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The ground-state properties of the antiferromagnetic, nearest-neighbor, frustrated Heisenberg spin-1/2 sys-
tem on a nontranslational lattice of dimensiond5 ln3/ln2 are investigated. The argument is presented indicat-
ing that quantum fluctuations, frustration, lack of translational symmetry, and reduction of dimension of the
system fromd52, but kept aboved51, taken together lead to a disordered ground state in quantum antifer-
romagnets.@S0163-1829~96!07425-5#

I. INTRODUCTION

In quantum spin systems such factors as high coordination
number of the interacting moments, large spinS, and high
dimensionality of the system suppressing quantum and ther-
mal fluctuations, as well as translational order, favor mag-
netic order. By contrast, it is generally more difficult to find
magnetic order in substances with low coordination and spin
S ~pronounced quantum fluctuations!, low dimensionality, in
the presence of frustration, thermal, positional~chemical!, or
topological disorder disturbing periodicity. A complex inter-
play of these factors is not rare in nature and leads to non-
trivial physical situations. Some of them can be found among
the low-dimensional antiferromagnets described by the quan-
tum, spin-12 Heisenberg model investigated for a long time
now.1,2 Specific types of disorder can be related to noninte-
ger or fractal dimensionality, e.g., that of a percolation clus-
ter backbone in diluted substances near percolation.3 The to-
pological properties of the backbone of a percolating cluster
have been modeled with the help of the Sierpin´ski gasket.4

The fractal self-similar structure with geometrical inhomoge-
neities extended over many length scales is inherent also to
many other random physical systems. It has recently been
shown that fractal concepts can be helpful in describing the
properties of granular superconductors near percolation5

characterized by the combined effect of disorder and frustra-
tion. In this context note that the magnetism of low-
dimensional antiferromagnets has been the subject of interest
over the past few years mainly due to its relevance to the
phenomenon of high-Tc superconductivity. It is widely ac-
cepted now that the latter is related to weakly magnetically
coupled copper-oxygen layers. They allow a description with
the help of the Hubbard model, which in the strong-coupling
limit and for a half-filled band can be considered as equiva-
lent to the Heisenberg model with antiferromagnetic cou-
pling:

H5J(
~ i , j !

SW i•SW j . ~1.1!

Among many questions regarding the Heisenberg model
perhaps the most essential one concerns the existence of
long-range magnetic order~LRO! in its ground state. Despite
numerous efforts, beyond one dimension the exact ground
state of the antiferromagnetic infinite system remains un-
known. It is known from the exact Bethe solution that the
ground state of a one-dimensional chain of antiferromagneti-
cally coupled Heisenberg spins is disordered: It means that in
one dimension quantum fluctuations completely destroy the
long-range order conceived as the magnetization of the sys-
tem. However, in two dimensions the quantum fluctuations
sometimes seem not to be strong enough to destroy the long-
range order in a Heisenberg antiferromagnet even if they act
together with frustration~the case of the Heisenberg spin
system on a triangular lattice!.6–10

The question of magnetic order in the ground state is re-
lated to the role the quantum fluctuations represented by the
expressionsSi

1Sj
21Si

2Sj
1 in the Hamiltonian play in de-

stroying the long-range magnetic order in the ground state.
As yet most of the results11–22 concerning triangular and
square two-dimensional~2D! lattices indicate the existence
of a nonzero staggered magnetization in the ground state,
i.e., LRO. This means that in the presence of nearest-
neighbor interactions only, quantum fluctuations~in the
square lattice case! or quantum fluctuations together with
frustration~in the triangular lattice case! seem not to be able
to destroy the long-range ordering in the ground state of the
2D antiferromagnetic spin-12 Heisenberg models on those lat-
tices. More specifically, for an antiferromagnetic square lat-
tice without frustration, i.e., with nearest-neighbor interac-
tions only, there is a well-established opinion that LRO is
present. There are also a few indications of a sublattice LRO
for a Heisenberg antiferromagnet on a triangular
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lattice11,23–25as well as the honeycomb lattice,26 despite the
low coordination numberz53 of the latter. While magnetic
LRO rather persists in the ground states of square, triangular,
and honeycomb lattices, perhaps thekagome´ lattice could be
an exception. Essentially, for akagome´ lattice with nearest-
neighbor antiferromagnetic interactions the situation does
not seem to be quite clear as well,27 although indications

exist for a quantum spin liquid state28–31 for S5 1
2. Note,

however, that forlarge Sa kagome´ lattice attains a coplanar
sublattice order.32 In this respect notice its low coordination
numberz54, which by the way concerns the fractal system
considered here as well, in comparison withz56 in the tri-
angular lattice. Another common point represents the size of
the hollow places surrounded by six spins in thekagome´
lattice and the same perimeter of the least lacuna in the
Sierpiński gasket. Hence similarities of the present nontrans-
lational system and thekagome´ system with translational
symmetry noted in the following~Sec. III! should not be
surprising.

One way to destroy LRO in the ground state would lead
through introducing a disorder of interactions.33,34 Note that
the periodicity of the lattice is maintained in the latter ap-
proaches, while only the values of the interactions are ran-
domly varied, except for the limiting case of random bond
dilution.33 Another approach, which can be considered as
leading closer to real materials mentioned above, is to refrain
from the periodicity of the system and, in addition, to look
for the effect of dimensionality. This is what we do here, in
particular by reducing the dimension of the system below
two. A different but somewhat related problem of the
strength of interchain coupling needed for the transition from
a disordered phase in one dimension to the ordered one in the
two-dimensional square lattice has also been discussed.35

Recently, there appeared a number of papers dealing with
ferromagnetic properties of Ising spin systems on fractal
lattices.36–46 However, the complexity of aquantumspin
system on a frustrated fractal lattice appeared prohibitive un-
til very recently.47,48 It is the latter kind of system which is
investigated in the present paper.

II. METHOD

Let us recall the method of creating a Sierpin´ski gasket
lattice. If one takes three equilateral triangles with sidesa
and attains mutual covering of three of their corners, one
obtains a larger triangle of sides 2a. Connecting three such
triangles as before one gets a triangle of sides 4a. Repeating
such a processn times ~Fig. 1! one gets a fractal Sierpin´ski
lattice cluster of the ordern and dimensiond5 ln3/ln2. The
numberN of sites in the cluster amounts toN5(3n13)/2.
The sites of such lattices bear Heisenberg spins with antifer-
romagnetic interactions between nearest neighbors. So one
has a frustrated quantum Heisenberg spin system. Our main
aim is to answer the question: Do the quantum fluctuations,
frustration, and dimension reduced below two~but kept
above one! of the nontranslational antiferromagnetic quan-
tum spin system on such a lattice taken together destroy the
long-range magnetic order in the ground state?

A. Numerical diagonalization of the Hamiltonian

To get the answer the exact ground state of the homoge-
neous, antiferromagnetic, frustrated, nearest-neighbor
Heisenberg spin-12 system on the Sierpin´ski gasket fractal
lattice of dimensiond5 ln3/ln2'1.58 is calculated by stan-
dard direct diagonalization49,50 of the Hamiltonian~1.1! on
finite clusters consisting ofN56 andN515 spins.

B. Variational Monte Carlo calculations

The same and larger clusters ofN up to 1095 spins are
examined by a variational Monte Carlo~MC! technique
adapted from Huse and Elser.11 The variational wave func-
tion is expanded, following the Huse-Elser11method, into the
complete orthonormal set of Ising statesua&,

uC&5(
a

exp~ 1
2 H̃ !ua&, ~2.1!

and the operatorH̃ containing the variational parameters is
diagonal in that base:

H̃ua&5laua&. ~2.2!

The expectation value of an arbitrary operatorÂ,

^CuÂuC&

^CuC&
5

(abexp~la* /2!Aabexp~lb/2!

(aexp Rela

5
(aexp Rela(bAabexp

1
2 ~lb2la!

(aexp Rela
,

~2.3!

where Rela stands for the real part ofla , is easily calcu-
lated by the MC method,11,51 since exp(Rela) can formally
be treated as a Boltzmann factor attributed to the quantity
(bAabexp

1
2(lb2la) to be averaged. It is clear that the pro-

cedure described above can be applied to any finite system,
whether translationally invariant or not.

Now, we shall discuss the way of defining the variational
wave function on the Sierpin´ski gasket lattice. The lattice is
divided into three sublattices and the sublattice spin-spin cor-
relation can indicate the eventual magnetic long-range order.
Let us label the three interpenetrating equivalent sublattices
A, B, C so as to have a site~say,A) surrounded by two pairs
of neighbors, each pair belonging to one of the remaining
sublattices@two B and twoC neighbours; see Fig. 2~a!#. To
avoid any distinction among sites we assume boundary con-

FIG. 1. First three steps of the construction of the Sierpin´ski
gasket lattice having the fractal dimensiondf5 ln3/ln2. Number of
spins, N, contained in the cluster of the ordern amounts to

N5
1
2(3

n13).
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ditions which guarantee that the corner sites also have four
neighbors, each fulfilling the above rule. More specifically,
the spins positioned at the three corners of the lattice are
allowed to interact mutually with each other with the same
strength as common over the system. Note that every attempt
at treating the gasket as a building block of a translational
lattice would break the requirement of the same coordination
numberz54 everywhere in the system.5,36

The starting point for defining the wave function repre-
sents its ‘‘classical’’ form~i.e., one with no quantum correc-
tions! in which the spins form a 120° structure22,11 @Fig.
2~b!# and the corresponding part of the operator1

2H̃ present
in the expansion~2.1! is written as

1

2
H̃15

2

3
p i S (

iPB
Si
z2 (

iPC
Si
zD , ~2.4!

where the sums run over spins on theB andC sublattices,
respectively. This wave function provides the energy
20.125/bond, and the three classical sublattice magnetiza-
tions lie symmetrically in thexy plane.

Quantum corrections, essentially allowing the system to
be free to build correlations among theSz’s, are introduced
by adding toH̃1 yet another expression

H̃25(
i , j

kSi
zSj

z , ~2.5!

where k5K/r s. K and s represent variational parameters
somehow describing the strength of the correlation and its
decay with distance, respectively. At this stage a problem
arises of how to measure the distancer . A simplistic ap-
proach would suggest the Euclidean distance, as commonly
used in translational lattices.52 Another approach, apparently
more suitable to nontranslational lattices with connected
parts separated by large lacunas~hollow places!, is to take
the shortest path over bonds~Manhattan metric! as the physi-
cal measure of distance, and this is adopted here. In this way
the lacunarity of the fractal lattice, which seems to belong to
the essential differences between our system and a transla-
tionally invariant one, is taken into account. The term of
lacunarity, which does not seem to be rigorously defined
mathematically for the Sierpin´ski gasket~in contrast to the
Sierpiński carpet!, is used to mark the presence of large hol-
low places~with a possibility of drawing circles into them!
of sizes comparable to the whole cluster at each stage of
construction of the lattice. The preliminary calculations con-
cerning the same system,52 but using the Euclidean distances,
have not led to very different conclusions concerning the
correlations, but the energy value of the ground state was
higher.

The third part of the operator12H̃ present in the expansion
~2.1!,

1

2
H̃35g i jk iL(

i , j ,k
Si
zSj

zSk
z , ~2.6!

contains yet another variational parameterL taking into ac-
count the effect of frustration on the wave function by a
slight variation of its phase. The three-spin interactions, ex-
emplified in Fig. 3, are chosen so that both neighbors of the
spin Si , i.e., Sj and Sk , belong to the same sublatticeA,
B, or C. Thus the ground-state energy is minimized with
respect to the amplitude of a given ‘‘Ising’’ configuration
ua& of spins and its phase. The latter provides a factor
cos@Im(l11l3)# in the energy corresponding to a given
Ising configuration of spins, calculated by applying Eq.~2.3!.

FIG. 2. ~a! Partition of the 42-spin cluster taken from a Sierpin´-
ski lattice into three interpenetrating equivalent sublattices. Bound-
ary conditions described in the text are marked. The correlation
functions ^S0

zSj
z& are calculated for pairs of sites: 0 and those

marked j51, 2, . . . belonging to the same sublatticeB. ~b! The
120° classical spin structure on the same cluster.

FIG. 3. Examples of the three-spin interactions present in the
variational HamiltonianH̃3 @Eq. ~ 2.6!#. gABA511, gBCB511,
gCAC511, gCBC521. Cyclic permutations ofA, B, C do not
change the sign ofg i jk .
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The choice ofH̃3 in the form given by Eq.~2.6! ensures the
most favorable energetically distribution of frustrated bonds.
The value11 or 21 of g i jk is chosen ifiPA and jPB or
iPB and jPA, respectively. The total variational operator
H̃ depending on the parametersK, s, and L can thus be
written in the form

H̃~K,s,L !5H̃11H̃21H̃3 . ~2.7!

III. RESULTS

To judge the quality of such an approach to the problem,
the ground-state energyE and sublattice spin-spin correla-
tion function ^Sz(0)Sz(r )& have been calculated by the
variational method and compared with exact results obtained
by direct diagonalization of the Hamiltonian~1.1! for sys-
tems consisting of 6 and 15 spins~second and third Sierpin´-
ski gasket construction steps!. The usual extrapolation to the
thermodynamic limit starts from quantities calculated for
small clusters and is based on scaling formulas obtained
from spin-wave theory. Such an approach makes no sense,
since similarly as for thekagome´ antiferromagnet53 there is
no good reason to believe that the ground state of an antifer-
romagnetic system on the Sierpin´ski gasket shows long-
range magnetic order. Instead, the sublattice spin-spin corre-
lation function^Si

zSj
z& is calculated for variousr5u i2 j u with

both spins belonging to the same sublattice. Thereafter the
character of decay of the correlation functions with distance
is analyzed to find if it does correspond to an ordered ground
state of the system or not.

A. Results of the exact diagonalization of the Hamiltonian

We start by comparing the exact diagonalization result for
the six-spin system and the variational calculation usingall
26 Ising statesua& of the complete base in the expansion
~2.1! of the variational wave functionuC&. It happens that
for the six-spin system, the variational approach leads to the
rigorous singlet wave function for valuesK5293.9,
s50.763, andL52.62, corresponding to the energy of
20.25/bond.

For the cluster of 15 spins the exact ground-state energy
E520.2208 and the sublattice spin-spin correlation function
^Sz(0)Sz(A3)&50.0554. It is worth noting that the exact
ground state is fourfold degenerated. Therefore, an average
with equal weights over all ground states is taken as the
value of the spin correlation function. The conditions im-
posed by the symmetry of the cluster are fulfilled in this way
and the right symmetry properties of the correlation func-
tions to be calculated are ensured.

The origin of the ground-state degeneracy can be ex-
plained as follows: The Heisenberg model on a triangle has
two fourfold-degenerate energy levels, namely, two Kramers

doublets in the ground state (E52 3
4,Stot

z 56 1
2) and a quartet

of excited states (E5 3
4,Stot

z 56 3
2). The Kramers degeneracy

of the ground state is the consequence of the odd number
(3) of spins in the system. An additional twofold degeneracy
of the ground state comes from the chirality of the triangle.54

The symmetry group of the 15-spin Sierpin´ski gasket cluster
is C3v , the same as the group of symmetry of three interact-

ing spins on the triangle. TheN515 cluster can be divided
into three equivalent sublattices of five spins each. The spins
belonging to each sublattice transform among themselves un-
der the action of the elements of theC3v group in a similar
way as three interacting spins on a triangle do. In the ground

state each sublattice ofStot
z 56 1

2 can be treated as a12 spin.
Thus the degeneracy of the ground state of the 15-spin Sier-
piński gasket cluster should be fourfold. For the same rea-
sons, a similar fourfold degeneracy should be present in any
Sierpiński gasket cluster consisting of an odd number of
spins. The multiplicity of degeneracy of the ground state of
the 15-spin Sierpin´ski gasket cluster might suggest a break-
ing of rotational symmetry, similarly as it occurs in a single
triangle of Heisenberg spins with antiferromagnetic
interactions.54

For the sake of comparison, note that on thekagome´ lat-
tice the cluster containing an odd numberN of spins has a
degenerate ground state as well.55

The values of exact correlation functions obtained by di-
rect diagonalization of the Hamiltonian~1.1! for 15 spins are
plotted as a function ofr in Fig. 4 and compared with their
values obtained by applying the variational MC method. The
former values of ^Si

zSj
z& for three different distances

r5u i2 j u between spins belonging to the same sublattice are
well fitted by a straight line in logarithmic scale. The latter
set of data shows the same tendency. Hence, the plot reveals
an exponential decay of the correlation function with dis-
tancer , suggesting a disordered ground state. To check this
hint analogous calculations for larger clusters have been per-
formed by applying the variational procedure described
above~Sec. II B!.

FIG. 4. Plot in logarithmic scale of the spin-spin correlation
function ^Sz(0)Sz(r )& as a function of Euclidean distancer for
three pairs of spins situated on the 15-spin cluster taken from a
Sierpiński lattice. Each spin of the pair belongs to the same sublat-
tice. Circles, exact results; solid straight line, exponential fit.
Squares, values obtained by applying the variational method with
all 215 wave functions taken into account. Dashed straight line,
exponential fit to the squares. Triangles, values of the correlation
functions of a cluster of 26 spins on a square lattice~exact results!.
Here the negative values have been multiplied by21. Note a dif-
ferent character of decay of the latter data.
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The specific tendency of decay with distance mentioned
above becomes even more remarkable if contrasted with the
exact results for a system of 26 spins on a square lattice~with
periodic boundary conditions!, which behaves in a quite dif-
ferent manner~Fig. 4!. This is not surprising since the
Heisenberg spin system on a square lattice is known to have
an ordered ground state.

B. Results of the variational Monte Carlo procedure

The variational procedure applying again the complete set
of 215 states of the base to construct the variational wave
functions leads in the present case to the approximate mini-
mum ground-state energy valueE(15)520.2048 and sub-
lattice spin-spin correlation function ^Sz(0)Sz(A3)&
50.0336 for K523.56, L520.427, ands51.38. This
represents a substantial overestimation of energy and an un-
derestimation of the correlation function with respect to the
exact value. The difference between the above exact and
approximate values of energy~obtained by the variational
method and the complete set of functions! amounts to 7%. At
this point it should be noted that the approximate mini-
mum ground-state energy value would amount to
E(15)520.1982 if the Euclidean metric were applied@cf.
Eq. ~2.5!# instead of the Manhattan one, i.e., still 3% worse a
value than in the latter case.

We have also applied the MC method as described above
to get the ground-state energy valueEMC(15)520.2048.
The accuracy to the fourth digit is achieved at 20 000 MC
steps and 1000 MC steps needed to reach equilibrium. Note
that to the fourth digit at such a number of MC steps there is
no difference between the latter MC result and the value
obtained with the variational method using the complete
base. Hence at this stage (N515) the MC variational method
does not worsen essentially the energy value with respect to
that obtained by a variational procedure without further ap-
proximations such as choosing only a selection of wave
functions. Also, we infer that for the 15-spin cluster of the
Sierpiński gasket the ground-state energy value obtained by
the variational MC method~similarly as that with a complete
set of wave functions! differs by about 7% from the exact
one. The MC values of the correlation functions
^Sz(0)Sz(r )& ~see Fig. 5! are calculated for pairs of spins
^01&, ^02&, . . . ^05& @Fig. 2~a!#. Again, similarly as in the
case of the above exact results, these approximate correlation
functions show an exponential decay with distancer . This
forms the basis for judging on how far the following MC
calculations deserve confidence. Note that for the finite clus-
ters investigated the variational approximate Monte Carlo
results for the correlation functions, unlike the energy value,
do not allow one to discern between the Manhattan metric
and the Euclidean one within the given limits of accuracy. So
we felt free to plot them as a function of the Euclidean dis-
tances, as usually done.

It has been checked that the energy minimum for the lat-
tice of 42 spins is attained for values of the variational pa-
rametersK, L, ands different but very slightly from those
given above for 15 spins, and so we decided to keep them
unchanged in the following calculations.11 With the assump-
tion of fixed values of the variational parameters made
above, the ground-state energyE520.2054/bond for the

largest cluster of 1095 spins. Further the correlation func-
tions have been checked to find how they decay with dis-
tance. A least squares linear fit to ln^Sz(0)Sz(r)& vs r has been
performed with a high correlation coefficient 0.973. This
represents evidence of a disordered ground state,56 in a con-
trast to the square and triangular lattices, but probably rather
like the kagome´ lattice. The similarity to the latter appears
even closer if one takes into account a very recent result by
one of us~P.T.!: The Heisenberg spin-12 antiferromagnetic
system on a Sierpin´ski gasket48 and such a system on a
kagome´ lattice28,57–59show a similar marked structure in the
low-temperature part of their temperature dependence of the
specific heat.

It deserves a comment why the conclusion should be
based on the correlation̂ Sz(0)Sz(r )& and not on

^SW (0)•SW (r )&. It is the consequence of the variational method
applied. The point is that the quantum correction partH̃2 of
the variational Hamiltonian essentially corresponds to en-
forcing the long-range correlations among thez components
of the spins~and not the total quantum spin vector operators!
with parametrized weights. However, it happens that the
Huse-Elser scheme provides rather bad values of the corre-
lation functions ofSx andSy operators.51We have checked it
also for a system of the present form consisting of 15 spins
with the same conclusion. Let us recall that the exact corre-
lation function^Sz(0)Sz(r )& decayed exponentially with the
spin-spin distancer . A similar feature can be seen in Fig. 5,
which shows the correlations vs distance for a Sierpin´ski
gasket cluster of 1095 spins calculated by applying the varia-
tional Monte Carlo method. There have been performed
240 000 MC steps and 5000 MC steps needed to attain equi-
librium. The deviations of particular data points from a
straight line stem in our opinion from the fact that for a given
r not all sites on the lattice are equivalent from the point of
view of symmetry. In other words, for short distances the

FIG. 5. Plot in logarithmic scale of the spin-spin correlation
function ^Sz(0)Sz(r )&, with each spin of the pair on the same sub-
lattice, as a function of Euclidean distancer on the cluster of
N51095 spins. Note the exponential decay of correlations with
growing r . The error bars represent the statistical errors of the
Monte Carlo data and amount to~from left to right! 0.006, 0.005,
0.005, 0.006, 0.005.
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correlations depend not only on the value ofr , but also on its
direction. For smaller clusters a similar linear dependence of
ln^Sz(0)Sz(r)& vs r has been observed, but the values of
^Sz(0)Sz(r )& for larger r revealed relatively large statistical
errors due to large fluctuations in small systems. For
N51095 the error bars are given in Fig. 5. Note that the
logarithmic scale exaggerates the errors the more the larger
the distancer . Actually the errors do not vary much with
r : cf. the caption to Fig. 5. It appears@cf. Eq. ~2.5! with
k5K/r s# that despite the form of the input variational
scheme ‘‘suggesting’’ to the system a possibility of an alge-
braic ~nearly hyperbolic! decay of correlations with distance,
the system prefers rather an exponential decay. This con-
vinces us that the result is not an artifact of the method.

IV. CONCLUSIONS

We conclude by stating that on applying the exact diago-
nalization and a variational procedure due to Huse and Elser
we have not found evidence for the three-sublattice long-
range magnetic order in a Heisenberg spin-1

2 system on the
Sierpiński fractal lattice. In this respect, as well as some
others, it resembles the antiferromagnetic translational
kagome´ lattice. The present result can be considered as a
rather strong hint that the ground state of the system consid-
ered may correspond to the notion of a spin liquid.

One could also ask a question what would happen to the

same antiferromagnet on fractal lattices of different dimen-
sion? Examples of Ising systems on a series of Sierpin´ski-
like fractal lattices of dimensions between that considered
here and two have recently been examined60 and the phase
transition found first in the limiting dimension two. In our
system the only mechanism preventing LRO in the ground
state is provided by quantum fluctuations. In the Ising sys-
tems considered by Stosˇić et al.60 a similar role is played by
thermal fluctuations which destroy LRO ford,2 at any fi-
nite temperature. The analogy between the effect of both
kinds of fluctuations on LRO enables one to speculate that
Heisenberg antiferromagnets on other Sierpin´ski-like fractal
lattices also may not order below dimension of two.
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