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Dynamical diffraction in electron-energy-loss spectrometry: The independent Bloch-wave model
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The double-differential cross section for inner-shell ionization in a crystal by fast electrons is calculated
within the theory of dynamical electron diffraction. Bloch waves are used for the incident and the emerging
electrons. We show that interference terms are still present in the independent Bloch-wave model. In the
two-beam case, the cross section contains but six terms, three of them caused by interference. From the six
terms, three are identified as the Kikuchi excess and defect lines and the Kikuchi band. The remaining three
terms have not yet been described explicitly. As an example, tieBiell ionization cross section is calcu-
lated for a(220) two-beam case, in a dipole approximation for the mixed dynamic form factor. It is shown that
in electron spectroscopic diffraction the maximum of the fundamental Lorentzian can be significantly shifted
with respect to the direction of incidence, and that the interpeak minimum between the fundamental and the
Bragg-excited Lorentzians is depressed relative to the kinematical [@&E63-18286)02026-7

I. INTRODUCTION cident and the outgoing waves in the formulation of the
problem, he assumed a Bloch-wave field only for the outgo-

The understanding of how inelastic scattering of fast elecing electron, the incident electron being a plane wave. Later
trons combines with dynamical diffraction in a crystal be-work concentrated largely on special cases such as kinematic
comes increasingly important with the availability of energy conditions for the incidef??° or the outgoing beartf. Of
filters in electron microscopy. Predictions of inelastic crossthe more general treatments, we mention the papers by
sections in a crystal are important because atomic models f@jsnnes! Van Roost and Serneel®and Dudarewet all®
inner-shell ionization cross sections are so accurat®espite their general applicability and usefulness, these ap-
nowaday$ that dynamical effects set up by the crystalline proaches have not been exploited as they deserve, due to the
environment should no longer be neglected. Apart from aract that the average user is not willing to repeat lengthy
understanding of the combined elastic-inelastic interactiong;omputer calculations. What is missing is a simple expres-
calculations would improve the accuracy of quantitation insion that can be handled within reasonable time on reason-
electron-energy-loss spectrometBELS). able hardware.

Reimef has given a qualitative illustration of the funda-  This is the aim of the present paper. The aspects of our
mental principles that lead to the formation of Kikuchi lines approach are use of the dipole approximation and reduction
and bands in energy-filtered diffraction patterfenergy of the number of terms to six in the final expression. This
spectroscopic diffractiofESD)]. A quantitative prediction allows simulation of ESD patterns on a PC.
of ESD patterns for arbitrary energy loss and specimen has The paper is organized as follows: First, we derive an
yet to be found. However, there has been considerablexpression for the differential cross section for inelastic scat-
progress in the last decades, using various approximatiorisring in a crystal. Results are derived in distorted-wave
related to the wave functions of the fast probe electron anéorn approximation DWBA),?? using Bloch waves for the
the target, as well as to the interaction, in order to achievéncident and emerging fast electrons.
practical solutions. Strictly speaking, the eigenfunctions in a system with in-

Kainuma has calculated intensity profiles across Kikuchi elastic interactions are no longer Bloch waves. This case was
lines and bands in a single inelastic-scattering approximatreated by Dudareet al® We adopt a simpler model system
tion. Later on, various scattering mechanisms were investiwhere only core excitations occur. When selecting a core
gated. There are many papers on thermal diffusdoss in a diffraction pattern, all other inelastic interactions
scatterind~® and on inner-shell excitatiofr*? Plasmon scat- might then be treated as a phenomenological absorption. For
tering has been discussed by Howfe. the present calculations, we assume single inelastic scatter-

Multiple inelastic scattering has been considered bying for core losses and neglect absorption. This allows the
Yoshiokal*and then by ReZ> by Van Roost and Serneels in specimen thickness— =, leading to a transparent and clear
a matrix formulation'® and by Dudarev, Peng, and Whelan formulation of the problem. It is shown that this approxima-
in a propagator approach. tion is equivalent to the independent Bloch-wave model

Although Kainuma realized the symmetry between the in{IBWM). The effects of finite thickness and absorption will
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be discussed in a forthcoming paper.

Following the notation of Kohl and Rog&the use of the
mixed dynamic form factor allows a transparent formulation.
To this point, results are valid for any energy-loss process. It
turns out that in the limit of the validity of the independent
Bloch-wave model, interference survives, contrary to earlier
conjectures? The validity and limitations of this assumption
are discussed.

Thereafter, we invoke a two-beam case for both the inci-
dent and the outgoing Bloch-wave superpositions; and we
evaluate the mixed dynamic form factor for inner-shell ion-
ization in dipole approximatiof+%

These simplifications lead to a transparent description of
the inelastic differential scattering cross section. It reduces to (220) (000)| %x ay
a linear combination of six mixed dynamic form factors
(three direct and three mixed termthat can easily be Detlector

S

w

handled. The six coefficients in the linear combination men- . . T
tioned above are then simple algebraic expressions contain- w
ing nothing but the excitation errors of the incident and the -6.52 0.0
outgoing waves. From the six terms, three are identified as

the K|kUCh| excess and defeCt |ineS and the K|kUCh| band. FIG. 1. Scattering geometry with incident be&ﬁﬂo) and de-
The remaining three factors have not yet been described exector position in the two-beam casgkere, without restriction of

o]

plicitly. generality, Si 22f) The position of the Kikuchi lines is drawn. The
In the last section we discuss their physical significance asnes occur atv,=0, w,=—6.52. Scattering vectors are measured
well as several consequences of our result. with respect to the incident beam; the relation between
W;, W,, gy can be seen. The upper part shows the dispersion sur-
Il. GENERAL THEORY faces for incident and outgoing directiofisot to scalg with ! .

A. Distorted-wave Born approximation See text after Eq14) for explanation.

The double-differential scattering cross section for inelas-

o lx
tic scattering in the DWBA is l//k(r)=<r|<//k>=; bDj*en ', (4)
2 ) ’
R = (277)436252 P The wave vectokjog is that of Bloch wavg to Bragg reflex-
de i) Ko ion g in the incident-wave field, anki'h is analogous for the

outgoing-wave field, that is, the latter is defined by the se-
X 2 [ (FIV(r =R ) P S(wp i~ ), lection of an outgoing directiofsee Fig. L
f C‘g are the expansion coefficients of tjta Bloch wave of
(1) the incident-wave field as given by the solution of the char-
acteristic equation of dynamical diffraction thedR?° The
respective quantitieB}, in Eq. (4) refer to the Bloch-wave
field after inelastic interaction. This is Kainuma's “recipro-
cal wave.” The wording comes from the fact that the emerg-
ing wave field is defined by choice of an exit direction, i.e.,
by positioning the detector in the diffraction plane, in much
the same way as the incident-wave field is defined by the
position of the electron source. According to E8), D}, are
obtained as the Bloch-wave coefficientsydf})(r). The co-
fficients a; ,b; can be calculated as usually in dynamical
iffraction theory from the boundary conditions at the upper
and lower boundaries of the specimen as

with ¢ and ¢ the initial and final fast-electron waves,

respectivelyf,i denote the final and initial states of the scat-
terer, with occupation probabilityp; of initial states. The
interaction term in the Hamiltonian ise?V with
V(r—R)=|r—R]| ™%, the Coulomb interaction between the
fast electron atr, and the target electron aR.

w¢ = w¢— w; is the energy difference between final and ini-
tial states of the scatterer.

The ¢ function selects those combinations of initial and
final states in the double sum that are apart by an energ
exactly matching the energy lossof the fast electron. Note
that the sum over means that the scatterer is in a mixed
state, a consequence of the one-electron approximation. a =Cix

The fast-electron wave functionﬁ(,ko are Bloch waves. 1m0

In configuration space, neglecting spin, the initial state is for z=0 and
o —nl a-iy*d
(1) =(rln) =2 aCleos'. @ bi=Doe
_ _ 9 for z=d. See Fig. 1 and Eq14) for a definition ofy'.
The final state & Double insertion of the unity operator

) =[yR(D]* 3
and can be rewritté

1= [ arlny(r ®
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for the configuration space variable of the fast electron into

Eqg. (1), evaluation of the square, and use of E@, (4)
yields

20

K . y
m=(277)“a02— , aCL > aclt

kog’J gr’jr

X 3 byD 3 bIDIX(QQ ). (6)

h',1’ J

Here we have introduced the abbreviation

)
J

X &(wy,—¢), (@)

X(Q,Q’,s)z}i: piZf <ff d3re'QTV(r —R)

X<I‘f dSrrefiQ’-r’V(r/_Rr)

where the vectors in reciprocal space,
L _l*
Q=khy—ki¥,

Q' =kbgs — ki, ®

3863

B. Mixed dynamic form factor

A closer inspection of the factobs will show that a num-
ber of terms in Eq(6) vanish, and many of the remaining
ones can be collected before evaluating the sum; for the two-
beam case the sum reduces, eventually, to a linear combina-
tion of six differentX.

First we note that the mixed dynamic form factr
S(Q,Q’',¢) is defined as

S(Q,Q',s)=2i piZf (f]€'UR|i)

X(ile QR s(wr;—8). (10
whence from Eq(9)

4re?

X(Q,Q',S)ZWS(Q,Q',S)- (11

We make now use of certain properties Sf As has been

shown by Kohl and Rogéthe mixed dynamic form factor in
an infinitely large crystal vanishes except that

Q'=Q+0G. (12
The arguments i1 must differ by a reciprocal lattice vector
G_30
When the wave-vector differencdg),—k;, of the fast

have been used for convenience. The complex conjugatedectron before and after scattering are expressed as usual by

ki andkgg’f have been obtained frofik|r)=exp(—k*r). In

case of vanishing absorption, as assumed in the following‘?l

this is of no importance.

deviations of the dispersion surfaces from the spfiesé
nd lattice vectorg (see Fig. ], we can write Eqs(8) as

=kl —Kl = il —
We will henceforth omit constant prefactors in expres- Q=kog—kn=q+ 8y k+g=h, (133
sions for the differential cross section. This is justified since i y e
in experiments intensities are in general not normalized. Q' =kig —kp =0+ 8y "k +g' —h". (13b)

R,R’ are position operators of the target that is described in

the one-electron approximatidjustified since core excita-  Here we have introduced the momentum transfeve-
tions are essentially one-electron excitatioch$he integrals tween the incidentk,) and measuredk) plane waves. The
in Eq. (7) can be taken as Fourier transforms of the Coulomigifferences ofAnpassungerare vectors in the direction
potential which are proportional © 2. From the shift theo-  (unit vectork,) with modulus

rem we have ' N
Y =(vl— ), (14)

and | ; is the deviation of thgth dispersion surface of the
initial and final fast-electron waves from the sphere, as de-
fined in the theory of dynamical diffracticdi. All o are
functions of the deviation parametess,w, of the incident
and the outgoing waves, respectively, and hencéQk.
Note that for ease of writing the indiceg,h,j,I,  The deviation parameter for the incident wavewis=s;£,
g'.h",j’,I" of the reciprocal vectorQ,Q" that appear as where¢, is the extinction distance for thg-reflex in ques-
arguments irX have been omitted. What has been achievedion, and the excitation error is given ts/=|G|9, where
with Eq. (6) seems at first glance to be nothing than a sepas is the tilt angle relative to the exact Bragg orientation, and
ration into prefactors,b,C,D that depend only on the ori- analogousw, for the outgoing(detected wave. In the two-
entation of the source and the detector relative to the crystaheam case, the reciprocal lattice vectgrg,g’,h’ are vec-
and factorsX(Q,Q’, &) that depend on the scattering proper-tors of the systematic row. Equatidga3), inserted into Eq.
ties of the medium. When the incident electron can be de¢12), yields now for thez component
scribed by anN-beam case, and the outgoing one by an
M-beam case, the expressi@) for the cross section con-
tains (NM)* terms, and so even for a two-beam in—two-
beam out case, we have to deal with 256 terms. For usu@ndg; is a reciprocal lattice vector in thedirection. Since
systematic-row conditions, one can easily arrive af 10 y<<G, it follows that §y/'=5"", a condition fulfilled
terms. whenj=j" andl=1".

4me? .
X(Q,Q',S)Za%zgi piZ (fle'¥]i)

X(ile" ' Rf)S(wpi—e). (9)

syl'=6y""+|g, (15



3864 P. SCHATTSCHNEIDER, B. JOUFFREY, AND M. NELHIEBEL 54

C. Equivalence to the independent Bloch-wave model The dynamic form factors are almost constant in the small

This is an important result. There are four types of tran-"ange where the differences gfvary, and so
sitionsj—1| between branches 1 and 2 of the dispersion sur- - -
face: 1-1 and 2-2 are intrabranch transitions—12 and X(q+ 8yk,+9,9+ dyk,+h,e)~Xgn(q,e).  (17)
2—1 are interbranch transitions. Equatiétb) shows that
different transitions do not interfere. This is equivalent to the We can now regroup the sums in E§) as
independent Bloch-wave mod¢BWM ). In fact, if the ini-
tial and final states are mixtures of both types of BW's, the o
total probability is given by the sum over the four terms
) . ) . ded()
given above. In other words, for a thick crystal inelastic scat-
tering can be calculated within an IBWM as noted by Wright .
19 with
and Bird.:
A closer inspection of Eq(15) shows that for a singular .
value ofq, namely,q,=0, interference termsj ') exist Agg = la;|2ClCl*
T, . 4 . 99’ — & |19l ggr s
whenj=I,j’'=1"', even ford—o. d is the specimen thick- ]
ness. For finited, these terms cause a thickness-dependent
oscillation next to zero scattering angle. This shows that the |
! . . Buy =2, |b)|2D}*D (19
off-diagonal density matrix elements are not really damped hh'™— 2 I=h Yhre
out, and that the phase is not really erased. The vanishing of

interference terms between Bloch waves means that offfhere are KM)? terms in Eq.(18) to be calculated from the

diagonal terms of the density matrix of the fast electron vanexpansion coefficients of the incident and outgoing Bloch
ish in a Bloch-wave basis. That is, the effect of the phases afyaves!” 16 in the two-beam case.

the incident particle has been erased. Whereas usually the By changing the summation indexg—h=g;,
off-diagonal terms are damped by absorptive procesies, ¢'—h'=g, and rearrangement with respect to different
is momentum conservation in ttzedirection that is respon- Xg.n, the number of terms can still be reduced,
sible for the damping in the present case, and thus for the ™
validity of the IBWM. For finite thickness, the mixed dy-
namic form factor S(Q,Q’,e) would have an enve-
lope proportional & 3 i 8y — 8y )di2)/
[(8y"— &y '"")d/2]. It follows that condition(15) is re-  where
lieved, allowing interference terms between Bloch waves.
Momentum conservation is then only approximately valid
due to resonance errors in thairection®® A calculation of Fglgfz Ag,+h,g,+n Bhn- (21)
the additional terms shows that important features of the hh'
ESD pattern, such as the interference term, or the shift of th%quation (20) has (N+M—1)? terms, which in the two-
main maximum, remain virtually unchanged. This is thepy o " +vo beam case is 9. ’
scope of a forthcoming paper.

It would be interesting to measure the inelastic cross sec-
tion for intermediate crystal thickness in order to get insight lll. SIMPLIFICATIONS
into the strength of decoherence effects caused by the miss-
ing phase relations between Bloch waves in the IBWM. In _ o
elastic scattering, decohering is much more difficult to ob- In the two-beam-case, the various combinationg aind
serve because in thicker crystals the oscillation period of th@ (0 or G) lead to a set of nine differenXy,, namely,
interference ternithe rocking curviis very small, and sois {Xgnl9={—G,0,G},h={—-G,0,G}}. Assuming that the

%> D AggBrwXg ng - n(de),  (18)
gg’ hh'

N-1N-1
Po

T g D o FosXa(@0), (0

A. Two-beam case

the amplitude. crystal is centrosymmetric and invariant under time
Only when absorption is included will this oscillating reversal® we have $(q,q’,0)=5(q’,0,), and hence
contribution that approaches&function disappear. Xgh(0) =Xng(a). This symmetry property reduces the num-
ber of terms again. For discussion, it is useful to distinguish
D. Final expression direct terms ¢=h) and mixed terms d#h). There are

L=M+N-1 direct terms and.(L—1)/2 mixed terms. In
the two-beam case, that makes three direct and three mixed
terms.

As discussed in Sec. |, we pdt—. This fact reduces
the number of terms in Eq6) to (NM)?, in the two-beam

cassei;ge?i.j’ I=1", Eq. (6) is now The direct terms are the usual double differential cross
' o sections, centered at the Bragg spet§,0,G and would
P’ o [N P have been obtained likewise from a kinematical approach.
EYT) x> ZI 2 - 3Cqay Cgr biDyby Dy The mixed terms correspond to the nondiagonal elements
! g.g%hh of the mixed dynamic form factor. They are caused by the
XX(q+ 69"k, +g—h,q+ 8y'k,+g' —h',e). interference of waves belonging to Bragg reflexi@and 0.

When there were a one-beam case incidéat from the
(16) Bragg condition and two outgoing beams, or vice versa, we
For ease of writing, we defin¥y,(g,e) =X(q+g,q+h,e). would haveL=2 direct terms and.(L—1)/2=1 interfer-
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ence term. This corresponds to the double-slit experiment, ) (0) (©
the two beams being waves from the slits, and the single 7 /7 ] I

beam being the source.

@
The prefactors of the six terms can be calculated from J ‘,

dynamical theory, choosing directions of the incident and the S’ﬁ r’; .

outgoing electrons, from Eqél9), (21). There are obviously | ‘ ? N

two parameters, namely, the directions of incident and of % — "~ . ,
outgoing electrons, and they can conveniently be expressed (d)
by the deviation from the Bragg conditiomg andw,, of the O T
incident and outgoing waves, whene=sé,. See Fig. 1 for
a visualization of the notation we use.

Starting from expressions fo€! D}, e.q.?® Egs. (19),
(22), yield

-10 -10 — -
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
2—0vi— v+ 2W;W,

Foo=1+ Vivo J FIG. 2. Contour plots of the prefactof,,(w, ,w;): horizontal,
W, ; vertical, w;. The upper row, from left to righta)—(c) shows
vo—1 the three direct term§ o, (defect ling, Fyq,F_q_4 (excess ling
Fgg: ° , (22) the lower row(d)—(f) is for the three mixed onds,, (excess band
ViUg F_q0 F_qgq-
go» 99
F_g_g:u With this expression, the direct termg,q in the cross
Uilo section Eq.(20) lead to Lorentzians centered at the Bragg
for the direct terms and reflectionsG,0,— G, as explained above. An important con-
sequence is that the mixed teriig,(q,e) become negative
2[Wo+W;(vy—1)] ina C|_rcular_ region aroun(_j the midpoint betwegaramdh in
Fog=— - , the diffraction plane. This has already been realized by
I

Gjonnes?! but seems to have gone unnoticed later on.
We are now prepared to calculate the direct and mixed

Foog=— 2[wi+Wo(vi—1)] 23) contributions to the ionization cross section, E2().
-9 Uilog '
Eo_ 2wW;W, IV. DISCUSSION
9-9~— = .

Vito The following contour plots and graphs have been calcu-

for the mixed terms. Here we used the abbreviation lated for a Si 220 two-beam ca$eThe energy loss is as-

sumed to be the IK-edge ionization loss at 1840 eV. The
Vi o= 2(1+Wi20)_ (24) relation between the excitation errors of the incident and out-

going beams and can be seen in Fig. 1. For 20, we
These quantities are plotted in Fig. 2 as functionsvpfind  have

W, .

B. Dipole approximation Ox (Wo—W;) 26)
We have already made use of certain properties of the de 6.52 °

mixed dynamic form factoS as defined in Eq(10). In a
crystal, one-electron eigenfunctiofis and|f) can only be
calculated to some approximation. As has been argued i . . :
intuitive grounds>* atomic wave functions can be used for of w; Wo 1N order to make relations to Kikuchi patterns.

the initial state. Using spherical waves for the ejected elec- _In Fig. 2 we show the prefacfcors of the _three direct terms
tron, the mixed dynamic form factor can be calculated to[F'gS' da)-2(c)] and the three mixed ternfigs. Z{_d)—2(f)],
good approximatiof® It is well known that the ordinary &S contour plots over parameterg andw;. w, is on the
dynamic form factor for ionization of free atoms can well be N0rizontal axis. For kinematical conditiotiargew;) the in-
described within the dipole approximation, with an accuracyCident wave can be considered to be plane. This is the case
of the order of 10% in the angular integrated cross secfion. that Kainumd discussed W'_thOUt referer}ce to part_lcular en-
We make use of these two approximatidfiee atoms and ©'9Y losses or to a specifis. Kainuma's expressions for

OWe present scattering profiles and contour plots as functions

dipole) and write for the mixed dynamic form factdr bands and lines can be found in Fig. 2 as a scan at very large
w; . Figure Za) constitutes the defect line, and FigcPhas
S(Q,Q,¢)=f(£)QQ’, (25) the shape of an excess line but is not strong enough to com-

pensate the defect line when the incident beam is nearer to
wheref (&) shall be set constant since we consider a particuthe 220 Kikuchi line w;<3.26); else it causes an excess
lar energy loss. line. The Kikuchi band is shown in Fig(@. Note that it is
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(a) mixed terms (b) total (a) wi=-1 mixed (d) wi=-1 total

@

-6.52 0 6.52

(b) wi=0 mixed (e) wi=0 total

FIG. 3. (a) Mixed terms in the inelastic scattering cross section,
for Si 220 two-beam case and the ISiedge. Intensity along the
systematic row §,=0), as a function ofw, (horizonta), andw;
(vertical). (b) Total (direct plus mixed termsinelastic scattering
cross section, for Si 220 two-beam case and th€ &ige. Intensity
along the systematic rong(=0), as a function ofv, (horizonta),
andw; (vertical).

-6.52 0 6.52

(c) wi=1 mixed (f) wi=1 total

an excess band whe&{q,q’,e)>0. We shall see shortly that
this is not always the case. The other prefactors are not given
by Kainuma who has only two dire¢Figs. 2a), 2(c)] and
one mixed Fig. 2(d)] term. In fact, for largaw, the terms of
Figs. 4b), 2(e), and Zf) tend to a constant, and there remain
only the terms discussed by Kainuma for the kinematical
case. In the present representation, the dynamical case is in-
cluded in a natural way, and the symmetry between incident =
and outgoing beams is seen most clearly. Compare Hiy. 2
and Eig. Zc): A rocking curve Wit_h fixe.d detector pos_itior) is FIG. 4. (a)—(c) Mixed contribution to the SK-edge ESD pat-
identical to a scan over the diffraction pattern with fixed (o1 forw, = —1,0,1(top to bottor). Horizontal axis given in units
incident beam. As an aside, we mention that the direct termas y_, vertical axis given in units of the Bragg vector, drawn to
Foo — the defect line — is asymmetric for moderate. scale. The Bragg spot is at,= —6.520,=0. (d)—(f) Si K-edge
The lower row shows bandlike contributions. They are a||ESD pattern, total intensity, same parameters as in Figs-4(c).
antisymmetric with respect ta; or w,. Note that in usual
reasoning, only the term of Fig(@ is discussed.
The relative weight of the six terms depends on the mixed
dynamic form factor. In order to discuss linelike and band-
like structures in more detail, we calculate the inelastic cross The direct terms are much more intense than the mixed
section along the line joining the incident beam and &e ones. The main contribution is a Lorentzian centered at the
spot, as a function ofr, andw; . This is shown in Fig. @).  incident beanithe diagonal of the graphFigure 3b) shows
Note that along the diagonal the scattering angle is zero. Othe total intensity(direct plus mixed terms The linelike and
for givenw;, the angular profile is a horizontal cut through bandlike structures are barely visible because the Lorentzian
the contour plot with the origin at;=w,. The momentum is so dominant.
transfer in direction of the systematic row is given by Eq. The excess Kikuchi line begins to emerge at the lower
(26). part of the contour plot as a slight structure fog~0. Note
Figure 3a) shows the sum over the three mixed terms —the appearance of a subsidiary maximum whgr —6.52.
in usual notation the Kikuchi band. It can be clearly seen thatt can also be seen that the cross section is higher for
the intensity distribution is not bandlike. A horizontal cut w;<<0 than forw;>0.
through the “butterfly” is bandlike for w;>0. For Figure 4a) shows energy filtered diffraction patterfen-
—1<w;<0, a cut shows more structure, with two maxima, ergy spectroscopic diffractioESD)]. Figures 4a)—(c) are
one inside and one outside of the former band, and a signifthe mixed contributions to thk-edge ESD pattern for three
cant decrease of intensity in the band. For smalerthe  different excitation errors. Fow;=0 (exact Bragg caseor
contrast reversal is more pronounced. w;=1 the excess band is strong and well defined. For
This shows that the usual notation of a Kikuchi band is aw;=—1 the contrast is reversed around a circular area cen-
useful, but not exact description of the situation. The contrastered at the midpoint between the incident beam andhe
reversal from excess to defect, seen here, is usually maskeeflection, as already predicted by/@jees?! see also remark
by the strong Lorentzian direct terms. It should also be notedjiven above. The total ESD intensity distribution is shown in
that this should not be mistaken for the contrast reversal oFigs. 4d)—4(f). The Lorentzian direct term dominates the
the band in thicker specimens. pattern except for large distance from the systematic row
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(b) the position of the Kikuchi line. The direct terms are almost
Lorentz-like. Atw;=0 (third from top the bandlike contri-
bution shifts the maximum to the left. An important conse-
quence is that, in ESD patterns, the center points of the
Lorentzians must not be taken as positions of the Bragg
spots. Fow; =1 the band is strong. The last graph resembles
-5 \_—"5 kinematical conditionsw;=10).

The right columngtwo Bragg reflections away from the
systematic row shows the excess band more clearly. Note
that it is strongest for negativey;. At w;=1, the defect
Kikuchi line (dashed counteracts the band, making it faint.
The linelike structure in the direct term is a small effect. For
w;=—5.52 — incident beam next to tle position, equiva-
lent tow;= — 1, and detection at theZD -Kikuchi line — we
observe an excess line that is hidden by the strong Lorentz-
ian profile wheng,=0 and hidden by the excess band for
largeq, . For —w;<3.26 we have a defect line, as expected.

Itis at once evident that the usual notion of Kikuchi bands
and lines is an approximation for larger distances from the
excited beams d,>>0) and for kinematical conditions
(Iw;j]>>1). In ESD patterns of inner-shell ionization, inten-
sity is concentrated in the direct terms around the excited
spots, rendering the indirect bandlike contribution faint along
the excited systematic row. The contrast reversal seen for
w;=—1 is compensated by the relatively large direct term,
anyway causing a decrease of intensity between 0@nd
This effect has been observed in preliminary experiments
with an imaging filter’®

The fact that both the line and the band are small effects
compared to the Lorentzian distribution of the inner-shell
ionization justifies the usual kinematical interpretation of
ESD patterns invoking superposed Lorentzians, and this is
-5 V/Sf the very reason why EELS quantitation works, in general.

Accurate microanalysis demands, however, more in-
volved reasoning. As shown in a model calculattérihe
cross section may change by a factor of 10, under particular
conditions, as a function of crystal orientation. The method
developed here serves as a tool for estimating the effects of
orientation on the cross section. Of special interest is the case
of site-specific excitations, which can also be handled with
our approach. In order to see if and when simple formulas
apply, and to find correction algorithms for more accurate
EELS quantitation, it is necessary to extend our findings to a
many-beam case and to include the thickness dependence as
Ghell as absorption. This is the aim of a following paper.

FIG. 5. (a) Traces through SK-edge ESD pattern along®
(gy=0). Direct term(dashed ling mixed(thin solid ling), and total
inelastic cross section. From top to bottonw;=—-5.52,
—1,0, 1, 10. Abscissaw,. (b) Traces through SK-edge ESD
patterns parallel to @ (g,=2). Direct term(dashed ling mixed
(thin solid ling), and total inelastic cross section. From top to bot-
tom: w;=—-5.62,—1, 0, 1, 10. Abscissaw, .

where the excess Kikuchi band becomes visible. The defe
region visible in Fig. 4a) is hidden by the direct term and
disappears in the total ESD pattern, Figd)4 A comparison
with Fig. 4(e) shows, however, that the minimum between
the excited Bragg reflection- G and the incident beam is
lower. This depression has been seen experimerifally. We point out the central benefit of the simplified model:
Figure 5 shows various traces through the ESD patternsimulations of energy-filtered diffraction patterns can be
The left column is a trace along@®(q,=0); the right col-  done easily on a PC, thus allowing fast IBWM calculations
umn is a trace parallel to® at a distance of two Bragg for any two-beam case and any ionization edge.
angles (,=2). Along 0G the Kikuchi line and band is Within the range of validity of the IBWM, the theory as
barely visible since the Lorentzians dominate, as alreadyputlined above, based on a fully dynamical expression, leads
mentioned. From top to bottom, the excitation error of theto a clear distinction between bandlike and linelike structures
incident beam is increased. The top is for=—5.52 (cor-  in ESD patterns.
responds tav,= — 1 for the 20 Kikuchi line). In the second Besides the excess and defect Kikuchi lines and the Kiku-
graph, we have put;= — 1. There we have contrast reversal chi band, we find three further contributions that establish
in the band(thin line) as already discussed in Fig. 4, causingthe complete symmetry between incident and outgoing
a narrowing of the left wing of the Lorentzian and a dip atwaves.

V. CONCLUSION
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The symmetry properties of the mixed dynamic form fac- Note added in proofThe results are accurate as long as
tor allow a considerable reduction of terms, and in the twothe two-beam case is a good approximation, i.e., for
beam case we are left with six terms. |wi o/ <6.5/2. Forlarger |w|, certain features are missing,

The model calculation for the &i-ionization edge in the such as the symmetry of the band.

(220 two-beam case demonstrates interesting details in ESD
patterns. Most important is the depression of the interpeak
minimum, rendering a superposition of Lorentzians impos-
sible. The shift of the maximum of the double-differential P. S. acknowledges the hospitality and the financial sup-
cross section relative to the Bragg spot must be considerggbrt of Ecole Centrale Paris and of the Austrian Fond zur
when energy-filtered diffraction patterns are quantitativelyForderung der wissenschaftlichen Forschung, Project No.
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