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The effective response of random media consisting of two different kinds of strongly nonlinear materials
with strong power-law nonlinearity is studied. Each component satisfies current density and electric-field
relation of the formJ5xuEubE. A simple self-consistent mean-field theory, which leads to a simple way in
determining the average local electric field in each constituent, is introduced. Each component is assumed to
have a conductivity depending on the averaged local electric field. The averaged local electric field is then
determined self-consistently. Numerical simulations of the system are carried out on random nonlinear resistor
networks. Theoretical results are compared with simulation data, and excellent agreements are found. Results
are also compared with the Hashin-Shtrikman lower bound proposed by Ponte Castanedaet al. @Phys. Rev. B
46, 4387~1992!#. It is found that the present theory, at small contrasts ofx between the two components, gives
a result identical to that of Ponte Castanedaet al.up to second order of the contrast. The crossover and scaling
behavior of the effective response near the percolation threshold as suggested by the present theory are
discussed and demonstrated.@S0163-1829~96!02129-7#

I. INTRODUCTION

Much attention has been attracted to problems concerning
the simultaneous presence of disorderness and
nonlinearity.1,2 A typical system in macroscopically inhomo-
geneous media is that of a random mixture of two kinds of
materials with different nonlinearJ2E relations, whereJ is
the current density andE is the electric field.3 For strongly
nonlinear composites, components withJ2E relations of the
form J5xuEubE are randomly mixed. By suitably tuning the
system parameters such as the volume fraction and the non-
linear susceptibilityx of the constituents, it is possible to
control the effective nonlinear response of the nonlinear mix-
ture.

Straley and Kenkel4 studied the percolating effects in sys-
tems in which a strongly nonlinear conductor is mixed with
an insulator. Using standard methods, such as scaling argu-
ments and real-space renormalization group, in statistical
physics, they studied the critical behavior of the effective
response near the percolation threshold. They also estab-
lished the uniqueness of the solution to the problem.4,5 Meir
and co-workers6 carried out similar studies using series
analysis. For systems consisting of two kinds of materials
with the samenonlinearity but different conductivities, Blu-
menfeld and Bergman7 developed a perturbative method,
based on the difference of the conductivities to calculate the
effective response. Yu and co-workers8 have developed a
variational method to calculate the local electric field in non-
linear components and an effective-medium approximation.
Numerical simulations on random nonlinear networks have
also been performed.9 However, such calculations are often
laborious, and may sometimes lead to unphysical results
such as the recent report of the dependence of the percolation

threshold on the nonlinearity of the problem.10

Recently, Hui and co-workers11,12 have developed a
simple mean-field theory, similar in idea to the mean-field
theory developed in weakly nonlinear composites,13,14for the
effective nonlinear response in strongly nonlinearity com-
posites consisting of components with cubic nonlinearity. In
this theory, each component is treated as a conductor with a
conductivity depending on the local field squared. The local
fields are then determined self-consistently. Results are
found to be in good agreement with published simulation
data. A similar idea has also been successfully applied to
random mixtures of linear and nonlinear conductors.12

The aim of the present work is to generalize the self-
consistent mean-field theory for the effective response in
strongly nonlinear composites to systems with strong power-
law nonlinear components of arbitrary nonlinear exponents.
To establish the validity of our theory, results are compared
with detailed simulation data and excellent agreements are
found given the simplicity of the suggested theory. The
theory also satisfies the Hashin-Shtrikman~HS! lower bound
obtained by Ponte Castaneda, de Botton, and Li.15 The cross-
over and scaling behavior of the effective response near the
percolation threshold as suggested by the present theory are
demonstrated and data collapse is evident.

It should be pointed out that Bergman16 has developed an
elegant and fully self-consistent effective-medium approxi-
mation ~EMA! for composites with power-law nonlinear
J2E relation. In that paper, the author reformulated the
EMA in a manner such that the averaging procedure that
must be used becomes unambiguous, and proposed scaling
form for the effective response. The percolation threshold
was found to be dependent on the nonlinear exponentb of
the constituents. Being a geometrical property,pc should re-
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late simply to the connectivity of the system. The variational
approach of Lee, Yuen, and Yu10 suffers from similar diffi-
culty, and is complementary to Bergman’s work in that they
determined the amplitudes of the scaling functions. The
present work gives percolation thresholds which are indepen-
dent of the nonlinear exponents.

The plan of the paper is as follows. Our mean-field theory
for arbitrary nonlinear exponent is presented in Sec. II. In
Sec. III, the effective-medium approximation for treating lin-
ear random composites is applied within the context of our
mean-field theory as a specific example and results are com-
pared to simulation data. In Sec. IV, results are compared
with the HS lower bound for small contrasts of the compo-
nents. In Sec. V, the crossover and scaling behavior near the
percolation threshold are discussed in detail for the cases of
cubic nonlinearity and arbitrary nonlinear exponents. In Sec.
VI, results are summarized and possible extensions of the
present work are discussed.

II. FORMALISM

Consider a macroscopically inhomogeneous medium con-
sisting of strongly nonlinear conductors with arbitrary non-
linearity. The current densityJ and electric fieldE at posi-
tion x within the medium are related by

J~x!5x~x!uE~x!ubE~x!, ~1!

wherex~x! describes the strength of the nonlinear response
and will be termed nonlinear susceptibility, andb the non-
linear exponent. An external fieldE0 is applied to the com-
posite, which is assumed to occupy a volumeV enclosed by
surfaceS. Such an external field can be applied by imposing
suitable boundary condition on the surfaceS. The effective
response is defined in such a way that if the mediumwere
uniform, theJ2E response is identical, on the average, to
that of the inhomogeneous media. The effective nonlinear
response is characterized by an effective nonlinear suscepti-
bility xe defined by

^J~x!&5xeuE0ubE0 , ~2!

where ^•••& denotes a volume average. In general,xe will
depend on the physical properties and concentration of the
constituents, as well as the microgeometry within the com-
posite.

Consider a two-component composite consisting of a non-
linear componenta with concentrationp and nonlinear com-
ponentb with concentration 12p. The positional-dependent
x~x! in Eq. ~1! takes on the valuexa (xb) for x in regions
occupied by materiala (b). As some standard methods are
well-developed for treating linear inhomogeneous media, a
mean-field theory is set up to make these methods applicable
in strongly nonlinear composites as well. We approximate
the J2E relation forx in regions occupied by componenta
as

J~x!5xa^uE~x!ub&aE~x![saE~x!, ~3!

where^uEub&a is the volume average ofuEub taken over re-
gions occupied by componenta and will be determined self-
consistently. Similarly, forx in regions occupied by compo-
nentb,

J~x!5xb^uE~x!ub&bE~x![sbE~x!, ~4!

where^uEub&b is now an average over volume occupied by
componentb. We can then treat the components aslinear,
but with field-dependent conductivitiessa andsb . The basic
idea of our mean-field theory is to apply standard technique3

in handling linear random composites to obtain an expres-
sion for the effective response. The averaged electric fields in
regions occupied by componentsa and b are then deter-
mined by imposing self-consistency conditions.

The effective responsese of a composite consisting of
components characterized bysa andsb can be represented
by

se5se~sa ,sb ,p!, ~5!

where, in general, the explicit form ofse depends on the
microgeometry of the composite. Subsequently, the averaged
local fields ^E2&a and ^E2&b can be determined self-
consistently fromse . Treating the components as linear con-
ductors, the average local fields and the external field are
related by3,14,17

^E2&a5
1

p

]se

]sa
E0
2, ~6!

and

^E2&b5
1

12p

]se

]sb
E0
2. ~7!

These expressions follow from the formula ofse in terms of
the field distribution3,17

se5
1

VuE0u2
E
V
s~x!uE~x!u2d3x, ~8!

wheres~x! takes onsa (sb) for x in regions occupied by
componenta (b). For the strongly nonlinear composite, a
local field-dependent conductivity is introduced, hence
sa5xa^uEub&a , sb5xb^uEub&b , and se5xeuE0u

b. By ap-
plying the following decoupling approximations developed
in treating weakly nonlinear composite,13,14,17

^uEub&a,b'^uEu2& a,b
b/2, the right-hand sides of Eqs.~6! and~7!

are thus functions of̂uEu2&a and^uEu2&b . Equations~6! and
~7! form a set of coupled self-consistent equations, which can
be solved for̂ E2&a/E 0

2 and ^E2&b/E 0
2. Substituting the val-

ues for the averaged local fields into Eq.~5! gives the effec-
tive nonlinear responsexe . Equation~5! together with Eqs.
~6! and~7! thus provide a straightforward way to estimate the
effective response in strong power-law nonlinear composites
with arbitrary nonlinear exponents. The decoupling scheme
amounts to neglecting the fluctuations of the electric field in
the same component at different places in the composite.
Although such fluctuations may be important near the perco-
lation threshold, the decoupling scheme is believed to give a
simple and direct way for estimating the effective response
away from the percolation threshold. Near the threshold, it is
expected that the mean-field theory captures the qualitative
features, but predicts the critical behavior inaccurately. The
validity of our approximation is best seen from the good
agreements with simulation results except in the vicinity of
the threshold.
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III. EFFECTIVE-MEDIUM APPROXIMATION
AND NUMERICAL SIMULATION

The effective-medium approximation~EMA! is one of the
most useful approximations in handling linear random
composites.3 Within EMA, se is given by the solution to the
expression

p
sa2se

sa1gse
1~12p!

sb2se

sb1gse
50, ~9!

whereg is a geometrical factor given byg51 and 2 in two
~2D! and three dimensions, respectively. Thus, in 2D, we
obtain after substituting back thex’s into thes’s,

xe5
se

E0
b 5

1

2E0
b $~122p!~xb^uEu2&b

b/22xa^uEu2&a
b/2!1A~122p!2~xb^uEu2&b

b/22xa^uEu2&a
b/2!214xaxb^uEu2&a

b/2^uEu2&b
b/2%.

~10!

From Eqs.~6! and ~7!, we have

^E2&a5
E0
2

2p H ~2p21!1
2xb^uEu2&b

b/22~122p!2~xb^uEu2&b
b/22xa^uEu2&a

b/2!

A~122p!2~xb^uEu2&b
b/22xa^uEu2&a

b/2!214xaxb^uEu2&a
b/2^uEu2&b

b/2 J ~11!

and

^E2&b5
E0
2

2~12p! H ~122p!1
2xa^uEu2&a

b/21~122p!2~xb^uEu2&b
b/22xa^uEu2&a

b/2!

A~122p!2~xb^uEu2&b
b/22xa^uEu2&a

b/2!214xaxb^uEu2&a
b/2^uEu2&b

b/2 J . ~12!

Equations~11! and ~12! can be solved simultaneously for
^uEu2& a

b/2/uE0u
b and ^uEu2& b

b/2/uE0u
b for given values ofp

andxa/xb . Substituting the results back into Eq.~10! gives
the effective nonlinear responsexe .

To establish the validity of our mean-field theory for ar-
bitrary nonlinearity, numerical simulations for nonlinear con-
ductance networks were performed for variousb. The simu-
lations were carried out using the algorithm of Lee and Yu.9

Consider a two-dimensional square network with a fractionp
of inclusion conductors with nonlinear susceptibilityxa , and
a fraction 12p of host conductors with nonlinear suscepti-
bility xb . The nonlinear conductors satisfy the following
current-voltage (I -V) relationship

I5xuVubV, ~13!

wherex takes onxa or xb . The effective response of the
random network is calculated and then compared with the
predictions by the mean-field theory. The effective response
of the random network is defined in a way that if the resistor
networkwere homogeneous, it would be represented by a
full network of identical conductors withI -V relations of the
form

I5xeuVubV, ~14!

where xe is the effective nonlinear susceptibility of the
equivalent homogeneous network. A unit voltage is applied
across the top and bottom bars of the network. Kirchhoff
equations for the voltages at each node are solved self-
consistently and convergence is achieved. In the present
study,xa andxb are kept finite so that we are away from the

percolation threshold. Figure 1 shows the simulation data
together with results of the mean-field theory coupled with
EMA for b51,2,3,4, respectively. For each case, four differ-
ent values of the ratios of the nonlinear susceptibilitiesxb/xa

of the components are considered. Each data point is ob-
tained by averaging 200 different configurations correspond-
ing to the same concentrationp. In general, the agreement is
good, especially given the simplicity of the theory. The
agreement is better than results obtained by variational
calculations.18 Deviations from the simulation data become
apparent only for high contrast between the two components,
and this is expected in view of the fact that the mean-field
approximation is more valid when the fluctuations of the
local field are small. It should be noted that even for the
highest contrastxb/xa51000 studied, the agreement be-
tween theory and simulations is reasonably good. The reason
for the good agreement is that the present theory determines
^E2& rather than̂E& as done in previous works based on the
variational method.9,18

IV. COMPARISON WITH THE HASHIN-SHTRIKMAN
BOUND

It is instructive to compare the present theory with the
Hashin-Shtrikman lower bound proposed by Ponte Cas-
taneda, de Botton, and Li.15 Consider an isotropic random
composite in arbitrary dimensiond. Within EMA, the factor
g in Eq. ~9! is given byg5d21. For convenience, we set
xa51, xb511d with d→0, and work out the small contrast
limit. From Eqs.~6!, ~7! and ~9!, we obtain
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xe511~12p!d2
~21b!p~12p!d2

2~b1d!
2

~21b!~2b2b213d23bd23d224bp2b2p26dp13d2p!p~12p!d3

6~b1d!3

1O @d#4. ~15!

From Eq.~24! in Ref. 15, we obtain the series expansion of the HS lower bound as

xe511~12p!d2
~21b!p~12p!d2

2~b1d!
2

~21b!~2b2b223bd24bp2b2p23dp!p~12p!d3

6~b1d!3
1O @d#4. ~16!

FIG. 1. The effective nonlinear responsexe/xb is plotted on a semilogarithmic scale as a function of the concentration of the nonlinear
componenta for different values ofxb/xa . The symbols represent simulation data forxb/xa52 ~squares!, 10 ~triangles!, 100 ~diamonds!,
and 1000~dots!. Each data point is an average over 200 different configurations. The solid lines are the corresponding results of the present
mean-field theory. The insets shows the simulation data and results of the mean-field theory on linear scales. Four different values ofb are
investigated:~a! b51, ~b! b52, ~c! b53, ~d! b54.
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Thus, to second order ind, the present theory gives results
which coincide with the HS lower bound. If the term of order
d3 is considered,xe obtained within our theory is above the
HS lower bound in the small contrast limit. As the contrast
increases, the HS bound becomes progressively weak.18

Hence, our predictions should also be well above the HS
bound as the contrast increases. The agreement is also based
on the fact that the present theory determines^E2& more
accurately and the treatment by Ponte Castaneda, de Botton,
and Li is also based on the determination of^E2& variation-
ally.

V. SCALING BEHAVIOR FOR CUBIC NONLINEARITY

A. Cubic nonlinearity

It is interesting to study the scaling behavior of the effec-
tive response near the percolation thresholdpc within the
mean-field theory. Consider the nonlinear conductors satis-
fying the J2E relation of the form

J5xa~b!^uEu2&a~b!E. ~17!

To simplify notations, we defineA5^uEu2&a/uE0u
2 and

B5^uEu2&b/uE0u
2. Then the self-consistency equations read

A5
1

p H 2
1

2
~122p!

1
1

2

2xbB2~122p!2~xbB2xaA!

A~122p!2~xbB2xaA!214xaxbAB
J , ~18!

and

B5
1

12p H 12 ~122p!

1
1

2

2xaA1~122p!2~xbB2xaA!

A~122p!2~xbB2xaA!214xaxbAB
J . ~19!

From Eq.~10!, we have the following expression forxe :

xe5
1
2 ~122p!~xbB2xaA!

1 1
2A~122p!2~xbB2xaA!214xaxbAB. ~20!

Consider the normal-conductor–insulator~N/I! case in
which the nonlinear susceptibilityxb of componentb is
small compared with xa . We define h5xb/xa and
Dp5p2pc , then from Eqs.~10!, ~11!, and~12!, we obtain

~112Dp!A52Dp1
Bh12~A2Bh!Dp2

AABh1~A2Bh!2Dp2
, ~21!

~122Dp!B522Dp1
A22~A2Bh!Dp2

AABh1~A2Bh!2Dp2
, ~22!

and the effective nonlinear response as

xe /xa5Dp~A2Bh!1AABh1~A2Bh!2Dp2, ~23!

where pc51/2 is the percolation threshold in 2D within
EMA. As h→0, for p>pc we found that the local fields
squared behave as

A;Dp, ~24!

and

B;Dp21. ~25!

Hence we propose that the local fields satisfy the following
scaling form:

A5DpFaS h

DpfD , ~26!

and

B5Dp21FbS h

DpfD , ~27!

wheref is a crossover exponent, andFa andFb are some
scaling functions that can be obtained from the self-
consistency equations. For small arguments, the leading
terms in these scaling functions are constants. Tryingf54
and writing z5h/Dp4, then by substituting Eqs.~26! and
~27! into Eqs.~23! we have forp>pc

xe /xa

Dp2
5Fe~z!, ~28!

whereFe5Fa1AFa
21zFaFb.

Equation~28! suggests that, within the mean-field theory,
proper rescaling of the variablesxe , h, andDp will give a
universal curve. The inset in Fig. 2 gives results of the
present mean-field theory calculated for different values ofh
andDp. To demenstrate the scaling behavior, the same re-

FIG. 2. The rescaled effective responsexe/(xaDp
2) is plotted

on a log-log scale as a function of the scaling variable,
z5xb/(xaDp

4), for various values ofxb/xa for the case of cubic
nonlinearity. The inset shows the same data obtained by the present
mean-field theory on a log-log plot ofxe/xa as a function ofz for
different values ofxb/xa .
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sults are plotted withxe/(xaDp
2) against the scaling vari-

ablez5xb/(xaDp
4), and the data fall onto the same curve.

Similar scaling arguments have been given within the con-
text of an effective-medium approximation based on the
variational method,19 which however suffers from the un-
physical result of ab-dependent percolation threshold. It
should be pointed out that similar scaling variable has been
proposed previously in Ref. 16.

B. Arbitrary nonlinear exponents

In order to generalize the above discussion to arbitrary
nonlinear exponent, we defineA5^uEu2& a

b/2/uE0u
b and

B5^uEu2& b
b/2/uE0u

b. Then Eqs.~11! and ~12! become

~112Dp!b/2A5S 2Dp1
Bh12~A2Bh!Dp2

AABh1~A2Bh!2Dp2
D b/2

,

~29!

~122Dp!b/2B5S 22Dp1
A22~A2Bh!Dp2

AABh1~A2Bh!2Dp2
D b/2

.

~30!

For h→0, we have

A;Dpb/2 ~31!

and

B;Dp2b/2. ~32!

For cubic nonlinearity,b52 and Eqs.~29! and ~30! reduce
back to Eqs.~21! and~22!. Deducing from the case of cubic
nonlinearity, we propose that the local fields satisfy the fol-
lowing scaling form with crossover exponentf5b12:

A5~Dp!b/2FaS h

Dpb12D , ~33!

and

B5Dp2b/2FbS h

Dpb12D , ~34!

For small arguments, the leading terms in these scaling func-
tions are constants. Writingz5h/Dpb12 and substituting
Eqs.~33! and ~34! into Eq. ~23!, we have forp>pc :

xe /xa

Dpb/211 5Fe~z!, ~35!

whereFe5Fa1AFa
21zFaFb. To demonstrate data col-

lapse, we carry out similar calculations as in the case of
cubic nonlinearity. Figure 3 shows data collapse forb53
and 4, respectively. Again, data collapse is evident.

Similar consideration can be carried out for the
superconductor–normal-conductor~S/N! case in which
xa→`. Analytic asymptotic expressions for the local fields
and effective nonlinearity can also be extracted. Define
xb/xa5h21, and writepc2p5Dp, then from Eqs.~11! and
~12!, we obtain

~122Dp!b/2A5S 22Dp1
B12~Ah2B!Dp2

AABh1~Ah2B!2Dp2
D b/2

,

~36!

~112Dp!b/2B5S 2Dp1
Ah12~B2Ah!Dp2

AABh1~B2Ah!2Dp2
D b/2

.

~37!

As h→0, we have

FIG. 3. The rescaled effective responsexe/(xaDp
b/211) is plotted on a log-log scale as a function of the scaling variable,

z5xb/(xaDp
b12) for various values ofxb/xa . The inset shows the log-log plot ofxe/xa as obtained by the present mean-field theory as

a function ofz for different values ofxb/xa . Two values ofb are investigated:~a! b53, ~b! b54.
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A;Dp2b/2, ~38!

B;Dpb/2. ~39!

Hence we propose

A5~Dp!2b/2CaS h

Dpb12D , ~40!

and

B5Dpb/2CbS h

Dpb12D , ~41!

whereCa andCb are some scaling functions. The leading
terms in these scaling functions are constants. Writing
z5h/Dpb12, and substituting Eqs.~40! and ~41! into Eqs.
~23!, we have forp<pc

~xe /xa!Dp
b/2115Ce~z!, ~42!

whereCe5z21@Cb1ACb
21zCaCb#. In view of the sym-

metry between the N/I and S/N limits, data could be col-
lapsed for the S/N limit when they are properly rescaled.

VI. DISCUSSION

While Figs. 2 and 3 represent data generated using the
present mean-field theory, we can also test the scaling prop-
erties using numerical data from simulations on random re-
sistor networks. In order to do so, we invoke the idea of
finite-size scaling. For the case of a normal-conductor–
insulator~N/I! mixture as discussed in the previous section,
the correlation length j is related to (p2pc) by

(p2pc);j21/n. For a small network or forp closed topc ,
its correlation length is well approximated by the size of the
systemL. Hence, forb52, we have

Lt/n~xe /xa!5Fe~hL
f/n!, ~43!

where within the present theory,t52 andf54. It is ex-
pected that this scaling form will be satisfied by numerical
data, but probably with different values of the exponents. It
is typical that mean-field exponents will not properly scale
numerical data. To test the validity of the scaling form, we
perform numerical calculations right at the percolation
threshold for 2D square random nonlinear resistor networks
with different sizesL and conductance ratiosh. We consider
samples in which the first component is spanning between
busbars to which a potential difference is applied. An open
boundary condition is applied in the other directions. We
start with h50.01 and reduce its value down to 1026. For
each value ofh, L is varied from 10 to 30 in increments of 5.
Averaging over 2000 configurations for each set ofh andL
gives results with reasonably good statistics. Since we expect
that mean-field theory does not predict the exponents cor-
rectly, we use values of exponents,t/f50.37 andf/n54.1,
previously reported in Ref. 18 to rescale our data. Figure 4
shows a plot of the variableLt/n(xe/xa) againsthL

f/n on a
log-log scale. These data are calculated using numerical re-
sults from simulations based on different values ofh andL.
Data from different system sizes are plotted as different sym-
bols. It is evident that data collapse on to a universal curve.

In summary, we have proposed a mean-field theory for
the effective response in strongly nonlinear random compos-
ites with components of power-lawJ-E relations with arbi-
trary nonlinear exponent. Results are compared with simula-

FIG. 4. Log-log plot of
Lt/n(xe/xa) versus hLf/n using
data obtained from numerical
simulations on systems with dif-
ferent sets of values of conduc-
tance ratioh and system sizeL.
Data points corresponding to the
same L are represented by the
same symbol.
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tion data and good agreements are found. Our results are
consistent with the lower bound obtained in Ref. 15. The
crossover and scaling behavior are discussed within the con-
text of the mean-field theory together with EMA. Data col-
lapse implied by the present theory are discussed and dem-
onstrated. To our knowledge, the present theory gives the
simplest, and yet reliable way for estimating the effective
response in strong power-law nonlinear composites of arbi-
trary nonlinear exponent.

Although our discussion has been focused on media com-
posed of two components with the same nonlinearity expo-
nentb, the present theory can be readily generalized to treat
composites made up of components with different power de-
pendences on a local electric field. The effective nonlinear
response of the composite will then have a power depen-
dence on external electric field applied which varies with the

strength of the electric field, as well as the composition of
the mixture. The effective response, for example, in a ran-
dom composites consisting of linear conductor and strongly
nonlinear conductor20 can be readily described by the present
theory.12
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