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Ground state of an antiferromagnetic Heisenberg spin system on a nontranslational lattice
of dimension between one and two
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The ground-state properties of the antiferromagnetic, nearest-neighbor, frustrated Heisenberg spin-1/2 sys-
tem on a nontranslational lattice of dimensid# In3/In2 are investigated. The argument is presented indicat-
ing that quantum fluctuations, frustration, lack of translational symmetry, and reduction of dimension of the
system fromd=2, but kept abova =1, taken together lead to a disordered ground state in quantum antifer-
romagnets[S0163-18206)07425-5

. INTRODUCTION ..
H=JY §-S. (1.2
In quantum spin systems such factors as high coordination
number of the interacting moments, large s@inand high
dimensionality of the system suppressing quantum and ther- Among many questions regarding the Heisenberg model
mal fluctuations, as well as translational order, favor magPerhaps the most essential one concerns the existence of
netic order. By contrast, it is generally more difficult to find '0"g-range magnetic ordétRO) in its ground state. Despite
magnetic order in substances with low coordination and spiffumerous efforts, beyond one dimension the exact ground

S (pronounced quantum fluctuationtow dimensionality, in state of the antiferromagnetic infinite system remains un-

: o . known. It is known from the exact Bethe solution that the
the presence of frustration, thermal, positiof@demical, or ; . . . :
. . ) . e . ground state of a one-dimensional chain of antiferromagneti-
topological disorder disturbing periodicity. A complex inter-

I fth factors i i . { 4 leads t cally coupled Heisenberg spins is disordered: It means that in
p'ay Ot Ihese faclors IS ot rare In hature and 'eads 10 NoM5pe gimension guantum fluctuations completely destroy the
trivial physical situations. Some of them can be found amon

) > > . %ng-range order conceived as the magnetization of the sys-
the low-dimensional antiferromagnets described by the quangm, However, in two dimensions the quantum fluctuations
tum, spin3 Heisenberg model investigated for a long time sometimes seem not to be strong enough to destroy the long-
now:? Specific types of disorder can be related to noninterange order in a Heisenberg antiferromagnet even if they act
ger or fractal dimensionality, e.g., that of a percolation clustogether with frustratiorthe case of the Heisenberg spin
ter backbone in diluted substances near percoldtibime to- system on a triangular lattiz&1°

pological properties of the backbone of a percolating cluster The question of magnetic order in the ground state is re-
have been modeled with the help of the Siesingaskef.  lated to the role the quantum fluctuations represented by the
The fractal self-similar structure with geometrical inhomoge-expression§+sj*+s|*sj+ in the Hamiltonian play in de-
neities extended over many length scales is inherent also ttroying the long-range magnetic order in the ground state.
many other random physical systems. It has recently beeAs yet most of the resuft22 concerning triangular and
shown that fractal concepts can be helpful in describing thequare two-dimensiondPD) lattices indicate the existence
properties of granular superconductors near percofationrof a nonzero staggered magnetization in the ground state,
characterized by the combined effect of disorder and frustrake., LRO. This means that in the presence of nearest-
tion. In this context note that the magnetism of low- neighbor interactions only, quantum fluctuatiofis the
dimensional antiferromagnets has been the subject of interestiuare lattice cageor quantum fluctuations together with
over the past few years mainly due to its relevance to thdrustration(in the triangular lattice caeseem not to be able
phenomenon of high-. superconductivity. It is widely ac- to destroy the long-range ordering in the ground state of the
cepted now that the latter is related to weakly magnetically2D antiferromagnetic spig-Heisenberg models on those lat-
coupled copper-oxygen layers. They allow a description witttices. More specifically, for an antiferromagnetic square lat-
the help of the Hubbard model, which in the strong-couplingtice without frustration, i.e., with nearest-neighbor interac-
limit and for a half-filled band can be considered as equivations only, there is a well-established opinion that LRO is
lent to the Heisenberg model with antiferromagnetic coufresent. There are also a few indications of a sublattice LRO
pling: for a Heisenberg antiferromagnet on a triangular
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lattice'!>3~%as well as the honeycomb latti€&despite the
low coordination numbez= 3 of the latter. While magnetic
LRO rather persists in the ground states of square, triangular,
and honeycomb lattices, perhaps Kagjomdattice could be

an exception. Essentially, for kagomelattice with nearest-

neighbor antiferromagnetic interactions the situation does

not seem to be quite clear as w&llalthough indications

exist for a quantum spin liquid st&fe! for S=1. Note,

however, that fotarge Sa kagoméattice attains a coplanar FIG. 1. First three steps of the construction of the Sieskiin

sublattice orde?? In this respect notice its low coordination gasket lattice having the fractal dimensidp=In3/In2. Number of

numberz=4, which by the way concerns the fractal Systemspins, N, contained in the cluster of the order amounts to

considered here as well, in comparison with6 in the tri-  N=3(3"+3).

angular lattice. Another common point represents the size of

the hollow places surrounded by six spins in tegome A. Numerical diagonalization of the Hamiltonian

lattice and the same perimeter of the least lacuna in the To get the answer the exact ground state of the homoge-

Sierpirski gasket. Hence similarities of the present nontransneous, antiferromagnetic, frustrated, nearest-neighbor

lational system and th&agomesystem with translational Heisenberg spid- system on the Sierpski gasket fractal

symmetry noted in the followindSec. Ill) should not be lattice of dimensiord=1In3/In2~1.58 is calculated by stan-

surprising. dard direct diagonalizatidf® of the Hamiltonian(1.1) on
One way to destroy LRO in the ground state would leadfinite clusters consisting dfl=6 andN=15 spins.

through introducing a disorder of interactiotis:* Note that

the periodicity of the lattice is maintained in the latter ap- B. Variational Monte Carlo calculations

proaches, while only the values of the interactions are ran- The same and larger clusters Nfup to 1095 spins are
dpm_ly v?gried, except for the Iimit_ing case of rand_om bondeyamined by a variational Monte CariMC) technique
dilution.>> Another approach, which can be considered agqapted from Huse and ElsErThe variational wave func-

leading closer to real materials mentioned above, is to refraigion js expanded, following the Huse-El¥emethod, into the
from the periodicity of the system and, in addition, to 0ok complete orthonormal set of Ising states,

for the effect of dimensionality. This is what we do here, in
particular by reducing the dimension of the system below
two. A different but somewhat related problem of the
strength of interchain coupling needed for the transition from ~
a disordered phase in one dimension to the ordered one in td the operatoH containing the variational parameters is
two-dimensional square lattice has also been discu€sed. diagonal in that base:

Recently, there appeared a number of papers dealing with |~_|-|a>:)\ la) 2.2
ferromagnetic properties of Ising spin systems on fractal e ’
lattices®®~*® However, the complexity of @uantumspin  The expectation value of an arbitrary operatgr
system on a frustrated fractal lattice appeared prohibitive un-

1 2 3

|‘1’>=§ exp(3 H)la), 2.1)

til very recently*’“81t is the latter kind of system which is (W|A|P) D apeXpNLI2) A, e XPIN /2)
investigated in the present paper. (V|w) > .exp Re,
S .eXp Re\,Z A, 6XP5 (N g—\,)
Il. METHOD - S .exp Re, ’
Let us recall the method of creating a Siégkngasket (2.3

lattice. If one takes three equilateral triangles with sides where Ra,, stands for the real part of,, is easily calcu-

and _attains mutua_ll covering_ of three of their COMNErs, ONgateq by the MC methodt5L since exp(Re,) can formally
obtains a larger triangle of sidesa2Connecting three such e treated as a Boltzmann factor attributed to the quantity
triangles as before one gets a triangle of sidas Repeating E,BAa,BeXp%()\B_)\a) to be averaged. It is clear that the pro-
such a process times (Fig. 1) one gets a fractal Sierpki  cedure described above can be applied to any finite system,
lattice cluster of the ordem and dimensiord=In3/In2. The  whether translationally invariant or not.

numberN of sites in the cluster amounts d=(3"+3)/2. Now, we shall discuss the way of defining the variational
The sites of such lattices bear Heisenberg spins with antifewave function on the Sierpaki gasket lattice. The lattice is
romagnetic interactions between nearest neighbors. So omvided into three sublattices and the sublattice spin-spin cor-
has a frustrated quantum Heisenberg spin system. Our mapelation can indicate the eventual magnetic long-range order.
aim is to answer the question: Do the quantum fluctuationd, et us label the three interpenetrating equivalent sublattices
frustration, and dimension reduced below twiout kept A, B, C so as to have a sifgsay,A) surrounded by two pairs
above ong of the nontranslational antiferromagnetic quan-of neighbors, each pair belonging to one of the remaining
tum spin system on such a lattice taken together destroy theublatticedtwo B and twoC neighbours; see Fig.(@]. To
long-range magnetic order in the ground state? avoid any distinction among sites we assume boundary con-



54 GROUND STATE OF AN ANTIFERROMAGNETIC HEISENBERG ... 397

() ()
/5] .‘A‘I
5T
KR, fo0R
ARG AN N =0 Nl
WavaV \/
eogavAasaYatasay
FIG. 3. Examples of the three-spin interactions present in the
variational Hamiltonianﬁ3 [Eq. ( 2.6)]. yaga="+1, ygce=*+1,

yeac= 11, ycge=—1. Cyclic permutations oA, B, C do not
change the sign o .

Ho=2 kS, 2.5

wherek=K/r?. K and o represent variational parameters
somehow describing the strength of the correlation and its
decay with distance, respectively. At this stage a problem
arises of how to measure the distarceA simplistic ap-
proach would suggest the Euclidean distance, as commonly
used in translational lattic@.Another approach, apparently
more suitable to nontranslational lattices with connected
parts separated by large lacun@asllow place$, is to take
FIG. 2. (a) Partition of the 42-spin cluster taken from a Siérpin the shortest path over bon@idanhattan metricas the physi-

ski lattice into three interpenetrating equivalent sublattices. Boundeal measure of distance, and this is adopted here. In this way
ary conditions described in the text are marked. The correlationhe lacunarity of the fractal lattice, which seems to belong to
functions (S¢S]) are calculated for pairs of sites: 0 and those the essential differences between our system and a transla-
markedj=1, 2, ... belonging to the same sublattiBe (b) The  tjonally invariant one, is taken into account. The term of
120° classical spin structure on the same cluster. lacunarity, which does not seem to be rigorously defined

N ) ) mathematically for the Sierpaki gasket(in contrast to the
ditions which guarantee that the corner sites also have fouﬂ‘;ierpi’rski carpel, is used to mark the presence of large hol-
neighbors, each fulfiling the above rule. More specifically, |y places(with a possibility of drawing circles into them
the spins positioned at the th_ree corners of the lattice argf gizes comparable to the whole cluster at each stage of
allowed to interact mutually with each other with the sameconstruction of the lattice. The preliminary calculations con-
strength as common over the system. Note that every attempErning the same systethbut using the Euclidean distances,
at treating the gasket as a building block of a translationahaye not led to very different conclusions concerning the

lattice would break the requirement of the same coordinatioRqrrelations, but the energy value of the ground state was
numberz=4 everywhere in the systeni® higher.

The starting point for defining the wave function repre- g third part of the operatdii present in the expansion
sents its “classical” form(i.e., one with no quantum correc- 2.1)

tions) in which the spins form a 120° structdfe’ [Fig.

2(b)] and the corresponding part of the operaibr present - sz

in the expansior2.1) is written as §H3_ 7iik'Li;k SiSiSk, 2.6
1~ 2 , , contains yet another variational paramdtetaking into ac-
SHi=3 7 2:3 S _ge STl (24 count the effect of frustration on the wave function by a

slight variation of its phase. The three-spin interactions, ex-
where the sums run over spins on tBeand C sublattices, emplified in Fig. 3, are chosen so that both neighbors of the
respectively. This wave function provides the energyspinS, i.e., S; and S, belong to the same sublattie,
—0.125/bond, and the three classical sublattice magnetizaB, or C. Thus the ground-state energy is minimized with
tions lie symmetrically in thexy plane. respect to the amplitude of a given “Ising” configuration
Quantum corrections, essentially allowing the system td«) of spins and its phase. The latter provides a factor
be free to build correlations among t§€'s, are introduced cogIim(\;+\3)] in the energy corresponding to a given
by adding toH, yet another expression Ising configuration of spins, calculated by applying E213).
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The choice oH; in the form given by Eq(2.6) ensures the 0.1

most favorable energetically distribution of frustrated bonds.

The value+1 or —1 of v is chosen ifie A andjeB or

ieB andjeA, respectively. The total variational operator A

H depending on the parameteks o, and L can thus be g

written in the form %
[72]

T T T T

~ ~  ~ o~ 0.01
H(K,o,L)=H;+H>+Hs;. 2.7

T T T T

Ill. RESULTS I

To judge the quality of such an approach to the problem,
the ground-state enerdy and sublattice spin-spin correla- 0.001 ! ! ! |
tion function (S*(0)S*(r)) have been calculated by the ' 0 1 2 3 4 5
variational method and compared with exact results obtained
by direct diagonalization of the Hamiltoniai.l) for sys- Euclidean distance r
tems consisting of 6 and 15 spifsecond and third Sierpin (in lattice units)
ski gasket construction stepJhe usual extrapolation to the _ o o _
thermodynamic limit starts from quantities calculated for FIG. 4. Plot in logarithmic scale of the spin-spin correlation
small clusters and is based on scaling formulas obtainefyinction (S(0)S%(r)) as a function of Euclidean distancefor
from spin-wave theory. Such an approach makes no sens@ree pairs of spins situated on the 15-spin cluster taken from a
since similarly as for th&agomeantiferromagnét there is ~ >'¢'PirBki lattice. Each spin of the pair belongs to the same sublat-
no good reason to believe that the ground state of an antife}'-ce' Circles, exact results; solid straight line, exponential fit.
romagnetic system on the Sie?pkh gasket shows long- Squares, values obtained by applying the variational method with

i der. Instead. th blatti . . all 215 wave functions taken into account. Dashed straight line,
rahge magne Ic Zorz e,r' nstead, the su ? Ice s.pln.-splln Corl’%_xponential fit to the squares. Triangles, values of the correlation
lation fu.nctlon(Sl Si.> is calculated for Var'ou.B: |' _J| with functions of a cluster of 26 spins on a square lattexeact results
both spins belonging to the same sublattice. Thereafter thgere the negative values have been multiplied-by. Note a dif-
character of decay of the correlation functions with distancerent character of decay of the latter data.

is analyzed to find if it does correspond to an ordered ground

state of the system or not. ing spins on the triangle. The= 15 cluster can be divided
into three equivalent sublattices of five spins each. The spins
A. Results of the exact diagonalization of the Hamiltonian belonging to each sublattice transform among themselves un-

) ) o der the action of the elements of tl&, group in a similar
We start by comparing the exact diagonalization result for, 5y a5 three interacting spins on a triangle do. In the ground
the six-spin system and the variational calculation usilg . 1 )
state each sublattice & ,= =+ 3 can be treated as aspin.

2% Ising states @) of the complete base in the expansion o
(2.1) of the variational wave functiof¥’). It happens that 1S the degeneracy of the ground state of the 15-spin Sier-
pinski gasket cluster should be fourfold. For the same rea-

for the six-spin system, the variational approach leads to th e ;
pin Sy Pp sons, a similar fourfold degeneracy should be present in any

rigorous singlet wave function for value&=—93.9, Sierirski ket clust ot ¢ 4d b ¢
0=0.763, andL=2.62, corresponding to the energy of IETpIrBKI gasket cluster consisting of an odd number o

— 0.25/bond spins. The multiplicity of degeneracy of the ground state of

For the cluster of 15 spins the exact ground-state energ#;'e 15-sp|n_ Sierpiski gasket plu_ster mlg_ht suggest a b_reak-
E=—0.2208 and the sublattice spin-spin correlation function g of rotational symmetry, similarly as it occurs in a single

(S¥(0)S¥(1/3))=0.0554. It is worth noting that the exact it:ll{aer;ggionosg“ Heisenberg  spins  with  antiferromagnetic

ground state is fourfold degenerated. Therefore, an average For the sake of comparison, note that on kagoridat-

with equal weig_hts over gll grounq states is tak_gn as th%ce the cluster containing an odd numb¢rof spins has a
value of the spin correlation function. The conditions im- degenerate ground state as well

posed by the symmetry of the cluster are fulfilled in this way h | f lation f . btained by di
and the right symmetry properties of the correlation func- The values of exact correlation functions obtained by di-
rect diagonalization of the Hamiltoniga.1) for 15 spins are

tions to be calculated are ensured. . - : .

The origin of the ground-state degeneracy can be explotted as a function of in Fig. 4 and compared with their

plained as follows: The Heisenberg model on a triangle ha; alues obtained by applying the variational MC method. The
ormer values of (S'S/) for three different distances

two fourfold-degenerate energy levels, namely, two Kramer . ) ) :

. 3 ez 1 r=|i—j| between spins belonging to the same sublattice are
doublets in the ground staté& & —3,S =+ 7) and a quartet o) fiteq by a straight line in logarithmic scale. The latter
of excited statesE=$,S{,;= = 3). The Kramers degeneracy set of data shows the same tendency. Hence, the plot reveals
of the ground state is the consequence of the odd numbe&n exponential decay of the correlation function with dis-
(3) of spins in the system. An additional twofold degeneracytancer, suggesting a disordered ground state. To check this
of the ground state comes from the chirality of the triarfle. hint analogous calculations for larger clusters have been per-
The symmetry group of the 15-spin Siergli gasket cluster formed by applying the variational procedure described
is C3,, the same as the group of symmetry of three interactabove(Sec. Il B.
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The specific tendency of decay with distance mentioned 0.1
above becomes even more remarkable if contrasted with the F
exact results for a system of 26 spins on a square lditiith : 3
periodic boundary conditiopswhich behaves in a quite dif-
ferent manner(Fig. 4). This is not surprising since the ffj
Heisenberg spin system on a square lattice is known to have 5~ 0.01 3 JT
an ordered ground state. = T T
B. Results of the variational Monte Carlo procedure 0.001

The variational procedure applying again the complete set
of 21° states of the base to construct the variational wave
functions leads in the present case to the approximate mini-
mum ground-state energy vall& 15)= —0.2048 and sub- 0.0001 — — J
lattice  spin-spin  correlation  function (S%(0)S*(/3))
=0.0336 forK=-3.56, L=—0.427, ando=1.38. This Fuclidean distance r
represents a substantial overestimation of energy and an un- (in lattice units)
derestimation of the correlation function with respect to the
exact value. The difference between the above exact and FiG. 5. Plot in logarithmic scale of the spin-spin correlation
approximate values of energypbtained by the variational  function(S%0)S(r)), with each spin of the pair on the same sub-
method and the complete set of functipasounts to 7%. At |attice, as a function of Euclidean distanceon the cluster of
this point it should be noted that the approximate mini-N=1095 spins. Note the exponential decay of correlations with
mum ground-state energy value would amount togrowing r. The error bars represent the statistical errors of the
E(15)=—0.1982 if the Euclidean metric were appligdf. Monte Carlo data and amount terom left to right 0.006, 0.005,
Eqg.(2.5] instead of the Manhattan one, i.e., still 3% worse a0.005, 0.006, 0.005.

value than in the latter case.

We have also applied the MC method as described aboviérgest cluster of 1095 spins. Further the correlation func-
to get the ground-state energy valligc(15)=—0.2048. tions have been checked to find how they decay with dis-

The accuracy to the fourth digit is achieved at 20 000 Mctance. A least squares linear fit td#{(0)S{(r)) vsr has been
steps and 1000 MC steps needed to reach equilibrium. Noteerformed with a high correlation coefficient 0.973. This

that to the fourth digit at such a number of MC steps there i$€Presents evidence of a disordered ground Starea con-
no difference between the latter MC result and the valudrast to the square and triangular lattices, but probably rather

obtained with the variational method using the complete"ke the kagomelattice. The similarity to the latter appears

base. Hence at this stagii€ 15) the MC variational method €Ven closer if one takes into account a very recent result by

does not worsen essentially the energy value with respect "€ Of us(P.T): The Heisenberg spig-antiferromagnetic

that obtained by a variational procedure without further apSyStém on a 885|7e_r5p§k| gaskef and such a system on a
agomédattice?® show a similar marked structure in the

proximations such as choosing only a selection of waves )
functions. Also, we infer that for the 15-spin cluster of the I0W-témperature part of their temperature dependence of the
Sierpitski gasket the ground-state energy value obtained byPecific heat. ,
the variational MC methogsimilarly as that with a complete |t deserves a comment thy th? conclusion should be
set of wave functionsdiffers by about 7% from the exact based on the correlation(S*(0)S*(r)) and not on
one. The MC values of the correlation functions(S(0)-S(r)). Itis the consequence of the variational method
(S¥(0)S*(r)) (see Fig. % are calculated for pairs of spins applied. The point is that the quantum correction pégtof
(01), (02), ... (05 [Fig. 2a@)]. Again, similarly as in the the variational Hamiltonian essentially corresponds to en-
case of the above exact results, these approximate correlatiéorcing the long-range correlations among theomponents
functions show an exponential decay with distanceThis  of the spingand not the total quantum spin vector operators
forms the basis for judging on how far the following MC with parametrized weights. However, it happens that the
calculations deserve confidence. Note that for the finite clusHuse-Elser scheme provides rather bad values of the corre-
ters investigated the variational approximate Monte Carldation functions ofS* andS’ operators* We have checked it
results for the correlation functions, unlike the energy valuealso for a system of the present form consisting of 15 spins
do not allow one to discern between the Manhattan metrievith the same conclusion. Let us recall that the exact corre-
and the Euclidean one within the given limits of accuracy. Sdation function{S*(0)S*(r)) decayed exponentially with the
we felt free to plot them as a function of the Euclidean dis-spin-spin distance. A similar feature can be seen in Fig. 5,
tances, as usually done. which shows the correlations vs distance for a Siegkiin

It has been checked that the energy minimum for the latgasket cluster of 1095 spins calculated by applying the varia-
tice of 42 spins is attained for values of the variational pa-tional Monte Carlo method. There have been performed
rametersK, L, ando different but very slightly from those 240 000 MC steps and 5000 MC steps needed to attain equi-
given above for 15 spins, and so we decided to keep therdibrium. The deviations of particular data points from a
unchanged in the following calculatiohsWith the assump-  straight line stem in our opinion from the fact that for a given
tion of fixed values of the variational parameters mader not all sites on the lattice are equivalent from the point of
above, the ground-state enerfy= —0.2054/bond for the view of symmetry. In other words, for short distances the

T T T T
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correlations depend not only on the valueg pbut also onits  same antiferromagnet on fractal lattices of different dimen-
direction. For smaller clusters a similar linear dependence afion? Examples of Ising systems on a series of Sigkpin
IN(S(0)S(r)) vs r has been observed, but the values oflike fractal lattices of dimensions between that considered
(S(0)SA(r)) for largerr revealed relatively large statistical here and two have recently been examfflerhd the phase
errors due to large fluctuations in small systems. Fotransition found first in the limiting dimension two. In our
N=1095 the error bars are given in Fig. 5. Note that thesystem the only mechanism preventing LRO in the ground
logarithmic scale exaggerates the errors the more the largstate is provided by quantum fluctuations. In the Ising sys-
the distancer. Actually the errors do not vary much with tems considered by Stigset al®° a similar role is played by

r: cf. the caption to Fig. 5. It appeaftsf. Eq. (2.5 with  thermal fluctuations which destroy LRO fdr<2 at any fi-
k=K/r?] that despite the form of the input variational nite temperature. The analogy between the effect of both
scheme ‘‘suggesting” to the system a possibility of an alge-kinds of fluctuations on LRO enables one to speculate that
braic (nearly hyperbolit decay of correlations with distance, Heisenberg antiferromagnets on other Sieskidike fractal

the system prefers rather an exponential decay. This corattices also may not order below dimension of two.

vinces us that the result is not an artifact of the method.
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