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Random walk in the Cu/graphite mixtures
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Transport properties of Cu/graphite composites scanned surfaces were studied by the random walk. The type
of random walk used considers the nonzero conductivity of graphite. The obtained results are consistent with
the existing scaling theory. The diffusivity composition dependence behavior in two dimensions is in good
agreement with the measured electrical conductivity composition dependence behavior of Cu/graphite com-
posites in three dimensionsS0163-18206)05330-]

[. INTRODUCTION The random walk introduced by Horeg al.” fulfills these
requirements. This type of random walk describes the situa-
The Cu/graphite composite material is often used for low4ion when the investigated system is a random mixture of
voltage and high-current density applicatidfer example in  good and poor conducting regions. The random walk is char-
welding machines' The nonlinear dependence of electrical acterized by the conductivity ratioand for the Cu/graphite
conductivity on composition was observed in the range ofmixture it is
0.59-1 volume fraction of coppésee Fig. 12 A percola-

tion theory was used to model this dependence. However, h= E~10—3’ (1.2
the obtained conductivity critical exponemt2.33+0.01 Ocu

and the percolation threshold for the volume fraction of cop-

per, p.=0.10£0.05, differ from the numerically estimated 7

three-dimensional valugs= 1.7 andp, = 0.33*° This dif-
ference can be attributed to the prolonged nonspherical shape
of the copper clustersMoreover, in the percolation theory
the electrical conductivity of graphite is considered as zero.
It means that the Cu/graphite composite, from the point of
view of the percolation theory, is a mixture of conducting
copper regions and nonconducting graphite ones. In reality 5
the Cu/graphite composite is the mixture of two differently
conducting regions.

Scanned surface micrographs, prepared from samples « 4
with various volume fractions of coppésee Fig. 2, enable £
one to investigate the Cu/graphite composite system in two ®
dimensions. The direct method to calculate the electrical "o
conductivity for a two-dimensional conductor netwbtk.g., A
scanned microphotographsuffers from the lack of statisti- o
cal fluctuations. To avoid this, the investigation of diffusion
on the random conducting network was propo$ethdom 24
walk). It allows one to average the large number of walk
configurations’ The result is an average diffusion coefficient
for the given network and the conductivity and diffusivity 1
can be connected by the Nernst-Einstein reldtion

o~nD, (1.0 .

T 1 11T 111717717
where o is the electrical conductivityD is the diffusivity 00 01 02 03 04 05 06 07 08 09 10
coefficient, andh is the density of the charge carriers. p(-)

The typical random walk is usually applied only for one
region of the two-component system. But the Cu/graphite FIG. 1. The electrical conductivity of the Cu/graphite material
composite needs the random walk to be performed on bots volume fraction of copper at 296 K. The plotted line is the result
regions of the two-component system. of the percolation theory.
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FIG. 3. Log-log plot of(R?(0.001) as a function of time for
variousp.

computer model of the random walk. Strafeyho has been
working in this field for a long timé&;!° presented a slightly
different and more general interpretation of this scaling
theory.

The aim of this work is to prove the suitability of the
scaling theory according to Straley for the simulation of the
transport properties of Cu/graphite composites. At first, Stra-
ley’s scaling theory will be briefly mentioned. Then the re-
sults of a computer simulation will be presented and com-
pared with the measurement of the electrical conductivity of
b) Cu/graphite composites.

FIG. 2. Cross sections of the Cu/graphite composites for 70% Il. SCALING THEORY FOR THE RANDOM WALK

(a) and 85%(b) volume fraction of copper. The behavior of the diffusivity coefficie near the per-

. : o . colation threshold can be considered as the scaling law for
whereog, is the electrical conductivity of graphite amtty e mean square displacement of a random wali@f)
is the electrical conductivity of copper. according to Strale§ '

Let us assume a random walker placed randomly on the
Cu/graphite surfacée.g., Fig. 2. In this case the jump prob- (R)=TD(s,A,B, T 1)
ability A of the random walker to move from copper to
graphite is equal thh = 0.001 and walker’s time in graphite =uTD(e/NN"SA/w N'Bl e, d? = INA~2 T,
flows 1h=1000 times slower than in copper. The jump 2.1
probability B for the copper-copper, graphite-copper, and
graphite-graphite moves is equal to 1. To describe realityvhere T is time, A, B are jump probabilities,
better the probability of the random walker's move from e=(p—p.)/pc, P is the volume fraction of copped is the
copper to graphite was changed in following way: When aattice spacingh,u are arbitrary parameters, agdare criti-
walker chooses the copper-graphite move he moves toal exponentss =t in two dimensions. Equatiof2.1) holds
graphite with probabilityA/(A+B) or he stays at a site with only in a critical region, e.g.¢ small, A < B, andT large.
probability B/(A+B). The scaling ink means a change of units fér The scaling
Hong et al. also introduced a scaling thedryor their  in \ is nontrivial.
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FIG. 4. Log-log plot of R?(0)) as a function of time for various

D FIG. 5. Diffusivity dependence on the composition f#r= 0.
' The plotted line is the percolation theory result.

For |e|>(A/B)Y¢*Y and largeT the expanding in the

small parameters of Eq2.1) gives
On the contrary, in the scaling theory of Homrgal.” the

second time constam, is defined as

R?)~¢'BTD(sgre,0,1,0 + & “SATD(sgre,0',1,0)
(R Ty~eP 2" TSd? A, (2.9
+&P~2d?D(sgre,0,1,0) + - - -. (2.2
and Honget al.” presented a sketch in whigiR?) increases

For >0 the last term can be neglected and the first term id0f T <7, has a plateau for<T< 7, and exhibits a linear

leading. Fore<0 the first term vanishes. The term “large (diffusive) growth for 7y <T.
T is dgefineds relatively to the time scale g Straley’ on the other hand showed that this sketch is valid

only for the two-dimensional square bond problem and for

o two and three dimensions is not true in general. He con-
r~ghf2v"1g2/B (2.3 ; ; :

' : cluded that there is only one relevant time scale defined by

Eqg. (2.3). This time scale characterizes the time required to

TABLE I. The results of the random walk foA=0 and  sample the various environments of the system. On time

A=0.001. scales larger tham the inhomogeneity has been averaged

2 b v out, allowing the linear-inF behavior.
P Dooor Do kooor ko 7o.001 Tooor W For a more complex view on this problem and also on the
1.000 0994 0.996 0.500 0.500 23 0 0.996 Standard cases of the mentioned scaling theory the reader is

0.897 referred to the work of Strale?.

0864 00603 0.679 0488 0481 9.4 10 , ,
0785 0.360 0.459 0.472 0.460 293 20 0gos IntroducingA = 0 in Eg.(2.1) (random walk on one
0728 0255 0346 0.468 0.457 86.6 28 0756 COMponent of a two-component systein can be show
0575 0.095 0.026 0.466 0419 338346.0 80000 0.616 o

0.535 0.045 ) 0.389 0374 3383460 200000 TABLE Il. The results of the conductivity critical exponent
0448 0015 - 0370 0325 5450 300 - 0 A—000L  Analytically obmined
0530 0041 - 0370 0333 1439450 50000 -

t 1.16-0.04 1.46-0.13 1.30

&The time constant calculated by EQ.3).
PExperimentally obtained. “References 3 and 4.
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lIl. EXPERIMENTAL RESULTS
FIG. 6. Diffusivity ergndence on the composition for A. Culgraphite composite material
A=0.001. The plotted line is the percolation theory result for ] ] )
p>pe. The Cu/graphite composite material was prepared by the

powder metallurgical method. The electrolytic Cu powder

that, after simplifications, the percolation scaling theory for(Particle size<70 um) was dry mixed with the graphite
the conductor-insulator system is obtained. powder (particle size<3 um, purity 99.9% in a tumbler

In this model forp = 1 a diffusion law mixer, and then encapsulated and isostatically compacted at
1000 °C for 30 min using an Ar-gas pressure of 100 MPa.
R2=D,T (2.5 The powder mixture was free of any activating sintering ad-

ditions. The volume fraction of copper in the as-prepared

holds exactly and fop < 1 is fulfilled for large T. Here =~ composite varied in the range of 0.59-1.
D, is the diffusivity andR? is the mean square displacement  The composite samples were cut in various directions and
of the random walker. Fop=1 D, = 1, and forp<1, polished for metallographic observation. The black and

Do=Dy(p). white microphotographs of the prepared surfaces were taken
D, tends to zero whep approacheg. from above ac- by an optical microscope at the magnification of 200 times.
cording to The photographs were scanned by digital scanner with the
resolution of 300 dots per inch. The obtained array had a size
Do (p—pe)t, (2.6) of about 1806 900 points. The black points were considered

as the graphite and the white ones as the copper. One point
and the mean square displacement possesses an anomalmgresents a square with the area of Qub6?. The computer
diffusion atp. simulations were done on the set of eight pictures, each from
a different sample.
R?=D,T?, (2.7

. . . . B. Results and discussion
wherek is an anomalous diffusion exponektis about 0.33

in two dimensions. The computer simulation of the random walk was done on

Forp <p, the diffusion is impossible), = 0, R? cannot  the mixture of copper and graphite conducting regions with

increase, and for the largeit obeys A=0.001. The random walk on the copper conducting re-
gions was also done for the comparis@x=0).

R2oc(p.—p)P =2, (2.9 In the computer simulation, the random walker started

randomly from the copper or graphite site within an area of
whereB and v are the critical exponentg® is 5/36 andv is  20% around the center of the rectangular array with the size
4/3 in two dimensiond?* of about 180& 900 sites(e.g., Fig. 2. The mirror boundary
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FIG. 8. Composition dependence W for p >p. FIG. 9. W¥2 as a function of time fop<p..

conditions were applied. Five thousand walks, witi 2°  tained conductivity critical exponert = 1.46 + 0.13 is

time steps for each walk, were done on every scanned segreater than the analytically obtained value®1ir8two di-

tion. mensions. This is consistent with the measured electrical
The obtained two-dimensional percolation threshold forconductivity critical exponert= 2.33+ 0.07? which is also

copper,p.= 0.55+ 0.02, for the cross sectiolsis consis- greater than the numerically estimated value® ir7 three

tent with the analytically obtained value of 0.5 for the two- dimensions.

dimensional site percolation probletf. It can be pointed out from Figs. 5 and 6 that one can
Figure 3 displays the results ¢R?)Y2 for the variousp  approximately determine the value of percolation threshold

from the range of 0.448-1 and fér=0.001. Only the curve p, in the range of 0.535-0.57&ee the values ob, and

with p = 0.530 exhibits a plateau. Figure 4 shows almost theD 4, in Table .

same situation foA = 0. The time constant oy, (deter- The influence of the nonzero value of the jump probabil-

mined from the onset of the linear growth @?)*/?) is for ity A on the behavior of a computer-simulated random walk

all other curves very smalseer{ o, in Table ). The calcu- is shown in Figs. 7-9.

lated time constant go; (39978.001 in Table ) and the ex- When the results of the mean square displacement in the

perimentally obtained values for varioys showed that random walk withA = 0.001 are divided with the results for

To.001 S€EMS to be overestimated by a factor of 10-100. IA = O we obtain the scale-independent raéib It can be

seems to be true that there is only one relevant time scale shown that this ratio is time independent forp. and large
The conductivity critical exponent can be determined T, and from Eq.(2.2) and Eq.(2.5 we have

from data in Table | and Eq2.6) by the least squares

minimization method. The results for both types of walk are

shown in Table II. Figures 5 and 6 show the obtained dif- _ (R?(0.002) consE 1 (3.0
fusivity coefficient dependence on composition. (R%(0)) ' '

The difference betweet=1.16+0.04 for A=0 and the
analytically obtained two-dimensional valte 1.3 is caused
by the only one realization of scanned sections for each com- The obtained values fow*? are given in Table 1. This
position. The large uncertainty in= 1.46 + 0.13 forA = time independence is also confirmed by Fig. 7. The linear
0.001 can be the result of using the percolation approactgomposition dependence W2, W2 = (0.098+ 0.02)) +
which was developed for the casefAf= 0. In this case, the (0.905 = 0.027 p with correlation coefficient = 0.9987,
S-shaped curve for the diffusivity coefficient composition can be foundsee Fig. 8 This dependence decreases with
dependence can be possibly the better soldfiohhe ob-  increasing graphite volume fraction in the composite.
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Whenp <p, the second term in Eq. 2.2 becomes the most IV. CONCLUSION

. . . 2
important, and since Eq. 2.8 is constant, the ratitf? for This work proved that Straley’s scaling thebgan be a

large T tends to infinity(see Fig. 9. - suitable tool for the study of the transport properties of Cu/
We have demonstrated that the jump probabifitynflu- graphite composites.

ences the random walk results. The changes are obvious es- The two-dimensional diffusion on the cross sections of
pecially for largeT. In the vicinity of the percolation thresh- the Cu/graphite composites was studied by computer simu-
old, the value of the anomalous diffusion expon&ntsee lation of the random walk of Hongt al.’

ko andkg g1 in Table | increases a little bit with the non- The only one characteristic time scale of random walk in
zeroA. The nonzerdA also lowers the rate of the diffusivity the investigated Cu/graphite system was found and our simu-
coefficient, falling to zero near percolation threshold. It islation r8esults appear to be consistent with the scaling of
caused by the ability of the random walketg., charge car- Straley; but we cannot rule out t.he possibility of th7e exist-
rier) to leave a closed copper cluster and walk through graph€nc€ of the second time scale discussed by Hairg.

ite. On the other hand, this ability affects the reduction of the 1 he obtained conductivity critical exponent= 1.46 =
e . . 0.13 is greater than the analytically obtained value® 1n3
diffusivity coefficient forp going to 1 and nonzerd. The ; ; o ; )
; . : two dimensions. This is consistent with the measured elec-
reason is the deceleration of the random walker time flo

hen h ionall ters th hite cl dissi rical conductivity critical exponertt= 2.33 + 0.02* which
when he occasionally enters the graphite cluétey., dissi- is also greater than the numerically estimated valué ih7

pation of the current energy due to the presence of the grapl?hree dimensions

ite particles in the copper matjixThis behavior of the dif- Due the nonzero jump probabilit, the behavior of the
fusivity coefficient is obviously similar to the behavior of the diffusivity coefficient as a function of the composition is
measured electrical conductivity as a function of composi-obviously similar to the behavior of the measured electrical
tion. conductivity as a function of the composition.
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