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Calculation of the recoillessy-ray emission spectra from a substitutional cation impurity
diffusing via the (001) channels in the rutile structure
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The large anisotropy of the diffusion coefficient for a substitutional randomly diluted cationic impurity in the
rutile structure, with the diffusivity being much larger along the tetragonal axis as compared to the diffusivity
within a tetragonal plane, indicates that open and almost e@ft§) channels are involved along with an
interstitialcy mechanism to originate diffusion events leading an impurity from one to another substitutional
cationic site. This model is used to evaluate the resulting emissi@shwier spectra of the impurity staying
locally at equilibrium with the lattice and embedded in a single-crystalline sample. Final results are shown for
the 14.4 keV Masbauer line it’Co (Fe). It is shown that channel diffusivity is governed by the exponential
law, and details of the electric-field-gradient relaxation due to the diffusive motion of the probe are described
from first principles[S0163-182606)06430-2

[. INTRODUCTION further (R), i.e., a regular site A very small fraction of the
host cations happens to be in the almost empty channels
Measurements of the diffusion coefficient tensor formoving rapidly along them. Corresponding cation vacancies
highly diluted and randomly distributed substitutional cat-are very sparse as the crystal is almost stoichiometric. An-
ionic impurities in the rutile structuréan almost stoichio- ions fill completely their sublattice and remain immobile.
metric TiO,rutile is a well-known exampleindicate for ~Sometimes a host cation moving along the channel gets in
many such impurities a very large anisotropy, with the dif-the vicinity of the impurity and subsequently kicks it into a
fusivity being much larger along the tetragonal axis as com¢channel filling its placdthis is an mter;uualc_:y me_c_hanysm,
pared to the diffusivity in the tetragonal plahesigure 1 Put one cannot exclude a small fraction of impurities jump-
shows details of the rutile structure, and one can easily ider9 |_nt0 th_e c_hannel via the interstitial mechan)sdu_mps of
tify open and almost empty channels alof@@1) direction. the impurity into almost empty channels occur with the av-

Since the anionic lattice is almost completely filled and thetrade frequencysp . Each R) site is surrounded by eight

anions are immobile at the interesting time scale, one Cachannel sitegcalled further C) sites, i.e., channel sitand

) . P Hence impurity jumps into a particulaCy site having an
conclu_de thaF avery small fraction of qatlons remains in th R) impurity in the neighborhood occur with the frequency
potential minima in the channels, creating a small fraction o

L - . s0p . Once the impurity has gotten into a channel it can jump
randomly distributed substitutional cationic vacandssme along the channelvertically) either up or down. These

_of the_rr_1 are due _to the very diluted and _rando_mly distributequmps occur with the average frequenay. Hence, a fre-
impurities described aboyeHence, an impurity could be guency of jumps in the channel equals,2s there are two
forced into a channel via the interstitialcy mechanism aﬁerpossible such jumps—up or down. After many such in-the-
having “encountered” some cation in the chanriglainly  channel jumps the impurity kicks somRY cation(usually, a
cations constituting cationic latticeperform some number host catiof into one of the surrounding channels and fills its
of jumps within a channel, and finally jump into a substitu- place. The host cation goes away along its channel. A fre-
tional site via another interstitialcy event. A cation forced quency of the out-of-channel jumps is calleg. Due to the
into a channel via the last event goes away quite rapidifact that each) site is surrounded by fouR) sites a jump
leaving the impurity in the unperturbed stdteis mainly a  into a particular R) site occurs with the frequency; .
cation constituting lattice The whole process described above constitutes a single
One can assume that for such a scenario the impuritdiffusive event short compared to the average time period
remains locally at equilibrium with the lattice provided the between such uncorrelated events occurring with the fre-
temperature is high enoudthe process is thermally driven quencywp. Hence, no measurable signal comes fra@) (
anyway and the diffusivity has to be significant enough to besites and all the signal comes exclusively from impurities
observablg Due to the fact that channels remain almostresiding on the R) sites. A frequency;>wp as otherwise a
empty and the bulk of impurities are substitutional, thesignificant fraction of impurities would stay in the channel.
whole event described above takes a very short time comFherefore there is no separate acceset@nd w, frequen-
pared to the average time period between successive sucies and one can measure only a ratio defined here as
events. Events remain uncorrelated with each other as long=(2wg)/w;. This ratio can take on any positive value in the
as the lattice is not far from being perfect. model. Finally, one has to realize that the overall diffusivity
Hence, one can summarize the diffusivity model in theis governed by the first step initiating the event, i.e., by a
following way: a very diluted(isolated impurity spends jump into the channel occurring with the frequengy .
most of the time at the substitutional cationic Sitalled One can conclude this section by saying that potential
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FIG. 1. Details of the rutile structure:(a)
view “down” the tetragonal axis,(b) “side”
view, (c) “panoramic” view of the chemical unit
cell, (d) adopted polar and azimuthal angles
shown in respect to the crystal axes, “pan-
oramic” view of the(001) channel and diagram
of the impurity jumps;u stands for the oxygen
parameter, while the remaining symbols are ex-
plained within the text. Usually=0.3.
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minima within channels form an almost empty simple tetragattice constant in the tetragonal plaread hence, the whole
onal Bravais lattice €), while the cations form a tetragonal model depends upon the following parametesg:, R, a,
body-centered Bravais latticdR], the latter having two in- andc, wherea stands for the lattice constant in the tetrago-
equivalent sitegcorners and centers, respectiyefss far as  nal plane(transversal constanand c stands for the lattice
the orientation of the local symmetric and even tensors of theonstant along the tetragonal axis. Lattice constants can be
second (or highe) order is consideredcalled further removed by using scaled coordinates, while the frequency
(RW)—white sites(corners and (RB)—black sites(cen- wp is no longer needed once the impurity has already
terg]. However, the occupancy of both sites is equal to eacliumped into the channel. Hence, a motion in the channel is
other. All (R) cationic sites have local inversion centers. Thecompletely described by the paramefeprovided an impu-
scenario outlined above applies as well to the cases wherity spends a short time in the channel as compared to the
the average distance traveled within a channel is quite disaverage residence time on thR)(site.
parate for impurities and host cations. Experimental data of Sasaki, Peterson, and HosHioo
One has to note that each event has a 50% chance tmn in TiO,-rutile indicate thaR=100 for that case and that
change a color of the impurity. Hence, a color-switching fre-the ratioR is practically temperature independent for this
quency (relaxation frequendyequalsiwy . Positions in the system. The paper is organized as follows: Section Il deals
channel do not depend upon the oxygen param@fined  with the details of the channel diffusivity mechanism, Sec.
here as the “Ti-O” bond length projected on the edge of thelll is devoted to the calculation of the diffusion coefficient
chemical unit cell in the tetragonal plane and divided by thetensor, while Sec. IV describes a diffusion self-correlation
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function of the impurity. Nonequivalence of the two sites iswhile the probability to leave the channel from a given cell
treated in Secs. V and VI, where the relaxation of theequals +-2p. Each impurity jump within a channel creates a
electric-field gradient and differences in the recoilless frachew generatiorm dependent only upon a previous genera-
tion (for a single crystalare described, respectively. Section tion. The indexm=0, 1, 2, ... enumerates subsequent gen-
VIl describes evaluation of the observable quantity, i.e., erations, wheren=0 generation is the oldest generation oc-
Mossbauer spectrum obtainable from the impurities, whilecurring just after the impurity jump into the channel. Hence,
Sec. VIl summarizes the results. the weight at coordinatg,, for the m+1 generation can be
calculated as follows:

Il. DIFFUSIVITY IN A CHANNEL

Let us consider the following problem. An isolated impu- Wiy 1(Xp) = p[Wm( Xn_% +W,,
rity is forced (via the predominantly interstitialcy mecha-

nism) into a straight, both ends infinite, and empty channel
consisting of identical one-dimensional cells. Subsequentlywhere
an impurity can jump to the adjacent ceflgith equal prob-

abilities) or leave the channdlia a similar mechanism as

mentioned above An independent diffusive evenstarts at WO(Xn: +

1
Xn+§ s

the moment of the impurity jump into the channel and ends 4
at the moment of the impurity jump out of channel. The
situation can be illustrated as follows: and
| o | ) ] | ! * | - I * 1 ° 1
. =1 _35 _3 _1 L 3 s z 1 1
n 3 3 3 3 3 3 P 3 WO Xn¢+Z’_Z =0 (4)
n = 3 2 1 0 0 1 2 3,
= 2 1 i 0 0 i 1 2 AN
2 2 z due to the midpoint symmetry. It has to be noted, that
()
where the midpoint of the channel is taken at random. The Win(Xn) =Wp(—Xn) and Wiy(x,)=0. ®)

coordinatex,, is defined in such a way to be consistent with

the rutile structur€001) channels. There are three jump fre- Hence, one can calculate new weights in terms of the imdex
quencies describing a problem. Namely, a jump frequencyn the following way:

into any surrounding channely, a jump frequency within

the channelyy, and the jump frequency out of channe).

The first frequency stands here for the scaling frequengy Winn=Win(Xn) +Wp(—Xn), ©)

of the diffusive self-correlation function as it originates the

whole sequence of jumps constituting a diffusive eglie ~ wherex,=(1+2n)/4. One has to note that the weight of
to the fact that the channel remains practically empty there ithe generatiorm equals (D)™ and it can be calculated as
no bunching effegt’> The frequencywp<w; due to the fact follows:
that the channel remains practically empty and the impurity
spends most of the time at the substitutiond) (site. The
remaining frequencies excep}, cannot be measured sepa-

rately in the event approximatidrmnd hence, the following
measurable ratio has to be defindadr details see, Fig.)1

HZO W= (2p)™. @)

Hence, a normalized distribution within a channel can be
R=(2wg)/ w1 . (2 obtained by summation over all generations and taking a
proper normalization, i.e.,
Factor 2 is due to the fact that each cell is surrounded by two
adjacent cells and the ratR is positive for all physically ®
meaningful situations. Hence, the problem can be described _(1_
by a single(positive) parameteR except such trivial param- pn=(1 2p)m2:O Winn. ®
eters like physical cell dimensions and scaling frequency
wp . It ha; to be noted, that the arbitrary midpoint is a Sym'wherepn>0 ands %_op,=1. Expression&) and(6) allow
metry point of the Char?”e'- : L us to calculate weightgV,,, in the following way:
Hence, one has to find an impurity distribution along the
channel—being symmetrical with respect to the midpoint
and depending upon the single param&eA probability to Wirn=P"Crin» 9
jump to the adjacent cell can be expressed as follows:

whereC,,,=0 for n>m and otherwiseC,, are expressible
p=R/[2(1+R)], 3 in terms of the Newtonian symbols in the following way:
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FIG. 2. Plot of the impurity
distribution along the channel for
several values of the parameter
- Distributions have been generated
by the Monte Carlo method.
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Several low-ordecC,,, coefficients are listed below: i.e., it does not depend upon the indexHence, the distri-
bution (8) can be expressed as an exponential distribution of
n= 0 1 2 3 4 the following form:
m=0 1 0 0 0 0 -
1 1 1 0 0 0 ,
(o)=exp{—[n/(20)] > exp—[n'l(20)]} |,
2 2 1 1 0 0 P 3 f n'=0 3 }
3 3 3 1 1 1 (12
4 6 4 4 1 1

whereo=0(R) depends solely upoR and it is responsible
for the “width” of the distribution.
We were unable to find any simple analytical expression
It is interesting to note that the following ratio is constant for the functiona(R). It probably does not exist at all as the
for the above-mentioned distribution: channel space is quantized and it has properties of the fractal
spaces as well. Hence, we have used a Monte Carlo method
in order to generate the above-mentioned distribution. Figure

_ 2 shows several distributions generated in such a way for
mC mc =C(R), 11 .
(rnE:O P m’”“) /(mZO P m”) (R, (D different values ofR. HereN(n) stands for the number of
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events, where the impurity left the channehatThere is no  tions and plotted versuR. The latter function can be well
doubt that the generated distributions are exponential. Figurapproximated by fitting to the following phenomenological
3 showso(R) extracted from the above exponential distribu- function:

o(R)=exp([1— n(x—Xg)[{a; + bix+ C exd a(Xx—Xg) |} + 7(X—Xg){ay+ box+ cexd B(Xo—x)1}),

C=(a,—a;)+Xo(by—by)+c,, x=In(R), xg=In(Ry), R=0, o(R=0)=0,

(13
a.1<0, a2<0, X0<0, bl>0’ b2>0, Cz>0, a>0, B>O

Here, 7(x—X,) stands for the Heaviside function. The following values of the parameters fit optimally to the data:
Xo=—0.273, Ry=expxy)=0.7611;
a.l 8.2 bl b2 Cz o B

—2.464) —1.4034) 0.0743) 0.503a8) 0.1744) 0.2897) 0.743)
(14)

allowing us to obtain a very fast algorithm to calculate dis-proper lattice sites. For such a case a diffusion coefficient is

tribution (12) in terms of the parametdR. axially symmetric with both equivalent principal axes being
The functiona(R) approaches zero fdR tending to zero  perpendicular to thed01) direction. Hence, it is described by

and it increases with the increasimy A “flattening” at  two components taking on the following forms:

small values ofR is due to the quantum character of the

channel space, i.e., due to the fact that the impurity cannot D(100 =(1/8) wpa®

jump “halfway” between cells. This “flattening” is seen on in the transverse direction and

the logarithmic scale used for abscissa and the function plot-

ted. It has to be noted, that the above outlined formalism o

applies to infinite, both ends open channels having constant D<OOl)=(1/16)ch2 z {pn(a)[2n(n+1)+1]}

curvature as well. n=0

in the vertical direction. An average diffusion coefficient
ll. DIFFUSION COEFFICIENT equals

In order to calculate a diffusion coefficietsgtraight chan- 1
nels additional information about the channel surrounding is (D)= 3 {D(003)+2D(100);. (15
necessary. We confine ourselves to ¢6@1) channels in the
rutile structure and isolated impuritiédiluted oneg diffus- Here,a>0 stands for the chemical cell lattice constant in the
ing via the channel mechanism between cati@h gites. Itis  transverse direction, while>0 is the chemical cell lattice
assumed that impurities and to some extent host cations aponstant in the vertical direction. Directioftd0), (010), and
long-range mobile, while anions remain confined to the(001) define an orthogonal system as the chemical unit cell is
tetragonal. The scaling frequenay>0. Hence, the anisot-
ropy of the diffusion coefficient defined as§=D(001)/
D(100 depends only upon/a andR and equalgsee, Fig.
4)

£
FETE TR BRI

6=%(c/a)2 3 {pa(@)[2n(n+1)+1])

L1 HH‘
oy

1
& =5 (c/la)[1+1.0077R]. (16)

L The last approximation is accurate within about 0.9% for
e R<10’. It is convenient to define the following orthogonal
— right-handed reference frame:along the(001), y along the
‘ N T T e (110), and z along the{110 direction in the case of rutile
® 3 0 3 6 ° structure. A diffusion coefficient in the arbitrary direction
log.,(R) can be expressed as follows in the above-mentioned refer-
ence frame:
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©

FIG. 3. Plot of the functiorr(R) fitted to the function described
by expression$13) and(14). Central line shows the most probable D(6¢)=D(001)sir?g co¢
curve, while the upper and lower lines show uncertainties due to the
finite statistics of the Monte Carlo simulations. +D(100)(sirgsir’ ¢+ cos h), (17
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FIG. 4. Plot of the reduced anisotropy of the diffusion coeffi-
cient (a/c)?5 versus parametdR (accordingly to the “exact” for-
mula).

where G=#<m stands for the polar angle and<@<2w
stands for the azimuthal ang(see, Fig. L
In principle, the parameteR is temperature dependent.

However, if the absolute value of the difference of the po-

tential barriers forz w; and o, jumps is much smaller than
the barrier for thefwp jumps, it is likely that the former
process is already saturated at temperatures high enough
observe any diffusivity. Hence, the parameRrbecomes

constant versus temperature and subsequently the anisotro
of the diffusion coefficient does not depend upon tempera

ture as it is independent of the frequenay, the latter being

the only parameter strongly dependent upon temperatur
Exactly such a behavior was observed by Sasaki, Peterso

and Hoshinbfor iron in TiO,-rutile, where the anisotropy of
the diffusion coefficient corresponds R=100 at all acces-
sible temperatures, while the overall diffusivity follows the

Arrhenius pattern. These results strongly favor the mode?

outlined above.

IV. SELF-CORRELATION FUNCTION FOR DIFFUSION

The cation R) sublattice is a single tetragonal body-
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[

wherep(r) stands for the probability density to find an im-
purity in the positionr after the diffusive event provided it
was in the origin before the event. A geometrical facton)
takes on the following form in the present model:

d®rel® " p(r),

a(q)= go pa(0){Ascod cq,fo(n)]+A,codca,f ()]},

A1=(1/10{1+4 cog(aq,)/v2]cod (aq,)/v2]},

19
Az=(1/4){cod (aqy)/v2]+cod(aq,)/v2]}, 9
1 1
fo(n)=§ (n+1) and fl(n)=§ n for n odd,
and
1
fo(n)=§n andfl(n)zz(n+1) for n even,

dx.dy,d, are components of the wave-vector transfer to the
lattice. For the emission Misbauer spectroscopy compo-
nents of the wave-vector transfer take on the form:

0yx= —qgSin # cos ¢,

dy=—dosin # sin ¢, (20
to

g,= —(gCo0Ss b,

\_R/¥1ereq0>0 stands for the wave number of the emitteday
photon andd, ¢ are polar and azimuthal angles of the emis-

éion direction, respectivellfor the present case, the sign in

ﬁxpressions(ZO) could be dropped due to the presence of
Inversion centers Figure 5 showsy(q)=1-«(q) plotted
along arcs of great circles of the Ewald sphere for a constant
wave number and lattice constants, and for different values
f the parameteR. The functiony(q) represents variability

of the spectral width versus direction on the Ewald sphere. It
can take on values from the ranf@?2] and it approaches
zero for the wave-vector transfer being equal to one of the
reciprocal-lattice vectors. It is appropriate to call it a diago-
nal geometrical factor.

centered Bravais lattice in the case of the rutile structureV. RELAXATION OF THE ELECTRIC-FIELD GRADIENT

Hence, a purely diffusional self-correlation function of the
impurity is a scalar function and takes on the following form
in the above mentioned reference frafné&?

G(q,t)= f:dSrein_G(r_,t):exp{— wp[1— ()]t}
(18

where q stands for the wave-vector transfer to the lattice,

t=0 stands for time, an(r,t) denotes a probability den-
sity to find the impurity in the vicinity of the point at time

t provided it was in the origin at=0. A geometrical factor
a(q) is a Fourier transform of the spatial distribution of the
impurity produced by the diffusive event, i.e.,

For an isolated unperturbing impurity located at tf®) (
site in the rutile structure and otherwise almost perfect cation
lattice, perfect anion lattice, and negligible concentration of
interstitials, all impurity sites are equivalent as far as scalar
hyperfine interactions are consider@ttluding second-order
Doppler shift. However, nonscalar electric hyperfine inter-
actions (magnetic interactions are absehreak symmetry
generating two RW) and ([RB) simple tetragonal
sublattice¥’ having an equal number of otherwise equivalent
kernels. Both of these two sublattices are equally populated
by the impurities. A semiclassical electric quadrupole inter-
action is the only one being able to split sufficiently nuclear
levels and the electric-field gradiefEFG) tensor has no
axial symmetry on theR) sites'® On the other hand, prin-
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160 — cipal axes of the EFG tensor coincide with the axes of the

[ R=0.01 previously defined reference frame for boR\) and (RB)
o t ® = 90° sites. Namely, the EF@Gracelesstensor takes on the follow-
— ‘ ing form in the above-mentioned reference frateee, Fig.
120 — 1):
o | Vyx 0 0
Vi=| 0 —(Vix+tVz) 0 | for (RW) site “1”
fY 0.80 — 0 O VZZ
om 1 and
0.40 — VXX O 0
Vo= 0 Vg, 0 for (RB) site 2",
] 0 0 —(Vyyt+Vy)
0.00 T T T | (21)
000 "% 2000 ¥ 400 ** e000 ™ soo0 “* 10000 @ whereV,, andV,, stand for the EFG along theandz axes,
© respectively, anaVy,=—(V,,+V,,). Components of the
160 ) R} EFG are defined here for th&®&W) site. It is interesting to
T R=0.01 } note that these two tensors transform one into another by a
10 D=0 right angle rotation around th@01) axis. Hence, in the
“static” limit they produce the same set of eigenvalues. On
120 — the other hand, in the extremely fast relaxation limit they
average to the axially symmetric EFG tensor having an axial
7 symmetry in the plane perpendicular to #@91) axis, i.e.,
y 080 — 1 0 0
080 — 1
~ 1~ . 0o —— O
(V)= > (V1+V32) =V 2 . (22
0.40 —
0O O L
ox | 2
000 ‘ ‘ . ‘ Relaxation between these two sites occurs solely due to the
0% ™ 200 " 0 ® s ™ s ° e © diffusive events and 50% of events lead to the sites of the
® opposite “color.” Hence, the diffusion/relaxation matrix is
. Hermitian and has the following forit:*2
1o - | @=0 L —[V(Q)‘FE} >
120 —| R(d)=wp L (23
> mIRAC
' as the energy of the electric quadrupole interaction is much
y 080 — smaller than the energy of the diffusive motion. Thus, the
quadrupolar relaxation frequency equél®)wy . It is inter-
o esting to note that even for the wave-vector transfer being
equal to one of the reciprocal-lattice vectds the Mass-
040 — . . . . . . .
bauer spectrum is still sensitive to the diffusive motion via
o the quadrupolar relaxation mechanism. For the latter case the
operatorR(q) takes on the following form?1415
o0 m‘m l :n;o ‘ m‘cu ‘ 70‘00 ‘ so‘m ‘ (c) ~ — - 1 1
0.00 2000 ~ 40.00 60.00  80.00 100.00 N— - _
o R@=G)=5 wo| _1). (24)

- ) . VI. RECOILLESS FRACTION
FIG. 5. ¥(q) plotted along various arcs of great circles of the

Ewald sphere fora=4.594 A, ¢=2.959 A, and qy=7.30254 All unperturbed R) cation sites have inversion centers
A~% (@ from (110 to (110) direction, (b) from (110 to (002  and hence, only even vibrational tensors do not vatigh.
direction at smalR, (c) from (110 to (00D direction at largeR; it~ For relatively small wave-number transfers a contribution
has to be noted, that curye) does not depend upon the particular from higher terms than quadratic seems to be neglidfble.
value ofR, while curve(c) clearly shows an “interference” pattern js reasonable to assume as well, that the vibrational dynam-
due to the very long distance traveled within a channel. ics is non-Gaussian only during the encounter with the inter-
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;tmal atom. The latter event is short compared to the average f1(0)=Tf1(6¢)=exp— [ By,sirtdcos ¢

time between such events. BotR\) and (RB) sites have

the same average recoilless fraction and hence, the anisot- +By,sir’gsin’ ¢+ B, oS 01},

ropy of the recoilless fraction is solely responsible for the _ (26)
modification of the relative line intensities, particularly due f2(q)=f,(0) = exp — g3 By,sir? ocos ¢

to the fact that RW) and (RB) sites are equally populated . :
(the line splitting is caused here by the EFQuadratic ten- + By sinosin’ g + Byycos’-e]},

sors describing recoilless fraction are diagonal for both sitewhereqg, 6, and ¢ are defined by expressida0).

in the reference frame used above. They have the following A diffusive motion tends to mix colors of the impurities

forms2’ and hence, diagonal terms expressed by Exf.have to be
supplemented by the off-diagon@hixing) terms. Due to the

X Bix 0 0O fact that the characteristic time scale of the vibrational dy-

B,=( 0 By O for (RW) site “*1" namics is much shorter than the time scale of the diffusive

0 0 B, motion, an independent dynamics approximation can be

used*?>®Hence, the off-diagonal terms are simply expressed
by the geometrical averages of the respective diagonal terms
and the weighting operator takes on the followiisgmmet-

B 0 O . _
éf(o B, 0) for (RB) site "2, (25 "o form:

0 0 By F0)= f1(6¢) B [f1(0¢)F2(06)]"?
where B,,, B,,, and B, stand for the mean-squared dis- [f2(0¢)f1(0¢)]* fo(00))
placements along the y, andz axes, respectively. Compo- (27)

nents of the vibrational tensor are defined here for R&)  The weighting operato27) cannot be uniquely determined
site. Hence, the recoilless fraction in the direction of thefrom a single spectrum obtained at the well-defined wave-

emitted photon can be expressed as follows W) and  vector transfer. Hence, it has to be transformed to the follow-
(RB) sites, respectively: ing form:

1 [f2(04)/f1(0¢)]"

MO =T1(0D)| 1, 00)it1(04) 12 [fo(0)If2(08)] |

where enough to avoid phase modulation;
(5) intensity of radiation reemitted from the absorber and
fo(0¢)/f1(0)=exp{q3A[1—sirfo(1+sirf¢)]} reaching the detector is negligible;

(6) detector and counting electronics stay within a linear-

response range;

(7) an emitting atom stays at equilibrium with the lattice
yy: (28) and temperature is high enough to equalize the population of
The anisotropy parametet, can be determined from the t_he hyperfine levels, e.g., all aﬁer_effects shoulq vanish at a
shape of a single spectrum provided the spectrum is observdtin® scale short compared to the time scale of thessbauer

far away from the great circle of the Ewald sphere passinéranSition'

St ; The first task is to calculate the superoperdtaouville
through the(001 direction and either th€100 or (01
diregtgi]ons. (00D direct I ¢100 (010 operatoy of the problem and hence, one has to start from the

super-Hamiltonian. A hyperfine Hamiltonian can be ex-
pressed as follow&

with

AOZ BZZ_ B

eQ 3
Calculation of the Mesbauer spectrum shape for an emis- (4| (21— 1)) ijZ:l Vi
sion spectroscopy from a single crystal in a standard trans- . . .
mission geometry can be performed in a rather straightfor]for an electric qgadrupole Interaction, whgmgnqtes an
ward manner provided the following conditions are satisfied.‘alemen.tary positive che}rgQ stands for the |ntr|n§|c Spec-
(1) resonance absorption within source is negligile; trosqoplq nuclear electric quadrupgle momépintlike ap-
(2) direction of the emittedy-ray beam is well defined; ~ Proximation, | denotes nuclear spifor |<1/2 the Hamil-
(3) an unbroadened, single line, flat and homogeneoud®nian is a zero matrix indicesi,j enumerate coordinate
unpolarizing absorber is used: axes of_the above _mentioned reference frame in the grder
(4) absorber is resonantly thin and vibrates along thetY% While symbolsl; and|; stand for the appropriate spin-

yray beam with a small amplitude and frequency lowprojection operators, antf denotes a total spin operator

VII. SPECTRUM CALCULATION
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squared.V;; stand for the appropriate components of thewhere the indexw=1,2, . .. y, enumerates eigenstates of the
symmetric(traceless electric-field-gradient tensor. One has problem,L denotes an angular momentum transfer during
to note that four such Hamiltonians appear in the presenthe nuclear decayg =1 for dipolar or quadrupolar transi-
problem, i.e., for the ground and excited nuclear states antions, while for the mixed transition&ipolar/quadrupolar
for the (RW and (RB) sites as well. Hence, one has to deal §,=1 and, stands for the intrinsic nuclear mixing ratio for
with two quadrupole moments and two spins. A super-the single photon radiative decay to the ground stegel

Hamiltonian takes on the fortA'* numbel, k enumerates polarization states of the radiation
(due to the fact that an unpolarizing single line absorber is
Hg(memgmemg) = &( memé)H(gS)(mgmé)— S(mgmy) used, off-diagonal terms vanistsymbolsT ,(6¢) represent

multipole operators of the parify (p=0 for even transitions
X[HP(memy) +8(mem{)S], (300  andp=1 for odd transitions polarizationk, and in the di-
i . o rection 6¢ defined in the above-mentioned reference frame.
where the inde refers to the sités=1,2), indicese,g refer  gipajly ., . (@ andu . . (q) represent left and right
to the excited and ground state; respectivety, and my e

stand for the respective magnetic quantum numbers, Sand
denotes a total spectrum shift with respect to the absorb
used. The matrix element of the superoper&aran be ex-
pressed as follows

eigenvector coefﬁuents of the superoperator, respectively,

hile f¢ (6¢) is a matrix element of the weighting operator
(27) or (28). Matrix elements of the multipole operators sat-
isfy the following relationshig:’ 22

(LMg| Tk 06)|Me) = x(LKP)C(1 gL —mgM |1 gmy)

R(ss'mgmgmgmg) = 6(mem;) 8(Mgmg) Ry () _
X diy(0)eM?;

+i68(ss')Hg(memgmemy), (31)
. where
whereRyy (Qg) stands for the matrix element of the operator,
Eq. (23). It has to be noted that this superoperator is a linear X(Lkp)z[(2L+1)/2]l/2(_1)6<fl,k>5[71,<71>"“‘1]
combination of the Hermitian matriceéveights of all-

involved states are equal each to ojhéfowever, eigenval- Xjol-L=DPTE (33
ues are complex numbers. The superoperator has the dimen-
sions M=m,—m, , dkm(6) denotes a spherical operator matrix el-
ement and:(lgL m M|I «M,) represents a Clebsch-Gordan
—[2021.4+1)(2] +1 221+ 1)(2] 41 coefﬂ_ment In order_to c_alcul_ate a spectrum shape it is
vo®1o=[2(2le+ 1)(2lg+ 1)]e[2(2le+ 1)(2lg+ 1] practical to renormalize line intensities and to calculate
with linewidths in the following way?
vo=2(2le+1)(2lgH1) b,(@)=C,(a) /E REC, /()]

as there are two relaxation states,21 excited hyperfine
levels and 2,+1 ground hyperfine Ievels The superoperatora nd
describes aII the physics involved except vibrational dynam- — —
ics and the initia? gopulation of the eiFg)]enstates, theylatter T(@)=I'=2Rqr,(q)], (34
being equal to each other in the present case. whereT" denotes a tota{source linewidth in the “static”

Line intensities of the recoillesg-ray resonant radiation limit (wp=0), while \,(q) stands for thesth eigenvalue of
emitted from the source can be expressed in the followinghe superoperator. The spectrum shape can be calculated now

way?? in a straightforward manner. Namely, it takes on the follow-
ing form=23:24
C.(a)= 8.0 — N
@ k=x1 m%r}qé m?r:né LEL’ Lo P(qU):Bo[l—fs(Q)+fs(q)(fwdwp(qa),v)e LA )”

XL Mg | T il 06) [ ME)* (Lmg| Ty 6) [ me) with

Aw)={1-[(26)ITylo}{1+[(2MTy)w]?, (35
X2 Hsg(00)0 5mm (DUysmn (D), (32) _ B o
ss/ and a recoilless radiation density being expressed as

I',(a)Reb,(a)]+2a,(q)Im[b,(q)]
[(1/2T ,(a)]*+[a,(a)]* '

p(qu,v)=(2m) 121
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where 1 o L
fs(a) =5 A {fi(@)+fa(a)], (36)

a,()=w+v+Im\,(q)].
wheref,(q) andf,(q) stand for recoilless fractions of the
¢ respective sites, see, expressi@®), and A=(sy+bg)/sg

with s, being a detector signal due to the S&bauery-ray
line (both quasielastic and inelastic componegritsd b, be-

Herev stands for the Doppler velocitienergy applied by
the spectrometei3, denotes the number of counts far of
resonance—in a standard multiscaler setugtands for the

effective resonant absorber thickneggimensionless— | Id back d under th lectédai
eventually corrected for the intrinsic absorber broadeniag "9 @ total detector background under the selecteedtauer

stands for an effective interference term due to the?-'a linel” A recailless radiation density(qw,v) takes on
absorbel’2225-27and T, is the absorber linewidttnatura). non-negative value for any value of the argume(atsd for

An effective recoilless fraction of the sourde(q) is a any polarization as wélland it is normalized to unity, i.e.,
weighted average over all sites, with a common wave-vector

transfer to the systemy, corrected for the detector back-

ground under the Mssbauery-ray line. Hence, it takes on J' dwp(qu,v)=1.

the following form for the rutile structure: — '

_ I, =32
2,50 r, o
I,= 12
200 A, = -0.2379 [mm/s]
: A = -0.1281 [mm/s]
ru—)\ — XX
E 1.50 —
< il
L‘:‘ 1.00 —
— i A
0.50 —
] r,
0.00 T \\\HH‘ T \\HH\‘ T \]\IIHl T \\HH\‘ 1 V\HH\‘ (a)
0.01 0.10 1.00 10.00 10000 1000.00
©, [mm/s]
FIG. 6. T4, T',, andA (splitting) plotted ver-
3.00 — T, sus wp: (a) broad range ofwp, (b) narrow
range ofwp .
— 200 —
3]
~
g
4 ]
—
_"1.00
~ A
r1
0.00 | 4 \ ' | ®)
0.00 1.00 2,00 3.00 4.00

®, [m/s]
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0.40 —

0.20 —

C, i
0.00 —
-0.20 T IHI\Hl T \HHH[ T IHHHl T \HIHJ‘ T \II\IH‘ (a)
0.01 0.10 1.00 10.00 100.00 1000.00
®. /s FIG. 7. C,, plotted versuswp for the same
e quadrupole coupling constants as those of Fig.
0.40 — 6: (a) broad range ofup, (b) narrow range of
wp -
020 —
C. i
0.00 —
0.20 , ] I | |
&)
0.00 1.00 2.00 3.00 4.00
@, [m/s)

D

The last integral exists in the principal sense and the odeigeAnvaIueskV(aﬂL{wD[y($+ 1/2]+iS}. Here, the sym-

terms in the recoilless radiation density are due to the relaxbol 1 denotes a unit operator of the proper dimension. Such a

ation of the EFG. decomposition is possible due to the fact that the diffusion
The quantityP(qv) is a directly measurable quantity ver- occurs within a single Bravais lattice.

susv in a standard Mssbauer setup, i.e., it represents a For the 14.4 keV Mesbauer line i’Fe (being already

detector count rate for a Doppler velocityapplied to either  equilibrated with the latticea ground-state nuclear level

source or absorber in the direction defined by the wave vegyges not participate in the EFG relaxatitn=3/2, | ,=1/2,

tor g. A variation of theq, due to the applied Doppler shift practically pureM1 transition, & almost equal zepoand

is negligible for typical velocity ranges. Positive velocities  hence, a relaxation is entirely due to the first excited nuclear

correspond to the situation where the absorber is approacise| having doubly degenerated hyperfine sublegétam-

ing the source, while negative velocities occur when the abgg degeneragy Thus, one obtains two “doublets” having

sorber is receding from the source. the same line positions, albeit different linewidtlexcept for
Finally, one has to note that for the rutile structure thethe “static” limit, where a single doublet is presenEigure

superoperator R could be  decomposed into g showsI,=(1/2{I'-T,(q=G)} for » belonging to the

(—{oplv(@)+1/2]+iS}1)  and  R+{wp[¥(q)+1/2]  “narrow subset,” I',=(1/2{I'—T,(q=G)} for » belonging

+iS}1, the latter having eigenvectors independengaind  to the “broad subset,” and a “doublet” splitting plotted



FIG. 8. Some spectr®(quv) calculated for the 14.4 keV line
(b) R=0.01, =37, ¢=0°, (c) R=0.01, #=40°, $=0°, (d) R=100,
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in’Fe for a linear velocity scale: (a) R=0.01, §=22°, $=0°,
6=40°, $=0°, (e) T=1100 K, #=40°, ¢=0°.

well). One has to note that imaginary parts of thgampli-

including adopted quadrupole coupling constéhts

Azz:{(eQe)/[4|e(2|e_ 1)]}\/22
and
Axx:{(eQe)/[4|e(2|e_ 1)]}Vxx
with A,,=—0.2379 mm/s and,,=—0.1281 mm/s.

tude and a correspondir@}, amplitude(narrow component
are always zero for the model considered here.

Such a behavior indicates that neither narrow nor broad
components could be observed separately. A relaxation of
the EFG driven by the diffusive motion mixes coherently
hyperfine states belonging to the distinct sites. One could see
as well that for the very fast relaxatidd, andI'; tend to
zero. This is a motional narrowing effect similar to the one

Figure 7 shows a relative contribution to the emissionobserved by the nuclear magnetic resonance method.

profile due to the broad component, i.e.,

>

~ < b V(E) 20

components

Cb:

Finally, Fig. 8 shows examples of spectra calculated for
the following parametets (all “frequency” parameters
scaled byggY):

I'p,=0.097 mm/s, t=2.0, I'=0.11 mm/s,

(with (---),, denoting averaging over all directionsalcu-
lated for a completely random “powder” sample and isotro-
pic recoilless fraction and plotted versug rescaled by, ?.

One can clearly see that negative intensities occur in the
emission profile. However, a total profile or a profile calcu-
lated for a particular polarization remains always non-
negative for all physically meaningful caséat any fre-
guency and in any direction in the case of a single crystal as

a=4.594 A,
$=0°

A,,=—0.2379 mm/s, A=-—0.1281 mm/s,

c=2959 A, u=7.30254 A1,

—0.3 mm/s at temperaturgd=0 K,
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(c) (d)

=
==

Velocity (mm/s) Velocity (mm/s)

FIG. 8. (Continued)

By =1.569x 10" 3, Byy=2.044x 1078, eter R strongly depends upon temperature, in principle.
5 5 However, its value is likely to reach a saturation value at
B,,=1.80910 ° in A temperatures high enough for a diffusivity to be observable
(mean-squared displacements alongz axes, respectively —and hence, it appears to be almost temperature independent.
at temperaturd =0 K. A recoilless fractionf(q) has been Such a behavior has been observed by a tracer method for a
corrected forn=1.2 for all spectra. ParameteBs,, B,,, diffusion of *%Fe in oxygen-saturated rutileriO,),* where
B,,, and S have been corrected for the temperature effecthe anisotropy of the diffusion coefficient was found to be
using a harmonic isotropic model with the parabolic densityvery weakly dependent upon temperat(pevided a sample
of phonon state¢Debye model having the effective cutoff was perfect enough to avoid blocking of chanheResults
(Debye temperatured, =600 K (adopted after Ref. 38A  obtained by Sasaki, Peterson, and Hoshalow us to esti-
shift S has been corrected solely for the second-order Dopmate R roughly as being close to 100 for the above-
pler shift adopting the following mean-squared veloéy:  mentioned impurity-host system. The same results clearly
(b3 =5.576<10° (mm/g? at T=0 K. tshow that the parameté& is 'Femperature independent in the
emperature range accessible experimentally. It has to be
All corrections to linewidths due to the second-order Dop-noted, that in the case of about 1-2 % effect a statistically
pler shift at finite temperatures have been neglected as irretelevant spectrum could be accumulated within about 24 h
evant in comparison to the intrinsic linewidths at meaningfulprovided a source activity amounts to several mCi and a
temperature®® A frequency wp has been taken as detector acceptance solid angle is of the order of several
wp=wdexd—(U/T)] with 03=1.871x10° mm/s and degrees. Itis important to use thin samples in the direction of
U=16 219 K, i.e., for an oxygen saturated and thermodythe emittedy ray in order to minimize a self-absorption, the
namically stable TiGrutile.! Quadrupole coupling constants latter being due to the photoeffect mainly.
are likely to remain weakly temperature dependent due to the Figure 9 shows a spectrum distortion due to the typical
oxidation state of substitutional irofalmost all of iron at- experimental geometry. All corrections have been taken into
oms in the rutile structure with divalent anions. The param-account except detector geometrical effects and reemission
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| | | FIG. 9. Comparison of spectra calculated for=1200 K,
-5.00 0.0 5.00 #=35.6°, andR=100 in the case of perfe¢harrow) geometry and
for a typical experimental setugi=0°. Axes have the same mean-
Velocity (mm/s) ing as in Fig. 8.
FIG. 8. (Continued. minima restricted to the small area of the Ewald sphere. Such

minima occur for long distances traveled by the impurity

of the Massbauer lingboth elastic and inelastic components within a channel and hgnce, they gpp}gar for Iafrgﬁ values of
from the absorber, and reaching the detector. The last effeg:l?e parameteR.[see, Fig. &)]. A significance of the geo-
would primarily affectf«(q) andt. One can conclude, that in metrical smearing could be evaluated solely by performing

e caz of rg a specialgeomety might be necessay oSU120E sulone Hence L o cesravle o ol
obtain reliable results, i.e., one has to apply two-dimension P P

Soller collimator? It should be noted that a direction cho- 1€ model to the experimental data. A subroutSeoLLIM

sen for the calculations of the geometrical effects is particuponf(.)rms to suph conditions provided an experimental geom-
try is well defined.

larly sensitive to the changes in the polar and azimuthaf
angles. The smearing effect would ffertunately less pro-
nounced in other directions. There are numerous parameters
required to calculate geometrical effects and hence, we offer
for those interested a special subrouts®oLLIM which is It has been found that a distribution of the impurity dif-
able to calculate weights of the subspectra contributing to théusing within an empty channel is governed by a simple
final signal. Roughly speaking a typical setup consists of @&xponential law depending solely upon the ratio of frequen-
rectangular source having dimensionsI2 mm and a thick- cies describing jumps within the channel and out of the chan-
ness 0.1 mm. A directiofll11) is perpendicular to the source nel, respectively. A reduced anisotropy of the diffusion co-
surface and the source is located 120 mm beneath a circulefficient depends solely upon the above ratio and the
collimator having 15 mm diameter. The source is rotatedelationship between these two quantities is almost linear,
around the axis parallel to the collimator plane in such asee, Eq(16). Hence, the above ratio could be found in the
way, that a photon propagating along the collimator axis isstraightforward manner from the tracer data obtained for the
emitted at the angl®#=35.6°. The longer source dimension single-crystal samples. For a very fast diffusivity in the chan-
is almost parallel to the source rotation axis. nel the ratio of the above-mentioned frequencies becomes
It is important to realize that the geometrical effects aretemperature independent. A frequency of the diffusive events
largest in the directions where the functioNq) has deep is governed by the frequency of the impurity jumps into the

VIIl. CONCLUSIONS
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channel and hence, a reduced transversal diffusivity is goveoherently hyperfine levels belonging to distant sites on the
erned solely by the above frequency. Bravais lattice. A motional narrowing effect appears for the
A diagonal geometrical factor of the self-correlation func- EFG relaxation, while it is absent for a pure diffusive broad-
tion exhibits very narrow minima on the Ewald sphere forening due to the fact that the diffusive motion remains un-
large values of the rati® and a wave-vector transfer encom- pounded.
passing a significant number of the reciprocal points. Hence, pye to the fact that the recoilless fraction is anisotropic
a special experimental geometry might be necessary to olhe reorientational relaxation of the recoilless fraction occurs
tain reliable results by the Msbauer technique. These very wjith the same frequency as the relaxation of the EFG. Hence,
narrow minima resemble an “interference” pattern Originat— off_diagona| terms in the vibrational dynamics matrix ap-
ing from the large number of equally spaced scatteringhear. They are likely to be equal to the simple geometrical
“slits” and the physics behind this phenomenon is actuallyayerages of the respective recoilless fractions as the time
very similar. A very fast semianalytical and phenomenologi-scale of the diffusive motion is much larger than the time
cal algorithm to calculate a self-correlation function has beerycale of the vibrational motion. However, it is an example
developed. where the off-diagonal terms could be unambiguously de-
It has been shown that the impurity diffusing on a singlefined. In order to observe the phase of the off-diagonal terms
nonprimitive Bravais lattice might experience relaxation ofgne has to look at the quantuftunneling diffusivity, the
the color. Such a color relaxation might lead to the reorienatter being seldom observable for such heavy impurities like
tational relaxation of the EFG in the case of nonmagnetiqygsshauer atoms. For a classical limit relative phases are

materials. It is interesting to note that for the rutile structurejost (averaged to zejoand one could see absolute values of
the relaxational averaging of the EFG is incomplete even ijhe vibrational amplitudes solely.

the extremely fast relaxation limit. The rutile structure is the
first known structure where the unique relationship between
diffusivity and the color relaxation was found. The frequency
of the latter is simply half of the diffusive event frequency.
Hence, a diffusivity could be observed by the $sbauer Dr. Bogdan Sepiotinstitut fur Festkaperphysik der Uni-
technigue, even for the wave-vector transfer being one of theersitd Wien, Vienna, Austriais warmly thanked for many
reciprocal-lattice vectors as the spectrum is perturbed by thkelpful comments. This work has been financed by KBN
EFG relaxation, the latter being driven solely by the diffu- (The National Committee for Scientific Research, PoJand
sive events. A diffusion driven relaxation of the EFG mixesunder the Grant No. 2 P302 193 05.

ACKNOWLEDGMENTS

*To whom all correspondence should be addressed. E-maift®J. T. Day, J. G. Mullen, and R. C. Shukla, Phys. Re\6B 168

sfrueben@cyf-kr.edu.glnternet. (1995.
1Jjun Sasaki, N. L. Peterson, and K. Hoshino, J. Phys. Chem. Sof°G. Albanese, F. Cavatorta, and A. Deriu,Rnoceedings XX Za-
ids 46, 1267(1985. kopane Winter School on Physics, Valegited by J. J. Bara, K.
2D. Wolf, Appl. Phys. Lett.30, 617 (1977). Ruebenbauer, and Z. StachytdP, Cracow, 198p p. 255.
3K. Ruebenbauer, B. Sepiot, and B. Miczko, Physica @8 80 2OR'\-/| A”- Wf;gone;, Bll ?U”artgé ,\368“4?{9980 Dickson, and J. G.
(1991). ” ullen, Hyperfine Interact58, .
4K S S|ngW| and A Sjmnder, Phys Re\LI.ZO, 1093(1960 AH M. ?fanlas ev, V. 4'? G](-)rgbchenko, a.nd V. N. Peregudov,
5C. T. Chudley and R. J. Elliott, Proc. Phys. Soc. Londan353  ,, YPerine nteract5, 469 (1978. _ _
(1961 M. Kwater, K. Ruebenbauer, and U. D. Wdowik, Physic4®),
6 : - 209 (1993.
J. W. Rowe, K. Skin, H. E. Flotow, and J. J. Rush, J. Phys. ,, ;
Chem. Solids32, 41 (1971, S(.llg/lgjr)gulles and J. R. Ehrman, Nucl. Instrum. Methé@s131

"R. Kutner and I. Sosnowska, J. Phys. Chem. SoB8s 741
(1977.

8R. Kutner and I. Sosnowska, Acta Phys. Pol58 171 (1977.

SW. Nadler and K. Schulten, Phys. Rev. Lé&f, 1712(1983.

2g, Margulies, P. D. Debrunner, and H. Frauenfelder, Nucl. In-
strum. Method21, 217 (1963.
25W. Henning, G. Baehre, and P. Kienle, Phys. Lett3B 203

(1970.
19A. M. Afanas’ev and V. E. Sedov, Phys. Status Solidl®L, 299 265 | Gimlett, H. E. Henrikson, N. K. Cheung, and F. Boehm,
L (1983. Phys. Rev. Lett42, 354(1979.
1zB' Sepiot and G. Vogl, Phys. Rev. Leitl, 731(1993. 273. G. Mullen, B. R. Bullard, and G. Schupp, Rroceedings XXV
M. Kwater, K. Ruebenbauer, and U. D. Wdowik, Physic4 %), Zakopane School on Physics, Vo).etited by J. Stanek and A.
199 (1993. T. Padziwiatr (World Scientific, Singapore, 1990p. 18.

13M. steiner, M. Kdferlein, W. Potzel, H. Karzel, W. Schiessl, G. 28C. J. Howard, T. M. Sabine, and F. Dickson, Acta Crystallogr. B
M. Kalvius, D. W. Mitchell, N. Sahoo, H. H. Klaus, T. P. Das, 47, 462 (1997).
R. S. Feigelson, and G. Schmidt, Hyperfine Inter&&. 1453  2°W. Potzel, inProceedings XX Zakopane Winter School on Phys-

(1994. ics, Vol. 2(Ref. 19, p. 294.
M. Blume, Phys. Rev174, 351 (1968. 30H. Wegener, inProceedings International Conference on MS,
15H. Winkler and E. Gerdau, Z. Phy&62, 363(1973. Vol. 1, edited by D. Barb and D, &ina (CIP, Bucharest, 1977
18, Gedikli, H. Winkler, and E. Gerdau, Z. Phy267, 61 (1974. p. 203.

7K. Ruebenbauer, Physica B2, 346 (1991). 313. G. Mullen(private communication



