldane phase,

supposing that th® that suppresse§'=+2 is still suffi-  can therefore be calculated by taking the energy difference
ciently small not to place this Hamiltonian directly into the petveen the ground states f&,,=0 and S5,=1; for
largeD phase forS=1. One should therefore find & nonva- p < one has to take the difference between the first two
nishing string order paramet€ ., whereas it vanishes for ;,iag WithSZ,, = 0

otal b

the original chain foD =0. We find the gap behavior shown in Fig. 8. For

As we do not know which phases to expect, it is essentiah _ g 025 the correlation length is already very large. A
to prepare the open spin-2 chain such that the low-lying exp -1 extrapolation gives us a lower bound, which is nonzero;

citations are bulk excitationsee the discussion abgvand due to the relatively small slope of the gap curve, we have

end artefacts eliminated. We attach two spins 1 to the Cha'fhken this value as gap estimation. For 6:05< 3.0 we find

§ap curves that do not show a systematic deviation from the
L~ behavior as in Fig. 5, though the truncation error was
Father large (108). This is due to the fact that the truncation
errors associated with the two energies are nearly identical
and the systematic errors thus largely compensate. An ex-
trapolation inL ~* towardsL —o seems thus permitted, and
gives vanishing gaps in the whole regime. By taking the gap
obtained forL=120 as the thermodynamic limit, which
gives a seriously overestimated result, we obtain in the

i i ot of " d has th whole region upper bounds of the order of 0.02. For
piing contans a fot of compensation eénergy, and has tNuS g . 3 o - 5 gap develops, the correlation lengths become in-

tendency to Iocaliz.e the excitation in the ends. It is t.he.refor%reasingly short and the truncation error diminishes by sev-
also necessary to increase the cost of an edge excitation dﬁ?al orders of magnitude. The gap estimations become again

to D by increasingD on the end sites. We have chosen : . : .
. . very precise. We find thus a gap for very sniallit vanishes
Dan=20D on the two first and last sites. To check Whetherforryop025<D<0 05. We fing 51en a r)(/ather largeritical

t_hese manipulations are sgfficient to _obtain 'Fhe.bulk.excita-phase, terminating 4 = 3.0(1). Thesystem is then gapped,
tIOI’ISZ, we have calculate¢S) for the fII’.St clax0|.tat|on given  with a small growth of the gap just abo@=3.0. These
by Soia= * 1, an(_j checked that_ thg excitation is not Io_callzedresuns are surprising; they indicate that there is a whole criti-
on the ends, which would be indicated by a strong increasgg) phase between the Haldane and the I@g@hase,
of (S) towards the ends. All results given below are bulk\yhereas there was just a single critical pdirfor S=1, as
results. o _ predicted by bosonizatioff. Of course, these results are
We have calculated the gap, the spin-spin correlations angithin our actual precision and we do not expect simple gap
the string correlation function®_, and O, as well as the scaling to give precise phase boundaries.
truncation error for 8D <6. To calculate the gap, we con- e have no indication of a degeneracy of the ground state
sider chains up td. =120 and keegM =110 states. For an in the critical phase, which could then exhibit a gapped spec-
isotropic chain, the first excitatioftotal spin 1 is a degen-  trum despite our results. The indirect indications that the
erate triplet. In the presence of an anisotr@py: O, this de-  phase is truly critical are very strong: the truncation error
generacy is lifted: one obtains a doubBf,,=+1 and a  diminishes slowly withD, but remains rather large, whereas
singletS;,,=0. The doublet is lower in energy than the sin- it diminishes quickly as soon as the gap sets in. Our other
glet for D>0 (and inversely foD<0)3°ForD>0 the gap  calculations indicate that a simple degeneracy of the ground

Haldane phase. As we have seen, the end couplipgnust

be sufficiently strong to push the energy costs of an edg
excitation beyond that of the lowest bulk excitation. For
large D, one expects a gap of the orderbetween ground
and first excited statel,,g must therefore be chosen on this
scale, as we know nothirgypriori on the ground state of the
chain as a function db. We will see that the system tries to
minimize the gap by giving antiferromagnetic energy to
compensate the energy cost causedbA strong end cou-
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FIG. 9. S=2 string correlation functio® ,,, for the Heisenberg
chain vs single-ion easy-plane anisotrdpy

the truncation error: the DMRG chooses quickly one of thos
states and ignores the others. A more physical and strong

argument is given by the very slow decrease of the spin-spi
correlations, which also indicates the presence of a criticar\?
S

phase. Correlation lengths we estimated on system lengt
L =150 were systematically bigger than the system size.

C. Hidden order in the large-D phase

We now turn to the string correlation functio®, and
O..». We find for allD that the long-range expectation value
of O, is always less than 10 to 10°° for distances

SCHOLLWOCK, GOLLINELLI, AND JOLICOEUR
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the largeb phase(it is not zero either in an antiferromag-
netically ordered phase, but becomes zero, if the antiferro-
magnetic order parameter is subtragtethis quantity can-
not discriminate between the Haldane and the |ddgahase.

D. The S=2 phase diagram

Finally we have mapped out the boundaries of ¥é
critical phase by adding also exchange anisotropy. We find
that the critical phase extends to the Ising AF phase that
appears wher, is large enough. To the precision of our
measurements, we find that the Haldane phase is confined in
a narrow region around the isotropic point: see Fig. 3 of Ref.
13. We have performed 20 measurements to fix the bound-
aries of the Haldane phase which is the most crucial. There
are five measurement points on the line betwX¥&hand the
ferromagnetic phase and also five points on the line between
the largeD and theXY phases. Bosonization predittshat
there aretwo XY phases separated by an Ising transition:
these phases differ by the way spin correlations decay. Since
we measured gaps to locate the phase boundaries, we cannot
discriminate between these two phases. The phase diagram
we find is a topological distortion of the bosonization result.
This distortion is a large one and brings the system closer to
the classical limit. Indeed, whe®i— «, the phase boundaries
are straight lines: +D=J, (—J,) for J,>0 (J,<0) be-
?weenXY and AF(F) and the vertical axid,=0 between F
nd AF. This is already very close to Fig. 3 of Ref. 13,
simply the Haldane and larde-phase have to disappear.
This suggests that th&-XY boundary will be pushed to in-
finity when S—oo and the Haldane region becomes increas-
ingly smaller, collapsing around the isotropic point since the
Haldane gap vanishes exponentially=exd —#S] and is
thus easier to destroy. We thus suggest that the phase dia-
gram for S=2 is generic for higher spins, contrary to the

~150. The presence of an intermediate phase with the Chap_eculiar case 06=1.

acteristics as predicted by Oshikawaeems therefore ex-
cluded. The situation is completely different for,,, (Fig.
9). We find that for allD it has a nonvanishing thermody-
namic limit, which goes to 0 monotonically f@—o. The
slope is very large for smabb: for D=0.2, O, is less than
10% of theD =0 value. The analysis dD ., is different in
the various phases: it is very easy for the lalehase,
where the small truncation error makes the results very pr

convergence to the thermodynamic limit. The values thu
obtained have a relative precision of at least 4,0and there
is thus no doubt tha®,,, is nonzero in the larg® phase
and vanishes only in thB—oo limit.

In the critical phase, the analysis is more complicated du
to the relatively large truncation errors (1%), but mainly

because of the power-law correlations: the thermodynamig;,
limit has not yet been reached for the lengths we consider.

We find that our results can be reasonably extrapolated i
this regime a4 ~*, and that the effects d¥l finite are rela-
tively small for theM considered. It cannot be excluded

however tha©O ,, decays algebraically to zero in this inter- anisotropy D

mediate phase. Since we have good evidence Ghaf is
nonzero forD large enough, we consider this possibility as
unlikely. We conclude thaD ., is not an order parameter in

VII. CONCLUSION

We have established numerical values for the gap and
correlation length of the isotropic Heisenbe8F2 spin
chain, in agreement with the Haldane conjecture. We have
measured a nonlocal parameter inspired by the VBS wave
function and shown that it is nonzero in the Haldane phase.

. X Hve have also studied single-ion and exchange anisotropies.
cise and where the short correlation length assures a fa

e corresponding phase diagram is topologically different

$rom that of spin 1 and leads to a simple conjecture about the

classical limit. The nonlocal string order parameter is non-
zero in the whole Haldane phase but also at least in the large-
D phase and most likely in thEY phase: it is not a good

®rder parameter to discriminate between these phases.

Finally we give simple arguments to interpret the phase
gram. There is a critical anisotropi;)Cl limiting the
aldane phase whel® increases from zero. FoB=2,
.025<D,<0.05. Its value is ruled by the value of the
Haldane gap foD=0. The gap energy is balanced by the
energy, which is of the order
D[S’—(S—1)?]= D(2S—1). We therefore estimate
D¢,~As/S. As As—0 for S—=, D, diminishes monoto-
nously withS and is zero in the classical limit. There is also

the sense that it is not zero in the thermodynamic limit fora critical anisotropyD, that limits the larged phase from
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the largeb limit. To estimateD.,, we consider the limit cal limit: D, =0 andD., =¢; the system is always critical.

D—c. In that limit, the ground state is given I8f=0 on  For D>0, the system exhibits a spectrum without gap: the
all sitesi and energy 0. The first excitation is constructed byspins are in theXY plane.

putting S’=+1 on one site. These spin flips disperse in a Nothing in these arguments introduces a difference be-
band due to the exchange term. A first-order perturbatiofiween different sorts of spins f@&=2. We conjecture there-

calculation from theD = limit gives the dispersion fore, that forS=2 the Haldane phase and the laigephase
are separated by a critical phase, whose lower limit tends to
E(k)=D+JS(S+1)cok. (16) D=0 for S~ and is essentially determined by the Haldane

: . , Whereas the upper limit tendsDe=» for S—o and is
The gap is thuP —JIS(S+1). We estimat®., by the con- gap, wi X 2
" . o tially det dbyS°. Thes=1 theref -
dition that the gap vanishes arﬁ?zic2~S(S+ 1): this is the essentially determined by © case theretore ap

) o _ pears as a special cade; =D.,. We note that the phase
softening of the excitations. We thus finBe =2 and  yiayram we have proposed is in agreement with an earlier
D.,=6 for S=1 andS=2, to be compared to the numerical proposal of Khveshchenko and Chubulv.
values 0.961) and 3.@1). We overestimat@CZ, but seem to
capture the essential; a more involved perturbation
calculatio’® does not change anything fundamental. For
S—, D;,—: the largeb phase disappears. Let us point |t is a pleasure to thank N. Elstner, D. Huse, and R.
out that these arguments in fact give immediately the classikacaze for useful discussions.
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