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A percolation model for conducting polymers is proposed in terms of a random resistor network. The
macroscopic conductivity at the critical polymer density is studied. Substantial deviations have been detected
from the standard conducting behavior in percolating structures generated with a large difference between
inter- and intrachain conductance elements. This behavior could be explained in terms of a distinctive finite-
size effect and the relevance of the results discussed in context with real polymer systems.
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I. INTRODUCTION

The emergence of conducting polymers as a new class of
functional materials has been fully recognized, especially
due to their importance in basic and applied research and
many potential applications in technology.1–3 The investiga-
tion of their metallic state formation, dimensionality, and
electrical transport mechanisms responsible for the wide
range variation in conductivity with doping has been the
main focus of the most recent experimental and theoretical
studies on this field.4–9 For example, in the case of poly-
aniline, conductivity changes of 9 orders of magnitude can
be observed in a very limited range of protonation.6,9 How-
ever, the interpretation of this kind of transport data in terms
of specific theoretical models is still very controversial.10

Some fundamental representations for conducting polymer
systems and its metal-to-insulator transition have been of
widespread utilization in recent studies. In order to explain
many unusual properties of real conducting polymer sys-
tems, the first models were based on the assumption that
each chain in the polymeric matrix would be an isolated
one-dimensional conductor.11,12 This one-dimensional~1D!
description, however, could not account for the metallic be-
havior upon doping displayed by the majority of the conduct-
ing polymers, including polyacetilene. The quasi-one-
dimensional disordered system~quasi-1D-DS! represen-
tation13 certainly is the most acclaimed model on the subject.
It has been developed to overcome the serious drawback of
the strict 1D model by considering the interchain coupling as
a relevant charge transport mechanism through the polymer
material. For instance, it was under this framework that
Wanget al.8 proposed this type of transport model for ori-
ented polyaniline in its fully doped emeraldine form, consist-
ing of bundles of well-coupled chains in which electron
states are three-dimensionally extended. According to this
3D ‘‘metallic-island’’ description, the conductivity threshold
could be justified in terms of a localization-to-delocalization

crossover in the electronic states within conducting clusters.
Alternatively, Mizoguchiet al.6 used a percolation paradigm
based on the pathway connectivity among long chains of
conducting polymer in the bulk of the disordered system to
explain the sudden drop in the transverse spin diffusion co-
efficient at a given range of the protonation level. It has been
the theme of an ample and interesting debate whether one
representation is more appropriate than the other.14,15

Under a microscopic point of view, the charge transfer
phenomena in conducting polymer systems have been exten-
sively discussed in terms of well-established concepts from
condensed matter physics such as solitons, polarons, and
bipolarons.10,16Macroscopic models, on the other hand, can
offer a phenomenological insight on the heterogeneous es-
sence of the conductive process.17 There is, however, a clear
gap between the micro- and macroscopic perspectives to rep-
resent the transition to a high conductivity state in such func-
tional materials. Few studies have been dedicated to provide
a consistent description for the complicated morphology of
the polymeric matrix.18–20For example, an interesting aspect
of some conducting polymers~e.g., polypirrole!, is the frac-
tal morphology they can display when electrochemically
generated by means of a diffusion-limited polymerization
process.21,22 As indicated by the experimental variability of
the conduction behavior for different samples and prepara-
tion procedures, the structural details and microscopic imper-
fections of the polymeric system may represent a key factor
for the development of highly conducting materials. Baugh-
man and Shacklette18 proposed a resistor network model to
investigate the effect of conjugation length upon the electri-
cal transport behavior of conducting polymers. By consider-
ing both interchain and intrachain processes of charge trans-
fer, good agreement could be observed between available
experimental data and theoretical results of the conceptual
model. In a subsequent study,19 the basic features of a ran-
dom network model have been adopted as a hypothetical
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framework to evaluate the influence of spatial disorder on the
conducting properties of computer generated polymer clus-
ters. The simulation results from this work clearly demon-
strated the importance of including structural characteristics
into the model to account for the intrinsic diversity of charge
transfer mechanisms which dictate the conducting behavior
of the polymer material.

In the present work, we study the effect of percolation
disorder on the electrical behavior of conducting polymer
networks~CPN!. Basically, this representation is an extended
version of the standard random resistor network~RRN!
model. Instead of single bonds, the percolation elements are
conducting polymer chains randomly allocated in the
lattice.19,20 The central idea is to show that the nature of the
interchain connections can be a relevant factor influencing
the size scaling properties of the overall maze conductivity at
the critical point. Based on the results of extensive simula-
tions, we argue that the scaling behavior of the conducting
backbone of the polymer network at the threshold can be
significantly affected by the temperature of the system when
the ratio between polymer chain length and lattice size is
sufficiently large. This fact might be relevant for the design
of improved conducting polymer materials.

II. MODEL

The polymer unit adopted in the simulations consists of a
conjugated segment with a specified numberl of intrachain
conductance elementss l surrounded by two possible types
of interchain connectionsse : hoppingsh or dopingsd con-
ductances. In the present realization of the model, we assume
that the hopping conductances around each chain are ran-

domly replaced by doping interchain barriers according to a
fixed probability value,p. In this idealization, an intrachain
conductance element must be viewed as a directional unit
comprising either one or several monomers of the macromol-
ecule. While the intrachain and hopping mechanisms of elec-
trical transport in conducting polymers are reasonably well
understood, the role played by doping in this system is some-
what unclear. A mechanism has been proposed by
Kivelson23 to explain the dopant part in the conduction pro-
cess based on the interchain hopping between a bound
charged soliton and a neutral soliton near a charged impurity.
More recently, Tachibanaet al.24 adopted a quantum chemi-
cal approach to demonstrate that the driving force for such
conduction channel is the relaxation of the nuclear geometry
of the dopant in the presence of charged solitons. Since this
charge transfer mechanism is induced by dopant elements
present in the polymeric material, it seems reasonable to
draw a connection between the occurrence of this transport
barrier in the network and the doping fraction of a conduct-
ing polymer sample.

By specifying the polymer chain length and the relative
proportion and values of the elementary conductances, the
next step in the simulation procedure refers to the generation
of a polymeric network confined to a lattice of finite dimen-
sion and regular topology. Two-dimensional square lattices
have been used and periodic boundary conditions have been
applied to reduce the finite-size effect in the transverse di-
rection of the system. The polymeric units are sequentially
allocated using a self-avoiding scheme so that interchain seg-
ments between different polymer units are restricted to hop-
ping and/or doping conductances. The allocation of each

FIG. 1. Typical realization of a
conducting polymer network at
the percolation threshold (l56).
The thick lines correspond to in-
trachain conductancess l and the
thin lines to interchain conduc-
tances se . Periodic boundary
conditions are imposed at they di-
rection.
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polymer chain starts from a randomly selected and unoccu-
pied site in the lattice. If the polymer cannot reach a specified
length l , it is discarded. For a given realization, the genera-
tion step finishes when one of the polymer clusters percolates
in the longitudinal direction, i.e., ‘‘spans’’ from one side to
another through the lattice. Subsequently, an arbitrary volt-
age difference between these two opposite sides is applied
and Kirchhoff’s current law is imposed at each nodal point
of the resulting configuration. Such an operation yields the
following set of coupled linear algebraic equations:

(
jP~ i !

s i j ~Vi2Vj !50, i51,2,3, . . . ,N, ~1!

whereVi andVj are the electrical potentials at nodesi and
j , respectively;N is the total number of internal nodes; and
( i ) represents the set of nodes directly connected to nodei in
the network. The effective conductivity of the network is

then calculated by solving the system of coupled linear alge-
braic equations making use of a subroutine for LU decom-
position of real sparse matrices. In a previous study,19 ex-
plicit relationships have been adopted to describe the
temperature dependence of the elementary bond conduc-
tances, according to their specification during the allocation
step. In lightly doped polymers at low or moderate tempera-
tures, the electrical transport is dominated by hopping. In
such conditions, the associated conductance value for this
mechanism can be many orders of magnitude smaller than
intrachain and doping values. Here we simply assume that
equal values can be assigned for the intrachain and doping
conductances (s l5sd), whereas the conductance magnitude
due to hopping contacts can be systematically changed ac-
cording to the parameter ratioa5sh /sd . Since hopping is a
thermally activated process, a change in this variable should
thus be analogous to a modification in the temperature of the
conducting polymer system.

FIG. 2. Double-log plots of the conductivity
S as a function of the system sizeL for ~a!
l52, ~b! l54, and~c! l56, and different values
of a. The solid lines are the linear best fitting for
the scaling region~see Table I for the correspond-
ing slopes!.
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III. RESULTS AND DISCUSSION

Figure 1 shows a pictorial representation of our physical
system for a typical network realization of dimension
3003300 just above the percolation threshold. Simulations
have been carried out with a number of realizations ranging
from 8000 to 200 for several lattice dimensions going from
20320 to 2503250 nodal points, respectively. Once the
spanning cluster is identified, the network conductivity is
calculated for different values of the conductance ratioa.
For simplicity, we restricted our simulations to the case in
which hopping and doping conductances are equally distrib-
uted (p51/2), but randomly assigned around each polymer
unit present in the lattice. Figure 2~a! shows the logarithmic
dependence of the network conductivityS on the system size
for polymer chains composed of two elementary units
( l52) and four different values ofa. At a51, the scaling
relationship

S;L2z, ~2!

seems to apply for the whole range of system sizeL. At very
low values of the conductance ratio~e.g.,a51025), how-
ever, interesting changes can be observed in the conductivity
variation with system size and polymer chain length. The
presence of a sharp finite-size crossover indicates the mini-
mum lattice size where a percolating path consisting only of
high conductancess l andsd could not be detected in any
realization. Obviously, at low values ofa, even an insignifi-
cant number of such anomalous configurations tends to pro-
duce a dramatic increase in the average conductivity values
of small lattice sizes. At this point, it is instructive to follow
the ‘‘link-nodes-blobs’’ model,25 where one can conceive the
structure of the conducting backbone in terms of two distinct
groups of bonds. Namely, the ‘‘blobs’’ are the multiply con-
nected parts of the backbone which contain most of the con-
ducting bonds of the system. The ‘‘red’’ bonds, on the other
hand, constitute the set of single connections between con-
secutive blobs in the backbone and, as a consequence, must
carry the total current passing through the percolating clus-

ter. The occurrence of these exceptionally high conducting
realizations could then be explained solely in terms of the
average number of ‘‘singly connected’’ bonds available as
interchain bridges in the conducting backbones of systems
with different lattice sizes and polymer chain lengths. For
example, a small lattice filled with large polymer chains will
have a very small number of interchain conductances which
can be qualified as ‘‘singly connected.’’ According to the
doping probability employed in the simulations,p51/2, an
average of only half of the interchain bonds in the system
will be assigned as hopping elements. Since there are few
‘‘singly connected’’ bonds in small lattices, the possibility of
realizations with a very high conductivity increases. Like-
wise, the simulations performed with distinct polymer chain
lengths showed entirely similar behavior@Figs. 2~b! and
2~c!#, except for differences in the location of the crossover
point which tends to move towards large lattice sizes as the
polymer chain length increases. From these simulation re-
sults, it seems clear that this finite-size effect can be readily
avoided if we calculate the critical exponents disregarding
the conductivity data from small lattice sizes.

We use the same range of lattice sizes to fit the data
corresponding to a given polymer chain length at different
values of the parametera. Expectedly, the critical exponent
obtained forl52 anda51, z50.9760.01, is very close to
the value predicted by standard Monte Carlo simulations
with two-dimensional percolating networks,z50.9745.26

However, the resulting exponent values shown in Table I
clearly demonstrate that the deviations from the standard
percolation value ofz become significant as the length of the

FIG. 2. ~Continued!.

TABLE I. Values ofz corresponding to the linear best fitting for
the scaling regions shown in Fig. 2.

l / a 1 1021 1023 1025

2 0.9760.01 0.9860.01 1.0260.02 1.0260.02
4 0.9760.01 0.9860.01 1.0460.02 1.0560.02
6 0.9960.01 1.0060.01 1.0960.02 1.1060.02
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polymer chainl increases from 2 to 6 and the conductance
ratio a is systematically reduced from 1 to 1025. For in-
stance, a deviation of almost 13% between the calculated
exponentz assumingl56 anda51025, z51.1060.02, and
the classical percolation value can no longer be justified in
terms of typical finite-size effects. The objective here is to
demonstrate that, at intermediate values of the ratiol /L, a
decrease in the parametera tends to increase the conductiv-
ity exponent towards the fractal dimension of the ‘‘minimal
self-avoiding walk’’ ~Ref. 26! through the conducting back-
bone. At low values of the conductance ratio, the hopping
mechanism is dominant due to the high resistance of these

interchain barriers. At low values ofa, those paths through
the ‘‘blobs’’ having a relatively large number of hopping
connections will contribute very little to the electrical trans-
port. If the ratiol /L is substantially large, the contribution of
the low conductance paths will be virtually eliminated in
some blobs because relatively long and highly conductive
polymer chains can now ‘‘percolate’’ through them. As al-
ready mentioned, this finite-size effect breaks down the frac-
tal morphology of the electrical system at low length scales
and can somehow be compared to the ‘‘minimal self-
avoiding walk’’ process in a typical percolating lattice. A
convincing evidence for this behavior can be visualized if we

FIG. 3. Plot of the conducting back-
bone extracted from the network in Fig. 1
is shown in~a!. Networks carrying 99% of
the total bond current through this configu-
ration are shown in~b! for a51, and in~c!
for a51025.
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recursively plot only the conducting bonds of the original
spanning cluster.27 Figure 3~a! shows the conducting back-
bone extracted from the critical percolating network repre-
sented in Fig. 1. In Figs. 3~b! and 3~c!, the set of bonds
carrying 99% of the total current in the original structure are
displayed fora values equal to 1 and 1025, respectively.
These pictures have been reconstructed after calculating the
potential drop at each node and current at each bond of the
lattice. Subsequently, without considering position and direc-
tion, all bond currents have been rearranged in descending
order of their numerical values and summed up to the total
current flowing through the network. Finally, the bonds car-
rying the largest currents are sequentially replotted, up to the
point in which the desired percentage of the total current is
already present in the system. Compared with Fig. 3~b!, the
tenuous aspect of the conducting pathway in the 99% net-
work shown in Fig. 3~c! is a clear indicative that the relevant
structures for transport are rather different for distincta val-
ues. Under these circumstances, by decreasing the tempera-
ture ~i.e., lowering the parametera) in systems with large
polymer chains~more precisely, at intermediate values of the
ratio l /L) one should then expect the critical conductivity
exponent to increase approaching the maximum limit of
zmax5D min'1.13, whereDmin is the fractal dimension for
the ‘‘minimal self-avoiding walk’’ in a two-dimensional per-
colating network. This is in good agreement with the results
of our simulations. Furthermore, the values shown in Table I
could also indicate that the exponentz might not vary con-
tinuously with the parametera. Instead, by increasinga, the
occurrence of a crossover from the limiting valuezmax

(a→0) to the standard value ofz50.9745 should be the
most likely behavior. This possibility has to be further inves-
tigated.

IV. SUMMARY

From the simulation results with the CPN model, we
could demonstrate that the size scaling properties of conduct-
ing polymer systems might be fairly susceptible not only to
their morphological and topological features but also to the
physical conditions under which experiments have been per-
formed~e.g., temperature!. Moreover, the last factor appears
to be associated with a distinctive finite-size effect in sys-
tems close to criticality generated with intermediate values
of l /L and at low values of the conductance ratio,a. We
expect this behavior to be observed in real conducting poly-
mer systems. Sufficiently large chains or conjugation lengths
can ‘‘percolate’’ through metallic islands in the granular
three-dimensional material, breaking the possible self-similar
hierarchy at low length scales.

We conclude by emphasizing the necessity for a detailed
structural description of the electrical transport in conducting
polymers. The modeling technique introduced here is flex-
ible to bring together a variety of conduction mechanisms
and correlate them spacially, according to specific features of
the material and physical conditions. In other words, this
model allows for structural and phenomenological aspects of
the system to be simultaneously represented. Hopefully, the
modeling approach developed in this study will enable us to
provide more useful information on the topological aspect of
the electrical transport in conducting polymers.
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