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Fluctuation theory of relaxation phenomena in disordered conductors: How fitting laws such as
those of Kohlrausch and Jonscher are obtained from a consistent approach

V. N. Bondarev and P. V. Pikhitsa
Physics Institute of Odessa University, ul. Pasteur’a 27, 270100 Odessa, Ukraine
(Received 26 June 1995

A theoretical approach to the description of temporal and frequency responses of glasslike conductors is
developed and a detailed mathematical analysis of response functions is given. Being derived from general
principles of Gaussian statistics of Coulomb fluctuations, which are produced by the random field of charged
defects, these functions can be expressed in terms of the initial condugaititput disordey and a fluctuation
exponent that reflects the sensitivity of mobile charges to disorder. In light of our present results, the Gaussian
model of the distribution of activation barriers in glasslike systems is put on firm theoretical ground. The
derived conductivity of the disordered medium reproduces all characteristic features of the empirical Jonscher
law; also, the frequency range where it can be observed increases exponentially with the fluctuation exponent.
The latter determines both the Jonscher exponent and the fractional exponent in the so-called Kohlrausch law.
In this case, the non-Debye relaxation time takes the strict Arrhenius form with the effective activation energy
carrying information about the disorder. The obtained results are compared with experimental data and possible
ways to reconcile the discrepancy between theory and experiment are dis¢&€:ea8-182006)04629-3

I. INTRODUCTION models. In Ref. 24, which was dedicated to the modeling of
the electrical response of disordered semiconductors, it was
The group of phenomena where univergal both fre- noticed that at the base of the nonanalyticity of the low-
quency and timebehavior of response functions of disor- frequency conductivity there lies a hierarchy of relaxation
dered systems is observed is rather wide. The first evidendames of electrons. However, the approach applied in Ref. 24
of the deviation of the time response function from a simpledid not allow an exhaustive interpretation of the peculiarities
exponential dependence became known as far back as tloéthe dynamic conductivity of disordered matter. One could
19th century after the classic work of Rudolf Kohlrausch onnot extend it to the case of glasslike systems with the
the relaxation of a residual charge in the glass body of alassical—ionic—conductivity. Attempts to apply the ideol-
Leyden jar(for a description of these experiments, see, forogy of Ref. 24 to ion-conducting systems had to use assump-
example, Ref. 11 In these experiments it was noticed that thetions (like introducing truncating factors to provide the con-
dynamics of the process is described by the stretched expwergence of integrafd) which can hardly have a serious
nent exp—(t/7¢)?], where 7, and 0<B<1 are the charac- basis. One of the models, especially developed for analysis
teristic time and exponentthe so-called Kohlrausch- of the electric response of disordered ionic conductors, was
Williams-Watts law. At present one may consider it to be suggested in Ref. 26, but the integro-differential equations
established that the difference gffrom 1 is a reflection of for the electrical relaxation function of the conductor which
the disorder of the system. The disorder leads to the exisvccur in this model appear to be so cumbersome that one can
ence of non-Debye behavior of the response functions ofinalyze them only numerically.
various materials: electronic conductdrssolid dielectrics’ One should mention the group of worlsee, for example
liquid®® and solid(including polymey ionic conductors[ '’ Refs. 27 and 28, and references thereihere the universal
viscoelastic liquids? protein molecule solution’,and spin  behavior of transport characteristics of disordered systems is
glasse€®?2The common feature of these disorder phenom-considered from the position of fractal dynamics. In this
ena is that nonanalytical frequency dependences of the dyase, as a rule, it is not possible to establish the dependence
namic characteristics are observed in them. Thus, for exef the exponent® ands on physical characteristics of mat-
ample, the frequency-dependent parts of mechanical modutér (for example, on temperatyce
and of the complex impedance of ion-conducting glasses are Lately, the approach based on the computer modeling of
described by an expression of the types5,0<s<1, in a  dynamical properties of disordered ionic conductor8was
wide interval of frequencies (see, for example Refs. 5 and extended. The basis of this approach is a fundamental prop-
7-11). Up to now the works where such regularities haveerty of such systems, the Coulomb interaction between ions,
been found are numbered, literally, in hundréas naturally  but as in all computer experiments the transparent interpre-
cannot mention all of thein After Jonscher's work the tation of the results appears to be difficult.
dependences have been united under the common name The fitting formulas for the processing of numerous ex-
“universal frequency response.” perimental data on the non-Debye relaxation of glasslike sys-
Repeated attempts at derivation of the above mentionettms were usually constructed by choosing some activation
dependences were made starting from different theoreticanergy distributions for mobile particles; namely, in the most
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frequently discussed fitting formulas an exponential distribuwas used in the paper of Bondarev and ZhukoFor defi-
tion is postulatedsee, for example Refs. 4 and 10, and ref-niteness, we will start from the idea of a disordered conduc-
erences therejn but then the obtained results crucially de- tor as an ionic crystal containing interstitial ionic defects—
pend on the method of truncation of the integrals appearingxtrinsic or intrinsic—and a corresponding number of
in the model. On the other hand, there are some communisacancies in sites of the ho&irdered lattice (for a similar
cations in the literature about the use of a Gaussian distribpicture in application to superionic glasses, see Ref. Be
tion function of energy barrier heights for processing thepresence of such defects leads to a local violation of electro-
experimental data on disordered conductor relaxatiomeutrality and to the appearance of long-ranged electric fields
dynamics®1#21213g,ch a Gaussian form, naturally, is con- in the system. Under their influence the migration barriers
siderably less sensitive to the choice of the barrier heightor mobile defects will undergo fluctuation changes so that
boundary values. In addition, with the help of this form it is the conducting characteristics of the system must be obtained
possible to make the best fit of existing experimental depenby averaging the corresponding local values over probabili-
dences of the frequency response of ion-conducting glasseties of the realization of these fluctuations. It is important
This has been investigated by Macdon3ldvho carried out that to obtain a concrete result one should average just the
the most complete investigation of the Gaussian model irspecific resistancénot the conductivity. Indeed, the result-
application to disordered conductors. However, in Ref. 33 itant dissipation during ionic transport will be determined by
was claimed without proof that the Gaussian distributionthe sum of local resistivities in each part of the sample. So,
does not lead to forms reproducing the empirical laws ofjust the quantity which is reciprocal to the average specific
Jonscher and Kohlrausch. resistivity can be identified with the experementally observ-
Meanwhile, in our papéf it was found that such a Gauss- able conductivity of such a disordered system.
ian distribution is the natural consequence of an approach Thus, the problem of finding the averag#enoted below
based on general ideas of statistical physics of Coulomb fludsy the angular bracketspecific dc resistance of the disor-
tuations. In this case, for the analytically derived function ofdered conductofzy), in fact, amounts to the averaging of
the frequency response of a conducting glass we succeedétk local value
in obtaining a form which strictly reproduces the Jonscher
one in a wide frequency interval. Dy q[<p(F+ a)— zp(F)]
The importance of the influence of Coulomb fluctuations Zgc=Z ex ?+ T . (1)
on transport characteristics of ion-conducting matter was
demonstrated earlier in the work of one of the authors and’he product of ionic chargg and the randonffluctuation
KUSkOVSkii.35 In this work one of the variants of the theory potentia| difference of a mobile ion at poinf)sand F-}-é)
of the universal electrical response of disodered conductor
with the use of the method applied earlier by Andréder
calculation of frequency-dependent fluctuation corrections t
hydrodynamic kinetic coefficients, has been proposed. a
The present paper is the continuation of Ref. 34, in which

the basis of the subsequent application of Coulomb quctuaI—omb potentialsp. Here the result of the averaging, in prin-

tion statistics f_or c_ons_truct|on of a quantitative theory of_ non'ciple, will be dependent on how large or small is the decou-
Debye relaxation in disordered conductors has been laid. Thel. indexR.= /7 f . h d

ideas reported in the work of Bondarev and ZhuKoson- Pling indexR,= rs/7, for a given system, where, andr,
cerning the calculation of the dc conductivity of disordered® < the relaxation times of shear stresses and conductivity,
. g e vty respectively. This parameter was introduced in Ref. 39 and
ion-conducting systems were extended in Ref. 34 onto th

dynamical case. But if in Ref. 3@nd in Ref. 34 as wallit n application to our problem one can consider that the limit

has been assumed that the disorder is formed by the mobiféfHOO corresponds to the case of fluctuatiopsirozen at

ionic defect subsystem itself, then below, in Sec. Il, the Cal's|§w\|mr:2|cg?i?1n t?;nszer?;l':rrig&tr\évrﬁ? Igo?nre]reégtiacpg?eﬂzngf

culation of fluctuation additives to the activation energy of yr ng g Xtremely godic S

the dc conductivity of the disordered system is also per_fl_uctuatmns lonic transport W|t_h_f|n|_te _conduct|V|t_y_|s pos-
ible. On the other hand, at finite ionic conductivity of the

formed for the case of frozen fluctuations. Sections Il and: Stemn the case & .~ 1 can take place. when the conduct-
IV are dedicated to the derivation and analysis of closedsY T P '

form expressions for the response functions—temporal anﬁ1g process will occur on the background of ergodic fluctua-

32|a| is the length of an elementary Hopccurring in Eq(1)
must be considered as an additive to the initial the ab-
%ence of disordemctivation energy,; T is the temperature
ndz is a preexponential factor.

The averaging in Eq.1) should be made on random Cou-

frequency—of disordered conductors, and to the compariso ons @ which are created, in fact, by the subsystem of mo-

of the theory with experimental datdhe results of these lle ions themselvc_as. . S
sections have been partially published in Ref).34 the The latter case is realized in liquid electrolyt®and also

Summary we discuss the results obtained and outline meﬂgisf[?if)t;[(i)gr;cgunndcl:g:]n%fg;ﬁjscstszﬁgnzlsdoe Reegajc;;hteh'; tQ(?tual
ods for further investigation of the considered problem. P
temperaturel’ and has the form

Il. FLUCTUATION ADDITIVE TO THE dc Gy(T)=exd —F{e; THT]. 2
CONDUCTIVITY ACTIVATION ENERGY Here

In order to understand the essence of the proposed ap- 1
proach, let us turn our attention to the method of calculation Flo:Th= _f dv
of the dc conductivity of glasslike conductors; this method 2

4
po+ 8—”R2<T>p2} ®
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is the free energy of Coulomb fluctuatiotfs’ expressed Now it is easy to see that the multiplier
through the local density of the fluctuation charge The

latter is connected witkp by the Poisson equation J“’ QJ’“’ ) &, 5 2
) l'k[ _dug| dugex 87TTgk [1+RX(Ty)k?]
V2p=—4mple.,, (4)

where ¢, is the high-frequency dielectric constant of the X (U+vi?) (10

ionic conductor,R(T) is the Debye screening length in a

plasma of mobile defects, and for simplicity we use thejs common for the numerator and the denominator of(By.

model of isotropic matter. Using,(T) at the averaging and after reduction of it we obtain

assumes the ergodicity of disorder, similarly to what takes

place for superionics where fluctuations are created by mo- 1 1

bile defects themselves and are not frozen. (Za) =00 "€XP — |- (1)
In the other case, corresponding to glasslike solid solu-

tions, a mobile particle experiences, mainly the fluctuationHere

fields of charged defects, which at a given temperaiucan 1

be considered as frozen, i.e., extremely nonergodic. Here 09=2 "exp(—Do/T) (12

(i.e., neglecting the direct interaction between the mobilgg the initial conductivity of the systerfin the absence of

particles themselveshe role of the distribution function of  gisordey, and the essentially positive quantity

the Coulomb fluctuations is played by the quant&y(T,),

corresponding to the vitrification temperaturg of the ma- 4 q?T 1-cogk-a)
terial. D= 2 T RAT K 13
The averagedzy,) at the frozen disordefthe case of er- Eee k 9
godic disorder has been considered in Ref, 37 must be considered as the resulting addition to the activation

energy of ionic conductivity due to Coulomb fluctuations

<ch>:J Dpz4 G ,(Ty) /J DeG,(Ty), (5)  frozen[indicated by the superscrigir)] at the temperature
of vitrification. Going over from summation to integration in
can be presented as the normalized functional integral ovegd- (13) by the conventional rule
fluctuationse. The procedure of calculations, as in Ref. 37, ..
consists in the transition to the Fourier representation D 1-cogk-a) \Y 5 f“ dk
K1+ RATHKZ]  (2m)3 7 Jo 1+ RA(THK

K
-1
o(N=—=> eie"", o i=or, (6) LI
V Kk XJ’ dosing[ 1—cogkacod)]
0

whereV is the volume of the system, and in the functional

integration of Eq.5) over all variables (14)

and calculating integrals, we find finally

u=Re(ee® "), vi=Im(gpe ), )
2 2
in the limits from —oo to . Then because of the Gaussian (fr)zT_* 2 =q Ty _ __a
. ; o 6D Te 1+ex ,
character of the expressions the necessity for explicit integra- T g.a | R(Tg) R(Ty)
tion drops out. Indeed, introducing new variables of integra- (19
tion in the numerator of Eq5) where the characteristic temperaturg is introduced and
, 4mqT, 1-cosK-a) a=[al. It is essential that the obtained additiad™ is
ug=ug+ > 5 >, inversely proportional to temperature.
SOCT\/v KT1+RA(Tgk"] In the case of ergodic disordptenoted by the superscript
. (erg] the expression for the fluctuation addition to the con-
, 4mqT, sin(ka) g ductivity activation energy of the superionic system is de-
Vp=vgt e TV K1+ Rz(Tg)kZ] ' ) [a/:?ofrrlslm Eq.(15 by the replacement dfy with T, and has

one can write
5D<er9>=q—2 8 e (16)
g.a| R(T) R(T)||"
Just Eq.(16) has been obtained in Ref. 37.

On the other hand, for a rarefied plasma of defects
[R(T)>a] we have from Eq.(16) with an accuracy to

4 o(f+a r L dv 47TRZT 2
$[¢>(r+a)—¢>(r)]—2—-|-g Pt~ (Tg)p

Amg?T, 1—cogk-a)

e TRV x k2[1+ RZ(Tg)kz] [a/R(T)]3
& 2
— =S K1+ RA(THK2 (U402, (9) eg__ 42 |, @
8mTy % UK B e RM |1 3RM an
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Let us substitute the explicit expression for the DebyeNa,O-K,O B-alumind* where the ionic disorder has quasi-

lengt® in Eq. (17): two-dimensional character. To account for the specifics of
, such systems the fluctuation addition to the conductivity ac-
R(T)= Ve T/(8mnexq”), (18 tivation energy needs an additional—logarithmic in

temperature—multiplier in comparison with Eqd.5) and

where ngx is the density of interstitial defect@nd vacan- . . ;
. . i A2 -3 (20) (this result has been obtained in the work of one of the
cieg creating Coulomb fluctuations angh~10°2 cm* is authors® we shall not discuss this subject here in detail

the density of interstitials on which the defect ions are dis-
tributed; the concentration of defects in the disordered

ionic conductor under investigation is determined by the Ill. DYNAMICAL RESPONSE FUNCTIONS
composition and/or by the preparati¢for instance, at the OF DISORDERED CONDUCTOR:
vitrification of the stoichiometric compound one should ex- RIGOROUS RESULTS

pectx<1). As a result we get

V2aT,
3|q|\T

where we introduced another characteristic temperature

As a starting point for the derivation of observable trans-
port characteristics of the disordered ionic condudtbe
, (19) results obtained below, in principle, are applicable also to
other systems with hopping conductivithet us write down
the expression for the local specific complex impedance
Z(w) in the form(see, for example, Ref. 23

2

T
(erg—_0
8D T 1

To=20%Vmanyx/e., . (20) 4

Comparing Eq(19) and Eq.(15) we note that the tempera- Z(w)=i we(w)’ (22)
ture dependences giving by them coincide only in the main
approximation: in principle, by analyzing the details of the where
temperature behavior of the ionic conductivity of glass one i

. ! ) . . i
can_esta_bhsh which type of disodégrgodic or frozehis (@) =fot — 22)
realized in the system. )

Here we have to make an important supplement clarifying ) ) ) .
the physical sense of the relatidd™/T [see Eq(11); an 'S the qual .complex dlelectrllc. functlgn of the material aqd
analogous equation, certainly, also occurs for the case of =1/Zqc is its local conductivity. Being measured experi-
ergodic disorddrwhich will essentially determine the tem- mentally, the complex impedance of the disordered conduc-
perature dependences also of the averaged dynamic chard@l is derived by averaging of E¢21)
teristics of disordered conductors. According to Ekp) one
can write \/5D(r5/T=T* /T, where the characteristic tem- <z(w)>=< Zdc > (23)
peratureT, is a function of the vitrification temperature and 1-ie,zqwldm |’
of fundamental characteristics of the ionic conductor. Hence

it is seen that the quantity SD'"™/T is the ratio of the ener- S0 that atm_=0 the result of the averaging is reduced to the
getic amplitude of Coulomb fluctuations frozen at the vitri- result obtained abovesee also Ref. 3o the average spe-

fication temperaturd@,, averaged in some way, to the aver- cific resistance(zy) =(1/o). Let us pay attention to the fact

age thermal energy of a mobile ion. Note that the parametetrhat the resulting expression for the impedance is obtained by

ST - . . —_averaging of random values of the specific resistance but not
LoD/ T in @ definite sense is analogous o the one INtro-¢ o gitribution of relaxation times as is accepted for mod-

duced in Ref. 41 for description of the properties of the spin- Is (see, for example Ref.)dased on the Drude-Lorentz

glass state, where the latter parameter corresponded to tﬁf')proximation. Note that the impedance introduced in this
number of replicas of the statistical sum of the glass. From

. . ; . way [Egs.(21) and (22)], having a single pole in the lower
our definition of 14/6D™/T it follows that the manifestation half plane of complex frequency, satisfies the conditions of

of the disorder in transport properties of the ionic conductog,o Kramers-Kronig theorethand must be considered as a
will be greater the lower is the ('Esmperature_. Therefore onga1ral response function of the conductor. For this reason,
can con_5|der that the quantltip_ /T determines ho_vv the also, the average quantifg(w)) [Eq. (23)] will satisfy the
conductive subsystem is sensitive to the structure disorder Q{ramers-Kronig relations. Thus, the experimentally mea-

the glass. Concerning Eqdl6) and(18), which allow us to  gred complex conductivity of the disodered system can be
determine the sensitivity of the conducting subsystem to thgeafined agsee, for example, Ref. 46

ergodic disorder, they are applicable in the temperature range
of existence of an electrolyte in a liquid state or in the state
of a superionic conductdjiust for the latter case Eq19), o(w)=—,
actually, has been obtainpdNaturally, the lower boundary (z(w))
of the range in the case of a liquid electrolyte is the temperagq that the real part of the measurable conductivity is
ture of its vitrification, T .

Let us pay attention to the following circumstance. The o(w)=Rer(w). (25)
expressions obtained above were derived for the case of
three-dimensional isotropic ion-conducting glasses which ar&or what follows it is convenient to turn to the temporal
most frequently investigated experimentallyee, for ex- behavior of the impedance, having introduced the relaxation
ample, Ref. 14 However, systems are known like layered function by the equation

(24)
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f(t)=%%f:dwexp(—iwtxz(w)). (26)

Substituting Eq(23) in Eqg. (26) and going over to integra-
tion on corresponding contours in the complexplane, we

get
4t
f(t)=<exp{—8 Z >, t=0,
f(t)=0, t<O. (27

For calculation of the relaxation function let us expdift)
att=0 into the series

[

f(t)= >

m=0

(="
m!

—m

Zye =

=

), t=0. (28

47Tt)m

The averagéz,. ") at arbitrarym is derived in analogy with
the (z4o found above[see Eqs(11)—(13)]. Omitting inter-
mediate calculations we have

<Zacm>:J D<PZJcmG¢(T) /J’D(PG(,Q(T)

L

so that the distribution functio,(T) and the addition to
the activation energyD are written down in general form,
i.e., without specification of the type of disorder which is
realized in the system.

It is remarkable that serig®8) taking into account Eq.
(29) can be summed exactly. We do this as follows. Intro-
duce dimensionless quantities

m?8D
T

(29

46D
V=—",

O=In(4mogt/e,), T

—o<O <, (30)

and consider them to be the arguments of the relaxatio
function. The introduced quantity has a fluctuation nature
and we will call it the fluctuation exponentits physical

meaning as the sensitivity to the structural disorder of th
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which indicates that in the absence of disorder, i.e., at
v=0, the relaxation function of the conductor is transformed
to the Debye functiorfp(0®), i.e., to expt4mogt/e,). The
boundary conditions are

f(—oo,v)=1, f(,v)=0. (39

The solution of the diffusion equation, which satisfies the
conditions(33) and(34) can be presented as an intedisde,
for example, Ref. 4)

j“;exp[ B M

which contains the convolution of the known Green function
of Eq. (32) with the initial value off (0,v). Returning to the
presentation of the relaxation function through the real time
t and changing the integration variable in Eg5), we have

as a result the elegant expression

1

f(®,v)= exp(—exp® ' )do’,

(39

awv

1 o0
f(t)I\/—; wduexq—uz—(t/a-)exp(\/;u)], t=0,
Eo
™ Aoy’ (36)

where the Debye relaxation timeis determined through the
initial conductivity of the system and as in E@6) we do
not indicate the parameteras an argument of the relaxation
function. It is easy to prove that serié®8) is obtained by
expanding the integrand in E(B6) in powers oft and by the
fermwise calculation of the resulting Gaussian integrals.

A brief derivation of Eq.(36), allowing one to analyze in
detail the non-Debye relaxation in systems of superionic

dlass type, has been given in Ref. 34. In that paper, the

conductor has already been mentioned at the end of Sec. IEXPression for the averaged frequency-dependent impedance

Then the expansion of the relaxation function can be pre
sented in the form

o

u®ﬂo:§%

m=

(="

em2 v/4+mO
m! '

(31
Now one can notice that the functidi{®,v) satisfies the
linear one-dimensional equation of “diffusion”

(3’2f(®,1/)
9072

4é’f(®,v) _

™ (32

in which the role of the “coordinate” is played by the loga-
rithmic time and the role of the “time” is played by the
fluctuation exponeni. As the initial condition to Eq(32)
one must take the equality

f(0,00=fp(0)=exg —expd), (33

was also displayed. This is obtained from E§6) by the
Fourier transformation

% . 4z (= exp(—u?lv)
— Tot 4+ —
<z(w))—f7xf(t)e dt= A 7oc—iwr+exp1du

(37)

Considering this expression as a function of complex fre-
guency, note that it does, like any physically correct response
function, satisfy the requirementz(—w*))=(z(w))*,*?
where the superscrigt means complex conjugation.

To investigate the properties of the functi@{w)) at real
positive w it is convenient to introduce the variable
w= " lIn(w7). Then the averaged impedance and the result-
ing complex conductivity as functions of the varialetake
the forms
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mT 1 1 v
<Z(W)>:4\/— exp(— vw— pw?) <z(w— §)>:_exr<z

£\ V 90

(z(w))
(39

14
+iexp =+ vw

or to the equivalent one for the complex conductivity of a

" jw dyexp(—y?/v—2wy)

— expy —i disordered system in terms of the variakle
1
(W)= ——— . exp(— vi4
(W) (z(w))’ (38 a(w)= ToeXN— VI (40)

_ N 1+ioeexg v(w+1/2)]/o(w+1/2)
following from Egs.(37) and (24). Shifting now the argu-

ment in (z(w)), w—w—1/2, and extracting from the ob- The last recurrence relation is the base for obtaining the rep-
tained expression an exactly calculated Poisson integral, wesentation ofr(w) in the form of continuous fractions. In-

come to the recurrence relation deed, from Eq(40) one can get two equivalent forms:
o(w—1/2) 3 1 @)
a(w) 1+iexd v(w+ 1/4)]—iexd v(w+3/4)]o(w)/o(w+1/2)
o(w+1/2) B exp( v/2)

. 42
o(w) 1—iexd — v(w+1/4)]+iexd — v(w+ 1/4) ]o(w)/o(w—1/2) 42

Making in each of them sequential recursions, having taken into accourfd@gand returning to the frequency variable, we
get two equivalent representations®fw) by the continuous fractions

i 0 i0A QA2

()= ool V)| 1= 0 = T5iaA- 1+i0AZ ) “3
i i0 1 0TI i0TIAY
o(@) = oo V|~ 17+ 10 TA7y 1o A% 110 AT ) 49

where we introduced the dimensionless frequencyesponding to taking into account only a few terms of the

O =wrexp(3/4) and the parametek =exp(E/2)> 1. continuous fraction. Lately, in works of several auth(sse
Note that Eq(43) corresponds to a “low-frequency” ex- Ref. 28 the Jonscher law has been discussed in connection

pansion and Eq(44) corresponds to a “high-frequency” with mathematical fractal models of disordered conductors

one. Thus from Eq(43) it follows that atw— 0 the experi- as a hierarchical system of resistors and capacitors. Here the

mentally measured conductivity of the disodered systenimpedance of the conductor was obtained in the form of a

o(w) [see Eg.(25] tends to its low-frequency limit continuous fraction for which one could find only scaling

o4= 0oeXp(—v/4) and at largev, as is seen from Eq44) it  characteristics. On the other hand, the dynamical character-

tends to the “high-frequency” limito..= ooexp@/4) (it is  istics of one-dimensional disordered conductbesso could

assumed, of course, that the approaclriptakes place at not be analyzed completely because a closed expression for

frequencies definitely lower than those at which the Drudethe continuous fraction modeling the dynamical conductivity

Lorentz regime or optical vibrations of the ionic conductor has not been found. In our case one succeeded in obtaining

appea). However, the structure of both E@3) and Eq.(44)  (z(w)) ! in a closed form that is equivalent to the convolu-

is that the multiplierA>1 enters each of the subsequenttion of corresponding continuous fractiof3) and (44).

elements of the fraction in increasing power, which means, The expression for the dynamic conductivity of the disor-

in fact, that it is impossible to represem{w) by a conver- dered system, usually discussed on the base of experimental

gent series in powers ab or »~* [compare with the tem-  data, follows from Eqs(37) and (38) which represent the

poral expansion given above of the relaxation functionmain result of our paper:

through the formally divergent seri€28) taking account of

Eqg. (29)]. Thus the absence of an analytical expansion of

o(w) at any finite value of argument leads to the conclusiony(yw) = Reg(w)

that in a wide frequency range(w) can be approximated

adequately by a suitable nonanalytical expressgse be- B(w,v)

low), which proves the empirical Jonscher |4%v. = aoexp vw(w+ 1)]Bz(w,v)+82(w+ 12,0)°
Note that the continuous fraction formalism has been used

many times in modeling dynamic response functions of con-

ducting systemssee, for example, Ref. 480ften, however, where thew function, which is symmetrical with respect to

the matter was restricted by choosing the approximation corits argument,

(45
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1 = dyexd — y2/(4v)+(1/2—w)y] occurs, which can be derived in analogy with the derivation
B(w,v)= f Tre of the recurrence formul&39) by changing the argument
2wy~ Py w—w—1/2 inB(w,v) and separating the Poisson integral in

—B(—w,) (46)  the result obtained. For example, it follows from H¢7)

] ) that B(1/2,v)=1/2. The existence of Eq47) means that it
has been introduced; as far as the authors know it was n@¢ enough to study the functioB(w,»), for instance, at

investigated in the literature before Ref. 34. This functiong<\,<1/2 to restore its values at all other
possesses several important properties. First, at values Equation (47) is the basis of the representation of the

;?/1: rrn+1r/rzynm:for,r47_ru}‘?§2’ .- itiscalculated exactly and functionB(w,») in the form of a continuous fraction. Again,
€ recurrence fo by analogy with the derivation of Eq$43) and (44), we

B(w—1,1)+B(w+ &,v)=exgvw?) 47 come to two equivalent representations:
|
B Cexgr(w-1/27]  exd—2u(w—1)] exd —2v(w—2)]
(w,v)= 1+ T—exg—2v(Ww—1)]+ l—exg—2v(w—2)]+
_exgr(w+1/2%]  exg2r(w+1)] exd 2v(w+2)] 48
- 1+ 1-exg2v(w+1)]+ 1—exg2v(w+2)]+ (48)
|
coinciding due to the symmetry properties of E4f). Thus, for the integral in Eq37) determining the conduct-

The functionB(w, v) allows two expansions into seriés: ing characteristics of the disordered system in the frequency
representation, it is possible to derive several rigorous rela-

Jr & (—1k 1 d 1 tions. Now turn to the integral in Eq36) for the temporal
B(w,v)= 2 K (@)K dwX cosTw’ relaxation function. Fof (t) one can point out an exact func-
v tional equation,
— E<W<E (49) &f(t) exp( V/4)
2 2’ e . f(texp(v/2)). (53

L 1o ‘ ) It is derived by differentiation of Eq(36) and by a simple
B(w+3,v)= EkZO (=1){exd v(k—w)“] transformation of the obtained integrand.
N As we will see, for the functiori(t) itself one can write
X[1—®(( \/;(k—w))]+exp{ v(k+w+1)?] no elementary expansion. It is a little easier to deal with the
derivative of the relaxation functiof85) with respect to the
x[l—@(ﬁ(k+w+ 1}, (500 first argument. Indeed, we have

whered(x) = (Z/J;)féexp(—yz)dy is the error integral. The

first series is obtained by the expansion of[exy/(4v)] and 91(0,v) - e dyexdy—expy—(y—0)%/v]
by termwise integration in Eq(46) with the use of the 70 Nyl —=
equation® _
R i L
© explax I e < AN -
f M) e =T 0<a<l. (1) Vavi=o KvE ]
_olt+exmx sin(ma)
Xexply—expy). (54)

To obtain the second expansion one should represent o
B(w+1/2,») in the form The integrals appearing in E¢s4) are convergent and are

expressed through tHe function
1 focdyexp( —y?/4p) )
2{JmvJo 1+exp—y) F(M)zﬁ dyexp( wy —expy) (55)

X —(w+ +
{ex —(wrL)yl+expwy)y, (52 and its derivatives ait= 1. (Here we should note that in the
after which the expansion of the fractior] 14 exp(-y)] in attempt to construct a similar expansion for the function
powers of expty)<1 and termwise integration lead to Eq. f(®,v) itself we would obtain divergent integraldReplac-
(50). Series(49) and (50) will be useful for us below while ing now (y—®)? by (d/du— )%, whered/dy is the dif-
analyzing the frequency behavior of the functiorw) ferential operator, one can see that seftB convolves into
within the region of the realization of the Jonscher law. a symbolic exponential function and as a result we have

B(w+ 3,v)=
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According to definition (61) the exponents—O0 at
w— —o andw—o, as one can see from E@5) with ac-

w=1 count of Eqg.(48). This means that at some intermediate

f(®,v) 1 [ r{ 1<d o 2 )
=-— exg——|5—— m
0 Jmv vidu
(56)  value w=w;, determining the point of contrary flexure of

Taking into account the known property of the symbolic ex-the function I(w), the functions(w) reaches its maximum
ponential function exji20/v)d/du] as the operator of finite Value s(wr). The quantitys(ws) can be consequently ana-

(56) to a simpler form, tion exponenty) and “strong” (large v) disorder. In the

case ofr— 0 we have

af(0,v) 1 02 1 d? 20
=— exp — —— — mt+— O'(W) 14
0 Jrv v vdu? v In|l——|= Ztanr( VW), (62

u=1
5
_ _ _ ( 7) One can derive Eq62) directly from Eq.(38) by using the
We write down the symbolic form for the functidi{®,v) in  first terms of the expansion of the integral enand the

a final view. Being derived by a formal integration of Eq. definition o(w) =Re(z(w)) 1. Hence the expression
(56) on O, it is reduced to the expression

1 v 6D
1 1(d WiTg STaT T (63
f(@,v)=§ 1+®| — d——@ I'(w) , (568 _ _ S _
Jrldu u=1 follows immediately, where for simplicity we have omitted
o . . the argumentv; in the Jonscher exponestwhich in that
containing the error function as the series case is one quarter of the fluctuation exponent. The corre-
" ‘ sponding frequency at which the functier{w) undergoes
® 1 i_® _ iz (-1 the contrary flexure ig»;=7"* and, as one can assure one-
Jr\du Jak=0 k!(2k+1) self, the frequency range in whidfw)~s(w;) is ~1/7.
The next term of the high-temperature expansiors @
1/ d Zerd obtained by a more cumbersome calculation. Omitting it, we
X N M_(B (59 give only the result
2
in powers of the symbolic argument. From EG8) it is seen 5= r_ V__ (64)
that the limiting valuesf(t=0)=1 and f(t—»)—0 are 4 4

rea_lgrr]]ed _a®—>—oo ?r;.d(@—m:),t (es%ept|vter]ly. . il b Much more interesting is the case of the stromg-(L) dis-
€ rigorous refations obtained In tis section Wil D€ 5 qar 504 we shall study it in detail. In this limit, as one can

used below for the derivation of expressions which are the

. . g gee below, the value,—0, butw;/v— const. So, to under-
theoretical alternative to the empirical laws of Jonscher an . . L
Kohlrausch. Stand the behavior ofr(w) in the vicinity of w; we can

represent the functions B(w,») [Eq. (49] and

B(w+1/2,v) [Eg. (50)] at smallw in the forms
IV. EMPIRICAL LAWS OF JONSCHER

AND KOHLRAUSCH AS SEQUENCES

OF THE OBTAINED RESPONSE FUNCTIONS B(w,v)= (65

N
N
As mentioned above, experiments on the dynamical re-
sponse of disordered conductors demonstrate the dependence Bw+ L,p)=Le™[1+d(wyn)], (66)
o(w) xw5(0<s<1) in a wide frequency range. Therefore
of principal interest is the experimentally measured exponenivhere the finiteness of/\/v at v>1 is taken into account.
(see, for example, Ref,)3 As a result we get from Eq45)
+w(l—w)—2In[1+D(w\v)],

o(w) =In(2\/E
(67)

where we neglect B2(w,») in comparison to
1 dina(w) B2 (w+1/2,v).
= T aw (61 Using the definition61), we find in the case of>1 the
following expression for the exponesin the vicinity of the
Our aim in this section is to show that there exists a frepointw=0:
guency region with a practically constant exponeand that
the width of the region sharply—exponentially—widens 2
with the growth of the square root of the fluctuation expo- s(w)=1- ﬁp(w‘/;)’ (68)
nentv. As a result, the behavior @f(w) in this region will
possess all the attributes of the Jonscher law. where the function

= (60) In

or in terms of the variablev

s(w)
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2exp— &£2)
Va[1+®(¢)]

depending on the variablé=w+/v has been introduced.
Now it is seen that the exponestreaches its maximum
value at the point;, determined from the equation

J

2

P(&)=¢&+ (69

[1+D(é0)JefT=¢+ 1+ £, (70
which corresponds to zero of the derivative of the function
P(¢). As the elementary numerical solution of E.0)
shows,&;=0.389 andP (&)= y1+ fzle.073. Thus the ob-
tained conclusion about the finiteness&fat v>1 proves
the above made assumption of smallness of the valu
ws=&;/\/v, which corresponds to the contrary flexure point
of the function Ifia(w)/op]. Substitutingw=w; in Eq. (68)

we find the exponent

2.146
]

at the maximum point of the functios(w).
It is easy to prove that in the vicinity of the poigt the
first terms of the expansion &(&) in £— ¢&; have the form

s(wg)=1- (71)

P(&)=V1+&+E&(E- €)%+ . (72)
Hence it follows that in the range
6= &l <1+ &2 (73

the exponent remains practically equalsav;). Returning
to the frequency variable and using the numerical value o
&, we find from Eq.(73) that in the frequency range

rlexp —1.27v)<w<7r lexp(2.05/v)  (74)

the exponens is practically independent of the frequency
and coincides witts(w;) from Eq. (71).
Therefore the functionr(w) indeed has the form= w?,

V. N. BONDAREV AND P. V.
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log ¢ (Q7'em™)

e

i Z
log £ (Hz)

FIG. 1. Experimental frequency dependences of the conductiv-
ity of Na B-alumina (Refs. 8 and 5P at the temperatures 92 K
(0), 113 K (@), 132 K (*), and 151 K ). The curves present
the calculation according to our theory with the parameter values
from Table I.

[compare with Eq(18), obtained in our papé&tby the steep-
est descent method in integra##6) of the present paper for
functionsB(w,v) andB(w+1/2,v) and the following sub-
stitution of them into Eqs(45) and(61)]. We emphasize that
the obtained exponent depends only on the fluctuation expo-
nentv; in addition, the conductivity, being divided ly,, at
?1 givenv is described by a universal function of the variable
w7 (0orw).

We transform Eq(75) a little, using the explicit expres-
sion (30) for » and substituting into iBD (™ from Eq. (15).

Then at temperaturéB<T, we find
s~1-1.0731/T, . (76)

Notice the formal analogy of Eq76) to those obtained in

which, in fact, is the empirical Jonscher law, experimentallythe framework of phenomenological models of ionic trans-

observed for disordered systeifsee, for instance, Refs. 23,
2, 15, 26, and 2B This form holds in a frequency range,
which sharply—exponentially—widens with the growth of
Vv (compare with the discussion at the end of Sec. Il

The knowledge of the limiting expressiof®4) and (71)
allows us to write the following interpolation formula for the
exponents at the pointw; at arbitraryv:

5.333+2.146v

 (5.004+ 1)\/1.097+ »

(79

port in systems with static disord&?°But at temperatures
which considerably exceed the characteristic temperature
T, , the exponens according to Eq(75), decays by the law

(77

unlike the unphysical crossover efto negative values that
formally follows atT>T, from the models of Refs. 49 and
25.

We apply the above obtained results to the quantitative
interpretation of experimental data on the dynamic conduc-

s~T/IT?,

TABLE |. The values of parameters used for drawing the curves 1-4 in Fig. 1 according to the expression

o(0)=Re(z(w)) ! with (z(w)) from Eq. (37).

T (K) 92 113 132 151
v 26.55 17.60 12.90 9.856
g (@ Tem™Y) 1.585x10°° 1.995¢< 107 6.309x 10 © 7.727x10°°
s 0.644 0.579 0.527 0.481
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tivity of disordered ionic conductors. In Fig. 1, for example,

there are displayed the experimental frequency dependences

of the conductivity of superionic N@-alumina at different

temperaturés? and those calculated according to our theory

at fixed parameters e,=12, T,=237 K; 0.8

O 4= ooeXp(—v/4) with oy from Eq. (12) as well as the

corresponding values aof ands, calculated using Eq$15),

(30), and (75), are given in Table I. All the curves can be 0.6

fitted with a unique value of the preexponeril=27.7

Q~tem™?! and the initial activation energy @ ,~1590 K

(with an accuracyt 2.5%). Thus the analysis of isotherms of 0.4

o(w) allows us to determine the fundamental parameters

Do and T, of the disordered ionic conductor, i.e., to sepa- o

rate, in principle, the short-range part of the activation en- 0.2

ergy from the Coulomb—long-range—part. As a result, our

theory sustains much more severe experimental verification

than if we exploited only a single isothero({w) as in our o S — N

paper* 0 100 200 300 400 500
Note the good agreement of our calculation with the ex-

periment, at least within four orders @f. The observed

tindtarir;rc]:yntto Iezj dtlscrepanci:y”bitvzieen glhe f?k\:l\lljlf t:;)n ?ntd rthc?enote the result of the processitigef. 49 of the experimental
experimental data, especially noticeable at low lemperatureg,, ¢, crystals of hollandite type; the solid curve corresponds to

can be explained by the fa(_:t Fhat the conductivity mechanisnaur calculation by Eq.(75 with the characteristic temperature
turns out to be more sophisticated than that assumed abovpi;: 281 K.

Specifically, the ionic transport in glass can occur via a few
nonequal parallel channel@ fact, on the empirical level argument of the error function, and after that, using the
such a possibility can be found in Ref. &d accounting for  known asymptotics of the lattésee, for instance, Ref. 50
this circumstance is enough to eliminate the discrepancy bawe find the expression
tween the theory and the experimditie extension of the
theory to the case of a few conductivity channels we leave as Jv [t 1,0t t
the subject of our next paper f(t)~ _\/—I” (") exp{— ~In (_” —>1, (79
2\ T 14 T T

It is useful to give an estimation of the dimensionless
concentrationx of defects producing frozen fluctuations of which is close to the log-normal distribution. But at small
activation barrier heights in ion-conducting glasses. Assumtimes our relaxation function is restored to the Debye form
ing a/R(Tg)<1 and using the definitior{18), we obtain
from Eg. (15 in the main approximation an expression for
T,. , which formally coincides with Eq20). Substituting the 1.0
values of the parametets, andT, given above, used in the
construction of the curves in Fig. 1, and choosing the mobile
ion effective chargg equal to the Szigeti charge, which is a 0.8
fraction of the elementary chargaccording to Ref. 53, for a
superionic conductor this fraction is=0.5), a=1 A |
no=10?2 cm~3, we findx~10"2. The last value is typical 0.6
for the defect concentrations which destroy long-range crys-
talline order but retain short-range order in a glass.

Let us illustrate by experiment the theoretical temperature o4
dependence obtained above for the exporsenthe results
of processintf experimental data for crystals of the Hollan-
dite type are depicted by circles in Fig. 2 and the solid line is 0.2
calculated using Eq(75) (the corresponding characteristic
temperatureT, = 281 K). Analogous experimental d4fa
(denoted by circles and squaydsr two samples of Hollan-
dite and our calculation witfT, =209 K (the solid ling are o 160 200 3be 4&d T 500
shown in Fig. 3. T(K)

Let us turn now to Eq(36) for the relaxation function of
the disordered Conductor and ﬁrSt Of a” Obtain |tS asymptot— FIG. 3. The experimenta| temperature dependences of the expo-
ics. Instead of directly analyzing this expression, consider itsients for two samples of hollanditéRef. 49 (denoted by circles
representation in the form of Eq58). Then in the limit  and squargsthe solid line corresponds to our calculationTgt=
®=In(t/7)—> one can neglect the derivativ/dw in the 209 K.

1.0

FIG. 2. The temperature dependence of the exposedaircles
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The calculation of8 by the standard saddle-point method
(see, for example, Ref. 4gives the following expression

for B:
2~ ¥0) 2
A=eNL w0~ Vorz ®3

In the limit v—o we obtain from Eq(83)
0.0 —,,.....................,.....‘|...|....‘. and atr—0
10

L
-10 -5 0 S

In(t/7) L
B=1-7=1-=.

(89

FIG. 4. An example of the relaxation function of the disordered_l_h f he k led f the ch L
system. The solid line is drawn according to our calculation of erefore, the knowledge of the characteristic temperature

f(t) for v=16. The Kohlrausch functiofi(t) with the parameters T* from experiments on the frequenc;y-depgndent Con(_juctiv-
7«=1.94r and B=0.38 which makes the best fiby the least- ity Of disordered conductors makes it possible to predict the

squares methodo our f(t) is shown by the dashed line. temperature dependence of the Kohlrausch exporgent
which would be of major interest for experimental verifica-

[the necessity of a crossover to a pure exponential form 0'0”-_ o
f(t) att—0 was remarked on the empirical level in Ref. 15;  ItiS useful to note that at these limits the usually declared
see also Ref. 26 relation 8+s=1 (see, for example(Ref. 54 with substitu-

The experimental data for non-Debye relaxation are usulion of our 3 ands [Egs.(83) and(75)] holds exactly; but for
ally fited by the empirical Kohlrausch law intermediatev the sumpB+s is less than 1 and reaches its

f (1) =exd — (Un)?]. For illustration in Fig. 4 the function Minimum ~0.875 aty~10.81.

(36) derived by us is displayed at=16, and for comparison The most appropriate procedure for the approximation of
we show the fitting functionf(t) with 7«=1.94r and  OUr function(35) by fitting a Kohlrausch function consists in

=0.38(the results of corresponding calculations in the casdh® minimization of the integral mean-square difference be-
of v=4, r,=1.33r, and8=0.58 are shown in Fig. 4 of our tween the;e functions, i.e., in using the least-squares method
papef). The agreement demonstrated by this figure confOr obtaining the dependences gfand /7 on v. It is
firms the possibility of quantitative description of the experi_dn‘ﬁcult to fulfill this procedure at arbitrary analytically,

mental data on the relaxation dynamics of disordered conut the limiting cases of small and large valuesvofield to
ductors with the help of our theory. investigation(see the Appendijx In the most interesting case

In connection with such an opportunity there appears th@f ¥>1 (strong sensitivity of the mobile ions to the disorder
natural problem of obtaining explicit expressions forand ~ the results of the numerical solution of E@8) give with
¢ through the physical parameters of the disordered condud@ccuracy up to main terms on
tor which are contained iw and 7. Define the Kohlrausch

exponent3 by the expression _ 1678 (86)
14
af(®,v) Vv
8T lo=0, (79 [compare with Eq(84)]. Now it follows directly from the
Appendix and Eq(86) that
which for the Kohlrausch function itself leads to the identity. _
Using Eq.(36) we find from Eq.(79) T<=0.5615e2-21847 (87
e [ In the limit »—0 we obtain from Eq(A15)
= exd — ¢(u)]du, (80
b= = f exd—y(u)] )
B=1-1335, rc=ret®N (88)

where the function

5 Thus, in the framework of our theory it is possible to find
P(u)= u——u+e“, (81) not only the temperature dependences of the exponents of
4 Jonschers, and Kohlrauschg, but, as it seems, to derive
) the dependence of the Kohlrausch relaxation tigeon the
for which fluctuation exponenir and, hence, on temperature. At high
temperature$where the relaxation becomes Debye-Jikgs
dependence in ion-conducting glasses is described by the

2
$'(0)=0, ¢(0)=1, " (0)=1+_. @2 Arhenius law,
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£..Z be expressed through the single dimensionless combination
(T)= EEDO/T- (89 v, which contains only the experimentally measurable fun-
damental characteristics of the material and also the tempera-
with the activation energf [this follows from the connec- ture. This allows one to give the explicit temperature depen-
tion betweenr and o; Egs.(36) and (12)] However, it is  dences ofs and 8, which agree well with the experimental
remarkable that at low temperatures allarge v, T<T,) values for typical ion-conducting glasses, and, in addition, to
for 7«(T) the Arrhenius law remains. Indeed, substituting inprove the usually declared relatis- 5~1. Moreover, the
Eqg. (87) the explicit expression of in terms of T, [Egs. explicit temperature dependence of the characteristic time of
(30) and(15)] we find the non-Debye relaxationzk , in the Kohlrausch law has
been obtained. The most important thing is that th€T)
introduced in glasslike materials yields to the Arrhenius law
not only at high temperatures, which was assumed hitherto
while constructing the theory, but also at low temperatures,
where the following effective—higher thad,—activation  which is the principal consequence of the concept consid-
energy appears: ered. In the latter case the effective activation energy of the
characteristic non-Debye relaxation time exceeds the
Der=Do+0.4368, . (91 initial—high-temperature—one. As to the dc conductivity of

The dependences obtained are the theoretical ground for trEFe glass, its temperature dependence according to our pre-
predicted behavior of(T) in real ion-conducting glasses ictions must be of tzhe 2substantlally non-Arrhenius form
and the experimental confirmation of E(89)—(91) is of "dc(T)NeXp(_DO/T,_T*/T)' In_fact, S,UCh a forr_n of
principal interest. qu(T) can be considered as the theo_retlcal aIternat!ve to the
We will discuss such dependences for the case of liquiditting Vogel-Tammann-Fulcher law in the approximation

. h . 55 . . . .
electrolytes and analyze other related questions in a futurform of Bassler™ The detailed theoretical analysis of this
publication. and related questions is to be the content of our next paper.

8xZ b T
7(T)=0.5615,¢Pet, (90)

V. SUMMARY ACKNOWLEDGMENTS

The theory developed in this pap&ome of its results
published in Ref. 3} which is based on the application of
the fluctuation approachto the investigation of relaxation
phenomena, allowed us to obtain closed-form expressio
for the response functions of disordered conductors from
fundamental statistical principles. These expressions obvi-
ously possess the proper analytical behavior and correctly APPENDIX
reproduce all the experimentally observable details of non- | order to make the best fitting of our functi¢8s) by
Debye relaxation. In this way, the non-Debye relaxationthe Kohlrausch function
functions, discussed earlier on the purely phenomenological
level, which are based on the Gaussian model of the activa-
tion barrier distribution in glasslike systert&>23133were f(®)=exp—exg 8O —g)]}, (A1)
put on a rigorous mathematical footing, which distinguishes
the Gaussian model among the others. In this light, one can
claim that the probable evolution of the non-Debye relax-where the notatio= BIn(7k/7) has been introduced, let us
ation theory should follow the method of improvement of use the least-squares method, having found the solution of
just the Gaussian approximation. the equations

The possibility of the representation of the complex con-
ductivity of glasslike systems with the help of the compact
functionB(w, v) [Eqg. (46)], which possesses rich properties, aF 9F
allows one to demonstrate the existence of the frequency %_ ' ﬁ_o’
interval in which the functiono(w) derived by us repro-
duces the empirical Jonscher law; the interval widens sharply
with the growth of the fluctuation exponent So, without ~ Wwhich cause the extremum in the functional
needing complicated models, i.e., on the quite general level,
it has been shown how this fitting law is formed in any
disordered system with hopping conductivity. Analogously,
the function of the temporal relaxation of the disordered con-
ductor reproduces with high accuracy the empirical Kohl-
rausch law, which allows us without introducing fitting pa-
rameters to give a quantitative interpretation of theand, by that, determine the dependence of the Kohlrausch
experimental data with the help of our theory of the electricalexponentg and timer, = 7e%# on the fluctuation exponent
response. Here the fundamental exponents appearing in theof the medium. Equation§A2) are deduced by simple
fitting laws of Jonschers) and Kohlrausch 8) turn out to  transformations to the form

The authors are grateful to Professor J. Ross Macdonald
for the stimulating correspondence on the questions touched
2n in the present paper.

(A2)

F= fjo dO[fx(®)—f(®,r)]? (A3)
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fx dOf'(0,v)exd —expBO—-g)]=—3, (A4)

ﬁo dOf(0,rv)0exd —expBO—g)+ B0 —g]

g—In2—-C AS
T (A5)
whereC~0.5772 is the Euler constdhtand the prime de-
notes the derivative with respect &.

Let us consider the most interesting case;«, when
B—0 [see the saddle-point formu{84)]. The direct substi-
tution of the value8=0 into Eq.(A4) allows us to find for
the quantityg at v—oo the limiting value

0..= —Inln2~0.3665. (AB)

Moreover, at small but finitg the formulag=g.,— Cg fol-
lows from Eq.(A4).

In the same limit Eq(A5) after changing integration vari-
ables and using the integral representati@f) can be rewrit-
ten in the form

X XeXp — —» —exXp x— X—
—5) )L o g g

X+y g—In2—-C
—exp( )| (A7)
One can see that in the IlimitB—0 the function

exd —expk+y/B)] becomes the step function, which at once

allows one to fulfill the integration og in Eq. (A7) and get
the equation foB/v,

fidxx@( ,3)\(/;) exg —expx—g.)+x]=1, (A8)

where®d(x) is the error function. The numerical solution of

Eq. (A8) gives the valueB\vr~1.678 [compare with the
saddle-point value in Eq84)].
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The caser<1l we investigate by substituting into Egs.
(A4) and (A5) the expansiorf(®,v) from Eg. (35) in the
form which is convenient for further calculations,

f(vV):fD(®)+£fD,(®)r (A9)

where the definition33) has been used. Representing

=1-X -

ﬁ_ Za

we obtain for the unknown coefficiend$ andY the equa-
tions

9=, (A10)

© 1 0
X fﬁ Ofp'(0)fp(©)d0— > +Yﬁ fo'(0)fp(©)dO

=0, (Al1)

—Jm Ofp (@) (0)dO+X fo 02f5'(0)fp(0)d0

+Yj_w Ofp'(0)fp(0)dO= %[Y—Z(InZ%—C)X].

(A12)

After the calculation of the corresponding integrals we find
from Eq. (A11) the relation

Y=(In2+C—-1)X, (A13)

and then from Eq(A12) we get
X= ! Al4
~ @3—2C—-2In2° (A14)

Finally, from Eqg.(A10) and from the definition ofgy we
derive for the Kohlrausch parameters the expressions

v v
B=1- 1.3354 , TK= Texi{ 0.3607‘1) (A15)

[compare with the saddle-point valygefrom Eq. (85)].
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