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The large anisotropy of the diffusion coefficient for a substitutional randomly diluted cationic impurity in the
rutile structure, with the diffusivity being much larger along the tetragonal axis as compared to the diffusivity
within a tetragonal plane, indicates that open and almost empty^001& channels are involved along with an
interstitialcy mechanism to originate diffusion events leading an impurity from one to another substitutional
cationic site. This model is used to evaluate the resulting emission Mo¨ssbauer spectra of the impurity staying
locally at equilibrium with the lattice and embedded in a single-crystalline sample. Final results are shown for
the 14.4 keV Mo¨ssbauer line in57Co ~Fe!. It is shown that channel diffusivity is governed by the exponential
law, and details of the electric-field-gradient relaxation due to the diffusive motion of the probe are described
from first principles.@S0163-1829~96!06430-2#

I. INTRODUCTION

Measurements of the diffusion coefficient tensor for
highly diluted and randomly distributed substitutional cat-
ionic impurities in the rutile structure~an almost stoichio-
metric TiO2-rutile is a well-known example! indicate for
many such impurities a very large anisotropy, with the dif-
fusivity being much larger along the tetragonal axis as com-
pared to the diffusivity in the tetragonal plane.1 Figure 1
shows details of the rutile structure, and one can easily iden-
tify open and almost empty channels along^001& direction.
Since the anionic lattice is almost completely filled and the
anions are immobile at the interesting time scale, one can
conclude that a very small fraction of cations remains in the
potential minima in the channels, creating a small fraction of
randomly distributed substitutional cationic vacancies~some
of them are due to the very diluted and randomly distributed
impurities described above!. Hence, an impurity could be
forced into a channel via the interstitialcy mechanism after
having ‘‘encountered’’ some cation in the channel~mainly
cations constituting cationic lattice!, perform some number
of jumps within a channel, and finally jump into a substitu-
tional site via another interstitialcy event. A cation forced
into a channel via the last event goes away quite rapidly
leaving the impurity in the unperturbed state~it is mainly a
cation constituting lattice!.

One can assume that for such a scenario the impurity
remains locally at equilibrium with the lattice provided the
temperature is high enough~the process is thermally driven
anyway and the diffusivity has to be significant enough to be
observable!. Due to the fact that channels remain almost
empty and the bulk of impurities are substitutional, the
whole event described above takes a very short time com-
pared to the average time period between successive such
events. Events remain uncorrelated with each other as long
as the lattice is not far from being perfect.

Hence, one can summarize the diffusivity model in the
following way: a very diluted~isolated! impurity spends
most of the time at the substitutional cationic site@called

further (R), i.e., a regular site#. A very small fraction of the
host cations happens to be in the almost empty channels
moving rapidly along them. Corresponding cation vacancies
are very sparse as the crystal is almost stoichiometric. An-
ions fill completely their sublattice and remain immobile.
Sometimes a host cation moving along the channel gets in
the vicinity of the impurity and subsequently kicks it into a
channel filling its place~this is an intersticialcy mechanism,
but one cannot exclude a small fraction of impurities jump-
ing into the channel via the interstitial mechanism!. Jumps of
the impurity into almost empty channels occur with the av-
erage frequencyvD . Each (R) site is surrounded by eight
channel sites@called further (C) sites, i.e., channel sites# and
hence, impurity jumps into a particular (C) site having an
(R) impurity in the neighborhood occur with the frequency
8
1vD . Once the impurity has gotten into a channel it can jump
along the channel~vertically! either up or down. These
jumps occur with the average frequencyv0. Hence, a fre-
quency of jumps in the channel equals 2v0 as there are two
possible such jumps—up or down. After many such in-the-
channel jumps the impurity kicks some (R) cation~usually, a
host cation! into one of the surrounding channels and fills its
place. The host cation goes away along its channel. A fre-
quency of the out-of-channel jumps is calledv1. Due to the
fact that each (C) site is surrounded by four (R) sites a jump
into a particular (R) site occurs with the frequency4

1v1.
The whole process described above constitutes a single

diffusive event short compared to the average time period
between such uncorrelated events occurring with the fre-
quencyvD . Hence, no measurable signal comes from (C)
sites and all the signal comes exclusively from impurities
residing on the (R) sites. A frequencyv1@vD as otherwise a
significant fraction of impurities would stay in the channel.
Therefore there is no separate access tov1 andv0 frequen-
cies and one can measure only a ratio defined here as
R5~2v0!/v1. This ratio can take on any positive value in the
model. Finally, one has to realize that the overall diffusivity
is governed by the first step initiating the event, i.e., by a
jump into the channel occurring with the frequencyvD .

One can conclude this section by saying that potential
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minima within channels form an almost empty simple tetrag-
onal Bravais lattice (C), while the cations form a tetragonal
body-centered Bravais lattice (R), the latter having two in-
equivalent sites~corners and centers, respectively! as far as
the orientation of the local symmetric and even tensors of the
second ~or higher! order is considered@called further
(RW)—white sites~corners! and (RB)—black sites~cen-
ters!#. However, the occupancy of both sites is equal to each
other. All (R) cationic sites have local inversion centers. The
scenario outlined above applies as well to the cases where
the average distance traveled within a channel is quite dis-
parate for impurities and host cations.

One has to note that each event has a 50% chance to
change a color of the impurity. Hence, a color-switching fre-
quency~relaxation frequency! equals2

1vD . Positions in the
channel do not depend upon the oxygen parameter~defined
here as the ‘‘Ti-O’’ bond length projected on the edge of the
chemical unit cell in the tetragonal plane and divided by the

lattice constant in the tetragonal plane! and hence, the whole
model depends upon the following parameters:vD , R, a,
andc, wherea stands for the lattice constant in the tetrago-
nal plane~transversal constant! and c stands for the lattice
constant along the tetragonal axis. Lattice constants can be
removed by using scaled coordinates, while the frequency
vD is no longer needed once the impurity has already
jumped into the channel. Hence, a motion in the channel is
completely described by the parameterR provided an impu-
rity spends a short time in the channel as compared to the
average residence time on the (R) site.

Experimental data of Sasaki, Peterson, and Hoshino1 for
iron in TiO2-rutile indicate thatR>100 for that case and that
the ratioR is practically temperature independent for this
system. The paper is organized as follows: Section II deals
with the details of the channel diffusivity mechanism, Sec.
III is devoted to the calculation of the diffusion coefficient
tensor, while Sec. IV describes a diffusion self-correlation

FIG. 1. Details of the rutile structure:~a!
view ‘‘down’’ the tetragonal axis,~b! ‘‘side’’
view, ~c! ‘‘panoramic’’ view of the chemical unit
cell, ~d! adopted polar and azimuthal angles
shown in respect to the crystal axes, ‘‘pan-
oramic’’ view of the ^001& channel and diagram
of the impurity jumps;u stands for the oxygen
parameter, while the remaining symbols are ex-
plained within the text. Usuallyu>0.3.
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function of the impurity. Nonequivalence of the two sites is
treated in Secs. V and VI, where the relaxation of the
electric-field gradient and differences in the recoilless frac-
tion ~for a single crystal! are described, respectively. Section
VII describes evaluation of the observable quantity, i.e., a
Mössbauer spectrum obtainable from the impurities, while
Sec. VIII summarizes the results.

II. DIFFUSIVITY IN A CHANNEL

Let us consider the following problem. An isolated impu-
rity is forced ~via the predominantly interstitialcy mecha-
nism! into a straight, both ends infinite, and empty channel
consisting of identical one-dimensional cells. Subsequently,
an impurity can jump to the adjacent cells~with equal prob-
abilities! or leave the channel~via a similar mechanism as
mentioned above!. An independent diffusive event2 starts at
the moment of the impurity jump into the channel and ends
at the moment of the impurity jump out of channel. The
situation can be illustrated as follows:

~1!

where the midpoint of the channel is taken at random. The
coordinatexn is defined in such a way to be consistent with
the rutile structurê001& channels. There are three jump fre-
quencies describing a problem. Namely, a jump frequency
into any surrounding channelvD , a jump frequency within
the channelv0, and the jump frequency out of channelv1.
The first frequency stands here for the scaling frequencyvD
of the diffusive self-correlation function as it originates the
whole sequence of jumps constituting a diffusive event~due
to the fact that the channel remains practically empty there is
no bunching effect!.2 The frequencyvD!v1 due to the fact
that the channel remains practically empty and the impurity
spends most of the time at the substitutional (R) site. The
remaining frequencies exceptvD cannot be measured sepa-
rately in the event approximation3 and hence, the following
measurable ratio has to be defined~for details see, Fig. 1!:

R5~2v0!/v1 . ~2!

Factor 2 is due to the fact that each cell is surrounded by two
adjacent cells and the ratioR is positive for all physically
meaningful situations. Hence, the problem can be described
by a single~positive! parameterR except such trivial param-
eters like physical cell dimensions and scaling frequency
vD . It has to be noted, that the arbitrary midpoint is a sym-
metry point of the channel.

Hence, one has to find an impurity distribution along the
channel—being symmetrical with respect to the midpoint
and depending upon the single parameterR. A probability to
jump to the adjacent cell can be expressed as follows:

p5R/@2~11R!#, ~3!

while the probability to leave the channel from a given cell
equals 122p. Each impurity jump within a channel creates a
new generationm dependent only upon a previous genera-
tion. The indexm50, 1, 2, . . . enumerates subsequent gen-
erations, wherem50 generation is the oldest generation oc-
curring just after the impurity jump into the channel. Hence,
the weight at coordinatexn for them11 generation can be
calculated as follows:

Wm11~xn!5pFWmS xn2 1

2D1WmS xn1 1

2D G ,
where

W0S xn51
1

4D5W0S xn52
1

4D5
1

2

and

W0S xnÞ1
1

4
,2

1

4D[0 ~4!

due to the midpoint symmetry. It has to be noted, that

Wm~xn!5Wm~2xn! andWm~xn!>0. ~5!

Hence, one can calculate new weights in terms of the indexn
in the following way:

Wmn5Wm~xn!1Wm~2xn!, ~6!

wherexn5(112n)/4. One has to note that the weight of
the generationm equals (2p)m and it can be calculated as
follows:

(
n50

`

Wmn5~2p!m. ~7!

Hence, a normalized distribution within a channel can be
obtained by summation over all generations and taking a
proper normalization, i.e.,

rn5~122p! (
m50

`

Wmn , ~8!

wherern>0 and( n50
` rn51. Expressions~4! and~6! allow

us to calculate weightsWmn in the following way:

Wmn5pmCmn , ~9!

whereCmn[0 for n.m and otherwiseCmn are expressible
in terms of the Newtonian symbols in the following way:
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m2odd
n5 0 1 2 3 . . . m21 m

Cmn5 F S m
m21

2
D , S m

m21

2
D , F S m

m21

2
21D , S m

m21

2
21D G , . . . , F Sm0 D , Sm0 D G

m2even
n5 0 1 2 . . . m21 m

Cmn5 S mm
2
D , F S m

m

2
21D , S m

m

2
21D G , . . . , F Sm0 D , Sm0 D G , ~10!

Smk D5
m!

k! ~m2k!!
.

Several low-orderCmn coefficients are listed below:

n5 0 1 2 3 4

m50 1 0 0 0 0
1 1 1 0 0 0
2 2 1 1 0 0
3 3 3 1 1 1
4 6 4 4 1 1

. . . . . . . . . . . . . . . . . . . . . . . . .

It is interesting to note that the following ratio is constant
for the above-mentioned distribution:

S (
m50

`

pmCm,n11D YS (
m50

`

pmCmnD 5C~R!, ~11!

i.e., it does not depend upon the indexn. Hence, the distri-
bution ~8! can be expressed as an exponential distribution of
the following form:

rn~s!5exp$2@n/~2s!#% YS (
n850

`

exp$2@n8/~2s!#% D ,
~12!

wheres5s(R) depends solely uponR and it is responsible
for the ‘‘width’’ of the distribution.

We were unable to find any simple analytical expression
for the functions(R). It probably does not exist at all as the
channel space is quantized and it has properties of the fractal
spaces as well. Hence, we have used a Monte Carlo method
in order to generate the above-mentioned distribution. Figure
2 shows several distributions generated in such a way for
different values ofR. HereN(n) stands for the number of

FIG. 2. Plot of the impurity
distribution along the channel for
several values of the parameterR.
Distributions have been generated
by the Monte Carlo method.
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events, where the impurity left the channel atn. There is no
doubt that the generated distributions are exponential. Figure
3 showss(R) extracted from the above exponential distribu-

tions and plotted versusR. The latter function can be well
approximated by fitting to the following phenomenological
function:

s~R!5exp„@12h~x2x0!#$a11b1x1C exp@a~x2x0!#%1h~x2x0!$a21b2x1c2exp@b~x02x!#%…,

C5~a22a1!1x0~b22b1!1c2 , x5 ln~R!, x05 ln~R0!, R>0, s~R50!50,
~13!

a1,0, a2,0, x0,0, b1.0, b2.0, c2.0, a.0, b.0.

Here,h(x2x0) stands for the Heaviside function. The following values of the parameters fit optimally to the data:

x0520.273, R05exp~x0!50.7611;
a1 a2 b1 b2 c2 a b

22.46~4! 21.403~4! 0.074~3! 0.5030~8! 0.174~4! 0.289~7! 0.74~3!

~14!

allowing us to obtain a very fast algorithm to calculate dis-
tribution ~12! in terms of the parameterR.

The functions(R) approaches zero forR tending to zero
and it increases with the increasingR. A ‘‘flattening’’ at
small values ofR is due to the quantum character of the
channel space, i.e., due to the fact that the impurity cannot
jump ‘‘halfway’’ between cells. This ‘‘flattening’’ is seen on
the logarithmic scale used for abscissa and the function plot-
ted. It has to be noted, that the above outlined formalism
applies to infinite, both ends open channels having constant
curvature as well.

III. DIFFUSION COEFFICIENT

In order to calculate a diffusion coefficient~straight chan-
nels! additional information about the channel surrounding is
necessary. We confine ourselves to the^001& channels in the
rutile structure and isolated impurities~diluted ones! diffus-
ing via the channel mechanism between cation (R) sites. It is
assumed that impurities and to some extent host cations are
long-range mobile, while anions remain confined to the

proper lattice sites. For such a case a diffusion coefficient is
axially symmetric with both equivalent principal axes being
perpendicular to thê001& direction. Hence, it is described by
two components taking on the following forms:

D^100&5~1/8!vDa
2

in the transverse direction and

D^001&5~1/16!vDc
2S (

n50

`

$rn~s!@2n~n11!11#% D
in the vertical direction. An average diffusion coefficient
equals

^D&5
1

3
$D^001&12D^100&%. ~15!

Here,a.0 stands for the chemical cell lattice constant in the
transverse direction, whilec.0 is the chemical cell lattice
constant in the vertical direction. Directions^100&, ^010&, and
^001& define an orthogonal system as the chemical unit cell is
tetragonal. The scaling frequencyvD.0. Hence, the anisot-
ropy of the diffusion coefficient defined asd5D^001&/
D^100& depends only uponc/a andR and equals~see, Fig.
4!

d5
1

2
~c/a!2S (

n50

`

$rn~s!@2n~n11!11#% D
>
1

2
~c/a!2@111.00778R#. ~16!

The last approximation is accurate within about 0.9% for
R<103. It is convenient to define the following orthogonal
right-handed reference frame:x along the^001&, y along the
^11̄0&, and z along the^110& direction in the case of rutile
structure. A diffusion coefficient in the arbitrary direction
can be expressed as follows in the above-mentioned refer-
ence frame:

D~uf!5D^001&sin2u cos2f

1D^100&~sin2usin2f1cos2u!, ~17!

FIG. 3. Plot of the functions(R) fitted to the function described
by expressions~13! and~14!. Central line shows the most probable
curve, while the upper and lower lines show uncertainties due to the
finite statistics of the Monte Carlo simulations.
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where 0<u<p stands for the polar angle and 0<f,2p
stands for the azimuthal angle~see, Fig. 1!.

In principle, the parameterR is temperature dependent.
However, if the absolute value of the difference of the po-
tential barriers for14v1 andv0 jumps is much smaller than
the barrier for the18vD jumps, it is likely that the former
process is already saturated at temperatures high enough to
observe any diffusivity. Hence, the parameterR becomes
constant versus temperature and subsequently the anisotropy
of the diffusion coefficient does not depend upon tempera-
ture as it is independent of the frequencyvD , the latter being
the only parameter strongly dependent upon temperature.
Exactly such a behavior was observed by Sasaki, Peterson,
and Hoshino1 for iron in TiO2-rutile, where the anisotropy of
the diffusion coefficient corresponds toR>100 at all acces-
sible temperatures, while the overall diffusivity follows the
Arrhenius pattern. These results strongly favor the model
outlined above.

IV. SELF-CORRELATION FUNCTION FOR DIFFUSION

The cation (R) sublattice is a single tetragonal body-
centered Bravais lattice in the case of the rutile structure.
Hence, a purely diffusional self-correlation function of the
impurity is a scalar function and takes on the following form
in the above mentioned reference frame:4–12

G~ q̄,t !5E
2`

`

d3rei q̄ • r̄ G~ r̄ ,t !5exp$2vD@12a~ q̄!#t%,

~18!

where q̄ stands for the wave-vector transfer to the lattice,
t>0 stands for time, andG( r̄ ,t) denotes a probability den-
sity to find the impurity in the vicinity of the pointr̄ at time
t provided it was in the origin att50. A geometrical factor
a(q̄) is a Fourier transform of the spatial distribution of the
impurity produced by the diffusive event, i.e.,

a~ q̄!5E
2`

`

d3rei q̄ • r̄ r~ r̄ !,

wherer( r̄ ) stands for the probability density to find an im-
purity in the positionr̄ after the diffusive event provided it
was in the origin before the event. A geometrical factora(q̄)
takes on the following form in the present model:

a~ q̄!5 (
n50

`

rn~s!$A1cos@cqxf 0~n!#1A2cos@cqxf 1~n!#%,

A15~1/10!$114 cos@~aqy!/&#cos@~aqz!/&#%,
~19!

A25~1/4!$cos@~aqy!/&#1cos@~aqz!/&#%,

f 0~n!5
1

2
~n11! and f 1~n!5

1

2
n for n odd,

and

f 0~n!5
1

2
n and f 1~n!5

1

2
~n11! for n even,

qx ,qy ,qz are components of the wave-vector transfer to the
lattice. For the emission Mo¨ssbauer spectroscopy compo-
nents of the wave-vector transfer take on the form:

qx52q0sin u cosf,

qy52q0sin u sin f, ~20!

qz52q0cosu,

whereq0.0 stands for the wave number of the emittedg-ray
photon andu, f are polar and azimuthal angles of the emis-
sion direction, respectively@for the present case, the sign in
expressions~20! could be dropped due to the presence of
inversion centers#. Figure 5 showsg(q̄)512a(q̄) plotted
along arcs of great circles of the Ewald sphere for a constant
wave number and lattice constants, and for different values
of the parameterR. The functiong(q̄) represents variability
of the spectral width versus direction on the Ewald sphere. It
can take on values from the range@0,2# and it approaches
zero for the wave-vector transfer being equal to one of the
reciprocal-lattice vectors. It is appropriate to call it a diago-
nal geometrical factor.

V. RELAXATION OF THE ELECTRIC-FIELD GRADIENT

For an isolated unperturbing impurity located at the (R)
site in the rutile structure and otherwise almost perfect cation
lattice, perfect anion lattice, and negligible concentration of
interstitials, all impurity sites are equivalent as far as scalar
hyperfine interactions are considered~including second-order
Doppler shift!. However, nonscalar electric hyperfine inter-
actions ~magnetic interactions are absent! break symmetry
generating two (RW) and (RB) simple tetragonal
sublattices12 having an equal number of otherwise equivalent
kernels. Both of these two sublattices are equally populated
by the impurities. A semiclassical electric quadrupole inter-
action is the only one being able to split sufficiently nuclear
levels and the electric-field gradient~EFG! tensor has no
axial symmetry on the (R) sites.13 On the other hand, prin-

FIG. 4. Plot of the reduced anisotropy of the diffusion coeffi-
cient (a/c)2d versus parameterR ~accordingly to the ‘‘exact’’ for-
mula!.
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cipal axes of the EFG tensor coincide with the axes of the
previously defined reference frame for both (RW) and (RB)
sites. Namely, the EFG~traceless! tensor takes on the follow-
ing form in the above-mentioned reference frame~see, Fig.
1!:

V̂15S Vxx

0
0

0
2~Vxx1Vzz!

0

0
0
Vzz

D for ~RW! site ‘‘1’’

and

V̂25S Vxx

0
0

0
Vzz

0

0
0

2~Vxx1Vzz!
D for ~RB! site ‘‘2’’,

~21!

whereVxx andVzz stand for the EFG along thex andz axes,
respectively, andVyy52(Vxx1Vzz). Components of the
EFG are defined here for the~RW! site. It is interesting to
note that these two tensors transform one into another by a
right angle rotation around thê001& axis. Hence, in the
‘‘static’’ limit they produce the same set of eigenvalues. On
the other hand, in the extremely fast relaxation limit they
average to the axially symmetric EFG tensor having an axial
symmetry in the plane perpendicular to the^001& axis, i.e.,

^V̂&5
1

2
~V̂11V̂2!5VxxS 1 0 0

0 2
1

2
0

0 0 2
1

2

D . ~22!

Relaxation between these two sites occurs solely due to the
diffusive events and 50% of events lead to the sites of the
opposite ‘‘color.’’ Hence, the diffusion/relaxation matrix is
Hermitian and has the following form:11,12

R̂~ q̄!5vDS 2Fg~ q̄!1
1

2G
1

2

1

2

2Fg~ q̄!1
1

2G D ~23!

as the energy of the electric quadrupole interaction is much
smaller than the energy of the diffusive motion. Thus, the
quadrupolar relaxation frequency equals~1/2!vD . It is inter-
esting to note that even for the wave-vector transfer being
equal to one of the reciprocal-lattice vectorsḠ, the Möss-
bauer spectrum is still sensitive to the diffusive motion via
the quadrupolar relaxation mechanism. For the latter case the
operatorR̂(q̄) takes on the following form:12,14,15

R̂~ q̄5Ḡ!5
1

2
vDS 21 1

1 21 D . ~24!

VI. RECOILLESS FRACTION

All unperturbed (R) cation sites have inversion centers
and hence, only even vibrational tensors do not vanish.16,17

For relatively small wave-number transfers a contribution
from higher terms than quadratic seems to be negligible.18 It
is reasonable to assume as well, that the vibrational dynam-
ics is non-Gaussian only during the encounter with the inter-

FIG. 5. g(q̄) plotted along various arcs of great circles of the
Ewald sphere fora54.594 Å, c52.959 Å, and q057.30254
Å21: ~a! from ^110& to ^11̄0& direction, ~b! from ^110& to ^001&
direction at smallR, ~c! from ^110& to ^001& direction at largeR; it
has to be noted, that curve~a! does not depend upon the particular
value ofR, while curve~c! clearly shows an ‘‘interference’’ pattern
due to the very long distance traveled within a channel.

4012 54K. RUEBENBAUER, U. D. WDOWIK, AND M. KWATER



stitial atom. The latter event is short compared to the average
time between such events. Both (RW) and (RB) sites have
the same average recoilless fraction and hence, the anisot-
ropy of the recoilless fraction is solely responsible for the
modification of the relative line intensities, particularly due
to the fact that (RW) and (RB) sites are equally populated
~the line splitting is caused here by the EFG!. Quadratic ten-
sors describing recoilless fraction are diagonal for both sites
in the reference frame used above. They have the following
forms:17

B̂15S Bxx

0
0

0
Byy

0

0
0
Bzz

D for ~RW! site ‘‘1’’

and

B̂25S Bxx

0
0

0
Bzz

0

0
0
Byy

D for ~RB! site ‘‘2’’, ~25!

whereBxx , Byy , andBzz stand for the mean-squared dis-
placements along thex, y, andz axes, respectively. Compo-
nents of the vibrational tensor are defined here for the (RW)
site. Hence, the recoilless fraction in the direction of the
emitted photon can be expressed as follows for (RW) and
(RB) sites, respectively:

f 1~ q̄!5 f 1~uf!5exp$2q0
2@Bxxsin

2ucos2f

1Byysin
2usin2f1Bzzcos

2u#%,
~26!

f 2~ q̄!5 f 2~uf!5exp$2q0
2@Bxxsin

2ucos2f

1Bzzsin
2usin2f1Byycos

2u#%,

whereq0, u, andf are defined by expression~20!.
A diffusive motion tends to mix colors of the impurities

and hence, diagonal terms expressed by Eqs.~26! have to be
supplemented by the off-diagonal~mixing! terms. Due to the
fact that the characteristic time scale of the vibrational dy-
namics is much shorter than the time scale of the diffusive
motion, an independent dynamics approximation can be
used.12,19Hence, the off-diagonal terms are simply expressed
by the geometrical averages of the respective diagonal terms
and the weighting operator takes on the following~symmet-
ric! form:

f̂ ~uf!5S f 1~uf!

@ f 2~uf! f 1~uf!#1/2
@ f 1~uf! f 2~uf!#1/2

f 2~uf! D .
~27!

The weighting operator~27! cannot be uniquely determined
from a single spectrum obtained at the well-defined wave-
vector transfer. Hence, it has to be transformed to the follow-
ing form:

f̂ ~uf!5 f 1~uf!S 1
@ f 2~uf!/ f 1~uf!#1/2

@ f 2~uf!/ f 1~uf!#1/2

@ f 2~uf!/ f 1~uf!# D ,

where

f 2~uf!/ f 1~uf!5exp$q0
2D0@12sin2u~11sin2f!#%

with

D05Bzz2Byy . ~28!

The anisotropy parameterD0 can be determined from the
shape of a single spectrum provided the spectrum is observed
far away from the great circle of the Ewald sphere passing
through the^001& direction and either thê100& or ^010&
directions.

VII. SPECTRUM CALCULATION

Calculation of the Mo¨ssbauer spectrum shape for an emis-
sion spectroscopy from a single crystal in a standard trans-
mission geometry can be performed in a rather straightfor-
ward manner provided the following conditions are satisfied:

~1! resonance absorption within source is negligible;20

~2! direction of the emittedg-ray beam is well defined;
~3! an unbroadened, single line, flat and homogeneous,

unpolarizing absorber is used;
~4! absorber is resonantly thin and vibrates along the

g-ray beam with a small amplitude and frequency low

enough to avoid phase modulation;
~5! intensity of radiation reemitted from the absorber and

reaching the detector is negligible;
~6! detector and counting electronics stay within a linear-

response range;
~7! an emitting atom stays at equilibrium with the lattice

and temperature is high enough to equalize the population of
the hyperfine levels, e.g., all after effects should vanish at a
time scale short compared to the time scale of the Mo¨ssbauer
transition.

The first task is to calculate the superoperator~Liouville
operator! of the problem and hence, one has to start from the
super-Hamiltonian. A hyperfine Hamiltonian can be ex-
pressed as follows:21

Ĥ5S eQ

4I ~2I21! D (
i j51

3

Vi j S Î i Î j1 Î j Î i2
2

3
d i j Î

2D ~29!

for an electric quadrupole interaction, wheree denotes an
elementary positive charge,Q stands for the intrinsic spec-
troscopic nuclear electric quadrupole moment~pointlike ap-
proximation!, I denotes nuclear spin~for I<1/2 the Hamil-
tonian is a zero matrix!, indices i , j enumerate coordinate
axes of the above mentioned reference frame in the order
xyz, while symbolsÎ i and Î j stand for the appropriate spin-

projection operators, andÎ 2 denotes a total spin operator
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squared.Vi j stand for the appropriate components of the
symmetric~traceless! electric-field-gradient tensor. One has
to note that four such Hamiltonians appear in the present
problem, i.e., for the ground and excited nuclear states and
for the ~RW! and ~RB! sites as well. Hence, one has to deal
with two quadrupole moments and two spins. A super-
Hamiltonian takes on the form12,14

Hs
x~memgme8mg8!5d~meme8!Hg

~s!~mgmg8!2d~mgmg8!

3@He
~s!~meme8!1d~meme8!S#, ~30!

where the indexs refers to the site~s51,2!, indicese,g refer
to the excited and ground state; respectively,me and mg
stand for the respective magnetic quantum numbers, andS
denotes a total spectrum shift with respect to the absorber
used. The matrix element of the superoperatorR̂ can be ex-
pressed as follows:12,14

R~ss8memgme8mg8!5d~meme8!d~mgmg8!Rss8 ~ q̄!

1 id~ss8!Hs
x~memgme8mg8!, ~31!

whereRss8 (q̄) stands for the matrix element of the operator,
Eq. ~23!. It has to be noted that this superoperator is a linear
combination of the Hermitian matrices~weights of all-
involved states are equal each to other!. However, eigenval-
ues are complex numbers. The superoperator has the dimen-
sions

n0^ n05@2~2I e11!~2I g11!# ^ @2~2I e11!~2I g11!#

with

n052~2I e11!~2I g11!

as there are two relaxation states, 2I e11 excited hyperfine
levels and 2I g11 ground hyperfine levels. The superoperator
describes all the physics involved except vibrational dynam-
ics and the initial population of the eigenstates, the latter
being equal to each other in the present case.

Line intensities of the recoillessg-ray resonant radiation
emitted from the source can be expressed in the following
way:22

Cn~ q̄!5 (
k561

(
meme8

(
mgmg8

(
LL8

dLdL8

3^L8mg8uT̂pk~uf!ume8&* ^LmguT̂pk~uf!ume&

3(
ss8

f ss8~uf!vns8me8mg8
~ q̄!unsmemg

~ q̄!, ~32!

where the indexn51,2, . . . ,n0 enumerates eigenstates of the
problem,L denotes an angular momentum transfer during
the nuclear decay,dL51 for dipolar or quadrupolar transi-
tions, while for the mixed transitions~dipolar/quadrupolar!
d151 andd2 stands for the intrinsic nuclear mixing ratio for
the single photon radiative decay to the ground state~real
number!, k enumerates polarization states of the radiation
~due to the fact that an unpolarizing single line absorber is
used, off-diagonal terms vanish!, symbolsT̂pk~uf! represent
multipole operators of the parityp ~p50 for even transitions
andp51 for odd transitions!, polarizationk, and in the di-
rectionuf defined in the above-mentioned reference frame.
Finally, vns8me8mg8

(q̄) andunsmemg
(q̄) represent left and right

eigenvector coefficients of the superoperator, respectively,
while f ss8 ~uf! is a matrix element of the weighting operator
~27! or ~28!. Matrix elements of the multipole operators sat-
isfy the following relationship:17,22

^LmguT̂pk~uf!ume&5x~Lkp!C~ I gL2mgM uI eme!

3dkM
L ~u!eiMf;

where

x~Lkp!5@~2L11!/2#1/2~21!d~21,k!d@21,~21!p1L21#

3 i d@21,~21!p1L21#, ~33!

M5me2mg , d kM
L ~u! denotes a spherical operator matrix el-

ement andC(I gL2mgM uI eme) represents a Clebsch-Gordan
coefficient. In order to calculate a spectrum shape it is
practical to renormalize line intensities and to calculate
linewidths in the following way:22

bn~ q̄!5Cn~ q̄! Y (
n851

n0

Re@Cn8~ q̄!#

and

Gn~ q̄!5G22 Re@ln~ q̄!#, ~34!

whereG denotes a total~source! linewidth in the ‘‘static’’
limit ~vD50!, while ln(q̄) stands for thenth eigenvalue of
the superoperator. The spectrum shape can be calculated now
in a straightforward manner. Namely, it takes on the follow-
ing form:23,24

P~ q̄v !5B0F12 f S~ q̄!1 f S~ q̄!S E
2`

`

dvr~ q̄v,v !e2tL~v!D G
with

L~v!5$12@~2j!/G0#v%/$11@~2/G0!v#2%, ~35!

and a recoilless radiation density being expressed as

r~ q̄v,v !5~2p!21(
n51

n0 S Gn~ q̄!Re@bn~ q̄!#12an~ q̄!Im@bn~ q̄!#

@~1/2!Gn~ q̄!#21@an~ q̄!#2 D ,
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where

an~ q̄!5v1v1Im@ln~ q̄!#.

Herev stands for the Doppler velocity~energy! applied by
the spectrometer,B0 denotes the number of counts far off
resonance—in a standard multiscaler setup,t stands for the
effective resonant absorber thickness~dimensionless—
eventually corrected for the intrinsic absorber broadening!, j
stands for an effective interference term due to the
absorber17,22,25–27andG0 is the absorber linewidth~natural!.
An effective recoilless fraction of the sourcef S(q̄) is a
weighted average over all sites, with a common wave-vector
transfer to the systemq̄, corrected for the detector back-
ground under the Mo¨ssbauerg-ray line. Hence, it takes on
the following form for the rutile structure:

f S~ q̄!5
1

2
l21@ f 1~ q̄!1 f 2~ q̄!#, ~36!

where f 1(q̄) and f 2(q̄) stand for recoilless fractions of the
respective sites, see, expression~26!, and l5(s01b0)/s0
with s0 being a detector signal due to the Mo¨ssbauerg-ray
line ~both quasielastic and inelastic components! andb0 be-
ing a total detector background under the selected Mo¨ssbauer
g-ray line.17 A recoilless radiation densityr(q̄v,v) takes on
non-negative value for any value of the arguments~and for
any polarization as well! and it is normalized to unity, i.e.,

E
2`

`

dvr~ q̄v,v ![1.

FIG. 6. G1, G2, andD ~splitting! plotted ver-
sus vD : ~a! broad range ofvD , ~b! narrow
range ofvD .
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The last integral exists in the principal sense and the odd
terms in the recoilless radiation density are due to the relax-
ation of the EFG.

The quantityP(q̄v) is a directly measurable quantity ver-
sus v in a standard Mo¨ssbauer setup, i.e., it represents a
detector count rate for a Doppler velocityv applied to either
source or absorber in the direction defined by the wave vec-
tor q̄. A variation of theq0 due to the applied Doppler shift
is negligible for typical velocity ranges. Positive velocitiesv
correspond to the situation where the absorber is approach-
ing the source, while negative velocities occur when the ab-
sorber is receding from the source.

Finally, one has to note that for the rutile structure the
superoperator R̂ could be decomposed into
(2$vD[g(q̄)11/2]1 iS%1̂) and R̂1$vD[g(q̄)11/2]

1 iS%1̂, the latter having eigenvectors independent ofq̄ and

eigenvaluesln(q̄)1$vD[g(q̄)11/2]1 iS%. Here, the sym-
bol 1̂ denotes a unit operator of the proper dimension. Such a
decomposition is possible due to the fact that the diffusion
occurs within a single Bravais lattice.

For the 14.4 keV Mo¨ssbauer line in57Fe ~being already
equilibrated with the lattice! a ground-state nuclear level
does not participate in the EFG relaxation~I e53/2, I g51/2,
practically pureM1 transition, j almost equal zero! and
hence, a relaxation is entirely due to the first excited nuclear
level having doubly degenerated hyperfine sublevels~Kram-
ers degeneracy!. Thus, one obtains two ‘‘doublets’’ having
the same line positions, albeit different linewidths~except for
the ‘‘static’’ limit, where a single doublet is present!. Figure
6 showsG15~1/2!$G2Gn(q̄5Ḡ)% for n belonging to the
‘‘narrow subset,’’G25~1/2!$G2Gn(q̄5Ḡ)% for n belonging
to the ‘‘broad subset,’’ and a ‘‘doublet’’ splittingD plotted

FIG. 7. Cb plotted versusvD for the same
quadrupole coupling constants as those of Fig.
6: ~a! broad range ofvD , ~b! narrow range of
vD .
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versus frequencyvD . All values have been rescaled byq0
21

including adopted quadrupole coupling constants13

Azz5$~eQe!/@4I e~2I e21!#%Vzz

and

Axx5$~eQe!/@4I e~2I e21!#%Vxx

with Azz520.2379 mm/s andAxx520.1281 mm/s.
Figure 7 shows a relative contribution to the emission

profile due to the broad component, i.e.,

Cb5 (
broad

components

^bn~ q̄!&uf

~with ^•••&uf denoting averaging over all directions! calcu-
lated for a completely random ‘‘powder’’ sample and isotro-
pic recoilless fraction and plotted versusvD rescaled byq0

21.
One can clearly see that negative intensities occur in the
emission profile. However, a total profile or a profile calcu-
lated for a particular polarization remains always non-
negative for all physically meaningful cases~at any fre-
quency and in any direction in the case of a single crystal as

well!. One has to note that imaginary parts of theCb ampli-
tude and a correspondingCn amplitude~narrow component!
are always zero for the model considered here.

Such a behavior indicates that neither narrow nor broad
components could be observed separately. A relaxation of
the EFG driven by the diffusive motion mixes coherently
hyperfine states belonging to the distinct sites. One could see
as well that for the very fast relaxationCb andG1 tend to
zero. This is a motional narrowing effect similar to the one
observed by the nuclear magnetic resonance method.

Finally, Fig. 8 shows examples of spectra calculated for
the following parameters13 ~all ‘‘frequency’’ parameters
scaled byq0

21!:

G050.097 mm/s, t52.0, G50.11 mm/s,

Azz520.2379 mm/s, Axx520.1281 mm/s,

a54.594 Å, c52.959 Å, q057.30254 Å21,

f50°

S520.3 mm/s at temperatureT50 K,

FIG. 8. Some spectraP(q̄v) calculated for the 14.4 keV line in57Fe for a linear velocity scalev: ~a! R50.01, u522°, f50°,
~b! R50.01, u537,f50°, ~c! R50.01, u540°,f50°, ~d! R5100, u540°,f50°, ~e! T51100 K,u540°,f50°.
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Bxx51.56931023, Byy52.04431023,

Bzz51.80931023 in Å2

~mean-squared displacements alongxyz axes, respectively!
at temperatureT50 K. A recoilless fractionf S(q̄) has been
corrected forl51.2 for all spectra. ParametersBxx , Byy ,
Bzz, andS have been corrected for the temperature effect
using a harmonic isotropic model with the parabolic density
of phonon states~Debye model! having the effective cutoff
~Debye! temperatureuD5600 K ~adopted after Ref. 28!. A
shift S has been corrected solely for the second-order Dop-
pler shift adopting the following mean-squared velocity:29

^v2&55.57631010 ~mm/s!2 at T50 K.

All corrections to linewidths due to the second-order Dop-
pler shift at finite temperatures have been neglected as irrel-
evant in comparison to the intrinsic linewidths at meaningful
temperatures.30 A frequency vD has been taken as
vD5v D

0 exp@2(U/T)# with vD
0 51.8713106 mm/s and

U516 219 K, i.e., for an oxygen saturated and thermody-
namically stable TiO2-rutile.

1 Quadrupole coupling constants
are likely to remain weakly temperature dependent due to the
oxidation state of substitutional iron~almost all of iron at-
oms! in the rutile structure with divalent anions. The param-

eter R strongly depends upon temperature, in principle.
However, its value is likely to reach a saturation value at
temperatures high enough for a diffusivity to be observable
and hence, it appears to be almost temperature independent.
Such a behavior has been observed by a tracer method for a
diffusion of 59Fe in oxygen-saturated rutile~TiO2!,

1 where
the anisotropy of the diffusion coefficient was found to be
very weakly dependent upon temperature~provided a sample
was perfect enough to avoid blocking of channels!. Results
obtained by Sasaki, Peterson, and Hoshino1 allow us to esti-
mate R roughly as being close to 100 for the above-
mentioned impurity-host system. The same results clearly
show that the parameterR is temperature independent in the
temperature range accessible experimentally. It has to be
noted, that in the case of about 1–2 % effect a statistically
relevant spectrum could be accumulated within about 24 h
provided a source activity amounts to several mCi and a
detector acceptance solid angle is of the order of several
degrees. It is important to use thin samples in the direction of
the emittedg ray in order to minimize a self-absorption, the
latter being due to the photoeffect mainly.

Figure 9 shows a spectrum distortion due to the typical
experimental geometry. All corrections have been taken into
account except detector geometrical effects and reemission

FIG. 8. ~Continued)
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of the Mössbauer line~both elastic and inelastic components!
from the absorber, and reaching the detector. The last effect
would primarily affectf S(q̄) andt. One can conclude, that in
the case of largeR a special geometry might be necessary to
obtain reliable results, i.e., one has to apply two-dimensional
Soller collimators.31 It should be noted that a direction cho-
sen for the calculations of the geometrical effects is particu-
larly sensitive to the changes in the polar and azimuthal
angles. The smearing effect would be~fortunately! less pro-
nounced in other directions. There are numerous parameters
required to calculate geometrical effects and hence, we offer
for those interested a special subroutineSCOLLIM which is
able to calculate weights of the subspectra contributing to the
final signal. Roughly speaking a typical setup consists of a
rectangular source having dimensions 7312 mm and a thick-
ness 0.1 mm. A direction̂111& is perpendicular to the source
surface and the source is located 120 mm beneath a circular
collimator having 15 mm diameter. The source is rotated
around the axis parallel to the collimator plane in such a
way, that a photon propagating along the collimator axis is
emitted at the angleu535.6°. The longer source dimension
is almost parallel to the source rotation axis.

It is important to realize that the geometrical effects are
largest in the directions where the functiong(q̄) has deep

minima restricted to the small area of the Ewald sphere. Such
minima occur for long distances traveled by the impurity
within a channel and hence, they appear for large values of
the parameterR @see, Fig. 5~c!#. A significance of the geo-
metrical smearing could be evaluated solely by performing
suitable simulations. Hence, it is highly desirable to include
geometrical effects in the procedure used to fit parameters of
the model to the experimental data. A subroutineSCOLLIM

conforms to such conditions provided an experimental geom-
etry is well defined.

VIII. CONCLUSIONS

It has been found that a distribution of the impurity dif-
fusing within an empty channel is governed by a simple
exponential law depending solely upon the ratio of frequen-
cies describing jumps within the channel and out of the chan-
nel, respectively. A reduced anisotropy of the diffusion co-
efficient depends solely upon the above ratio and the
relationship between these two quantities is almost linear,
see, Eq.~16!. Hence, the above ratio could be found in the
straightforward manner from the tracer data obtained for the
single-crystal samples. For a very fast diffusivity in the chan-
nel the ratio of the above-mentioned frequencies becomes
temperature independent. A frequency of the diffusive events
is governed by the frequency of the impurity jumps into the

FIG. 9. Comparison of spectra calculated forT51200 K,
u535.6°, andR5100 in the case of perfect~narrow! geometry and
for a typical experimental setup;f50°. Axes have the same mean-
ing as in Fig. 8.

FIG. 8. ~Continued!.

54 4019CALCULATION OF THE RECOILLESSg-RAY . . .



channel and hence, a reduced transversal diffusivity is gov-
erned solely by the above frequency.

A diagonal geometrical factor of the self-correlation func-
tion exhibits very narrow minima on the Ewald sphere for
large values of the ratioR and a wave-vector transfer encom-
passing a significant number of the reciprocal points. Hence,
a special experimental geometry might be necessary to ob-
tain reliable results by the Mo¨ssbauer technique. These very
narrow minima resemble an ‘‘interference’’ pattern originat-
ing from the large number of equally spaced scattering
‘‘slits’’ and the physics behind this phenomenon is actually
very similar. A very fast semianalytical and phenomenologi-
cal algorithm to calculate a self-correlation function has been
developed.

It has been shown that the impurity diffusing on a single
nonprimitive Bravais lattice might experience relaxation of
the color. Such a color relaxation might lead to the reorien-
tational relaxation of the EFG in the case of nonmagnetic
materials. It is interesting to note that for the rutile structure
the relaxational averaging of the EFG is incomplete even in
the extremely fast relaxation limit. The rutile structure is the
first known structure where the unique relationship between
diffusivity and the color relaxation was found. The frequency
of the latter is simply half of the diffusive event frequency.
Hence, a diffusivity could be observed by the Mo¨ssbauer
technique, even for the wave-vector transfer being one of the
reciprocal-lattice vectors as the spectrum is perturbed by the
EFG relaxation, the latter being driven solely by the diffu-
sive events. A diffusion driven relaxation of the EFG mixes

coherently hyperfine levels belonging to distant sites on the
Bravais lattice. A motional narrowing effect appears for the
EFG relaxation, while it is absent for a pure diffusive broad-
ening due to the fact that the diffusive motion remains un-
bounded.

Due to the fact that the recoilless fraction is anisotropic
the reorientational relaxation of the recoilless fraction occurs
with the same frequency as the relaxation of the EFG. Hence,
off-diagonal terms in the vibrational dynamics matrix ap-
pear. They are likely to be equal to the simple geometrical
averages of the respective recoilless fractions as the time
scale of the diffusive motion is much larger than the time
scale of the vibrational motion. However, it is an example
where the off-diagonal terms could be unambiguously de-
fined. In order to observe the phase of the off-diagonal terms
one has to look at the quantum~tunneling! diffusivity, the
latter being seldom observable for such heavy impurities like
Mössbauer atoms. For a classical limit relative phases are
lost ~averaged to zero! and one could see absolute values of
the vibrational amplitudes solely.
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