
Random walk in the Cu/graphite mixtures

J. Kováčik
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Transport properties of Cu/graphite composites scanned surfaces were studied by the random walk. The type
of random walk used considers the nonzero conductivity of graphite. The obtained results are consistent with
the existing scaling theory. The diffusivity composition dependence behavior in two dimensions is in good
agreement with the measured electrical conductivity composition dependence behavior of Cu/graphite com-
posites in three dimensions.@S0163-1829~96!05330-1#

I. INTRODUCTION

The Cu/graphite composite material is often used for low-
voltage and high-current density applications~for example in
welding machines!.1 The nonlinear dependence of electrical
conductivity on composition was observed in the range of
0.59–1 volume fraction of copper~see Fig. 1!.2 A percola-
tion theory3 was used to model this dependence. However,
the obtained conductivity critical exponentt52.3360.01
and the percolation threshold for the volume fraction of cop-
per, pc50.1060.05, differ from the numerically estimated
three-dimensional valuest 5 1.7 andpc 5 0.33.4,5 This dif-
ference can be attributed to the prolonged nonspherical shape
of the copper clusters.2 Moreover, in the percolation theory
the electrical conductivity of graphite is considered as zero.
It means that the Cu/graphite composite, from the point of
view of the percolation theory, is a mixture of conducting
copper regions and nonconducting graphite ones. In reality
the Cu/graphite composite is the mixture of two differently
conducting regions.

Scanned surface micrographs, prepared from samples
with various volume fractions of copper~see Fig. 2!, enable
one to investigate the Cu/graphite composite system in two
dimensions. The direct method to calculate the electrical
conductivity for a two-dimensional conductor network6 ~e.g.,
scanned microphotographs! suffers from the lack of statisti-
cal fluctuations. To avoid this, the investigation of diffusion
on the random conducting network was proposed~random
walk!. It allows one to average the large number of walk
configurations.3 The result is an average diffusion coefficient
for the given network and the conductivity and diffusivity
can be connected by the Nernst-Einstein relation7

s;nD, ~1.1!

wheres is the electrical conductivity,D is the diffusivity
coefficient, andn is the density of the charge carriers.

The typical random walk is usually applied only for one
region of the two-component system. But the Cu/graphite
composite needs the random walk to be performed on both
regions of the two-component system.

The random walk introduced by Honget al.7 fulfills these
requirements. This type of random walk describes the situa-
tion when the investigated system is a random mixture of
good and poor conducting regions. The random walk is char-
acterized by the conductivity ratioh and for the Cu/graphite
mixture it is

h5
sGr

sCu
;1023, ~1.2!

FIG. 1. The electrical conductivitys of the Cu/graphite material
vs volume fraction of copper at 296 K. The plotted line is the result
of the percolation theory.
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wheresGr is the electrical conductivity of graphite andsCu
is the electrical conductivity of copper.

Let us assume a random walker placed randomly on the
Cu/graphite surface~e.g., Fig. 2!. In this case the jump prob-
ability A of the random walker to move from copper to
graphite is equal toh 5 0.001 and walker’s time in graphite
flows 1/h51000 times slower than in copper. The jump
probability B for the copper-copper, graphite-copper, and
graphite-graphite moves is equal to 1. To describe reality
better the probability of the random walker’s move from
copper to graphite was changed in following way: When a
walker chooses the copper-graphite move he moves to
graphite with probabilityA/(A1B) or he stays at a site with
probabilityB/(A1B).

Hong et al. also introduced a scaling theory7 for their

computer model of the random walk. Straley,8 who has been
working in this field for a long time,9,10 presented a slightly
different and more general interpretation of this scaling
theory.

The aim of this work is to prove the suitability of the
scaling theory according to Straley for the simulation of the
transport properties of Cu/graphite composites. At first, Stra-
ley’s scaling theory will be briefly mentioned. Then the re-
sults of a computer simulation will be presented and com-
pared with the measurement of the electrical conductivity of
Cu/graphite composites.

II. SCALING THEORY FOR THE RANDOM WALK

The behavior of the diffusivity coefficientD near the per-
colation threshold can be considered as the scaling law for
the mean square displacement of a random walker,^R2&,
according to Straley,8

^R2&[TD~«,A,B,T21!

5mTD~«/l,l2sA/m,l tB/m,d2m21lb22nT21!,

~2.1!

where T is time, A, B are jump probabilities,
«5(p2pc)/pc, p is the volume fraction of copper,d is the
lattice spacing,l,m are arbitrary parameters, ands,tare criti-
cal exponents;s5 t in two dimensions. Equation~2.1! holds
only in a critical region, e.g.,« small,A ! B, andT large.
The scaling inm means a change of units forT. The scaling
in l is nontrivial.

FIG. 2. Cross sections of the Cu/graphite composites for 70%
~a! and 85%~b! volume fraction of copper.

FIG. 3. Log-log plot of^R2(0.001)& as a function of time for
variousp.
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For u«u.(A/B)1/(s1t) and largeT the expanding in the
small parameters of Eq.~2.1! gives

^R2&'« tBTD~sgn«,0,1,0!1«2sATD~sgn«,08,1,0!

1«b22nd2D~sgn«,0,1,08!1•••. ~2.2!

For «.0 the last term can be neglected and the first term is
leading. For«,0 the first term vanishes. The term ‘‘large
T’’ is defined relatively to the time scale

t'«b22n2td2/B. ~2.3!

On the contrary, in the scaling theory of Honget al.7 the
second time constanttH is defined as

tH'«b22n1sd2/A, ~2.4!

and Honget al.7 presented a sketch in which^R2& increases
for T ,t, has a plateau fort,T,tH, and exhibits a linear
~diffusive! growth for tH,T.

Straley8 on the other hand showed that this sketch is valid
only for the two-dimensional square bond problem and for
two and three dimensions is not true in general. He con-
cluded that there is only one relevant time scale defined by
Eq. ~2.3!. This time scale characterizes the time required to
sample the various environments of the system. On time
scales larger thant the inhomogeneity has been averaged
out, allowing the linear-in-T behavior.

For a more complex view on this problem and also on the
standard cases of the mentioned scaling theory the reader is
referred to the work of Straley.8

Introducing A 5 0 in Eq. ~2.1! ~random walk on one
component of a two-component system! it can be shown8

FIG. 4. Log-log plot of̂ R2(0)& as a function of time for various
p. FIG. 5. Diffusivity dependence on the composition forA50.

The plotted line is the percolation theory result.

TABLE I. The results of the random walk forA50 and
A50.001.

p D0.001 D0 k0.001 k0 t0.001
a t0.001

b W1/2

1.000 0.994 0.996 0.500 0.500 2.3 0 0.996
0.864 0.603 0.679 0.488 0.481 9.4 10 0.892
0.785 0.360 0.459 0.472 0.460 29.3 20 0.805
0.728 0.255 0.346 0.468 0.457 86.6 28 0.756
0.575 0.095 0.026 0.466 0.419 338346.0 80000 0.616
0.535 0.045 - 0.389 0.374 338346.0 200000 -
0.448 0.015 - 0.370 0.325 545.0 300 -
0.530 0.041 - 0.370 0.333 143945.0 50000 -

aThe time constant calculated by Eq.~2.3!.
bExperimentally obtained.

TABLE II. The results of the conductivity critical exponentt.

A50 A50.001 Analytically obtaineda

t 1.1660.04 1.4660.13 1.30

aReferences 3 and 4.
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that, after simplifications, the percolation scaling theory for
the conductor-insulator system is obtained.

In this model forp 5 1 a diffusion law

R25D0T ~2.5!

holds exactly and forp , 1 is fulfilled for largeT. Here
D0 is the diffusivity andR

2 is the mean square displacement
of the random walker. Forp51 D0 5 1, and for p,1,
D05D0(p).

D0 tends to zero whenp approachespc from above ac-
cording to

D0}~p2pc!
t, ~2.6!

and the mean square displacement possesses an anomalous
diffusion atpc

R25D0T
2k, ~2.7!

wherek is an anomalous diffusion exponent;k is about 0.33
in two dimensions.3

Forp ,pc the diffusion is impossible,D0 5 0,R2 cannot
increase, and for the largeT it obeys

R2}~pc2p!b22n, ~2.8!

whereb andn are the critical exponents.b is 5/36 andn is
4/3 in two dimensions.3,4

III. EXPERIMENTAL RESULTS

A. Cu/graphite composite material

The Cu/graphite composite material was prepared by the
powder metallurgical method. The electrolytic Cu powder
~particle size,70 mm! was dry mixed with the graphite
powder ~particle size,3 mm, purity 99.9%! in a tumbler
mixer, and then encapsulated and isostatically compacted at
1000 °C for 30 min using an Ar-gas pressure of 100 MPa.
The powder mixture was free of any activating sintering ad-
ditions. The volume fraction of copper in the as-prepared
composite varied in the range of 0.59–1.

The composite samples were cut in various directions and
polished for metallographic observation. The black and
white microphotographs of the prepared surfaces were taken
by an optical microscope at the magnification of 200 times.
The photographs were scanned by digital scanner with the
resolution of 300 dots per inch. The obtained array had a size
of about 18003900 points. The black points were considered
as the graphite and the white ones as the copper. One point
represents a square with the area of 0.16mm2. The computer
simulations were done on the set of eight pictures, each from
a different sample.

B. Results and discussion

The computer simulation of the random walk was done on
the mixture of copper and graphite conducting regions with
A50.001. The random walk on the copper conducting re-
gions was also done for the comparison (A50).

In the computer simulation, the random walker started
randomly from the copper or graphite site within an area of
20% around the center of the rectangular array with the size
of about 18003900 sites~e.g., Fig. 2!. The mirror boundary

FIG. 6. Diffusivity dependence on the composition for
A50.001. The plotted line is the percolation theory result for
p.pc .

FIG. 7.W1/2 as a function of time forp .pc .
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conditions were applied. Five thousand walks, with 23106

time steps for each walk, were done on every scanned sec-
tion.

The obtained two-dimensional percolation threshold for
copper,pc5 0.556 0.02, for the cross sections11 is consis-
tent with the analytically obtained value of 0.5 for the two-
dimensional site percolation problem.3,4

Figure 3 displays the results of^R2&1/2 for the variousp
from the range of 0.448–1 and forA50.001. Only the curve
with p 5 0.530 exhibits a plateau. Figure 4 shows almost the
same situation forA 5 0. The time constantt0.001 ~deter-
mined from the onset of the linear growth of^R2&1/2) is for
all other curves very small~seet0.001

a in Table I!. The calcu-
lated time constantt0.001 ~seet0.001

b in Table I! and the ex-
perimentally obtained values for variousp showed that
t0.001 seems to be overestimated by a factor of 10–100. It
seems to be true that there is only one relevant time scale.

The conductivity critical exponentt can be determined
from data in Table I and Eq.~2.6! by the least squares
minimization method. The results for both types of walk are
shown in Table II. Figures 5 and 6 show the obtained dif-
fusivity coefficient dependence on composition.

The difference betweent51.1660.04 forA50 and the
analytically obtained two-dimensional valuet51.3 is caused
by the only one realization of scanned sections for each com-
position. The large uncertainty int 5 1.466 0.13 forA 5
0.001 can be the result of using the percolation approach,
which was developed for the case ofA 5 0. In this case, the
S-shaped curve for the diffusivity coefficient composition
dependence can be possibly the better solution.12 The ob-

tained conductivity critical exponentt 5 1.46 6 0.13 is
greater than the analytically obtained value 1.33 in two di-
mensions. This is consistent with the measured electrical
conductivity critical exponentt 5 2.336 0.012 which is also
greater than the numerically estimated value 1.73 in three
dimensions.

It can be pointed out from Figs. 5 and 6 that one can
approximately determine the value of percolation threshold
pc in the range of 0.535–0.575~see the values ofD0 and
D0.001 in Table I!.

The influence of the nonzero value of the jump probabil-
ity A on the behavior of a computer-simulated random walk
is shown in Figs. 7–9.

When the results of the mean square displacement in the
random walk withA 5 0.001 are divided with the results for
A 5 0 we obtain the scale-independent ratioW. It can be
shown that this ratio is time independent forp.pc and large
T, and from Eq.~2.2! and Eq.~2.5! we have

W5
^R2~0.001!&

^R2~0!&
}const,1. ~3.1!

The obtained values forW1/2 are given in Table I. This
time independence is also confirmed by Fig. 7. The linear
composition dependence ofW1/2, W1/2 5 ~0.0986 0.021! 1
~0.9056 0.027! p with correlation coefficientr 5 0.9987,
can be found~see Fig. 8!. This dependence decreases with
increasing graphite volume fraction in the composite.

FIG. 8. Composition dependence ofW1/2 for p .pc . FIG. 9.W1/2 as a function of time forp,pc .
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Whenp,pc the second term in Eq. 2.2 becomes the most
important, and since Eq. 2.8 is constant, the ratioW1/2 for
largeT tends to infinity~see Fig. 9!.

We have demonstrated that the jump probabilityA influ-
ences the random walk results. The changes are obvious es-
pecially for largeT. In the vicinity of the percolation thresh-
old, the value of the anomalous diffusion exponentk ~see
k0 andk0.001 in Table I! increases a little bit with the non-
zeroA. The nonzeroA also lowers the rate of the diffusivity
coefficient, falling to zero near percolation threshold. It is
caused by the ability of the random walker~e.g., charge car-
rier! to leave a closed copper cluster and walk through graph-
ite. On the other hand, this ability affects the reduction of the
diffusivity coefficient forp going to 1 and nonzeroA. The
reason is the deceleration of the random walker time flow
when he occasionally enters the graphite cluster~e.g., dissi-
pation of the current energy due to the presence of the graph-
ite particles in the copper matrix!. This behavior of the dif-
fusivity coefficient is obviously similar to the behavior of the
measured electrical conductivity as a function of composi-
tion.

IV. CONCLUSION

This work proved that Straley’s scaling theory8 can be a
suitable tool for the study of the transport properties of Cu/
graphite composites.

The two-dimensional diffusion on the cross sections of
the Cu/graphite composites was studied by computer simu-
lation of the random walk of Honget al.7

The only one characteristic time scale of random walk in
the investigated Cu/graphite system was found and our simu-
lation results appear to be consistent with the scaling of
Straley,8 but we cannot rule out the possibility of the exist-
ence of the second time scale discussed by Honget al.7

The obtained conductivity critical exponentt 5 1.466
0.13 is greater than the analytically obtained value 1.33 in
two dimensions. This is consistent with the measured elec-
trical conductivity critical exponentt 5 2.336 0.012 which
is also greater than the numerically estimated value 1.73 in
three dimensions.

Due the nonzero jump probabilityA, the behavior of the
diffusivity coefficient as a function of the composition is
obviously similar to the behavior of the measured electrical
conductivity as a function of the composition.

1Š. Emmer, J. Bielek, and A. Havalda, J. Phys.~France! IV 3,
1799 ~1993!.
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