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A theoretical approach to the description of temporal and frequency responses of glasslike conductors is
developed and a detailed mathematical analysis of response functions is given. Being derived from general
principles of Gaussian statistics of Coulomb fluctuations, which are produced by the random field of charged
defects, these functions can be expressed in terms of the initial conductivity~without disorder! and a fluctuation
exponent that reflects the sensitivity of mobile charges to disorder. In light of our present results, the Gaussian
model of the distribution of activation barriers in glasslike systems is put on firm theoretical ground. The
derived conductivity of the disordered medium reproduces all characteristic features of the empirical Jonscher
law; also, the frequency range where it can be observed increases exponentially with the fluctuation exponent.
The latter determines both the Jonscher exponent and the fractional exponent in the so-called Kohlrausch law.
In this case, the non-Debye relaxation time takes the strict Arrhenius form with the effective activation energy
carrying information about the disorder. The obtained results are compared with experimental data and possible
ways to reconcile the discrepancy between theory and experiment are discussed.@S0163-1829~96!04629-2#

I. INTRODUCTION

The group of phenomena where universal~in both fre-
quency and time! behavior of response functions of disor-
dered systems is observed is rather wide. The first evidence
of the deviation of the time response function from a simple
exponential dependence became known as far back as the
19th century after the classic work of Rudolf Kohlrausch on
the relaxation of a residual charge in the glass body of a
Leyden jar~for a description of these experiments, see, for
example, Ref. 1!. In these experiments it was noticed that the
dynamics of the process is described by the stretched expo-
nent exp@2(t/tK)

b#, wheretK and 0,b,1 are the charac-
teristic time and exponent~the so-called Kohlrausch-
Williams-Watts law!. At present one may consider it to be
established that the difference ofb from 1 is a reflection of
the disorder of the system. The disorder leads to the exist-
ence of non-Debye behavior of the response functions of
various materials: electronic conductors,2,3 solid dielectrics,4

liquid5,6 and solid~including polymer! ionic conductors,7–17

viscoelastic liquids,18 protein molecule solutions,19 and spin
glasses.20–22The common feature of these disorder phenom-
ena is that nonanalytical frequency dependences of the dy-
namic characteristics are observed in them. Thus, for ex-
ample, the frequency-dependent parts of mechanical moduli
and of the complex impedance of ion-conducting glasses are
described by an expression of the type;vs,0,s,1, in a
wide interval of frequenciesv ~see, for example Refs. 5 and
7–11!. Up to now the works where such regularities have
been found are numbered, literally, in hundreds~we naturally
cannot mention all of them!. After Jonscher’s work23 the
dependences have been united under the common name
‘‘universal frequency response.’’

Repeated attempts at derivation of the above mentioned
dependences were made starting from different theoretical

models. In Ref. 24, which was dedicated to the modeling of
the electrical response of disordered semiconductors, it was
noticed that at the base of the nonanalyticity of the low-
frequency conductivity there lies a hierarchy of relaxation
times of electrons. However, the approach applied in Ref. 24
did not allow an exhaustive interpretation of the peculiarities
of the dynamic conductivity of disordered matter. One could
not extend it to the case of glasslike systems with the
classical—ionic—conductivity. Attempts to apply the ideol-
ogy of Ref. 24 to ion-conducting systems had to use assump-
tions ~like introducing truncating factors to provide the con-
vergence of integrals25! which can hardly have a serious
basis. One of the models, especially developed for analysis
of the electric response of disordered ionic conductors, was
suggested in Ref. 26, but the integro-differential equations
for the electrical relaxation function of the conductor which
occur in this model appear to be so cumbersome that one can
analyze them only numerically.

One should mention the group of works~see, for example
Refs. 27 and 28, and references therein! where the universal
behavior of transport characteristics of disordered systems is
considered from the position of fractal dynamics. In this
case, as a rule, it is not possible to establish the dependence
of the exponentsb ands on physical characteristics of mat-
ter ~for example, on temperature!.

Lately, the approach based on the computer modeling of
dynamical properties of disordered ionic conductors29,30was
extended. The basis of this approach is a fundamental prop-
erty of such systems, the Coulomb interaction between ions,
but as in all computer experiments the transparent interpre-
tation of the results appears to be difficult.

The fitting formulas for the processing of numerous ex-
perimental data on the non-Debye relaxation of glasslike sys-
tems were usually constructed by choosing some activation
energy distributions for mobile particles; namely, in the most
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frequently discussed fitting formulas an exponential distribu-
tion is postulated~see, for example Refs. 4 and 10, and ref-
erences therein!, but then the obtained results crucially de-
pend on the method of truncation of the integrals appearing
in the model. On the other hand, there are some communi-
cations in the literature about the use of a Gaussian distribu-
tion function of energy barrier heights for processing the
experimental data on disordered conductor relaxation
dynamics.31,32,12,13Such a Gaussian form, naturally, is con-
siderably less sensitive to the choice of the barrier height
boundary values. In addition, with the help of this form it is
possible to make the best fit of existing experimental depen-
dences of the frequency response of ion-conducting glasses.
This has been investigated by Macdonald,33 who carried out
the most complete investigation of the Gaussian model in
application to disordered conductors. However, in Ref. 33 it
was claimed without proof that the Gaussian distribution
does not lead to forms reproducing the empirical laws of
Jonscher and Kohlrausch.

Meanwhile, in our paper34 it was found that such a Gauss-
ian distribution is the natural consequence of an approach
based on general ideas of statistical physics of Coulomb fluc-
tuations. In this case, for the analytically derived function of
the frequency response of a conducting glass we succeeded
in obtaining a form which strictly reproduces the Jonscher
one in a wide frequency interval.

The importance of the influence of Coulomb fluctuations
on transport characteristics of ion-conducting matter was
demonstrated earlier in the work of one of the authors and
Kuskovskii.35 In this work one of the variants of the theory
of the universal electrical response of disodered conductors,
with the use of the method applied earlier by Andreev36 for
calculation of frequency-dependent fluctuation corrections to
hydrodynamic kinetic coefficients, has been proposed.

The present paper is the continuation of Ref. 34, in which
the basis of the subsequent application of Coulomb fluctua-
tion statistics for construction of a quantitative theory of non-
Debye relaxation in disordered conductors has been laid. The
ideas reported in the work of Bondarev and Zhukov37 con-
cerning the calculation of the dc conductivity of disordered
ion-conducting systems were extended in Ref. 34 onto the
dynamical case. But if in Ref. 37~and in Ref. 34 as well! it
has been assumed that the disorder is formed by the mobile
ionic defect subsystem itself, then below, in Sec. II, the cal-
culation of fluctuation additives to the activation energy of
the dc conductivity of the disordered system is also per-
formed for the case of frozen fluctuations. Sections III and
IV are dedicated to the derivation and analysis of closed-
form expressions for the response functions—temporal and
frequency—of disordered conductors, and to the comparison
of the theory with experimental data~the results of these
sections have been partially published in Ref. 34!. In the
Summary we discuss the results obtained and outline meth-
ods for further investigation of the considered problem.

II. FLUCTUATION ADDITIVE TO THE dc
CONDUCTIVITY ACTIVATION ENERGY

In order to understand the essence of the proposed ap-
proach, let us turn our attention to the method of calculation
of the dc conductivity of glasslike conductors; this method

was used in the paper of Bondarev and Zhukov.37 For defi-
niteness, we will start from the idea of a disordered conduc-
tor as an ionic crystal containing interstitial ionic defects—
extrinsic or intrinsic—and a corresponding number of
vacancies in sites of the host~ordered! lattice ~for a similar
picture in application to superionic glasses, see Ref. 38!. The
presence of such defects leads to a local violation of electro-
neutrality and to the appearance of long-ranged electric fields
in the system. Under their influence the migration barriers
for mobile defects will undergo fluctuation changes so that
the conducting characteristics of the system must be obtained
by averaging the corresponding local values over probabili-
ties of the realization of these fluctuations. It is important
that to obtain a concrete result one should average just the
specific resistance~not the conductivity!. Indeed, the result-
ant dissipation during ionic transport will be determined by
the sum of local resistivities in each part of the sample. So,
just the quantity which is reciprocal to the average specific
resistivity can be identified with the experementally observ-
able conductivity of such a disordered system.

Thus, the problem of finding the average~denoted below
by the angular brackets! specific dc resistance of the disor-
dered conductor̂zdc&, in fact, amounts to the averaging of
the local value

zdc5z expH D0

T
1
q@w~rW1aW !2w~rW !#

T J . ~1!

The product of ionic chargeq and the random~fluctuation!
potential difference of a mobile ion at pointsrW and rW1aW

(2uaW u is the length of an elementary hop! occurring in Eq.~1!
must be considered as an additive to the initial~in the ab-
sence of disorder! activation energyD0; T is the temperature
andz is a preexponential factor.

The averaging in Eq.~1! should be made on random Cou-
lomb potentialsw. Here the result of the averaging, in prin-
ciple, will be dependent on how large or small is the decou-
pling indexRt5ts /ts for a given system, wherets andts

are the relaxation times of shear stresses and conductivity,
respectively. This parameter was introduced in Ref. 39 and
in application to our problem one can consider that the limit
Rt→` corresponds to the case of fluctuationsw frozen at
the vitrification temperatureTg , when in an exceptionally
slowly relaxing glass matrix~extremely nonergodic state of
fluctuations! ionic transport with finite conductivity is pos-
sible. On the other hand, at finite ionic conductivity of the
system the case ofRt;1 can take place, when the conduct-
ing process will occur on the background of ergodic fluctua-
tionsw which are created, in fact, by the subsystem of mo-
bile ions themselves.

The latter case is realized in liquid electrolytes39 and also
in fast-ion-conducting glasses~see also Ref. 40!. Then the
distribution function of fluctuations depends on the actual
temperatureT and has the form

Gw~T!5exp@2F$w;T%/T#. ~2!

Here

F$w;T%5
1

2E dVFrw1
4p

«`
R2~T!r2G ~3!
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is the free energy of Coulomb fluctuations,42,37 expressed
through the local density of the fluctuation charger. The
latter is connected withw by the Poisson equation

¹W 2w524pr/«` , ~4!

where «` is the high-frequency dielectric constant of the
ionic conductor,R(T) is the Debye screening length in a
plasma of mobile defects, and for simplicity we use the
model of isotropic matter. UsingGw(T) at the averaging
assumes the ergodicity of disorder, similarly to what takes
place for superionics where fluctuations are created by mo-
bile defects themselves and are not frozen.

In the other case, corresponding to glasslike solid solu-
tions, a mobile particle experiences, mainly the fluctuation
fields of charged defects, which at a given temperatureT can
be considered as frozen, i.e., extremely nonergodic. Here
~i.e., neglecting the direct interaction between the mobile
particles themselves! the role of the distribution function of
the Coulomb fluctuations is played by the quantityGw(Tg),
corresponding to the vitrification temperatureTg of the ma-
terial.

The averagêzdc& at the frozen disorder~the case of er-
godic disorder has been considered in Ref. 37!,

^zdc&5E DwzdcGw~Tg! YE DwGw~Tg!, ~5!

can be presented as the normalized functional integral over
fluctuationsw. The procedure of calculations, as in Ref. 37,
consists in the transition to the Fourier representation

w~rW !5
1

AV(
kW

wkWe
ikW•rW, w2kW5wkW

* , ~6!

whereV is the volume of the system, and in the functional
integration of Eq.~5! over all variables

ukW5Re~wkWe
ikW•rW!, vkW5Im~wkWe

ikW•rW!, ~7!

in the limits from2` to `. Then because of the Gaussian
character of the expressions the necessity for explicit integra-
tion drops out. Indeed, introducing new variables of integra-
tion in the numerator of Eq.~5!

ukW85ukW1
4pqTg

«`TAV
12cos~kW•aW !

k2@11R2~Tg!k
2#
,

vkW85vkW1
4pqTg

«`TAV
sin~kWaW !

k2@11R2~Tg!k
2#
, ~8!

one can write

q

T
@w~rW1aW !2w~rW !#2

1

2Tg
E dVFrw1

4p

«`
R2~Tg!r

2G
5
4pq2Tg
«`T

2V (
kW

12cos~kW•aW !

k2@11R2~Tg!k
2#

2
«`

8pTg
(
kW
k2@11R2~Tg!k

2#~ukW8
21vkW8

2!. ~9!

Now it is easy to see that the multiplier

)
kW
E

2`

`

dukWE
2`

`

dvkWexpH 2
«`

8pTg
k2@11R2~Tg!k

2#

3~ukW
21vkW

2!J ~10!

is common for the numerator and the denominator of Eq.~5!
and after reduction of it we obtain

^zdc&5s0
21expS dD

T D . ~11!

Here

s05z21exp~2D0 /T! ~12!

is the initial conductivity of the system~in the absence of
disorder!, and the essentially positive quantity

dD ~ fr!5
4pq2Tg
«`TV

(
kW

12cos~kW•aW !

k2@11R2~Tg!k
2#

~13!

must be considered as the resulting addition to the activation
energy of ionic conductivity due to Coulomb fluctuations
frozen @indicated by the superscript~fr!# at the temperature
of vitrification. Going over from summation to integration in
Eq. ~13! by the conventional rule

(
kW

12cos~kW•aW !

k2@11R2~Tg!k
2#
→

V

~2p!3
2pE

0

` dk

11R2~Tg!k
2

3E
0

p

dusinu@12cos~kacosu!#

~14!

and calculating integrals, we find finally

dD ~ fr!5
T
*
2

T
,T
*
2 5

q2Tg
«`a

H a

R~Tg!
211expF2

a

R~Tg!
G J ,

~15!

where the characteristic temperatureT* is introduced and
a5uaW u. It is essential that the obtained additiondD (fr) is
inversely proportional to temperature.

In the case of ergodic disorder@denoted by the superscript
~erg!# the expression for the fluctuation addition to the con-
ductivity activation energy of the superionic system is de-
rived from Eq.~15! by the replacement ofTg with T, and has
the form

dD ~erg!5
q2

«`a
H a

R~T!
211expF2

a

R~T!G J . ~16!

Just Eq.~16! has been obtained in Ref. 37.
On the other hand, for a rarefied plasma of defects

@R(T)@a# we have from Eq.~16! with an accuracy to
@a/R(T)#3

dD ~erg!5
q2a

2«`R
2~T! F12

a

3R~T!G . ~17!
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Let us substitute the explicit expression for the Debye
length43 in Eq. ~17!:

R~T!5A«`T/~8pn0xq
2!, ~18!

wheren0x is the density of interstitial defects~and vacan-
cies! creating Coulomb fluctuations andn0;1022 cm23 is
the density of interstitials on which the defect ions are dis-
tributed; the concentrationx of defects in the disordered
ionic conductor under investigation is determined by the
composition and/or by the preparation~for instance, at the
vitrification of the stoichiometric compound one should ex-
pectx!1). As a result we get

dD ~erg!5
T0
2

T S 12
A2aT0
3uquATD , ~19!

where we introduced another characteristic temperature

T052q2Apan0x/«` . ~20!

Comparing Eq.~19! and Eq.~15! we note that the tempera-
ture dependences giving by them coincide only in the main
approximation: in principle, by analyzing the details of the
temperature behavior of the ionic conductivity of glass one
can establish which type of disoder~ergodic or frozen! is
realized in the system.

Here we have to make an important supplement clarifying
the physical sense of the relationdD (fr) /T @see Eq.~11!; an
analogous equation, certainly, also occurs for the case of
ergodic disorder# which will essentially determine the tem-
perature dependences also of the averaged dynamic charac-
teristics of disordered conductors. According to Eq.~15! one
can writeAdD (fr) /T5T* /T, where the characteristic tem-
peratureT* is a function of the vitrification temperature and
of fundamental characteristics of the ionic conductor. Hence
it is seen that the quantityAdD (fr) /T is the ratio of the ener-
getic amplitude of Coulomb fluctuations frozen at the vitri-
fication temperatureTg , averaged in some way, to the aver-
age thermal energy of a mobile ion. Note that the parameter
1/AdD (fr) /T in a definite sense is analogous to the one intro-
duced in Ref. 41 for description of the properties of the spin-
glass state, where the latter parameter corresponded to the
number of replicas of the statistical sum of the glass. From
our definition of 1/AdD (fr) /T it follows that the manifestation
of the disorder in transport properties of the ionic conductor
will be greater the lower is the temperature. Therefore one
can consider that the quantitydD (fr) /T determines how the
conductive subsystem is sensitive to the structure disorder of
the glass. Concerning Eqs.~16! and ~18!, which allow us to
determine the sensitivity of the conducting subsystem to the
ergodic disorder, they are applicable in the temperature range
of existence of an electrolyte in a liquid state or in the state
of a superionic conductor@just for the latter case Eq.~19!,
actually, has been obtained#. Naturally, the lower boundary
of the range in the case of a liquid electrolyte is the tempera-
ture of its vitrification,Tg .

Let us pay attention to the following circumstance. The
expressions obtained above were derived for the case of
three-dimensional isotropic ion-conducting glasses which are
most frequently investigated experimentally~see, for ex-
ample, Ref. 14!. However, systems are known like layered

Na2O-K2O b-alumina44 where the ionic disorder has quasi-
two-dimensional character. To account for the specifics of
such systems the fluctuation addition to the conductivity ac-
tivation energy needs an additional—logarithmic in
temperature—multiplier in comparison with Eqs.~15! and
~20! ~this result has been obtained in the work of one of the
authors;45 we shall not discuss this subject here in detail!.

III. DYNAMICAL RESPONSE FUNCTIONS
OF DISORDERED CONDUCTOR:

RIGOROUS RESULTS

As a starting point for the derivation of observable trans-
port characteristics of the disordered ionic conductor~the
results obtained below, in principle, are applicable also to
other systems with hopping conductivity! let us write down
the expression for the local specific complex impedance
z(v) in the form ~see, for example, Ref. 23!

z~v!5 i
4p

v«~v!
, ~21!

where

«~v!5«`1
4p i

v
s ~22!

is the local complex dielectric function of the material and
s51/zdc is its local conductivity. Being measured experi-
mentally, the complex impedance of the disordered conduc-
tor is derived by averaging of Eq.~21!

^z~v!&5 K zdc
12 i«`zdcv/4p L , ~23!

so that atv50 the result of the averaging is reduced to the
result obtained above~see also Ref. 37! for the average spe-
cific resistance,̂zdc&5^1/s&. Let us pay attention to the fact
that the resulting expression for the impedance is obtained by
averaging of random values of the specific resistance but not
of the distribution of relaxation times as is accepted for mod-
els ~see, for example Ref. 4! based on the Drude-Lorentz
approximation. Note that the impedance introduced in this
way @Eqs. ~21! and ~22!#, having a single pole in the lower
half plane of complex frequency, satisfies the conditions of
the Kramers-Kronig theorem43 and must be considered as a
natural response function of the conductor. For this reason,
also, the average quantity^z(v)& @Eq. ~23!# will satisfy the
Kramers-Kronig relations. Thus, the experimentally mea-
sured complex conductivity of the disodered system can be
defined as~see, for example, Ref. 46!

ŝ~v!5
1

^z~v!&
, ~24!

so that the real part of the measurable conductivity is

s~v!5Reŝ~v!. ~25!

For what follows it is convenient to turn to the temporal
behavior of the impedance, having introduced the relaxation
function by the equation
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f ~ t !5
«`

4p

1

2pE2`

`

dvexp~2 ivt !^z~v!&. ~26!

Substituting Eq.~23! in Eq. ~26! and going over to integra-
tion on corresponding contours in the complexv plane, we
get

f ~ t !5 K expF2
4pt

«`zdc
G L , t>0,

f ~ t !50, t,0. ~27!

For calculation of the relaxation function let us expandf (t)
at t>0 into the series

f ~ t !5 (
m50

`
~21!m

m! S 4pt

«`
Dm^zdc

2m&, t>0. ~28!

The averagêzdc
2m& at arbitrarym is derived in analogy with

the ^zdc& found above@see Eqs.~11!–~13!#. Omitting inter-
mediate calculations we have

^zdc
2m&5E Dwzdc

2mGw~T! YE DwGw~T!

5s0
mexpSm2dD

T D , ~29!

so that the distribution functionGw(T) and the addition to
the activation energydD are written down in general form,
i.e., without specification of the type of disorder which is
realized in the system.

It is remarkable that series~28! taking into account Eq.
~29! can be summed exactly. We do this as follows. Intro-
duce dimensionless quantities

Q5 ln~4ps0t/«`!, 2`,Q,`, n5
4dD

T
, ~30!

and consider them to be the arguments of the relaxation
function. The introduced quantityn has a fluctuation nature
and we will call it the fluctuation exponent~its physical
meaning as the sensitivity to the structural disorder of the
conductor has already been mentioned at the end of Sec. II!.
Then the expansion of the relaxation function can be pre-
sented in the form

f ~Q,n!5 (
m50

`
~21!m

m!
em

2n/41mQ. ~31!

Now one can notice that the functionf (Q,n) satisfies the
linear one-dimensional equation of ‘‘diffusion’’

4
] f ~Q,n!

]n
5

]2f ~Q,n!

]Q2 , ~32!

in which the role of the ‘‘coordinate’’ is played by the loga-
rithmic time and the role of the ‘‘time’’ is played by the
fluctuation exponentn. As the initial condition to Eq.~32!
one must take the equality

f ~Q,0!5 f D~Q!5exp~2expQ!, ~33!

which indicates that in the absence of disorder, i.e., at
n50, the relaxation function of the conductor is transformed
to the Debye functionf D(Q), i.e., to exp(24ps0t/«`). The
boundary conditions are

f ~2`,n!51, f ~`,n!50. ~34!

The solution of the diffusion equation, which satisfies the
conditions~33! and~34! can be presented as an integral~see,
for example, Ref. 47!:

f ~Q,n!5
1

Apn
E

2`

`

expF2
~Q82Q!2

n Gexp~2expQ8!dQ8,

~35!

which contains the convolution of the known Green function
of Eq. ~32! with the initial value off (Q,n). Returning to the
presentation of the relaxation function through the real time
t and changing the integration variable in Eq.~35!, we have
as a result the elegant expression

f ~ t !5
1

Ap
E

2`

`

duexp@2u22~ t/t!exp~Anu!#, t>0,

t5
«`

4ps0
, ~36!

where the Debye relaxation timet is determined through the
initial conductivity of the system and as in Eq.~26! we do
not indicate the parametern as an argument of the relaxation
function. It is easy to prove that series~28! is obtained by
expanding the integrand in Eq.~36! in powers oft and by the
termwise calculation of the resulting Gaussian integrals.

A brief derivation of Eq.~36!, allowing one to analyze in
detail the non-Debye relaxation in systems of superionic
glass type, has been given in Ref. 34. In that paper, the
expression for the averaged frequency-dependent impedance
was also displayed. This is obtained from Eq.~36! by the
Fourier transformation

^z~v!&5E
2`

`

f ~ t !eivtdt5
4Apt

«`An
E

2`

` exp~2u2/n!

2 ivt1expu
du.

~37!

Considering this expression as a function of complex fre-
quency, note that it does, like any physically correct response
function, satisfy the requirement̂z(2v* )&5^z(v)&* ,43

where the superscript* means complex conjugation.
To investigate the properties of the function^z(v)& at real

positive v it is convenient to introduce the variable
w5n21ln(vt). Then the averaged impedance and the result-
ing complex conductivity as functions of the variablew take
the forms
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^z~w!&5
4Apt

«`An
exp~2nw2nw2!

3E
2`

` dyexp~2y2/n22wy!

expy2 i
,

ŝ~w!5
1

^z~w!&
, ~38!

following from Eqs. ~37! and ~24!. Shifting now the argu-
ment in ^z(w)&, w→w21/2, and extracting from the ob-
tained expression an exactly calculated Poisson integral, we
come to the recurrence relation

K zSw2
1

2D L 5
1

s0
expS n

4D1 iexpS n

4
1nwD ^z~w!&

~39!

or to the equivalent one for the complex conductivity of a
disordered system in terms of the variablew,

ŝ~w!5
s0exp~2n/4!

11 is0exp@n~w11/2!#/ŝ~w11/2!
. ~40!

The last recurrence relation is the base for obtaining the rep-
resentation ofŝ(w) in the form of continuous fractions. In-
deed, from Eq.~40! one can get two equivalent forms:

ŝ~w21/2!

ŝ~w!
5

1

11 iexp@n~w11/4!#2 iexp@n~w13/4!#ŝ~w!/ŝ~w11/2!
, ~41!

ŝ~w11/2!

ŝ~w!
5

exp~n/2!

12 iexp@2n~w11/4!#1 iexp@2n~w11/4!#ŝ~w!/ŝ~w21/2!
. ~42!

Making in each of them sequential recursions, having taken into account Eq.~40!, and returning to the frequency variable, we
get two equivalent representations ofŝ(v) by the continuous fractions

ŝ~v!5s0exp~2n/4!S 12
iV

11 iV2

iVL

11 iVL2

iVL2

11 iVL22
••• D , ~43!

ŝ~v!5s0exp~n/4!S 2
iV

L2 1
1

12 iV21L21

iV21L3

12 iV21L31

iV21L4

12 iV21L41
••• D , ~44!

where we introduced the dimensionless frequency
V5vtexp(3/4n) and the parameterL5exp(n/2).1.

Note that Eq.~43! corresponds to a ‘‘low-frequency’’ ex-
pansion and Eq.~44! corresponds to a ‘‘high-frequency’’
one. Thus from Eq.~43! it follows that atv→0 the experi-
mentally measured conductivity of the disodered system
s(v) @see Eq. ~25!# tends to its low-frequency limit
sdc5s0exp(2n/4) and at largev, as is seen from Eq.~44! it
tends to the ‘‘high-frequency’’ limits`5s0exp(n/4) ~it is
assumed, of course, that the approach tos` takes place at
frequencies definitely lower than those at which the Drude-
Lorentz regime or optical vibrations of the ionic conductor
appear!. However, the structure of both Eq.~43! and Eq.~44!
is that the multiplierL.1 enters each of the subsequent
elements of the fraction in increasing power, which means,
in fact, that it is impossible to representŝ(v) by a conver-
gent series in powers ofv or v21 @compare with the tem-
poral expansion given above of the relaxation function
through the formally divergent series~28! taking account of
Eq. ~29!#. Thus the absence of an analytical expansion of
ŝ(v) at any finite value of argument leads to the conclusion
that in a wide frequency rangeŝ(v) can be approximated
adequately by a suitable nonanalytical expression~see be-
low!, which proves the empirical Jonscher law.23

Note that the continuous fraction formalism has been used
many times in modeling dynamic response functions of con-
ducting systems~see, for example, Ref. 48!. Often, however,
the matter was restricted by choosing the approximation cor-

responding to taking into account only a few terms of the
continuous fraction. Lately, in works of several authors~see
Ref. 28! the Jonscher law has been discussed in connection
with mathematical fractal models of disordered conductors
as a hierarchical system of resistors and capacitors. Here the
impedance of the conductor was obtained in the form of a
continuous fraction for which one could find only scaling
characteristics. On the other hand, the dynamical character-
istics of one-dimensional disordered conductors49 also could
not be analyzed completely because a closed expression for
the continuous fraction modeling the dynamical conductivity
has not been found. In our case one succeeded in obtaining
^z(v)&21 in a closed form that is equivalent to the convolu-
tion of corresponding continuous fractions~43! and ~44!.

The expression for the dynamic conductivity of the disor-
dered system, usually discussed on the base of experimental
data, follows from Eqs.~37! and ~38! which represent the
main result of our paper:

s~w!5Reŝ~w!

5s0exp@nw~w11!#
B~w,n!

B2~w,n!1B2~w11/2,n!
, ~45!

where thew function, which is symmetrical with respect to
its argument,

54 3937FLUCTUATION THEORY OF RELAXATION PHENOMENA IN . . .



B~w,n!5
1

2Apn
E

2`

` dyexp@2y2/~4n!1~1/22w!y#

11expy

5B~2w,n! ~46!

has been introduced; as far as the authors know it was not
investigated in the literature before Ref. 34. This function
possesses several important properties. First, at values
w5m11/2, m50,61,62, . . . , it iscalculated exactly and
the recurrence formula34

B~w2 1
2 ,n!1B~w1 1

2 ,n!5exp~nw2! ~47!

occurs, which can be derived in analogy with the derivation
of the recurrence formula~39! by changing the argument
w→w21/2 inB(w,n) and separating the Poisson integral in
the result obtained. For example, it follows from Eq.~47!
thatB(1/2,n)51/2. The existence of Eq.~47! means that it
is enough to study the functionB(w,n), for instance, at
0<w,1/2 to restore its values at all otherw.

Equation ~47! is the basis of the representation of the
functionB(w,n) in the form of a continuous fraction. Again,
by analogy with the derivation of Eqs.~43! and ~44!, we
come to two equivalent representations:

B~w,n!5
exp@n~w21/2!2#

11

exp@22n~w21!#

12exp@22n~w21!#1

exp@22n~w22!#

12exp@22n~w22!#1
•••

5
exp@n~w11/2!2#

11

exp@2n~w11!#

12exp@2n~w11!#1

exp@2n~w12!#

12exp@2n~w12!#1
•••, ~48!

coinciding due to the symmetry properties of Eq.~46!.
The functionB(w,n) allows two expansions into series:34

B~w,n!5
Ap

2An
(
k50

`
~21!k

k!

1

~4n!k
d2k

dw2k

1

cospw
,

2
1

2
,w,

1

2
, ~49!

B~w1 1
2 ,n!5

1

2(k50

`

~21!k$exp@n~k2w!2#

3@12F„~An~k2w!…#1exp@n~k1w11!2#

3@12F„An~k1w11!…#%, ~50!

whereF(x)5(2/Ap)*0
xexp(2y2)dy is the error integral. The

first series is obtained by the expansion of exp@2y2/(4n)# and
by termwise integration in Eq.~46! with the use of the
equation50

E
2`

` exp~ax!

11expx
dx5

p

sin~pa!
, 0,a,1. ~51!

To obtain the second expansion one should represent
B(w11/2,n) in the form

B~w1 1
2 ,n!5

1

2Apn
E
0

`dyexp~2y2/4n!

11exp~2y!

3$exp@2~w11!y#1exp~wy!%, ~52!

after which the expansion of the fraction 1/@11exp(2y)# in
powers of exp(2y),1 and termwise integration lead to Eq.
~50!. Series~49! and ~50! will be useful for us below while
analyzing the frequency behavior of the functions(v)
within the region of the realization of the Jonscher law.

Thus, for the integral in Eq.~37! determining the conduct-
ing characteristics of the disordered system in the frequency
representation, it is possible to derive several rigorous rela-
tions. Now turn to the integral in Eq.~36! for the temporal
relaxation function. Forf (t) one can point out an exact func-
tional equation,

] f ~ t !

]t
52

exp~n/4!

t
f „texp~n/2!…. ~53!

It is derived by differentiation of Eq.~36! and by a simple
transformation of the obtained integrand.

As we will see, for the functionf (t) itself one can write
no elementary expansion. It is a little easier to deal with the
derivative of the relaxation function~35! with respect to the
first argument. Indeed, we have

] f ~Q,n!

]Q
52

1

Apn
E

2`

`

dyexp@y2expy2~y2Q!2/n#

52
1

Apn
(
k50

`
~21!k

k!nk E2`

`

dy~y2Q!2k

3exp~y2expy!. ~54!

The integrals appearing in Eq.~54! are convergent and are
expressed through theG function

G~m!5E
2`

`

dyexp~my2expy! ~55!

and its derivatives atm51. ~Here we should note that in the
attempt to construct a similar expansion for the function
f (Q,n) itself we would obtain divergent integrals.! Replac-
ing now (y2Q)2k by (d/dm2Q)2k, whered/dm is the dif-
ferential operator, one can see that series~54! convolves into
a symbolic exponential function and as a result we have
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] f ~Q,n!

]Q
52

1

Apn
H expF2

1

n S d

dm
2Q D 2G J G~m!U

m51

.

~56!

Taking into account the known property of the symbolic ex-
ponential function exp@(2Q/n)d/dm# as the operator of finite
displacement~see, for instance, Ref. 51!, one can reduce Eq.
~56! to a simpler form,

] f ~Q,n!

]Q
52

1

Apn
expS 2

Q2

n
2
1

n

d2

dm2DGS m1
2Q

n DU
m51

.

~57!

We write down the symbolic form for the functionf (Q,n) in
a final view. Being derived by a formal integration of Eq.
~56! on Q, it is reduced to the expression

f ~Q,n!5
1

2 H 11FF 1

An
S d

dm
2Q D G J G~m!U

m51

, ~58!

containing the error function as the series

FF 1

An
S d

dm
2Q D G5

2

Ap
(
k50

`
~21!k

k! ~2k11!

3F 1

An
S d

dm
2Q D G 2k11

~59!

in powers of the symbolic argument. From Eq.~58! it is seen
that the limiting valuesf (t50)51 and f (t→`)→0 are
reached atQ→2` andQ→`, respectively.

The rigorous relations obtained in this section will be
used below for the derivation of expressions which are the
theoretical alternative to the empirical laws of Jonscher and
Kohlrausch.

IV. EMPIRICAL LAWS OF JONSCHER
AND KOHLRAUSCH AS SEQUENCES

OF THE OBTAINED RESPONSE FUNCTIONS

As mentioned above, experiments on the dynamical re-
sponse of disordered conductors demonstrate the dependence
s(v) }vs(0,s,1) in a wide frequency range. Therefore
of principal interest is the experimentally measured exponent
~see, for example, Ref. 3!

s~v!5
dlns~v!

dlnv
, ~60!

or in terms of the variablew

s~w!5
1

n

dlns~w!

dw
. ~61!

Our aim in this section is to show that there exists a fre-
quency region with a practically constant exponents and that
the width of the region sharply—exponentially—widens
with the growth of the square root of the fluctuation expo-
nentn. As a result, the behavior ofs(v) in this region will
possess all the attributes of the Jonscher law.

According to definition ~61! the exponents→0 at
w→2` andw→`, as one can see from Eq.~45! with ac-
count of Eq. ~48!. This means that at some intermediate
valuew5wf , determining the point of contrary flexure of
the function lns(w), the functions(w) reaches its maximum
value s(wf). The quantitys(wf) can be consequently ana-
lyzed in the limits of ‘‘weak’’ ~small values of the fluctua-
tion exponentn) and ‘‘strong’’ ~large n) disorder. In the
case ofn→0 we have

lnFs~w!

s0
G5

n

4
tanh~nw!. ~62!

One can derive Eq.~62! directly from Eq.~38! by using the
first terms of the expansion of the integral onn and the
definitions(w)5Rê z(w)&21. Hence the expression

wf5
1

8
, s5

n

4
5

dD

T
, ~63!

follows immediately, where for simplicity we have omitted
the argumentwf in the Jonscher exponents which in that
case is one quarter of the fluctuation exponent. The corre-
sponding frequency at which the functions(v) undergoes
the contrary flexure isv f5t21 and, as one can assure one-
self, the frequency range in whichs(v)'s(v f) is ;1/t.

The next term of the high-temperature expansion ofs is
obtained by a more cumbersome calculation. Omitting it, we
give only the result

s5
n

4
2

n2

4
. ~64!

Much more interesting is the case of the strong (n@1) dis-
order and we shall study it in detail. In this limit, as one can
see below, the valuewf→0, butwfAn→const. So, to under-
stand the behavior ofs(w) in the vicinity of wf we can
represent the functions B(w,n) @Eq. ~49!# and
B(w11/2,n) @Eq. ~50!# at smallw in the forms

B~w,n!5
Ap

2An
, ~65!

B~w1 1
2 ,n!5 1

2 e
nw2@11F~wAn!#, ~66!

where the finiteness ofwAn at n@1 is taken into account.
As a result we get from Eq.~45!

lnFs~w!

s0
G5 lnS 2Ap

n D 1nw~12w!22ln@11F~wAn!#,

~67!

where we neglect B2(w,n) in comparison to
B2(w11/2,n).

Using the definition~61!, we find in the case ofn@1 the
following expression for the exponents in the vicinity of the
point w50:

s~w!512
2

An
P~wAn!, ~68!

where the function
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P~j!5j1
2exp~2j2!

Ap@11F~j!#
~69!

depending on the variablej5wAn has been introduced.
Now it is seen that the exponents reaches its maximum
value at the pointj f , determined from the equation

Ap

2
@11F~j f !#e

j f
2
5j f1A11j f

2, ~70!

which corresponds to zero of the derivative of the function
P(j). As the elementary numerical solution of Eq.~70!
shows,j f>0.389 andP(j f)5A11j f

2>1.073. Thus the ob-
tained conclusion about the finiteness ofj f at n@1 proves
the above made assumption of smallness of the value
wf5j f /An, which corresponds to the contrary flexure point
of the function ln@s(w)/s0#. Substitutingw5wf in Eq. ~68!
we find the exponent

s~wf !512
2.146

An
~71!

at the maximum point of the functions(w).
It is easy to prove that in the vicinity of the pointj f the

first terms of the expansion ofP(j) in j2j f have the form

P~j!5A11j f
21j f~j2j f !

21•••. ~72!

Hence it follows that in the range

uj2j f u!~11j f
22!1/4 ~73!

the exponent remains practically equal tos(wf). Returning
to the frequency variable and using the numerical value of
j f , we find from Eq.~73! that in the frequency range

t21exp~21.27An!!v!t21exp~2.05An! ~74!

the exponents is practically independent of the frequency
and coincides withs(wf) from Eq. ~71!.

Therefore the functions(v) indeed has the form'vs,
which, in fact, is the empirical Jonscher law, experimentally
observed for disordered systems~see, for instance, Refs. 23,
2, 15, 26, and 28!. This form holds in a frequency range,
which sharply—exponentially—widens with the growth of
An ~compare with the discussion at the end of Sec. II!.

The knowledge of the limiting expressions~64! and ~71!
allows us to write the following interpolation formula for the
exponents at the pointwf at arbitraryn:

s512
5.33312.146n

~5.0941n!A1.0971n
~75!

@compare with Eq.~18!, obtained in our paper34 by the steep-
est descent method in integrals~46! of the present paper for
functionsB(w,n) andB(w11/2,n) and the following sub-
stitution of them into Eqs.~45! and~61!#. We emphasize that
the obtained exponent depends only on the fluctuation expo-
nentn; in addition, the conductivity, being divided bys0 , at
a givenn is described by a universal function of the variable
vt ~or w).

We transform Eq.~75! a little, using the explicit expres-
sion ~30! for n and substituting into itdD (fr) from Eq. ~15!.
Then at temperaturesT!T* we find

s'121.073T/T* . ~76!

Notice the formal analogy of Eq.~76! to those obtained in
the framework of phenomenological models of ionic trans-
port in systems with static disorder.49,25 But at temperatures
which considerably exceed the characteristic temperature
T* , the exponents according to Eq.~75!, decays by the law

s'T
*
2 /T2, ~77!

unlike the unphysical crossover ofs to negative values that
formally follows atT.T* from the models of Refs. 49 and
25.

We apply the above obtained results to the quantitative
interpretation of experimental data on the dynamic conduc-

FIG. 1. Experimental frequency dependences of the conductiv-
ity of Na b-alumina ~Refs. 8 and 52! at the temperatures 92 K
(s), 113 K (h), 132 K (*), and 151 K (L). The curves present
the calculation according to our theory with the parameter values
from Table I.

TABLE I. The values of parameters used for drawing the curves 1–4 in Fig. 1 according to the expression
s(v)5Rê z(v)&21 with ^z(v)& from Eq. ~37!.

T ~K! 92 113 132 151

n 26.55 17.60 12.90 9.856
sdc (V

21 cm21) 1.58531029 1.99531027 6.30931026 7.72731025

s 0.644 0.579 0.527 0.481
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tivity of disordered ionic conductors. In Fig. 1, for example,
there are displayed the experimental frequency dependences
of the conductivity of superionic Nab-alumina at different
temperatures8,52 and those calculated according to our theory
at fixed parameters «`512, T*5237 K;
sdc5s0exp(2n/4) with s0 from Eq. ~12! as well as the
corresponding values ofn ands, calculated using Eqs.~15!,
~30!, and ~75!, are given in Table I. All the curves can be
fitted with a unique value of the preexponentz21527.7
V21 cm21 and the initial activation energy ofD0'1590 K
~with an accuracy62.5%!. Thus the analysis of isotherms of
s(v) allows us to determine the fundamental parameters
D0 andT* of the disordered ionic conductor, i.e., to sepa-
rate, in principle, the short-range part of the activation en-
ergy from the Coulomb—long-range—part. As a result, our
theory sustains much more severe experimental verification
than if we exploited only a single isotherms(v) as in our
paper.34

Note the good agreement of our calculation with the ex-
periment, at least within four orders ofv. The observed
tendency to a discrepancy between the calculation and the
experimental data, especially noticeable at low temperatures,
can be explained by the fact that the conductivity mechanism
turns out to be more sophisticated than that assumed above.
Specifically, the ionic transport in glass can occur via a few
nonequal parallel channels~in fact, on the empirical level
such a possibility can be found in Ref. 5! and accounting for
this circumstance is enough to eliminate the discrepancy be-
tween the theory and the experiment~the extension of the
theory to the case of a few conductivity channels we leave as
the subject of our next paper!.

It is useful to give an estimation of the dimensionless
concentrationx of defects producing frozen fluctuations of
activation barrier heights in ion-conducting glasses. Assum-
ing a/R(Tg)!1 and using the definition~18!, we obtain
from Eq. ~15! in the main approximation an expression for
T* , which formally coincides with Eq.~20!. Substituting the
values of the parameters«` andT* given above, used in the
construction of the curves in Fig. 1, and choosing the mobile
ion effective chargeq equal to the Szigeti charge, which is a
fraction of the elementary charge~according to Ref. 53, for a
superionic conductor this fraction is'0.5), a51 Å ,
n051022 cm23, we find x'1022. The last value is typical
for the defect concentrations which destroy long-range crys-
talline order but retain short-range order in a glass.

Let us illustrate by experiment the theoretical temperature
dependence obtained above for the exponents. The results
of processing46 experimental data for crystals of the Hollan-
dite type are depicted by circles in Fig. 2 and the solid line is
calculated using Eq.~75! ~the corresponding characteristic
temperatureT*5 281 K!. Analogous experimental data49

~denoted by circles and squares! for two samples of Hollan-
dite and our calculation withT*5209 K ~the solid line! are
shown in Fig. 3.

Let us turn now to Eq.~36! for the relaxation function of
the disordered conductor and first of all obtain its asymptot-
ics. Instead of directly analyzing this expression, consider its
representation in the form of Eq.~58!. Then in the limit
Q5 ln(t/t)→` one can neglect the derivatived/dm in the

argument of the error function, and after that, using the
known asymptotics of the latter~see, for instance, Ref. 50!,
we find the expression

f ~ t !'
An

2Ap
ln21S tt DexpF2

1

n
ln2S tt D G , t

t
@1, ~78!

which is close to the log-normal distribution. But at small
times our relaxation function is restored to the Debye form

FIG. 2. The temperature dependence of the exponents: circles
denote the result of the processing~Ref. 46! of the experimental
data for crystals of hollandite type; the solid curve corresponds to
our calculation by Eq.~75! with the characteristic temperature
T*5 281 K.

FIG. 3. The experimental temperature dependences of the expo-
nents for two samples of hollandite~Ref. 49! ~denoted by circles
and squares!; the solid line corresponds to our calculation atT*5
209 K.
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@the necessity of a crossover to a pure exponential form of
f (t) at t→0 was remarked on the empirical level in Ref. 15;
see also Ref. 26!.

The experimental data for non-Debye relaxation are usu-
ally fitted by the empirical Kohlrausch law
f K(t)5exp@2(t/tK)

b#. For illustration in Fig. 4 the function
~36! derived by us is displayed atn516, and for comparison
we show the fitting functionf K(t) with tK51.94t and
b50.38~the results of corresponding calculations in the case
of n54, tK51.33t, andb50.58 are shown in Fig. 4 of our
paper34!. The agreement demonstrated by this figure con-
firms the possibility of quantitative description of the experi-
mental data on the relaxation dynamics of disordered con-
ductors with the help of our theory.

In connection with such an opportunity there appears the
natural problem of obtaining explicit expressions forb and
tK through the physical parameters of the disordered conduc-
tor which are contained inn and t. Define the Kohlrausch
exponentb by the expression

b5eF2
] f ~Q,n!

]Q G uQ50 , ~79!

which for the Kohlrausch function itself leads to the identity.
Using Eq.~36! we find from Eq.~79!

b5
e

Apn
E

2`

`

exp@2c~u!#du, ~80!

where the function

c~u!5
u2

n
2u1eu, ~81!

for which

c8~0!50, c~0!51, c9~0!511
2

n
. ~82!

The calculation ofb by the standard saddle-point method
~see, for example, Ref. 47! gives the following expression
for b:

b5eA2

n

e2c~0!

c9~0!
5A 2

n12
. ~83!

In the limit n→` we obtain from Eq.~83!

b5A2

n
, ~84!

and atn→0

b512
n

4
512

T
*
2

T2
. ~85!

Therefore, the knowledge of the characteristic temperature
T* from experiments on the frequency-dependent conductiv-
ity of disordered conductors makes it possible to predict the
temperature dependence of the Kohlrausch exponentb,
which would be of major interest for experimental verifica-
tion.

It is useful to note that at these limits the usually declared
relationb1s51 ~see, for example,~Ref. 54! with substitu-
tion of ourb ands @Eqs.~83! and~75!# holds exactly; but for
intermediaten the sumb1s is less than 1 and reaches its
minimum'0.875 atn'10.81.

The most appropriate procedure for the approximation of
our function~35! by fitting a Kohlrausch function consists in
the minimization of the integral mean-square difference be-
tween these functions, i.e., in using the least-squares method
for obtaining the dependences ofb and tK /t on n. It is
difficult to fulfill this procedure at arbitraryn analytically,
but the limiting cases of small and large values ofn yield to
investigation~see the Appendix!. In the most interesting case
of n@1 ~strong sensitivity of the mobile ions to the disorder!
the results of the numerical solution of Eq.~A8! give with
accuracy up to main terms on 1/An

b5
1.678

An
~86!

@compare with Eq.~84!#. Now it follows directly from the
Appendix and Eq.~86! that

tK50.5615te0.2184An. ~87!

In the limit n→0 we obtain from Eq.~A15!

b5121.335
n

4
, tK5te0.09018n. ~88!

Thus, in the framework of our theory it is possible to find
not only the temperature dependences of the exponents of
Jonscher,s, and Kohlrausch,b, but, as it seems, to derive
the dependence of the Kohlrausch relaxation timetK on the
fluctuation exponentn and, hence, on temperature. At high
temperatures~where the relaxation becomes Debye-like! this
dependence in ion-conducting glasses is described by the
Arrhenius law,

FIG. 4. An example of the relaxation function of the disordered
system. The solid line is drawn according to our calculation of
f (t) for n516. The Kohlrausch functionf K(t) with the parameters
tK51.94t and b50.38 which makes the best fit~by the least-
squares method! to our f (t) is shown by the dashed line.
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tK~T!5
«`z

4p
eD0 /T, ~89!

with the activation energyD0 @this follows from the connec-
tion betweent ands0; Eqs. ~36! and ~12!# However, it is
remarkable that at low temperatures also~large n, T!T* )
for tK(T) the Arrhenius law remains. Indeed, substituting in
Eq. ~87! the explicit expression ofn in terms ofT* @Eqs.
~30! and ~15!# we find

tK~T!50.5615
«`z

4p
eDeff /T, ~90!

where the following effective—higher thanD0—activation
energy appears:

Deff5D010.4368T* . ~91!

The dependences obtained are the theoretical ground for the
predicted behavior oftK(T) in real ion-conducting glasses
and the experimental confirmation of Eqs.~89!–~91! is of
principal interest.

We will discuss such dependences for the case of liquid
electrolytes and analyze other related questions in a future
publication.

V. SUMMARY

The theory developed in this paper~some of its results
published in Ref. 34!, which is based on the application of
the fluctuation approach37 to the investigation of relaxation
phenomena, allowed us to obtain closed-form expressions
for the response functions of disordered conductors from
fundamental statistical principles. These expressions obvi-
ously possess the proper analytical behavior and correctly
reproduce all the experimentally observable details of non-
Debye relaxation. In this way, the non-Debye relaxation
functions, discussed earlier on the purely phenomenological
level, which are based on the Gaussian model of the activa-
tion barrier distribution in glasslike systems,13,32,31,33were
put on a rigorous mathematical footing, which distinguishes
the Gaussian model among the others. In this light, one can
claim that the probable evolution of the non-Debye relax-
ation theory should follow the method of improvement of
just the Gaussian approximation.

The possibility of the representation of the complex con-
ductivity of glasslike systems with the help of the compact
functionB(w,n) @Eq. ~46!#, which possesses rich properties,
allows one to demonstrate the existence of the frequency
interval in which the functions(v) derived by us repro-
duces the empirical Jonscher law; the interval widens sharply
with the growth of the fluctuation exponentn. So, without
needing complicated models, i.e., on the quite general level,
it has been shown how this fitting law is formed in any
disordered system with hopping conductivity. Analogously,
the function of the temporal relaxation of the disordered con-
ductor reproduces with high accuracy the empirical Kohl-
rausch law, which allows us without introducing fitting pa-
rameters to give a quantitative interpretation of the
experimental data with the help of our theory of the electrical
response. Here the fundamental exponents appearing in the
fitting laws of Jonscher (s) and Kohlrausch (b) turn out to

be expressed through the single dimensionless combination
n, which contains only the experimentally measurable fun-
damental characteristics of the material and also the tempera-
ture. This allows one to give the explicit temperature depen-
dences ofs andb, which agree well with the experimental
values for typical ion-conducting glasses, and, in addition, to
prove the usually declared relations1b'1. Moreover, the
explicit temperature dependence of the characteristic time of
the non-Debye relaxation,tK , in the Kohlrausch law has
been obtained. The most important thing is that thetK(T)
introduced in glasslike materials yields to the Arrhenius law
not only at high temperatures, which was assumed hitherto
while constructing the theory, but also at low temperatures,
which is the principal consequence of the concept consid-
ered. In the latter case the effective activation energy of the
characteristic non-Debye relaxation time exceeds the
initial—high-temperature—one. As to the dc conductivity of
the glass, its temperature dependence according to our pre-
dictions must be of the substantially non-Arrhenius form
sdc(T);exp(2D0 /T2T

*
2 /T2). In fact, such a form of

sdc(T) can be considered as the theoretical alternative to the
fitting Vogel-Tammann-Fulcher law in the approximation
form of Bässler.55 The detailed theoretical analysis of this
and related questions is to be the content of our next paper.
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APPENDIX

In order to make the best fitting of our function~35! by
the Kohlrausch function

f K~Q!5exp$2exp@bQ2g!#%, ~A1!

where the notationg5b ln(tK /t) has been introduced, let us
use the least-squares method, having found the solution of
the equations

]F
]g

50,
]F
]b

50, ~A2!

which cause the extremum in the functional

F5E
2`

`

dQ@ f K~Q!2 f ~Q,n!#2 ~A3!

and, by that, determine the dependence of the Kohlrausch
exponentb and timetK5teg/b on the fluctuation exponent
n of the medium. Equations~A2! are deduced by simple
transformations to the form
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E
2`

`

dQ f 8~Q,n!exp@2exp~bQ2g!#52 1
2 , ~A4!

E
2`

`

dQ f ~Q,n!Qexp@2exp~bQ2g!1bQ2g#

5
g2 ln22C

2b2 , ~A5!

whereC'0.5772 is the Euler constant47 and the prime de-
notes the derivative with respect toQ.

Let us consider the most interesting case,n→`, when
b→0 @see the saddle-point formula~84!#. The direct substi-
tution of the valueb50 into Eq.~A4! allows us to find for
the quantityg at n→` the limiting value

g`52 lnln2'0.3665. ~A6!

Moreover, at small but finiteb the formulag5g`2Cb fol-
lows from Eq.~A4!.

In the same limit Eq.~A5! after changing integration vari-
ables and using the integral representation~36! can be rewrit-
ten in the form

1

Apnb
E

2`

`

dxE
2`

`

dyxexpF2
y2

nb2 2exp~x2g!1x2g

2expS x1y

b D G5
g2 ln22C

2
. ~A7!

One can see that in the limitb→0 the function
exp@2exp(x1y/b)# becomes the step function, which at once
allows one to fulfill the integration ony in Eq. ~A7! and get
the equation forbAn,

E
2`

`

dxxFS x

bAn
D exp@2exp~x2g`!1x#51, ~A8!

whereF(x) is the error function. The numerical solution of
Eq. ~A8! gives the valuebAn'1.678 @compare with the
saddle-point value in Eq.~84!#.

The casen!1 we investigate by substituting into Eqs.
~A4! and ~A5! the expansionf (Q,n) from Eq. ~35! in the
form which is convenient for further calculations,

f ~Q,n!5 f D~Q!1
n

4
f D8~Q!, ~A9!

where the definition~33! has been used. Representing

b512X
n

4
, g5Y

n

4
, ~A10!

we obtain for the unknown coefficientsX andY the equa-
tions

XF E
2`

`

Q f D8~Q! f D~Q!dQ2
1

2G1YE
2`

`

f D8~Q! f D~Q!dQ

50, ~A11!

2E
2`

`

Q f D8~Q! f D8~Q!dQ1XF E
2`

`

Q2f D8~Q! f D~Q!dQG
1YE

2`

`

Q f D8~Q! f D~Q!dQ5
1

2
@Y22~ ln21C!X#.

~A12!

After the calculation of the corresponding integrals we find
from Eq. ~A11! the relation

Y5~ ln21C21!X, ~A13!

and then from Eq.~A12! we get

X5
1

p2/322C22ln2
. ~A14!

Finally, from Eq. ~A10! and from the definition ofg we
derive for the Kohlrausch parameters the expressions

b5121.335
n

4
, tK5texpS 0.3607n4D ~A15!

@compare with the saddle-point valueb from Eq. ~85!#.
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