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The double-differential cross section for inner-shell ionization in a crystal by fast electrons is calculated
within the theory of dynamical electron diffraction. Bloch waves are used for the incident and the emerging
electrons. We show that interference terms are still present in the independent Bloch-wave model. In the
two-beam case, the cross section contains but six terms, three of them caused by interference. From the six
terms, three are identified as the Kikuchi excess and defect lines and the Kikuchi band. The remaining three
terms have not yet been described explicitly. As an example, the SiK-shell ionization cross section is calcu-
lated for a~220! two-beam case, in a dipole approximation for the mixed dynamic form factor. It is shown that
in electron spectroscopic diffraction the maximum of the fundamental Lorentzian can be significantly shifted
with respect to the direction of incidence, and that the interpeak minimum between the fundamental and the
Bragg-excited Lorentzians is depressed relative to the kinematical case.@S0163-1829~96!02026-7#

I. INTRODUCTION

The understanding of how inelastic scattering of fast elec-
trons combines with dynamical diffraction in a crystal be-
comes increasingly important with the availability of energy
filters in electron microscopy. Predictions of inelastic cross
sections in a crystal are important because atomic models for
inner-shell ionization cross sections are so accurate
nowadays1 that dynamical effects set up by the crystalline
environment should no longer be neglected. Apart from an
understanding of the combined elastic-inelastic interactions,
calculations would improve the accuracy of quantitation in
electron-energy-loss spectrometry~EELS!.

Reimer2 has given a qualitative illustration of the funda-
mental principles that lead to the formation of Kikuchi lines
and bands in energy-filtered diffraction patterns@energy
spectroscopic diffraction~ESD!#. A quantitative prediction
of ESD patterns for arbitrary energy loss and specimen has
yet to be found. However, there has been considerable
progress in the last decades, using various approximations
related to the wave functions of the fast probe electron and
the target, as well as to the interaction, in order to achieve
practical solutions.

Kainuma3 has calculated intensity profiles across Kikuchi
lines and bands in a single inelastic-scattering approxima-
tion. Later on, various scattering mechanisms were investi-
gated. There are many papers on thermal diffuse
scattering4–8 and on inner-shell excitation.9–12Plasmon scat-
tering has been discussed by Howie.13

Multiple inelastic scattering has been considered by
Yoshioka,14 and then by Rez,15 by Van Roost and Serneels in
a matrix formulation,16 and by Dudarev, Peng, and Whelan
in a propagator approach.18

Although Kainuma realized the symmetry between the in-

cident and the outgoing waves in the formulation of the
problem, he assumed a Bloch-wave field only for the outgo-
ing electron, the incident electron being a plane wave. Later
work concentrated largely on special cases such as kinematic
conditions for the incident19,20 or the outgoing beam.10 Of
the more general treatments, we mention the papers by
Gjo”nnes,21 Van Roost and Serneels,16 and Dudarevet al.18

Despite their general applicability and usefulness, these ap-
proaches have not been exploited as they deserve, due to the
fact that the average user is not willing to repeat lengthy
computer calculations. What is missing is a simple expres-
sion that can be handled within reasonable time on reason-
able hardware.

This is the aim of the present paper. The aspects of our
approach are use of the dipole approximation and reduction
of the number of terms to six in the final expression. This
allows simulation of ESD patterns on a PC.

The paper is organized as follows: First, we derive an
expression for the differential cross section for inelastic scat-
tering in a crystal. Results are derived in distorted-wave
Born approximation~DWBA!,22 using Bloch waves for the
incident and emerging fast electrons.

Strictly speaking, the eigenfunctions in a system with in-
elastic interactions are no longer Bloch waves. This case was
treated by Dudarevet al.18We adopt a simpler model system
where only core excitations occur. When selecting a core
loss in a diffraction pattern, all other inelastic interactions
might then be treated as a phenomenological absorption. For
the present calculations, we assume single inelastic scatter-
ing for core losses and neglect absorption. This allows the
specimen thicknessd→`, leading to a transparent and clear
formulation of the problem. It is shown that this approxima-
tion is equivalent to the independent Bloch-wave model
~IBWM !. The effects of finite thickness and absorption will
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be discussed in a forthcoming paper.
Following the notation of Kohl and Rose,23 the use of the

mixed dynamic form factor allows a transparent formulation.
To this point, results are valid for any energy-loss process. It
turns out that in the limit of the validity of the independent
Bloch-wave model, interference survives, contrary to earlier
conjectures.10 The validity and limitations of this assumption
are discussed.

Thereafter, we invoke a two-beam case for both the inci-
dent and the outgoing Bloch-wave superpositions; and we
evaluate the mixed dynamic form factor for inner-shell ion-
ization in dipole approximation.24,25

These simplifications lead to a transparent description of
the inelastic differential scattering cross section. It reduces to
a linear combination of six mixed dynamic form factors
~three direct and three mixed terms! that can easily be
handled. The six coefficients in the linear combination men-
tioned above are then simple algebraic expressions contain-
ing nothing but the excitation errors of the incident and the
outgoing waves. From the six terms, three are identified as
the Kikuchi excess and defect lines and the Kikuchi band.
The remaining three factors have not yet been described ex-
plicitly.

In the last section we discuss their physical significance as
well as several consequences of our result.

II. GENERAL THEORY

A. Distorted-wave Born approximation

The double-differential scattering cross section for inelas-
tic scattering in the DWBA is
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with ck0
and ck the initial and final fast-electron waves,

respectively.f ,i denote the final and initial states of the scat-
terer, with occupation probabilitypi of initial states. The
interaction term in the Hamiltonian ise2V with
V(r2R)5ur2Ru21, the Coulomb interaction between the
fast electron at r , and the target electron atR.
v f ,i5v f2v i is the energy difference between final and ini-
tial states of the scatterer.

The d function selects those combinations of initial and
final states in the double sum that are apart by an energy
exactly matching the energy loss« of the fast electron. Note
that the sum overi means that the scatterer is in a mixed
state, a consequence of the one-electron approximation.

The fast-electron wave functionsck,k0
are Bloch waves.

In configuration space, neglecting spin, the initial state is

ck0
~1 !~r !5^r uck0&5(

g, j
ajCg

j eik0g
j r. ~2!

The final state is26

ck
~2 !~r !5@c2k

~1 !~r !#* ~3!

and can be rewritten27

ck~r !5^r uck&5(
h,l

blDh
l* eikh

l* r. ~4!

The wave vectork0g
j is that of Bloch wavej to Bragg reflex-

ion g in the incident-wave field, andkh
l is analogous for the

outgoing-wave field, that is, the latter is defined by the se-
lection of an outgoing direction~see Fig. 1!.

Cg
j are the expansion coefficients of thej th Bloch wave of

the incident-wave field as given by the solution of the char-
acteristic equation of dynamical diffraction theory.28,29 The
respective quantitiesDh

l in Eq. ~4! refer to the Bloch-wave
field after inelastic interaction. This is Kainuma‘s ‘‘recipro-
cal wave.’’ The wording comes from the fact that the emerg-
ing wave field is defined by choice of an exit direction, i.e.,
by positioning the detector in the diffraction plane, in much
the same way as the incident-wave field is defined by the
position of the electron source. According to Eq.~3!, Dh

l are
obtained as the Bloch-wave coefficients ofc2k

(1)(r ). The co-
efficients aj ,bl can be calculated as usually in dynamical
diffraction theory from the boundary conditions at the upper
and lower boundaries of the specimen as

aj5C0
j*

for z50 and

bl5D0
l e2 ig l* d

for z5d. See Fig. 1 and Eq.~14! for a definition ofg l .
Double insertion of the unity operator

15E d3r ur &^r u ~5!

FIG. 1. Scattering geometry with incident beam~000! and de-
tector position in the two-beam case~here, without restriction of
generality, Si 220!. The position of the Kikuchi lines is drawn. The
lines occur atwo50, wo526.52. Scattering vectors are measured
with respect to the incident beam; the relation between
wi , wo , qx can be seen. The upper part shows the dispersion sur-
faces for incident and outgoing directions~not to scale!, with g i

j .
See text after Eq.~14! for explanation.
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for the configuration space variable of the fast electron into
Eq. ~1!, evaluation of the square, and use of Eqs.~2!, ~4!
yields
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Here we have introduced the abbreviation

X~Q,Q8,«!5(
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pi(
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where the vectors in reciprocal space,

Q5k0g
j 2kh

l* ,

Q85k0g8
j 8*2kh8

l 8 , ~8!

have been used for convenience. The complex conjugates

kh
l* andk0g8

j 8* have been obtained from̂kur &5exp(2k* r ). In
case of vanishing absorption, as assumed in the following,
this is of no importance.

We will henceforth omit constant prefactors in expres-
sions for the differential cross section. This is justified since
in experiments intensities are in general not normalized.
R,R8 are position operators of the target that is described in
the one-electron approximation~justified since core excita-
tions are essentially one-electron excitations!.3 The integrals
in Eq. ~7! can be taken as Fourier transforms of the Coulomb
potential which are proportional toQ22. From the shift theo-
rem we have

X~Q,Q8,«!5
4pe2

Q2Q82(i pi(
f

^ f ueiQ–Ru i &

3^ i ue2 iQ8–R8u f &d~v f ,i2«!. ~9!

Note that for ease of writing the indicesg,h, j ,l ,
g8,h8, j 8,l 8 of the reciprocal vectorsQ,Q8 that appear as
arguments inX have been omitted. What has been achieved
with Eq. ~6! seems at first glance to be nothing than a sepa-
ration into prefactorsa,b,C,D that depend only on the ori-
entation of the source and the detector relative to the crystal,
and factorsX(Q,Q8,«) that depend on the scattering proper-
ties of the medium. When the incident electron can be de-
scribed by anN-beam case, and the outgoing one by an
M -beam case, the expression~6! for the cross section con-
tains (NM)4 terms, and so even for a two-beam in–two-
beam out case, we have to deal with 256 terms. For usual
systematic-row conditions, one can easily arrive at 105

terms.

B. Mixed dynamic form factor

A closer inspection of the factorsX will show that a num-
ber of terms in Eq.~6! vanish, and many of the remaining
ones can be collected before evaluating the sum; for the two-
beam case the sum reduces, eventually, to a linear combina-
tion of six differentX.

First we note that the mixed dynamic form factor23

S(Q,Q8,«) is defined as

S~Q,Q8,«!5(
i
pi(

f
^ f ueiQ–Ru i &

3^ i ue2 iQ8–R8u f &d~v f ,i2«!. ~10!

whence from Eq.~9!

X~Q,Q8,«!5
4pe2

Q2Q82
S~Q,Q8,«!. ~11!

We make now use of certain properties ofS. As has been
shown by Kohl and Rose23 the mixed dynamic form factor in
an infinitely large crystal vanishes except that

Q85Q1G. ~12!

The arguments inSmust differ by a reciprocal lattice vector
G.30

When the wave-vector differencesk0g
j 2kh

l of the fast
electron before and after scattering are expressed as usual by
deviations of the dispersion surfaces from the sphere28 g j

and lattice vectorsg ~see Fig. 1!, we can write Eqs.~8! as

Q5k0g
j 2kh

l 5q1dg j l k̂z1g2h, ~13a!

Q85k0g8
j 8 2kh8

l 8 5q1dg j 8 l 8k̂z1g82h8. ~13b!

Here we have introduced the momentum transferq be-
tween the incident (k0) and measured (k) plane waves. The
differences ofAnpassungenare vectors in thez direction
~unit vectork̂z) with modulus

dg j l5~g i
j2g f

l !, ~14!

andg i , f
j is the deviation of thej th dispersion surface of the

initial and final fast-electron waves from the sphere, as de-
fined in the theory of dynamical diffraction.28 All g j are
functions of the deviation parameterswi ,wo of the incident
and the outgoing waves, respectively, and hence ofk0 ,k.
The deviation parameter for the incident wave iswi5sijg
wherejg is the extinction distance for theg-reflex in ques-
tion, and the excitation error is given bysi5uGuq, where
q is the tilt angle relative to the exact Bragg orientation, and
analogouswo for the outgoing~detected! wave. In the two-
beam case, the reciprocal lattice vectorsg,h,g8,h8 are vec-
tors of the systematic row. Equation~13!, inserted into Eq.
~12!, yields now for thez component

dg j l5dg j 8 l 81ugzu ~15!

andgz is a reciprocal lattice vector in thez direction. Since
g,,G, it follows that dg j l5dg j 8 l 8, a condition fulfilled
when j5 j 8 and l5 l 8.
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C. Equivalence to the independent Bloch-wave model

This is an important result. There are four types of tran-
sitions j→ l between branches 1 and 2 of the dispersion sur-
face: 1→1 and 2→2 are intrabranch transitions, 1→2 and
2→1 are interbranch transitions. Equation~15! shows that
different transitions do not interfere. This is equivalent to the
independent Bloch-wave model~IBWM !.19 In fact, if the ini-
tial and final states are mixtures of both types of BW’s, the
total probability is given by the sum over the four terms
given above. In other words, for a thick crystal inelastic scat-
tering can be calculated within an IBWM as noted by Wright
and Bird.19

A closer inspection of Eq.~15! shows that for a singular
value ofq, namely,qx50, interference terms (jÞ j 8) exist
when j5 l , j 85 l 8, even ford→`. d is the specimen thick-
ness. For finited, these terms cause a thickness-dependent
oscillation next to zero scattering angle. This shows that the
off-diagonal density matrix elements are not really damped
out, and that the phase is not really erased. The vanishing of
interference terms between Bloch waves means that off-
diagonal terms of the density matrix of the fast electron van-
ish in a Bloch-wave basis. That is, the effect of the phases of
the incident particle has been erased. Whereas usually the
off-diagonal terms are damped by absorptive processes,32 it
is momentum conservation in thez direction that is respon-
sible for the damping in the present case, and thus for the
validity of the IBWM. For finite thickness, the mixed dy-
namic form factor S(Q,Q8,«) would have an enve-
lope proportional to36 ( j l , j 8 l 8sin@(dg j l2dg j 8 l 8)d/2#/

@(dg j l2dg j 8 l 8)d/2#. It follows that condition ~15! is re-
lieved, allowing interference terms between Bloch waves.
Momentum conservation is then only approximately valid
due to resonance errors in thez direction.33 A calculation of
the additional terms shows that important features of the
ESD pattern, such as the interference term, or the shift of the
main maximum, remain virtually unchanged. This is the
scope of a forthcoming paper.

It would be interesting to measure the inelastic cross sec-
tion for intermediate crystal thickness in order to get insight
into the strength of decoherence effects caused by the miss-
ing phase relations between Bloch waves in the IBWM. In
elastic scattering, decohering is much more difficult to ob-
serve because in thicker crystals the oscillation period of the
interference term~the rocking curve! is very small, and so is
the amplitude.

Only when absorption is included will this oscillating
contribution that approaches ad function disappear.

D. Final expression

As discussed in Sec. I, we putd→`. This fact reduces
the number of terms in Eq.~6! to (NM)3, in the two-beam
case to 64.

Since j5 j 8,l5 l 8, Eq. ~6! is now
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~16!

For ease of writing, we defineXgh(q,«)5X(q1g,q1h,«).

The dynamic form factors are almost constant in the small
range where the differences ofg vary, and so

X~q1dg k̂z1g,q1dg k̂z1h,«!'Xgh~q,«!. ~17!

We can now regroup the sums in Eq.~6! as
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with

Agg85(
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uaj u2Cg
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Bhh85(
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ubl u2Dh
l*Dh8
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There are (NM)2 terms in Eq.~18! to be calculated from the
expansion coefficients of the incident and outgoing Bloch
waves,17 16 in the two-beam case.

By changing the summation indexg2h5g1 ,
g82h85g2 and rearrangement with respect to different
Xg,h , the number of terms can still be reduced,

]2s

]«]V
} (
g152M11,g252M11

N21,N21

Fg1g2
Xg1g2

~q,«!, ~20!

where

Fg1g2
5(

hh8
Ag11h,g21h8Bhh8. ~21!

Equation ~20! has (N1M21)2 terms, which in the two-
beam–two-beam case is 9.

III. SIMPLIFICATIONS

A. Two-beam case

In the two-beam-case, the various combinations ofg and
h ~0 or G) lead to a set of nine differentXgh , namely,
$Xghug5$2G,0,G%,h5$2G,0,G%%. Assuming that the
crystal is centrosymmetric and invariant under time
reversal23 we have S(q,q8,v)5S(q8,q,v), and hence
Xgh(q)5Xhg(q). This symmetry property reduces the num-
ber of terms again. For discussion, it is useful to distinguish
direct terms (g5h) and mixed terms (gÞh). There are
L5M1N21 direct terms andL(L21)/2 mixed terms. In
the two-beam case, that makes three direct and three mixed
terms.

The direct terms are the usual double differential cross
sections, centered at the Bragg spots2G,0,G and would
have been obtained likewise from a kinematical approach.

The mixed terms correspond to the nondiagonal elements
of the mixed dynamic form factor. They are caused by the
interference of waves belonging to Bragg reflexionsG and 0.

When there were a one-beam case incident~far from the
Bragg condition! and two outgoing beams, or vice versa, we
would haveL52 direct terms andL(L21)/251 interfer-
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ence term. This corresponds to the double-slit experiment,
the two beams being waves from the slits, and the single
beam being the source.

The prefactors of the six terms can be calculated from
dynamical theory, choosing directions of the incident and the
outgoing electrons, from Eqs.~19!, ~21!. There are obviously
two parameters, namely, the directions of incident and of
outgoing electrons, and they can conveniently be expressed
by the deviation from the Bragg conditionswi andwo of the
incident and outgoing waves, wherew5sjg . See Fig. 1 for
a visualization of the notation we use.

Starting from expressions forCg
j ,Dh

l , e.g.,28 Eqs. ~19!,
~21!, yield

F00511
22v i2vo12wiwo

v ivo
,

Fgg5
vo21

v ivo
, ~22!

F2g2g5
v i21

v ivo

for the direct terms and

F0g52
2@wo1wi~vo21!#

v ivo
,

F02g52
2@wi1wo~v i21!#

v ivo
, ~23!

Fg2g52
2wiwo

v ivo

for the mixed terms. Here we used the abbreviation

v i ,o52~11wi ,o
2 !. ~24!

These quantities are plotted in Fig. 2 as functions ofwi and
wo .

B. Dipole approximation

We have already made use of certain properties of the
mixed dynamic form factorS as defined in Eq.~10!. In a
crystal, one-electron eigenfunctionsu i & and u f & can only be
calculated to some approximation. As has been argued on
intuitive grounds,34 atomic wave functions can be used for
the initial state. Using spherical waves for the ejected elec-
tron, the mixed dynamic form factor can be calculated to
good approximation.35 It is well known that the ordinary
dynamic form factor for ionization of free atoms can well be
described within the dipole approximation, with an accuracy
of the order of 10% in the angular integrated cross section.25

We make use of these two approximations~free atoms and
dipole! and write for the mixed dynamic form factor23

S~Q,Q8,«!5 f ~«!QQ8, ~25!

wheref («) shall be set constant since we consider a particu-
lar energy loss.

With this expression, the direct termsXgg in the cross
section Eq.~20! lead to Lorentzians centered at the Bragg
reflectionsG,0,2G, as explained above. An important con-
sequence is that the mixed termsXgh(q,«) become negative
in a circular region around the midpoint betweeng andh in
the diffraction plane. This has already been realized by
Gjo”nnes,21 but seems to have gone unnoticed later on.

We are now prepared to calculate the direct and mixed
contributions to the ionization cross section, Eq.~20!.

IV. DISCUSSION

The following contour plots and graphs have been calcu-
lated for a Si 220 two-beam case.31 The energy loss is as-
sumed to be the SiK-edge ionization loss at 1840 eV. The
relation between the excitation errors of the incident and out-
going beams andq can be seen in Fig. 1. For Si~220!, we
have

qx
qG

5
~wo2wi !

6.52
. ~26!

We present scattering profiles and contour plots as functions
of wi ,w0 in order to make relations to Kikuchi patterns.

In Fig. 2 we show the prefactors of the three direct terms
@Figs. 2~a!–2~c!# and the three mixed terms@Figs. 2~d!–2~f!#,
as contour plots over parameterswo andwi . wo is on the
horizontal axis. For kinematical conditions~largewi) the in-
cident wave can be considered to be plane. This is the case
that Kainuma3 discussed without reference to particular en-
ergy losses or to a specificS. Kainuma’s expressions for
bands and lines can be found in Fig. 2 as a scan at very large
wi . Figure 2~a! constitutes the defect line, and Fig. 2~c! has
the shape of an excess line but is not strong enough to com-
pensate the defect line when the incident beam is nearer to
the 220 Kikuchi line (2wi,3.26); else it causes an excess
line. The Kikuchi band is shown in Fig. 2~d!. Note that it is

FIG. 2. Contour plots of the prefactorsFgh(wo ,wi): horizontal,
wo ; vertical,wi . The upper row, from left to right~a!–~c! shows
the three direct termsF00 ~defect line!, Fgg ,F2g2g ~excess line!,
the lower row~d!–~f! is for the three mixed onesFg0 ~excess band!,
F2g0, F2gg .
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an excess band whenS(q,q8,«).0. We shall see shortly that
this is not always the case. The other prefactors are not given
by Kainuma who has only two direct@Figs. 2~a!, 2~c!# and
one mixed@Fig. 2~d!# term. In fact, for largewi the terms of
Figs. 2~b!, 2~e!, and 2~f! tend to a constant, and there remain
only the terms discussed by Kainuma for the kinematical
case. In the present representation, the dynamical case is in-
cluded in a natural way, and the symmetry between incident
and outgoing beams is seen most clearly. Compare Fig. 2~b!
and Fig. 2~c!: A rocking curve with fixed detector position is
identical to a scan over the diffraction pattern with fixed
incident beam. As an aside, we mention that the direct term
F00 — the defect line — is asymmetric for moderatewi .

The lower row shows bandlike contributions. They are all
antisymmetric with respect towi or wo . Note that in usual
reasoning, only the term of Fig. 2~d! is discussed.

The relative weight of the six terms depends on the mixed
dynamic form factor. In order to discuss linelike and band-
like structures in more detail, we calculate the inelastic cross
section along the line joining the incident beam and theG
spot, as a function ofwo andwi . This is shown in Fig. 3~b!.
Note that along the diagonal the scattering angle is zero. Or,
for givenwi , the angular profile is a horizontal cut through
the contour plot with the origin atwi5wo . The momentum
transfer in direction of the systematic row is given by Eq.
~26!.

Figure 3~a! shows the sum over the three mixed terms —
in usual notation the Kikuchi band. It can be clearly seen that
the intensity distribution is not bandlike. A horizontal cut
through the ‘‘butterfly’’ is bandlike for wi.0. For
21,wi,0, a cut shows more structure, with two maxima,
one inside and one outside of the former band, and a signifi-
cant decrease of intensity in the band. For smallerwi the
contrast reversal is more pronounced.

This shows that the usual notation of a Kikuchi band is a
useful, but not exact description of the situation. The contrast
reversal from excess to defect, seen here, is usually masked
by the strong Lorentzian direct terms. It should also be noted
that this should not be mistaken for the contrast reversal of
the band in thicker specimens.2

The direct terms are much more intense than the mixed
ones. The main contribution is a Lorentzian centered at the
incident beam~the diagonal of the graph!. Figure 3~b! shows
the total intensity~direct plus mixed terms!. The linelike and
bandlike structures are barely visible because the Lorentzian
is so dominant.

The excess Kikuchi line begins to emerge at the lower
part of the contour plot as a slight structure forwo'0. Note
the appearance of a subsidiary maximum whenwi526.52.
It can also be seen that the cross section is higher for
wi,0 than forwi.0.

Figure 4~a! shows energy filtered diffraction patterns@en-
ergy spectroscopic diffraction~ESD!#. Figures 4~a!–~c! are
the mixed contributions to theK-edge ESD pattern for three
different excitation errors. Forwi50 ~exact Bragg case! or
wi51 the excess band is strong and well defined. For
wi521 the contrast is reversed around a circular area cen-
tered at the midpoint between the incident beam and theG
reflection, as already predicted by Gjo”nnes,21 see also remark
given above. The total ESD intensity distribution is shown in
Figs. 4~d!–4~f!. The Lorentzian direct term dominates the
pattern except for large distance from the systematic row

FIG. 3. ~a! Mixed terms in the inelastic scattering cross section,
for Si 220 two-beam case and the SiK edge. Intensity along the
systematic row (qy50), as a function ofw0 ~horizontal!, andwi

~vertical!. ~b! Total ~direct plus mixed terms! inelastic scattering
cross section, for Si 220 two-beam case and the SiK edge. Intensity
along the systematic row (qy50), as a function ofw0 ~horizontal!,
andwi ~vertical!.

FIG. 4. ~a!–~c! Mixed contribution to the SiK-edge ESD pat-
tern forwi521,0,1~top to bottom!. Horizontal axis given in units
of wo , vertical axis given in units of the Bragg vector, drawn to
scale. The Bragg spot is atwo526.52,qy50. ~d!–~f! Si K-edge
ESD pattern, total intensity, same parameters as in Figs. 4~a!–4~c!.
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where the excess Kikuchi band becomes visible. The defect
region visible in Fig. 4~a! is hidden by the direct term and
disappears in the total ESD pattern, Fig. 4~d!. A comparison
with Fig. 4~e! shows, however, that the minimum between
the excited Bragg reflection2G and the incident beam is
lower. This depression has been seen experimentally.36

Figure 5 shows various traces through the ESD pattern.
The left column is a trace along 0G (qy50); the right col-
umn is a trace parallel to 0G at a distance of two Bragg
angles (qy52). Along 0G the Kikuchi line and band is
barely visible since the Lorentzians dominate, as already
mentioned. From top to bottom, the excitation error of the
incident beam is increased. The top is forwi525.52 ~cor-
responds towi521 for the 2̄2̄0 Kikuchi line!. In the second
graph, we have putwi521. There we have contrast reversal
in the band~thin line! as already discussed in Fig. 4, causing
a narrowing of the left wing of the Lorentzian and a dip at

the position of the Kikuchi line. The direct terms are almost
Lorentz-like. Atwi50 ~third from top! the bandlike contri-
bution shifts the maximum to the left. An important conse-
quence is that, in ESD patterns, the center points of the
Lorentzians must not be taken as positions of the Bragg
spots. Forwi51 the band is strong. The last graph resembles
kinematical conditions (wi510).

The right columns~two Bragg reflections away from the
systematic row! shows the excess band more clearly. Note
that it is strongest for negativewi . At wi51, the defect
Kikuchi line ~dashed! counteracts the band, making it faint.
The linelike structure in the direct term is a small effect. For
wi525.52 — incident beam next to theG position, equiva-
lent towi521, and detection at the 22̄̄0 -Kikuchi line — we
observe an excess line that is hidden by the strong Lorentz-
ian profile whenqy50 and hidden by the excess band for
largeqy . For2wi,3.26 we have a defect line, as expected.

It is at once evident that the usual notion of Kikuchi bands
and lines is an approximation for larger distances from the
excited beams (qy..0) and for kinematical conditions
(uwi u..1). In ESD patterns of inner-shell ionization, inten-
sity is concentrated in the direct terms around the excited
spots, rendering the indirect bandlike contribution faint along
the excited systematic row. The contrast reversal seen for
wi521 is compensated by the relatively large direct term,
anyway causing a decrease of intensity between 0 andG.
This effect has been observed in preliminary experiments
with an imaging filter.36

The fact that both the line and the band are small effects
compared to the Lorentzian distribution of the inner-shell
ionization justifies the usual kinematical interpretation of
ESD patterns invoking superposed Lorentzians, and this is
the very reason why EELS quantitation works, in general.

Accurate microanalysis demands, however, more in-
volved reasoning. As shown in a model calculation,12 the
cross section may change by a factor of 10, under particular
conditions, as a function of crystal orientation. The method
developed here serves as a tool for estimating the effects of
orientation on the cross section. Of special interest is the case
of site-specific excitations, which can also be handled with
our approach. In order to see if and when simple formulas
apply, and to find correction algorithms for more accurate
EELS quantitation, it is necessary to extend our findings to a
many-beam case and to include the thickness dependence as
well as absorption. This is the aim of a following paper.

V. CONCLUSION

We point out the central benefit of the simplified model:
Simulations of energy-filtered diffraction patterns can be
done easily on a PC, thus allowing fast IBWM calculations
for any two-beam case and any ionization edge.

Within the range of validity of the IBWM, the theory as
outlined above, based on a fully dynamical expression, leads
to a clear distinction between bandlike and linelike structures
in ESD patterns.

Besides the excess and defect Kikuchi lines and the Kiku-
chi band, we find three further contributions that establish
the complete symmetry between incident and outgoing
waves.

FIG. 5. ~a! Traces through SiK-edge ESD pattern along 0G
(qy50). Direct term~dashed line!, mixed~thin solid line!, and total
inelastic cross section. From top to bottom:wi525.52,
21, 0, 1, 10. Abscissa:wo . ~b! Traces through SiK-edge ESD
patterns parallel to 0G (qy52). Direct term~dashed line!, mixed
~thin solid line!, and total inelastic cross section. From top to bot-
tom: wi525.62,21, 0, 1, 10. Abscissa:wo .
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The symmetry properties of the mixed dynamic form fac-
tor allow a considerable reduction of terms, and in the two-
beam case we are left with six terms.

The model calculation for the SiK-ionization edge in the
~220! two-beam case demonstrates interesting details in ESD
patterns. Most important is the depression of the interpeak
minimum, rendering a superposition of Lorentzians impos-
sible. The shift of the maximum of the double-differential
cross section relative to the Bragg spot must be considered
when energy-filtered diffraction patterns are quantitatively
interpreted.

Note added in proof.The results are accurate as long as
the two-beam case is a good approximation, i.e., for
uwi ,0u,6.5/2. Forlarger uwu, certain features are missing,
such as the symmetry of the band.
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