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Mean-field theory of strongly nonlinear random composites: Strong power-law nonlinearity
and scaling behavior
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The effective response of random media consisting of two different kinds of strongly nonlinear materials
with strong power-law nonlinearity is studied. Each component satisfies current density and electric-field
relation of the formJ=x|E|’E. A simple self-consistent mean-field theory, which leads to a simple way in
determining the average local electric field in each constituent, is introduced. Each component is assumed to
have a conductivity depending on the averaged local electric field. The averaged local electric field is then
determined self-consistently. Numerical simulations of the system are carried out on random nonlinear resistor
networks. Theoretical results are compared with simulation data, and excellent agreements are found. Results
are also compared with the Hashin-Shtrikman lower bound proposed by Ponte Castaakfiahys. Rev. B
46, 4387(1992)]. It is found that the present theory, at small contrastg loétween the two components, gives
a result identical to that of Ponte Castanetial. up to second order of the contrast. The crossover and scaling
behavior of the effective response near the percolation threshold as suggested by the present theory are
discussed and demonstrat¢80163-182606)02129-7

[. INTRODUCTION threshold on the nonlinearity of the probléfh.
Recently, Hui and co-workets!? have developed a

Much attention has been attracted to problems concerningimple mean-field theory, similar in idea to the mean-field
the simultaneous presence of disorderness antheory developed in weakly nonlinear composite¥:for the
nonlinearity? A typical system in macroscopically inhomo- effective nonlinear response in strongly nonlinearity com-
geneous media is that of a random mixture of two kinds ofposites consisting of components with cubic nonlinearity. In
materials with different nonlineal—E relations, wherel is  this theory, each component is treated as a conductor with a
the current density anft is the electric field. For strongly  conductivity depending on the local field squared. The local
nonlinear composites, components With E relations of the fields are then determined self-consistently. Results are
form J=yx|E|PE are randomly mixed. By suitably tuning the found to be in good agreement with published simulation
system parameters such as the volume fraction and the nodata. A similar idea has also been successfully applied to
linear susceptibilityy of the constituents, it is possible to random mixtures of linear and nonlinear conductdrs.
control the effective nonlinear response of the nonlinear mix- The aim of the present work is to generalize the self-
ture. consistent mean-field theory for the effective response in

Straley and Kenk&lstudied the percolating effects in sys- strongly nonlinear composites to systems with strong power-
tems in which a strongly nonlinear conductor is mixed withlaw nonlinear components of arbitrary nonlinear exponents.
an insulator. Using standard methods, such as scaling argiio establish the validity of our theory, results are compared
ments and real-space renormalization group, in statisticakith detailed simulation data and excellent agreements are
physics, they studied the critical behavior of the effectivefound given the simplicity of the suggested theory. The
response near the percolation threshold. They also estatieory also satisfies the Hashin-Shtrikm&ts) lower bound
lished the uniqueness of the solution to the probférvieir  obtained by Ponte Castaneda, de Botton, and The cross-
and co-workerd carried out similar studies using series over and scaling behavior of the effective response near the
analysis. For systems consisting of two kinds of materialgpercolation threshold as suggested by the present theory are
with the samenonlinearity but different conductivities, Blu- demonstrated and data collapse is evident.
menfeld and Bergmdndeveloped a perturbative method, It should be pointed out that Bergmdmas developed an
based on the difference of the conductivities to calculate thelegant and fully self-consistent effective-medium approxi-
effective response. Yu and co-workérdsave developed a mation (EMA) for composites with power-law nonlinear
variational method to calculate the local electric field in non-J—E relation. In that paper, the author reformulated the
linear components and an effective-medium approximationEMA in a manner such that the averaging procedure that
Numerical simulations on random nonlinear networks havanust be used becomes unambiguous, and proposed scaling
also been performetHowever, such calculations are often form for the effective response. The percolation threshold
laborious, and may sometimes lead to unphysical resulteras found to be dependent on the nonlinear expoeot
such as the recent report of the dependence of the percolatidine constituents. Being a geometrical propeptyshould re-
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late simply to the connectivity of the system. Th(a_ varir?lti_onal J(X) = xp{| E(X)|P)pE(X) = o, E(X), (4)
approach of Lee, Yuen, and Ysuffers from similar diffi- B }
culty, and is complementary to Bergman’s work in that theyWhere<|E| )b IS NOW an average over volume occupied by
determined the amplitudes of the scaling functions. The&omponento. We can then treat the componentsliagar,
present work gives percolation thresholds which are indeperfUt with field-dependent conductivities, ando, . The basic

dent of the nonlinear exponents. idea of our mean-field theory is to apply standard techrfique
The plan of the paper is as follows. Our mean-field theoryn handling linear random composites to obtain an expres-
for arbitrary nonlinear exponent is presented in Sec. II. InSION for the effective response. The averaged electric fields in

Sec. IlI, the effective-medium approximation for treating lin- 'égions occupied by componenssand b are then deter-
ear random composites is applied within the context of oufMined by imposing self-consistency conditions.
mean-field theory as a specific example and results are com- 1he effective response, of a composite consisting of
pared to simulation data. In Sec. IV, results are compare§omponents characterized by, and o, can be represented
with the HS lower bound for small contrasts of the compo—by

nents. In Sec. V, the crossover and scaling behavior near the B

percolation threshold are discussed in detail for the cases of Te=0e(Ta,0b,P), )
cubic nonlinearity and arbitrary nonlinear exponents. In Secwhere, in general, the explicit form af, depends on the

VI, results are summarized and possible extensions of thgicrogeometry of the composite. Subsequently, the averaged

present work are discussed. local fields (E?), and (E%), can be determined self-
consistently fromo, . Treating the components as linear con-
Il. FORMALISM ductors, the average local fields and the external field are

, , , _ related by141’
Consider a macroscopically inhomogeneous medium con-

sisting of strongly nonlinear conductors with arbitrary non- 90e
linearity. The current density and electric fieldE at posi- (E%,=— Py E3, (6)
tion x within the medium are related by P doa
and
J(x) = x(X) [E(X)|[PE(x), ()
where x(x) describes the strength of the nonlinear response (E?)p= L 9% E2. (7)
and will be termed nonlinear susceptibility, apdthe non- 1=p doy

linear exponent. An external fielfl is applied to the com-  These expressions follow from the formulaf in terms of
posite, which is assumed to occupy a voluwhenclosed by  the field distributiof’

surfaceS. Such an external field can be applied by imposing

suitable boundary condition on the surfa8eThe effective 1 213

response is defined in such a way that if the mediuere Te=VE JVU(X)|E(X)| d>x, 8
uniform, theJ—E response is identical, on the average, to

that of the inhomogeneous media. The effective nonlineawhere o(x) takes ono, (o) for x in regions occupied by
response is characterized by an effective nonlinear suscepgemponenta (b). For the strongly nonlinear composite, a

bility x. defined by local field-dependent conductivity is introduced, hence
B Ua:Xa<|E|B>av Ub:Xb<|E|B>b- and O'e:XelEO|ﬁ- By ap-
(J(x)) = xelEol "Eoq, (2)  plying the following decoupling approximations developed

: in treating  weakly  nonlinear  composit&!**’
where (---) denotes a volume average. In genepal, will QE|ﬂ>a’b~<|E|2> §’§ the right-hand sides of Eqes) and(7)

depend on the physical properties and concentration of thare thus functions of|E[2), and(|E|?), . Equations(6) and

;ggﬁﬂtuents, as well as the microgeometry within the com-(7) form a set of coupled self-consistent equations, which can

2 2 2 2 - }
Consider a two-component composite consisting of a nonP® Solved forE")/Eg and(E*),/E . Substituting the val

linear componena with concentratiorp and nonlinear com- ues for the averaged local fields into B gives the effec-

! . o tive nonlinear responsg,.. Equation(5) together with Egs.
ponentb with concentration + p. The positional-dependent . . :
X in Eq. (1) takes on the valugr, (x,) for X in regions (6) and(7) thus provide a straightforward way to estimate the

occupied by materiah (b). As some standard methods are effective response in strong power-law nonlinear composites

well-developed for treating linear inhomogeneous media, éN'th arbitrary nonllrjear exponentg. The decoupllng spheme
mounts to neglecting the fluctuations of the electric field in

mean-field theory is set up to make these methods applicab e same component at different places in the composite.

in strongly nqnlmear _comppsnes as vyeII. we approxmateAIthough such fluctuations may be important near the perco-
the J—E relation forx in regions occupied by componeat lati . . : ;
as a_tlon thresho_ld, the decouplm_g sqheme is beheyed to give a
simple and direct way for estimating the effective response
_ B — away from the percolation threshold. Near the threshold, it is
300 = xa([E0)|%)oE0) =B (), @ expected that the mean-field theory captures the qualitative
where(|E|?), is the volume average 0E|” taken over re- features, but predicts the critical behavior inaccurately. The
gions occupied by componeatand will be determined self- validity of our approximation is best seen from the good
consistently. Similarly, fox in regions occupied by compo- agreements with simulation results except in the vicinity of
nentb, the threshold.
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lll. EFFECTIVE-MEDIUM APPROXIMATION

Oa™ Oe
—+(1-p) ————= 9
AND NUMERICAL SIMULATION p T go. ( p) 9o 0, 9

Op~ 0e

The effective-medium approximatigEMA) is one of the
most useful approximations in handling linear randomwhereg is a geometrical factor given hy=1 and 2 in two
composites.Within EMA, o, is given by the solution to the (2D) and three dimensions, respectively. Thus, in 2D, we
expression obtain after substituting back thgs into the ¢'s,

o 1
Xe= g5 = 78 (1= 2P ol (B~ xal[E1)E%) + V(1= 2p) "ol EP)™~ Xal EP)E™) >+ Axaro [EPZXIEIE™.

(10
From Egs.(6) and(7), we have
E3 2xu{[E[H)E%= (1-2p)*(xu{ [E[*)F*~ xa{|[EIP)Z)
<E2>a:2_0 {(2p—1)+ — 2 - 2\BI2_ 2\ B2\ 2 : 2\ B2 2\ B2 1y
p V(1-2p)% (o [EIDE* xa([EIDE?) 2+ Axaxs([EIDE X EID)
and
) Ej 2xa(|E[AE+ (1-2p)%(xu{|[EID)F*~ xa{ [EIDED)
(E >b=‘2(1_ ) (1-2p) 2 NP2 P2 2 NP2 2\ B | - (12
P V(1-2p)2(xo([EI "~ xa{[EIDF) 2+ A xaxul [EIDF X EID)

Equations(11) and (12) can be solved simultaneously for percolation threshold. Figure 1 shows the simulation data
(|EI?YB2/|Eo|# and (|E|?) £'?/|Eq|# for given values ofp  together with results of the mean-field theory coupled with
and x./ x, - Substituting the results back into Eq.0) gives  EMA for 8=1,2,3,4, respectively. For each case, four differ-
the effective nonlinear respongg. ent values of the ratios of the nonlinear susceptibilijighy,

To establish the Va'ldlty of our mean-field theory for ar- of the components are considered. Each data point is ob-
bitrary nonlinearity, numerical simulations for nonlinear con-zined by averaging 200 different configurations correspond-
ductance networks were performed for varigisThe simu-  jng to the same concentratign In general, the agreement is
Iation; were carri.ed out using the algorithm of_ Lee and?Yu. good, especially given the simplicity of the theory. The
anS|de_r atwo-d|men3|or)al Square network W'_th _afracpon agreement is better than results obtained by variational
of inclusion conductors with nonlinear susceptibility, and calculations® Deviations from the simulation data become

E\_Ifractlon %'_hg othIc_Jst con%uzcoriownh rlpnllnte;]zzr fs(;JIisceptl- apparent only for high contrast between the two components,

ity x - nontinear conductors sa sty OWING and this is expected in view of the fact that the mean-field
current-voltage I(-V) relationship N . .

approximation is more valid when the fluctuations of the
local field are small. It should be noted that even for the
1= x|V|AV, (13) highest contrasb(b/_xaz 1QOO .studied, the agreement be-

_ tween theory and simulations is reasonably good. The reason

where y takes ony, or x,. The effective response of the for the good agreement is that the present theory determines

random network is calculated and then compared with th%E2> rather thar(E) as done in previous works based on the
predictions by the mean-field theory. The effective responsgariational method:8

of the random network is defined in a way that if the resistor
network were homogeneous, it would be represented by a
full network of identical conductors with-V relations of the

form IV. COMPARISON WITH THE HASHIN-SHTRIKMAN

BOUND
|=Xe|V|'BV, (14 L . .

It is instructive to compare the present theory with the
where x. is the effective nonlinear susceptibility of the Hashin-Shtrikman lower bound proposed by Ponte Cas-
equivalent homogeneous network. A unit voltage is appliedaneda, de Botton, and LY. Consider an isotropic random
across the top and bottom bars of the network. Kirchhoffcomposite in arbitrary dimensiath Within EMA, the factor
equations for the voltages at each node are solved self in Eq. (9) is given byg=d—1. For convenience, we set
consistently and convergence is achieved. In the present,=1, x,=1+ 6 with 6—0, and work out the small contrast
study, x, and y,, are kept finite so that we are away from the limit. From Egs.(6), (7) and(9), we obtain
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FIG. 1. The effective nonlinear respongg xy, is plotted on a semilogarithmic scale as a function of the concentration of the nonlinear
component for different values ofy,/x,. The symbols represent simulation data f@f x,=2 (squarey 10 (triangles, 100 (diamond$,
and 1000(dotg. Each data point is an average over 200 different configurations. The solid lines are the corresponding results of the present
mean-field theory. The insets shows the simulation data and results of the mean-field theory on linear scales. Four differenB\axieles of
investigated(a) g=1, (b) 8=2, (c) B=3, (d) B=4.

Xe=1+(1-p)o—

+L8]%

(2+B)p(1-p)é* (2+p) (28— p*+3d—38d—3d*~4Bp—°p—6dp+3d°p)p(1-p)&°

2(B+d)

6(B8+d)>

From Eq.(24) in Ref. 15, we obtain the series expansion of the HS lower bound as

Xe=1+(1—p)o—

(2+B)P(1—p)&®  (2+B)(28—B>—3pd—4Bp—p?p—3dp)p(1—p)&°

2(B+d)

6(B8+d)°

+ [ 814

(15

(16)
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Thus, to second order iA, the present theory gives results
which coincide with the HS lower bound. If the term of order
8% is consideredy, obtained within our theory is above the
HS lower bound in the small contrast limit. As the contrast
increases, the HS bound becomes progressively Weak.

Hence, our predictions should also be well above the HS
bound as the contrast increases. The agreement is also base#s

on the fact that the present theory determigg$) more

accurately and the treatment by Ponte Castaneda, de Botton

and Li is also based on the determinatior{ Bf) variation-
ally.

V. SCALING BEHAVIOR FOR CUBIC NONLINEARITY

A. Cubic nonlinearity

It is interesting to study the scaling behavior of the effec-
tive response near the percolation threshpldwithin the

mean-field theory. Consider the nonlinear conductors satis-

fying the J—E relation of the form

J= Xaw){|E[?) an)E. 17

To simplify notations, we defineA={|E|?)./|Eo|*> and
B={(|E|*),/|Eo|>. Then the self-consistency equations read

A—1 11 2
=-{-31-2p)

p

2xpB—(1-2pP)*(xpB— xaA)
V(1-2p)?(xpB— XxaA)?+ 4xaxpAB

1 2XaA+(1_2p)2(XbB_XaA)
2 J(1-2p)2(xpB— xaA) 2+ 4xaxbAB

From Eq.(10), we have the following expression fat:

. (18)

N 1
2
and

B 1
=1p

(1-2p)

N[ =

. (19

Xe=3(1—2p)(xpB— xaA)

+ 3V(1-2p)%(x6B — xaA)*+ 4 xaxbAB.

(20

Consider the normal-conductor—insulat@d/l) case in
which the nonlinear susceptibility, of componentb is
small compared withx,. We define h=y,/x, and
Ap=p—p., then from Egs(10), (11), and(12), we obtain

Bh+2(A—Bh)Ap?

1+2Ap)A=2Ap+ , (21
( P) P JVABh+(A—Bh)?Ap? @y
(1—2Ap)B=—2Ap+ A—2(A-Bh)AP? (22)
P P JVABh+(A—Bh)2Ap?’
and the effective nonlinear response as
Xe!xa=Ap(A—Bh)+ VABh+(A—Bh)?Ap?, (23

. M. HUI, AND K. W. YU
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FIG. 2. The rescaled effective respongg(x,Ap?) is plotted
on a log-log scale as a function of the scaling variable,
z=xu/ (xaAp%), for various values of,/x, for the case of cubic
nonlinearity. The inset shows the same data obtained by the present
mean-field theory on a log-log plot of./ x, as a function of for
different values ofyy/ x4 -

where p,=1/2 is the percolation threshold in 2D within
EMA. As h—0, for p=p. we found that the local fields
squared behave as

A~Ap, (24
and
B~Ap L. (25)

Hence we propose that the local fields satisfy the following
scaling form:

h
A:qu)a( A_pd)) y (26)
and
BZAP_l‘Db(A—st ; (27)

where ¢ is a crossover exponent, adeg, and ®,, are some
scaling functions that can be obtained from the self-
consistency equations. For small arguments, the leading
terms in these scaling functions are constants. Trybse}

and writing z=h/Ap®, then by substituting Eqg26) and

(27) into Eqgs.(23) we have forp=p,

Xel X
a2,

p
where® .= o, + \/d>a2+zd>a<1)b.

Equation(28) suggests that, within the mean-field theory,
proper rescaling of the variableg, h, andAp will give a
universal curve. The inset in Fig. 2 gives results of the
present mean-field theory calculated for different valuels of
and Ap. To demenstrate the scaling behavior, the same re-

(28)
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FIG. 3. The rescaled effective respon;@/(xaApB’2+ 1) is plotted on a log-log scale as a function of the scaling variable,
7= xu/ (xaAp?P*?) for various values ofy,/x,. The inset shows the log-log plot gf/x, as obtained by the present mean-field theory as
a function ofz for different values ofy,/x, . Two values off are investigated(a) =3, (b) B=4.

sults are plotted withy/(x,Ap?) against the scaling vari- h

ablez= x,/(xaAp*), and the data fall onto the same curve. AZ(AD)M‘Da(W)' (33

Similar scaling arguments have been given within the con- P

text of an effective-medium approximation based on theand

variational method® which however suffers from the un-

physical result of aB-dependent percolation threshold. It B=Ap-A20 ( h ) (34)

should be pointed out that similar scaling variable has been =ap bl ApPT2)

proposed previously in Ref. 16. ) . )

For small arguments, the leading terms in these scaling func-
. ) tions are constants. Writing=h/Ap#*2 and substituting
B. Arbitrary nonlinear exponents

Egs.(33) and(34) into Eqg. (23), we have forp=p.:
In order to generalize the above discussion to arbitrary

nonlinear exponent, we definé=(|E|?)£'?/|E,|# and XelXa _® 35
B=(|E|?) £'?/|Ey|#. Then Egs(11) and(12) become ApPlil™ e(2), (39
Bh+2(A—Bh)Ap? BI2 where d)e:d)a+\/<1>a2+zd>ad>b. To demonstrate data col-
(1+2Ap)PPA=| 2Ap+ lapse, we carry out similar calculations as in the case of
VABh+(A—Bh)?Ap?

cubic nonlinearity. Figure 3 shows data collapse B*3
(29) and 4, respectively. Again, data collapse is evident.

Similar consideration can be carried out for the
A—2(A—Bh)Ap? )’3’2

superconductor—normal-conductaiS/N) case in which
VABh+(A—Bh)?Ap?

Xa— . Analytic asymptotic expressions for the local fields
(30) and effective nonlinearity can also be extracted. Define

xu/ xa=h"1, and writep,— p=Ap, then from Eqs(11) and
(12), we obtain

(1—2Ap)B’ZB=<—2Ap+

For h—0, we have

_AnBI2 _ 2 BI2

A~Ap (31 (1-28p)82—| —28p+ B+2(Ah—B)Ap ) |
and VABh+ (Ah—B)?Ap?

(36)
B~Ap P72, 32
P 42 o Ah+2(B—Ah)ap? |*?

For cubic nonlinearity3=2 and Eqgs(29) and (30) reduce (1+2Ap)”*B=| 2Ap+ JABhT (B_Ah)?Ap?
back to Eqs(21) and(22). Deducing from the case of cubic P 37)
nonlinearity, we propose that the local fields satisfy the fol-

lowing scaling form with crossover exponegit 8+2: As h—0, we have
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By — X
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» same symbol.
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X
04 |- . + A onf
L 4
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0'2 ! ] ] 5 L L i
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l()(],n(hb"s/'/)
A~Ap A2 38 (p— po)~ & Y. For a small network or fop closed top,,
its correlation length is well approximated by the size of the
B~ApP-2 (39 systemL. Hence, forB=2, we have
Hence we propose LY"(xe/xa)=P(hL?"), (43)
h where within the present theory=2 and ¢=4. It is ex-
= —Bl2 —_— . . o7 . ’ .
A=(Ap) q’a(Apﬁ+2)' (40) pected that this scaling form will be satisfied by numerical
data, but probably with different values of the exponents. It
and is typical that mean-field exponents will not properly scale
h numerical data. To test the validity of the scaling form, we
B:Apﬁlz‘Pb(W)a (41) perform numerical calculations right at the percolation
Ap threshold for 2D square random nonlinear resistor networks

where ¥, and ¥, are some scaling functions. The leading With different sized. and conductance ratids We consider
terms in these scaling functions are constants. Writingg@MPples in which the first component is spanning between
z=h/ApP*2, and substituting Eqg40) and (41) into Egs. usbars to which a potential difference is applied. An open
(23), we have fop=p, boundary condition is applied in the other directions. We
start withh=0.01 and reduce its value down to 0 For
(Xe!x2) APPPPH =W (2), (42)  each value oh, L is varied from 10 to 30 in increments of 5.
4 ) Averaging over 2000 configurations for each sehaind L
whereWe=2z""[W+ yWy+2V,Wp]. In view of the sym-  gives results with reasonably good statistics. Since we expect
metry between the N/I and S/N limits, data could be col-that mean-field theory does not predict the exponents cor-
lapsed for the S/N limit when they are properly rescaled. rectly, we use values of exponentsp=0.37 andg/v=4.1,
previously reported in Ref. 18 to rescale our data. Figure 4

VI. DISCUSSION shows a plot of the variable”(x./x,) againsthL?” on a
log-log scale. These data are calculated using numerical re-

While Figs. 2 and 3 represent data generated using theults from simulations based on different valueshaindL.
present mean-field theory, we can also test the scaling profata from different system sizes are plotted as different sym-
erties using numerical data from simulations on random rebols. It is evident that data collapse on to a universal curve.
sistor networks. In order to do so, we invoke the idea of In summary, we have proposed a mean-field theory for
finite-size scaling. For the case of a normal-conductor-the effective response in strongly nonlinear random compos-

insulator(N/I) mixture as discussed in the previous section,ites with components of power-lad+E relations with arbi-
the correlation length ¢ is related to p—p.) by trary nonlinear exponent. Results are compared with simula-
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tion data and good agreements are found. Our results amtrength of the electric field, as well as the composition of
consistent with the lower bound obtained in Ref. 15. Thethe mixture. The effective response, for example, in a ran-
crossover and scaling behavior are discussed within the comtom composites consisting of linear conductor and strongly
text of the mean-field theory together with EMA. Data col- nonlinear conductdf can be readily described by the present
lapse implied by the present theory are discussed and dertheory!?
onstrated. To our knowledge, the present theory gives the
simplest, and yet reliable way for estimating the effective
response in strong power-law nonlinear composites of arbi-

trary nonlinear exponent.
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posed of two components with the same nonlinearity expo€ouncil(RGC) of the Hong Kong Government under Project
nentB, the present theory can be readily generalized to tredilo. CUHK 461/95P. The work carried out by W.M.V.W. at
composites made up of components with different power dethe Chinese University of Hong Kong as part of her vacation
pendences on a local electric field. The effective nonlineaproject work at the University of Cambridge was supported
response of the composite will then have a power deperby a Direct Grant for Research 1994/95 at CUHK under
dence on external electric field applied which varies with theProject No. 220600700.
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