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We calculate the thermodynamic properties of the spin-S, isotropic ferromagnetic chain with nearest-
neighbor logarithmic interactions, in an external magnetic field. The calculation is performed via the transfer
integral method (S5`) and via the interacting soliton-gas scheme~any S). The results indicate scaling
behavior of the field-dependent part of the free energy; the scaling function appears to be spin independent.
@S0163-1829~96!08629-8#

I. INTRODUCTION

The Ishimori-Haldane-Faddeev1–3 ferromagnet~IHFF!, a
one-dimensional, classical lattice model of spins with loga-
rithmic nearest-neighbor interactions, is of considerable
theoretical interest due to its exceptional property of com-
plete integrability. The model’s soliton-dominated dynamics
has made possible the development4 of an essentially exact,
~semiclassical!, ‘‘soliton-gas’’ approach to its thermodynam-
ics. Numerical5 and analytical4 results have already been re-
ported in the zero-field case. A further feature which makes
the model particularly interesting from the viewpoint of fun-
damental condensed-matter physics is that, at low tempera-
tures, the leading-order asymptotic behavior is identical with
that of the isotropic Heisenberg ferromagnet~IHF!,5 a key
model for the understanding of magnetism.

In this work, we report the results of extensive numerical
investigations based on the soliton approach to the thermo-
dynamics of the IHFF in the case of low temperaturesT,
nonvanishing magnetic fieldh, and arbitrary spinS; the gen-
eral theory of the interacting gas of nontopological magnetic
solitons, and its analytical application to selected, zero-field,
limiting cases has been presented in Ref. 4, which will be
referred to as I in this work. In the classical limit,S→`, we
also perform a leading-order test of the validity of the soliton
approach by comparison with exact values, which we obtain
by an accurate numerical implementation of the transfer-
integral ~TI! method.6

Both approaches, soliton and TI, reveal the scaling behav-
ior of the field-dependent part of thermodynamic quantities:
in the immediate vicinity of the ‘‘critical’’ point
(T50, h50), dependence on the temperature and the mag-
netic field enters only in the combinationh/T2. Moreover, in
the soliton approach, the scaling function which describes
the dependence of the field-dependent part of the free energy
on the reduced variableh/T2, appears to be independent of
the valueS of the spin. It should be noted that similar scaling
behavior has been recently reported for the magnetization of
the IHF.7

The paper is organized as follows: Section II presents the
results obtained by the numerical solution of the TI-
eigenvalue problem, introduces, and verifies a scaling Ansatz

appropriate to the ‘‘critical’’ regime (h→0, T→0). Section
III presents the results of the low-temperature, field-
dependent, soliton-based statistical mechanics, for both
quantum@S5O(1)#, and classical (S→`) cases. Conclud-
ing remarks are made in Sec. IV.

II. EXACT CLASSICAL „TI … THERMODYNAMICS

The dimensionless~I! classical IHFF model Hamiltonian
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describes a chain of unit spinsŜi placed in an external field
h along thez axis; energies and magnetic fields are measured
in units of the exchange constantj .

The thermodynamic properties of the classical IHFF can
be expressed6,8 in terms of the largest eigenvalueL00 of the
integral equation
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whereb5 j /kBT, k5bh, andPn
m is the Legendre function.

Equation~2.2! is the analog of Eq.~21! in Ref. 6 for the IHF.
It has been examined by Weber9 in the two special cases
which are analytically tractable, i.e.,~i! k50 and~ii ! b50.
Here, we quote the result for case~i!, which will be useful
below:

L00~b,k50!5
1

2b11
. ~2.3!

We have numerically solved~2.2! in the low-temperature
regime b@1, by the method of 32-point Gaussian
integration.6 The accuracy of the method can be checked in
the two special cases~i! and~ii ! ~cf. above!, and is typically
of O(10211).

The calculation demands exact knowledge of the Leg-
endre function of high order and large values of the argu-
ment~including infinity, from thex852x contribution!. We
have made use of the limiting property
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For finite values of the argumentz.1, we have evaluated
P̃n(z) by direct integration of the ordinary differential equa-
tion

~12z2!
d2P̃

dz2
12Fnz2~n11!zGdP̃dz1

n~n21!

z2
P̃50 ~2.5!

in the interval 1<z,`, subject to the initial conditions
P̃(1)51, andP̃8(1)5n(n21)/2.

At low temperatures, we will use a scaling ansatz for the
free energy. Some properties of the scaling function which
enters the ansatz, as well as the crucial ‘‘critical exponents’’
can be deduced exactly from the limiting behavior (h→0
andh→`) as follows:

The free energy per site can be separated into field-
independent and field-dependent parts

f ~b,h![ f 0~b!1d f ~b,h!, ~2.6!

where b f 052 ln@L00(b,k50)#5 ln(2b11). For the field-
dependent part we make the scaling ansatz

d f ~b,h!;2bsg~bth!, ~2.7!

where g(0)50 by definition. The various thermodynamic
functions can now be expressed in terms of the scaling func-
tion g. The magnetization per site is given by

m;bs1tg8~bth!, ~2.8!

and the isothermal susceptibility by

x;bs12tg9~bth!. ~2.9!

From the known zero-field asymptotic behavior of the
susceptibility,9 x→2/3b2, we deduce thats12t52 and
g9(0)52/3. The vanishing long-range order at all finite tem-
peratures impliesg8(0)50, and the saturation magnetization

at high magnetic fields and at all temperatures demands
g8(`)51 andt52s ~5 2, cf. above!. Thusg is a function
of x5b2h.

In terms ofg, the field-dependent partdu, of the internal
energy is given by

b2du;g~x!22xg8~x!1x. ~2.10!

The curves in Figs. 1–3 summarize our low-temperature
TI results for the magnetization, energy, and susceptibility,
respectively. The onset of scaling behavior is somewhat
slower in the case of the energy, probably because it involves
the ~presumably stronger! corrections to scaling in the func-
tion g(x) itself, rather than its derivative. Our numerical re-
sults suggest a finite value ofG`[ limx→`@g(x)
22g8(x)x1x];0.25.

III. SOLITON THERMODYNAMICS

The theory of soliton-based thermodynamics~ST! of the
IHFF has been presented in I. It is formulated in terms of a
two-dimensional nonlinear integral equation for the quasi-
particle energy and is in principle exact, since it incorporates
all phase-shift interactions between solitons. At low tempera-
tures, it is possible to use approximate expressions for the

FIG. 1. Average magnetization per site vsb2h of the IHFF for
b 5 5, 10, and 20 obtained via the TI and ST models. The TI
b5` curves are obtained by extrapolation of the finiteb results.
The ST ‘‘scaling limit’’ curve is obtained by the process described
in the caption of Fig. 7.

FIG. 2. Same as Fig. 1, for the field-dependent part of the aver-
age energy per site.

FIG. 3. Same as Fig. 1, for the isothermal susceptibility.
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phase shifts and reduce the problem to the one-dimensional
integral equation~4.2! of I @or the equivalent ordinary differ-
ential equation,~4.3!, which is solved numerically in this
work#.

We consider the sequence of~semiclassically quantizable!
versions of the Hamiltonian~2.1! @cf. Eq. ~2.1! of I#; the spin

vectors have lengthS, the physical exchange constant is
JS5 j /S2, and the magnetic fieldhS5h/S. The sequence
thus constructed approaches~2.1! in the classical limit,
S→`, \→0, \S→const.8

The following limiting cases provide us some guidance on
what to expect:~i! If the soliton description is correct, clas-
sical ST should agree with TI thermodynamics.10 ~ii ! Since
the IHFF has the same low-T asymptotic behavior as the
IHF,5 the ~classical-like! behavior for the susceptibility ob-
tained by the numerical solution of theS51/2 Bethe ansatz
for the IHF,11,12should be recovered here as well. In fact, as
will be seen below, this turns out to be a special case of a
more general scaling behavior, which holds nearT50 ~cf.
Sec. II! and is independent of the value ofS.

In the case of vanishing magnetic field, the ST energy
u0 is shown in Fig. 4. It is in good agreement, to leading
order inT, with the TI predictions, i.e.,u0;a1 /b1a2 /b

2,
wherea151. Since the soliton density is equal to 1/2~I!, the
meaning of this result is that every soliton contributes an
average of 2/b to the energy, in agreement with the equipar-
tition theorem. This result is not trivial; the fact that~asymp-
totic! equipartition can be recovered within the soliton pic-
ture, demonstrates that the complexity of the~dense!
classical soliton gas can be captured by the approximation of
pairwise interacting solitons. The discrepancy which occurs
at higher order (a2

ST differs significantly from the TI value of

FIG. 4. Energy vs temperature for zero field. Both TI and ST
asymptotically tend to 1/b. Terms ofO(T2) differ in the prefactor.

FIG. 5. The magnetization per site for the semiclassical
S51/2 IHFF ~a! andS53 ~b!, in the low-temperature regime. The
solid diamonds are obtained by extrapolating the finiteb curves to
b5`. Also shown are the limiting scaling curves of Fig. 1, both for
ST and TI.

FIG. 6. Same as in Fig. 5 for the field-dependent part of the
energy.
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21/2! does not imply a fundamental limitation of soliton
theory; it is a consequence of the approximate phase shifts
which were used in obtaining Eq.~4.3! in I, and which limit
our ability to describe soliton-soliton interactions beyond the
leading order in the temperature.

For nonzero magnetic fields, we have performed ST cal-
culations for various sequences ofS. In the classical limit,
S→`, results are represented by the points in Figs. 1–3, for
the magnetization, energy, and susceptibility, respectively. In
the case of the magnetization, agreement between ST and TI
is satisfactory, with the exception of a small region around
b2h<1. A similar agreement is observed in the case of the
susceptibility~Fig. 3!, which further yieldsgST9 (0)50.72, in
fair accord with the TI value 2/3. Agreement is less satisfac-
tory in the case of the energy. In particular:~i! Our soliton
calculation in the classical limit, fails to account for the
bump which appears in the TI results aroundb2h;0.9.
However, the property of asymptotic scaling~asb→`) per
se, is verified, even though the details of the ST and TI
scaling functions differ.~ii ! We note the discrepancy be-
tween the limiting values ofG`

ST50.30 andG`
TI50.25. Al-

though numerical accuracy is a serious issue~the values of
energy differencesdu approach the numerical accuracy as
the temperature is lowered!, we believe that both deficien-
cies, in view of the fact that they occur also at higher, nu-
merically more reliable, temperatures, are more likely to re-
flect the approximations made in the soliton phase shifts~cf.
above! rather than any limitations of the numerical proce-
dure.

In the quantun casesS51/2 and 3, ST results are shown
in Figs. 5 ~magnetization! and 6~energy!, respectively. We
note two important features of leading-order asymptotics:~i!
It appears that in the limitb→`, scaling behavior prevails,
i.e., thermodynamic quantities depend on the reduced vari-
ableb2h. ~ii ! The limiting scaling function seems to be uni-
versal, i.e., independent ofS. Both features can be clearly
demonstrated by the details shown in Fig. 7. At a given value
of b2h, the extrapolationsb→` lead to the same asymp-
totic result, independently of the value ofS. Deviations from
exact scaling behavior are of course stronger in the quantum
cases but, ultimately, classical and quantum cases approach a
common scaling limit~shown in Figs. 1–3, 5, and 6!.

IV. CONCLUDING REMARKS

We have presented extensive TI and ST results for the
field-dependent thermodynamic properties of the IHFF chain
in the low-temperature regime. Our findings suggest that the
same thermodynamic scaling function describes the leading-
order asymptotics of both classical and quantum chains. The
results presented here extend those of Ref. 7, which were
restricted to the magnetization~of the asymptotically equiva-
lent Heisenberg model!. In addition, the soliton-theoretical
calculation provides a computationally traceable link be-

tween soliton dynamics~as expressed by the phase shifts!
and thermodynamic scaling near a ‘‘critical point.’’

Our classical ST calculations exhibit significant system-
atic deviations from exact TI results. These limitations pre-
sumably reflect the approximate phase shifts used in reduc-
ing the two-dimensional integral equation~3.4! of Ref. 4 to a
numerically tractable one-dimensional form. Pending a
~presently! computationally prohibitive exact implementa-
tion of the full interacting soliton-gas scheme, we have still
been able to draw valuable conclusions about the existence
of anS-independent,T→0, scaling limit of thermodynamics
near zero temperature, along with acceptable estimates of the
~high- and very low-field! limits of the scaling function.

FIG. 7. ~a! The magnetization per site vs the square root of the
temperature for various values ofS, as computed in the soliton gas
approach; note that the extrapolated value, in the limitb→`, is
independent ofS. ~b! Same as~a! for the field-dependent part of the
energy~multiplied by b2). The points obtained by repeated appli-
cation of this extrapolation procedure for various values ofb2h,
produce the ‘‘ST scaling limit’’ curve referred to in the other fig-
ures.
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