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The critical behavior at a Lifshitz tricritical point in systems with a short-range and uniaxial dipolar inter-
action is calculated using renormalized group theory. We consider the case in which we separated the wave-
vector space into the componentsk5(px ,py ,q), with the dimensionsm̃, m, andd2m2m̃ for px , py , andq,
respectively. The upper critical dimensiondc was found to bedc521[(2m1m̃)/3]. The critical exponents
and the logarithmic corrections have been calculated and compared with the available experimental and
theoretical data.@S0163-1829~96!02230-8#

I. INTRODUCTION

As several second-order phase transition lines meet at a
specific point, multicritical behavior may arise. Among these
special transition points, much interest has been given to
Lifshitz points ~LP’s!1,2 ~for a review, see Ref. 3!, where
three phases, a paraphase, a ferrophase, and a spatially
modulated phase, coexist, and to tricritical points4 ~for a re-
view, see Ref. 5!, where a second-order phase transition line
becomes first order and where in fact~in an enlarged space
of the thermodynamic fields! three second-order lines meet.
One may have even lines of such multicritical points. These
lines are defined by specific conditions in the thermodynamic
field space, and it may happen that these lines cross each
other, leading to a Lifshitz tricritical point~LTP!.6–8 The
critical behavior at this point has been studied within a
model described by the usual Landau-Ginzburg-Wilson
Hamiltonian, taking into account also the wave vector depen-
dence of higher-order interactions.7,8 Recently, a LTP within
a variant of the axial next-nearest-neighbor Ising~ANNNI !
model has been found.9

Physical realizations of such a high-order critical point
have been suggested for the antiferrodistortive transition in
RbCaF3 ~Ref. 10! and liquid crystals.11 Promising systems
for a realization of a LTP are the proper uniaxial ferroelectric
Sn2P2~SexS12x!6 ~Ref. 12! and solid mixtures of
~PbySn12y!2P2~SexS12x!6.

13 These systems are of special in-
terest because of the uniaxial dipolar interaction present, and
in consequence a new kind of LP, namely, uniaxial dipolar
Lifshitz points~ULP’s! and also uniaxial dipolar Lifshitz tri-
critical points~ULTP’s!, may be observed.14 The critical be-
havior at ULP’s has already been calculated in one-loop
order.15 Here we study the ULTP’s completing the table of
exponents presented in Ref. 15.

The strength of critical fluctuations at this high-order mul-
ticritical compared with the usual second-order phase transi-
tion is the result of several competitive effects. On the one
hand, at a Lifshitz point the fluctuations ind53 are en-
hanced; on the other hand, tricriticality reduces the fluctua-
tions and in the case considered here this reduction is even
larger because of the uniaxial dipolar forces. The overall
consequence is that, at an ULTP with a special modulation in
one direction~this seems to be the physical case!, the diver-
gences of susceptibility and the specific heat ind53 are
described by mean-field theory with logarithmic corrections.

The same is true at the usual second-order phase transition
for systems with strong uniaxial dipolar interaction. How-
ever, the exponentx, characterizing the logarithmic correc-
tion in the susceptibility, is different from the ULTP; one has
x51/3 ~Refs. 16, 17! instead ofx51/10. Without uniaxial
dipolar forces one would find nonclassical power-law
behavior.7,8

The paper is arranged as follows: In Sec. II we introduce
the theoretical model~effective Hamiltonian! used in the
renormalization group procedure which is presented in Sec.
III. There we carry out a field-theoretical renormalization-
group analysis18 and give the general solutions for the renor-
malized vertex functions related to the susceptibility and the
specific heat. In Sec. IV, we relate the critical exponents to
the renormalizing functions, and in Sec. V we calculate the
renormalization constants and the flow of the coupling con-
stants for the isotropic and anisotropic cases in one-loop or-
der. Finally, in Sec. VI, we summarize our findings and dis-
cuss their implications. In Appendix A we list the Feynman’s
diagrams and the corresponding analytical forms for the ver-
tex functions in one-loop order. Appendixes B and C will
include the evaluated integrals in the dimensional regulariza-
tion scheme.

II. THEORETICAL MODEL
The Ginzburg-Landau-Wilson Hamiltonian suitable to de-

scribe LTP-multicritical behavior in systems with short-
range interaction7,8 can be written as

H5
1

2 E ddk@r 01c0p
21q21d0p

4#F0kF02k

1
u0
4! E ddk1d
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dk3F0k1
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F02k1 ,2k2 ,2k3

1
w0

6! E ddk1d
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F0k2

F0k3
F0k4

F0k5
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1
v0
3! E ddk1d

dk2d
dk3p1

2F0k1
F0k2

F0k3
F02k1 ,2k2 ,2k3

.

~1!

HereF0~k! represents the scalar order parameter, e.g., mag-
netization, polarization, etc.. Thed-dimensional wave vector
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k is decomposed intop andq components of dimensionm
and (d2m), respectively, for am-fold LTP. r 05(T2Tc)/Tc
is the bare reduced relative temperature distance to the phase
transition temperatureTc , c0 andd0 are the parameters of the
dispersion, and the coefficient ofq2 has been chosen to be 1.
The coupling constantsu0, v0, andw0 may depend on tem-
perature and/or other physical parameters~e.g., pressure,
concentration, etc.!. At the second-order critical point, only
r 0 goes to zero; all other coefficients stay finite, and the
termsd0p

4, w0, andv0 turn out to be irrelevant and can be
neglected. At a Lifshitz point, bothr 0 and c0 go to zero;
then, the termd0p

4 has to be taken into account. In the
region, wherec0,0 andd0.0, a second-order phase transi-
tion into an incommensurate phase, characterized by a non-
zerom-dimensional wave vector, takes place. The ferroelec-
tric phase and the incommensurable phase are separated by a
line of first-order phase transitions. All three lines meet at the
Lifshitz point. At a tricritical point, bothr 0 and the fourth-
order couplingu0 vanish. Thus, we have to take into account
the sixth-order couplingv0. At a LTP, r 0, c0, andu0 vanish

and all terms shown in~1! have to be taken into account.
So far, the argumentation was based on short-range inter-

actions of the order parameter only. It is known that suffi-
ciently long-range interactions lead to a different critical be-
havior. Uniaxial dipolar forces, present in ferroelectrics, are
such long-range forces, which at a second-order phase tran-
sition lead to logarithmic corrections to the mean-field power
laws.16,17The effect of uniaxial dipolar forces is to suppress
fluctuation in wave vector space in the direction of the
uniaxiality. For the anisotropic systems with a Lifshitz point,
it is important in which direction the uniaxiality of the dipo-
lar forces is directed.15 Let us first consider the case where it
is perpendicular to them-dimensional subspace. We are at
d53, m52, and the appropriate term to be included in the
dispersion of~1! is g 0

2q2/k2.19 Because of the presence of
this term, theq2 term becomes irrelevant and can be ne-
glected. We also may neglectq2 in the denominator of the
dipolar term. So, finally, the effective Ginzburg-Landau-
Wilson Hamiltonian for the ULTP with them directions per-
pendicular to the uniaxiality reads

H5
1

2 E ddkF r 01d0p
41g0

2 q
2

p2GF0kF02k1
w0

6! E ddk1d
dk2d

dk3d
dk4d

dk5F0k1
F0k2

F0k3
F0k4

F0k5
F02k1 ,2k2 ,2k3 ,2k4 ,2k5

1
v0
3! E ddk1d

dk2d
dk3p1

2F0k1
F0k2

F0k3
F02k1 ,2k2 ,2k3

. ~2!

The physical relevant case ism52 so thatq becomesd22 dimensional andddk5d2pdd22q.
The second case to be considered, and which may be realized in the above-mentioned ferroelectrics, is the case where the

uniaxial direction lies within them-dimensional subspace. However, the wave-vector-dependent terms in that direction are
irrelevant and the Lifshitz character is changed from anm-fold to an~m21!-fold Lifshitz point.15 We therefore generalize the
model Hamiltonian, Eq.~2!, to include three subspaces: anm-dimensional~the subspace of the modulated behavior!, an
m̃-dimensional, and a (d2m2m̃)-dimensional~the subspace of the ‘‘uniaxial’’ dipolar behavior! subspace. The physical
relevant case ism51, m̃51. Then the Ginzburg-Landau-Wilson Hamiltonian reads~note that only thepy

2 term survives in the
denominator of the dipolar term!

H5
1

2
ddkF r 01c0px

21d0py
41g0

2 q
2

py
2GF0kF02k

1
w0

6! E ddk1d
dk2d

dk3d
dk4d

dk5F0k1
F0k2

F0k3
F0k4

F0k5
F02k1 ,2k2 ,2k3 ,2k4 ,2k5

1
v0
3! E ddk1d

dk2d
dk3py1

2 F0k1
F0k2

F0k3
F02k1 ,2k2 ,2k3

. ~3!

The Hamiltonians~2! and~3! constitute the two cases we study in this paper. Some aspects will be treated for the general case
of arbitrary dimensionsm andm̃ in the following.

III. RENORMALIZATION

A. Unscaled Hamiltonian

We study the critical behavior within the field-theoretical renormalization-group theory using the minimal subtraction
scheme.18

If we choosec0 as a dimensionless quantity, then the dimensions of the coefficients in Eq.~3! are

@r 0#5m2, @c0#5m0, @d0#5m22, @g0#5m, @F0#5m2~d12!/2, @v0#5m22d, @w0#5m622d,

andm an arbitrary reference wave number. Therefore the following renormalizations of the original parameters are needed to
compensate these poles in the loop expansion of the vertex functions:
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r 05ZF
21Zrr , d05m22ZF

21Zdd, g05mZF
21/2g, v05m22dZF

22ZvvAd
21, w05m622dZF

23ZwwBd
21, F05ZF

1/2F.
~4!

Ad is an appropriate dimension-dependent factor andAd
25Bd . There are no pole terms in theq2/p2 parts and~in one-loop

order! none in thep x
2 ,p y

4 parts of the inverse propagator; therefore, there is no independentZ factor in g, and in one-loop
expansion we haveZd5Zf51.15 Regarding the phase transition phenomena, the accessible quantities are, for instance, the
susceptibility or specific heat. In order to obtain these quantities using the field renormalization-group procedure, we have to
calculate the renormalized vertex functionsGR

(2,0) andGR
(0,2). They are related to the physical unrenormalized vertex functions

G0
~2,0! andG0

~0,2! by

G0
~2,0!~p,q,r 0 ,d0 ,g0 ,v0 ,w0!5ZF

21GR
~2,0!~p,q,r ,d,g,v,w,m!, G0

~0,2!~p,q,r 0 ,d0 ,g0 ,v0 ,w0!5Zr
2GR

~0,2!~p,q,r ,d,g,v,w,m!.

This leads to the following renormalization-group equations for the renormalized vertex functions, representing the specific
heat, and susceptibility~we have setd53! stating them independence of the bare vertex functions:

S m
]

]m
1Bw

]

]w
1bv

]

]v
2@ 1

2 zF11#g
]

]g
2@221zF2zd#d

]

]d
1z r H F20G1r

]

]r J 1F01GzFD FGR
~0,2!

GR
~2,0!G~p,q,r ,d,g,v,w,m!

5F2B̂r~p,q,d,g,v,w!

0 G . ~5!

As usual, we have definedbv5m ]v/]m, bw5m ]w/]m, andzi52m ] ln Zi /]m, i5F,r ,g,d. The inhomogeneity of Eq.~5!,
which is related to the additive renormalization of the specific heat, has the form

B̂r~d,g!5Zr
2m

d

dm
Zr

22@Zr
2G0

~0,2!~p50!#sing. ~6!

Equation ~5! could be solved using the method of characteristics,20 by means of m( l )5m l and z i( l )
5z i„V( l )…,V( l )5„g( l ),d( l ),v( l ),w( l )…, andb j5b j„V( l )…, j5v,w, which in the present case leads to the set of the equa-
tions

l
d

dl
m~ l ![m~ l !, l

d

dl
r ~ l ![r ~ l !z r~ l !, l

d

dl
g~ l ![g~ l !zg~ l !, l

d

dl
d~ l ![d~ l !zd~ l !, ~7!

l
dw~ l !

dl
[bw~ l !, l

dv~ l !

dl
[bv~ l !, ~8!

with the initial conditionsm~1!5m, r (1)5r , d(1)5d, g(1)5g, w(1)5w, andv(1)5v. The flow, Eqs.~7!, is solved by

m~ l !5m l ,r ~ l !5r expS E
1

l dr

r
z r~r! D , g~ l !5g expS E

1

l dr

r
zg~r! D , d~ l !5d expS E

1

l dr

r
zd~r! D . ~9!

Via Eq. ~9!, a connection between the flow parameterl and the temperature distanceT2Tc is made by the condition
r ( l )/m2l 251, which assures finiteness of the amplitude functions. The general solutions of the renormalization-group equation
reads

GR
~N,L !~r ,d,g,v,w,m!5~m l !d1~N/2!@22d#22LexpS LE

1

l dr

r
z r D expSN2 E

1

l dr

r
zF D ĜR

~N,L !F r ~ l !m2l 2
,d~ l !,g~ l !,v~ l !,w~ l !G .

~10!

Note that the higher-order interactionsw0 andv0 have different dimensions. A more suitable form of the theory can be
obtained by rescaling the variables in~3! such a way that the relevant interactions have the samem dimension. This is
performed in the following section.

B. Scaled Hamiltonian

The specific form of the Hamiltonians~3!, where already irrelevant terms have been neglected, allows us to scale away the
parametersd0 andg0. Indeed, by rescaling the wavelengths

q̄5g0d0
1/4q, p̄x5px , p̄y5d0

1/4py , r̄ 05r 0 , F̄05F0d0
2m/8~g0

2d0
1/2!2~d2m2m̃!/4,

with dimensions [p̄y]5m1/2, [ q̄]5m3/2, and@F̄0#5m2(3d22m2m̃14)/4, effective interaction coefficients, instead ofv0 andw0,
are introduced~in fact, they are suggested by perturbation theory!:
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v̄05v0d0
2m/4~g0

2d0
1/2!2~1/2!~d2m2m̃!d0

21/2, w̄05w0d0
2m/2~g0

2d0
1/2!2~d2m2m̃!, ~11!

with dimensions@ v̄0#5m31m1m̃/223d/2 and @w̄0#5m612m1m̃23d. Then one may write the rescaled Hamiltonian in the form

H5
1

2 E ddk̄ F r̄ 01 p̄ x
2 1 p̄ y

4 1
q̄ 2

p̄y
2GF̄0kF̄20k1

w̄0

6! E ddk̄1•••d
dk̄5F̄0k1

•••F̄0k5
F̄02k1 ,...,2k5

1
v̄0
3! E ddk̄1d

dk̄2d
dk̄3p̄ y1

2 F̄0k1
F̄0k2

F̄0k3
F̄02k1 ,2k2 ,2k3

. ~12!

The upper critical dimensions for an ULTP, above which fluctuations may be neglected, is found from the condition that the
effective couplings are marginal; thus, we have

dc521S 2m1m̃

3 D . ~13!

For the isotropic case,m52 andm̃50, the upper critical dimension turns out to bedc53 1/3, and in the anisotropic case,
m5m̃51, the upper critical dimension isdc53. This may be compared with the caseg050, where the effective interaction
coefficients are v̄05v0d0

2m/4d0
21/2 and w̄05w0d0

2m/2 with dimensions [v̄0]5m31m/22d and [w̄0]5m61m22d and
dc531m/2.7,8 The relation between the scaled and unscaled bare vertex functions is given by

Ḡ0
~N,L !~ p̄,q̄, r̄ 0 ,v̄0 ,w̄0!5d0

2~m/4!~N/221!~g0
2d0

1/2!2~1/2!~N/221!~d2m2m̃!G0
~N,L !~p,q,r 0 ,d0 ,g0 ,v0 ,w0!. ~14!

Performing the bare loop expansion, pole terms of type 1/e wheree5dc(m,m̃)2d appear~using the renormalization group
theory with dimensional regularization and minimal subtraction18!.

The renormalization constants for the rescaled theory are

r̄ 05ZF
21Zr r̄ , p̄y05ZF

21/4Zd
1/4p̄y , q̄05ZF

23/4Zd
1/4q̄, F̄05ZF

~1/8!~3d22m23m̃!Zd
2~1/8!~d2m̃!F̄,

v̄05m31m1m̃/223d/2ZF
~1/4!~3d22m23m̃!11/2Zd

2~1/4!~d2m̃!21/2Zvv̄Ad
21,

w̄05m612m1m̃23dZF
~1/2!~3d22m23m̃!Zd

2~1/4!~d2m̃!Zww̄Bd
21. ~15!

From the definition of the renormalization factors of the scaled theory, it follows that they depend on the effective
interactions only and we have the relation

Zi~ v̄,w̄!5Zi~d51,g51,v5 v̄,w5w̄!. ~16!

Then for the renormalized vertex functions

Ḡ0
~N,L !~ p̄,q̄, r̄ 0 ,v̄0 ,w̄0!5ZF

2~1/2!$N2~1/2!~N/221!@m13~d2m2m̃!#%Zr
LZd

2~1/4!~N/221!~d2m̃!ḠR
~N,L !~ r̄ ,w̄,v̄,m!, ~17!

the renormalization group equation reads

H m
]

]m
1bw

]

]w̄
1bv

]

] v̄
1
1

2 FN2
1

2 SN221D @m13~d2m2m̃!#zF1FL1 r̄
]

] r̄ Gz r1 1

4 SN221D ~d2m̃!zdJ Ḡ~N,L !

3~r ,w̄,v̄,m!5B~ v̄,w̄!d0,Nd2,L , ~18!
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with the general solution

GR
~N,L !~ r̄ , d̄ , ḡ , v̄ ,w̄,m!5~mg!~N/221!~d2m2m̃!~m l !d1~N/2!@22d#22L2~1/2!~N/221!~d2m̃22m!~m22d!~1/4!~N/221!~d2m̃!

3expH 12FN2SN221D ~d2m̄22m!G E
1

l

–
dr

r
zFJ expS LE

1

l dr

r
z r̄D

3expF2
1

4
SN
2

21D ~d2m̄!E
1

l dr

r
~zF̄2z d̄ !GGC R

~N,L !F r̄ ~ l !

m2l 2
,w̄~ l !, v̄ ~ l !G . ~19!

The z functions are defined correspondingly,z i52m ] lnZi /]m, and depend on the effective interactionsv̄ and w̄ only,

z i~ l !5z i„V̄~ l !…5z i„V~ l !…,

with V̄( l )5„v̄( l ),w̄( l )…, V( l )5„g( l )[1, d( l )[1, v( l )[ v̄( l ), w( l )[w̄( l )…, and ī5F̄, r̄ ,q̄,p̄x .Note that now the two wave
vector componentsq̄ and p̄x have to be renormalized. Theb functionsbv5m ] v̄/]m andbw5m ]w̄/]m also depend onv̄
and w̄ only, but there are additional terms, one connected with the shift in dimension and the others appearing in two-loop
order:

bv„V̄~ l !…5~g2!2~1/2!~d2m2m̃!d21/22~1/4!~d2m̃!
„bv„V~ l !…1$~d2m2m̃!~ 1

2 zF11!2 1
2 @11 1

2 ~d2m̃!#~22zF1zd!%v…,

bw„V̄~ l !…5~g2!2~d2m2m̃!d2~1/2!~d2m̃!$bw„V~ l !…1@2~d2m2m̃!~ 1
2 zF11!2 1

2 ~d2m̃!~22zF1zd!#w%.

IV. IDENTIFICATION OF THE EXPONENTS

Let us consider the order parameter susceptibilityx21;G R
(2,0)( r̄ ,d̄,ḡ,v̄,w̄,m), where

GR
~2,0!~ r̄ ,d̄,ḡ,v̄,w̄,m!5~m l !2expS E

1

l dr

r
zFDGRR

~2,0!F r̄ ~ l !m2l 2
,w̄~ l !,v̄~ l !G . ~20!

Using the conditionr ( l )/m2l 251, with its solution Eq.~9! for eliminating l , then asymptotically, forl→0, Eq. ~20! gives

GR
~2,0!' r̄ ~21z

F
* !/~22z

r
* !, ~21!

with z i* is thezi function taken at the fixed pointv̄* ,w̄* . Sincer̄;t5(T2Tc)/Tc , this is to compare with

x21'tg; ~22!

thus, we identify the susceptibility exponentg as

g5
21zF

*

22z r*
. ~23!

Considering the wave-vector-dependent susceptibility, we can now define three correlation lengthsjx , jy , andji divergin-
gdifferently. They can be found from rescaling the wave-vector-dependent vertex functionx21(px ,p̄y ,q̄,t)
;G R

(2,0)(px ,p̄y ,q̄, r̄ ,v̄,w̄),

GR
~2,0!~px ,p̄y ,q̄, r̄ ,v̄,w̄!' r̄ gGR

~2,0!~pxr̄
21/~22z

r
* !,p̄yr̄

2~21z
F
*2z

d
* !/4~22z

r
* !,q̄ r̄ 2~613z

F
*2z

d
* !/4~22z

r
* !,v̄* ,w̄* !. ~24!

By comparing with

x21~px ,p̄y ,q̄,t !'tgx21~pxjx ,p̄yjy ,q̄j i!, ~25!

it leads to

jx5t2nx, jy5t2ny, j i5t2n i, ~26!

where

nx5
1

22z r*
, ny5

21zF
*2zd*

4~22z r* !
, n i5

613zF
*2zd*

4~22z r* !
. ~27!

At Tc ~l→0!, the susceptibility is given by
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x~ q̄,px ,p̄y!;~m l !22l2z
F
*xC S q̄~ l !

~m l !3/2
,
px~ l !

~m l !
,
p̄y~ l !

~m l !1/2D . ~28!

The correlations decay as a power law forq̄50 with two different exponentshx andhy :

x~ q̄50,px ,p̄y50!'px
221hx, x~ q̄50,px50,p̄y!' p̄y

241hy. ~29!

Using the matching conditionspx/(m l )51 andp̄y/(m l )
1/251 in Eq. ~28!, respectively, we identify

hx52zF
* , hy52

4zd*

21zF
*2zd*

. ~30!

For the specific heat,C;2G R
(0,2)( r̄ ,d̄,ḡ,v̄,w̄,m), one has

GR
~0,2!~ r̄ ,d̄,ḡ,v̄,w̄,m!5~mg!2~d2m2m̃!~m22d!2~1/4!~d2m̃!~m l !d241~d2m̃2m!2~1/2!~d2m̃!

3H exp E
1

l F S d2m2m̃

2 D zF1S d2m̃

4 D ~zF2zd!12z r G dr

r J XGC R~0,2!S r̄ ~ l !m2l 2
,w̄~ l !,v̄~ l ! D

1E
1

l dr

r
expH E

l

rF S d2m2m̃

2 D ~21zF!1
d2m̃

4
~zF2zd22!12z r241dG dr8

r8 J B̄r„w̄~r!,v̄~r!…C.
~31!

Asymptotically, with the conditionr̄ ( l )/m2l 251, Eq. ~31! gives

GR
~0,2!~ r̄ ,d̄,ḡ,v̄,w̄,m!' r̄ @~d2m2m̃!/2#~21z

F
* !1@~d2m̃!/4#~z

F
*2z

d
*22!12z

r
*241d]/ ~22z

r
* !, ~32!

but

C't2a; ~33!

thus, we identify the exponenta as

a52m̃F 1

~22z r* !
G2mF21zF

*2zd*

4~22z r* !
G2~d2m2m̃!

3F613zF
*2zd*

4~22z r* !
G12. ~34!

It is easy now to see that

nx5ny

42hy

22hx
, ~35!

n i5nyF32
hy

2 G , ~36!

g5nx~22hx!5ny~42hy!, ~37!

22a5m̃nx1mny1~d2m2m̃!n i . ~38!

In order to get the values of the exponents in one-loop order,
we have to calculatez r ,bv , andbw only. This will be done
for the two casesm5m̃51 andm52, m̃50 separately, and
we will use the scaled Hamiltonian~12!.

V. FLOW EQUATIONS FOR THE EFFECTIVE
COUPLING

A. Anisotropic case„m5m̃51…

Performing the usual loop expansion of the bare vertex
functions in one-loop order~for the diagrams, see Appendix
A!, we obtain @note that, in the scaled Hamiltonian~12!,
c051, d051, g051#

G0
~2!~ r̄ 0 ,v̄0 ,k̄!5 r̄ 01px

21 p̄ y
41

q̄ 2

p̄ y
2 1

v̄0
2
I 1
0,4, ~39!

G0
~4!~ r̄ 0 ,v̄0 ,k̄!5 p̄ y

2v̄02 p̄ y
2v̄ 0

2@48I 2
0,6244I 3

2,8116I 4
4,10#

196I 4
2,142180I 3

0,121144I 4
0,18], ~40!

G0
~6!~ r̄ 0 ,v̄0 ,w̄0!5w̄0230w̄0v̄0I 2

0,61240v̄ 0
3I 3

0,12, ~41!

where the integralsI l
i , j are defined in Appendix B. The ver-

tex functions, Eqs.~39!–~41!, have poles ine1532d.
The pole terms are absorbed into the renormalization fac-

tors, so that the renormalized vertex functionsG~2!~r̄ ,k̄50!,
]G (4)/] p̄ y

2uk50, andG6~r̄ ,k̄50! are finite. This leads to

Zr511
1

24e1
v̄, Zv511

5

12e1
v̄,

Zw511
5

2e1
v̄2

10

e1

v̄ 3

w̄
, ~42!

and the nonzeroz andb functions

z r5
1
8 v̄, ~43!
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bv523e1v̄1 5
4 v̄

2, bw526e1w̄1 15
2 v̄w̄230v̄ 3.

~44!

By means ofb v̄5b w̄50, the following fixed points have
been found:

I: v̄*50, w̄*50; II: v̄*5 12
5 e1 , w̄*5 864

25 e1
2. ~45!

Their stability is found from expanding around the fixed
point and looking at the corresponding eigenvalues. They are
l1523e11

5
2v̄ andl2526e11

15
2 v̄. Thus fore1.0 fixed point

II is stable, whereas fore1,0, the nontrivial fixed point I is
stable.

The values of critical exponents, calculated for fixed point
II read ash50, n51

21
3
40e1, a51

21
11
40e1, b51

42
17
80e1, and

g511 3
20e1, for the correlation function, correlation length,

specific heat, order parameter, and susceptibility, respec-
tively.

Note thate150 in the physically relevant dimensiond53.
In this case the power laws of mean-field theory are modified
by powers of logarithms oft. They may be calculated from
the solutions of the flow equation solved at borderline di-
mension.

1. Logarithmic correction

Solving the flow equation~44!, with e150,

uv5 l
dv̄
dl

5
5

4
v̄ 2, ~46!

we get

v̄52 4
5 ln

21l . ~47!

Since z r5
1
8v̄ and l dr̄ /dl5 r̄ z r , we have dr̄/ r̄

52x ln21 ldl / l , with x5 1
10. Again, by integration one finds

r̄ ~ l !5 r̄ ~1!u lnl u2x. ~48!

Recall the matching conditionr̄ ( l )/ l 251 ~we takem51 for
simplicity!; the relation between the flow parameterl and the
relative temperature distance readsl 25t ulnl u2x and iteration
gives

l5t1/2u lnl u2x/2'
1

22x/2 t
1/2

1

2
u lntu2x/2. ~49!

It is this relation between the flow parameter and the relative
temperature distance which introduces logarithmic powers in
the mean-field power laws. E.g., the correlation length reads

z;t21/2u lnl ux/2, ~50!

the susceptibility reads

x;t21u lnl ux, ~51!

and the specific heat reads

C;t21/2u lnl ux/2. ~52!

B. Isotropic case„m52…

In the case of renormalization of the coupling constants
and the flow diagram in one-loop order, the bare vertex func-
tions for the casem52 are given by~see the Appendix C!

G0
~2!~ r̄ 0 ,v̄0 ,k̄!5 r̄ 01 p̄ 41

q̃2

p̄ 2 1
8

6
v̄0J1

5,0, ~53!

G0
~4!~ r̄ 0 ,v̄0 ,k̄!5p̄ 2v̄022p̄ 2v̄ 0

2 @ 160
3 J2

7,02184J3
13,0

1144J4
19,0#, ~54!

G0
~6!~ r̄ 0 ,v̄0 ,w̄0!5w̄0280w̄0v̄0J2

7,01640v̄ 0
3J3

13,0, ~55!

where the integralsJ l
i ,0( r̄ 0) are defined in Appendix C. Now,

Eqs.~53!–~55! have the polee25
10
3 2d.

Keeping in mind the normalization conditions, the cou-
pling renormalization constants and the correspondingb and
z functions are

Zr511
2

9e2
v̄, Zv511

16

9e2
v̄,

Zw511
40

3e2
v̄2

640

9e2

v̄ 3

w̄
, ~56!

z r5
2
3 v̄, ~57!

bv523e2v̄1 16
3 v̄

2, bw526e2w̄140v̄w̄2 640
3 v̄

3.
~58!

Because ofZF5Zg51, thenzF5zg50.
By means ofbv5bw50, the following fixed points have

been found:

I: v̄*50, w̄*50; II: v̄*5 9
16e2 , w̄*5 23

10e2
2. ~59!

The relevant eigenvalues arel1523e21
32
3 v̄ and l2

526e2140v̄. For e2,0, then the fixed point I is stable. For
e2.0, then the fixed point II is stable. The calculated values
of critical exponents can read ash51, n51

21
3
32e2,

a51
31

3
16e2, b51

32
3
16e2, and g511 3

16e2, for the correlation
function, correlation length, specific heat, order parameter,
and susceptibility, respectively. Note thate25

1
3 at d53. Fi-

nally, with the help of the Eq.~52!, the logarithmic correc-
tion, which is present atdc , was calculated and found to be
x5 1

8.

VI. CONCLUSION

We have calculated the asymptotic static critical indices
of tricritical Lifshitz behavior in a system with strong
uniaxial dipolar interaction in one-loop order. Our results are
collected in Table I. The values of the exponents are to be
compared with the corresponding values when the uniaxial
dipolar interaction is absent and/or one is not at a Lifshitz
and/or a tricritical point. From this comparison one might
guess the critical exponents to be found experimentally for
the different phase transitions realized in the mixtures
Sn2P2~SexS12x!6 ~Ref. 12! or ~PbySn12y!2P2~SexS12x!6.

13 In
fact, one would expect to see a crossover between the differ-
ent values of asymptotic exponents corresponding to the spe-
cific fixed points. However, it is difficult to calculate the
complicated crossover behavior because of the strong anisot-
ropy of the complete dispersion. Only some limiting cases
have been considered so far, namely, the crossover between
uniaxial dipolar and isotropic short-range interac-
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tion for the normal second-order transition21 and the cross-
over between the normal second-order behavior and Lifshitz-
type behavior.22 One also has to bear in mind the fact that in
solid-state systems other disturbances like defects or elastic
coupling to the strain may be of relevance. Taking all this
into account, it seems to be promising that indeed near the
Lifshitz point in the phase diagram of Sn2P2S2 logarithmic
corrections to mean-field theory have been found.23,24

APPENDIX A: FEYNMAN’S DIAGRAMS AND
CORRELATIONS FUNCTIONS

In this appendix, we list the explicit results for perturba-
tion theory in one loop-order using Feynman’s diagrams, as
shown in Fig. 1, and the corresponding analytical expres-
sions for both the isotropic and the anisotropic cases give the
final forms for the vertex functionsG 0

(N). The corresponding
analytical expressions, according to the graphs in Fig. 1, are
~notice that we skipped the bar at the wave vectors;k de-

notes the whole wave vector space andp denotes the sub-
space perpendicular to the uniaxial dipolar space denoted by
q!

@a#[Gi
21~k!, ~A1a!

@b#[
v̄0
2 E Fi~p!Gi~k!, ~A1b!

@c#[Fi~p!v̄0 , ~A1c!

@d#[2 3
2 v̄ 0

2E Fi
2~p02p!Gi~k!Gi~k02k!, ~A1d!

@e#[2 3
2 v̄ 0

2E Fi~p!Fi~p02p!Gi~k!Gi~k02k!,

~A1e!

@ f #[26v̄ 0
2E Fi~p!Gi

2~k!, ~A1f!

@g#[w̄0 , ~A1g!

@h#[230w̄0v̄0Fi~p!E Fi~p!Gi
2~k!, ~A1h!

@ i #[60v̄ 0
3Fi~p!E Fi

3~p!Gi
3~k!, ~A1i!

@ j #[180v̄ 0
3Fi~p!E Fi

3~p!Gi
3~k!. ~A1j!

In the anisotropic case (m5m̃51) we have

E 5
Sd23

~2p!2
E
0

`E
0

`E
0

`E
0

p

dpxdpyd
d22q sind24u du,

F1~p!5py
2, and G 1

21~k!5r 01p x
21p y

41q2/p y
2. In Eqs.

~A1d! and ~A1e!, we expand and keep only thep y
2 terms.

The bare vertex functions in Eqs.~39!, ~40!, and~41! could
be calculated. In the isotropic case~m52, m̃50! we have

E 5
Sd23

~2p!2
E
0

`E
0

`E
0

p

d2pdd22q sind24u du,

F2~p!5p2, andG2
21~k!5r 01p41q2/p2; then, one has

G0
~2!~r 0 ,v̄0 ,k!5G02

21~k!1
8v̄0
6

J1
5,0, ~A2!

G0
~4!~ v̄0 ,k!5p2v̄02p2v̄ 0

2@16J2
7,0132J2

7,2212J3
13,0

2168J3
13,21144J4

19,2#, ~A3!

and finally

G0
~6!~r 0 ,v̄0 ,w̄0![w̄0280w̄0v̄0J2

7,01640v̄ 0
3J3

13,0. ~A4!

Using Appendix C, it is proved thatJ l
i ,05 4

3J l
i ,2. By col-

lecting the terms in Eqs.~A2!, ~A3!, and~A4!, one can cal-
culate Eqs.~53!, ~54!, and~55!, respectively.

FIG. 1. One-loop order for the vertex functionsG0
(N), with N52,

4, and 6. The dot symbolizes the factorFi~p! from the Fi~p!f4

interaction.
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APPENDIX B: INTEGRALS OF I L
I ,J
„R…

The integrals required for the calculation ofG (N) in the
anisotropic case@see Eqs.~39!–~41!# are

I l
i , j~r !

5 f ~d!E
0

`E
0

`E
0

` px
i py

j

@~r1px
2!py

21py
61q2# l

dpxdpyd
d22q.

~B1!

Using the identities

E
0

`

dx xa21~p1qxb!2c5
1

b
p2cS pqD

a/b

GS abD
3GS c2

a

n D YG~c!,

~B2a!

f ~d!5
Sd23

~2p!2
E
0

p

sind24udu

5~d22!Sd5~32e122!Sd5Sd , ~B2b!

whereSd
2152d21pd/2G(d/2), and consequently perform the

integrations with respect toq, px , andpy , it is straightfor-
ward to get

I l
i , j~r !5

Ml
i , j

16
r ~ j12i13d2326l !/4Sd , ~B3!

with

Ml
i , j5GS d22

2 DGS i11

2 DGS j1d2122l

4 D
3GS 6l1323d22i2 j

4 D YG~ l !. ~B4!

The pole in Eq.~B4! is e1532d, and the diverging part of
the integrals in our calculations correspond to the values
( i , j ,l )[~0,4,1!, ~0,6,2!, ~0,12,3!, ~0,18,4!, ~2,8,3!, ~2,14,4!,
and ~4,10,4!.

For example, we will show in detail the divergent of the
integral I 1

0,4(r ). Using Eq. ~B4! for the values (i , j ,l )
5~0,4,1!, we get

I 1
0,4~r !5

p1/2

16
Sdr

~2513d!/4GS d22

2 DGS 523d

4 DGS d11

4 D ,
~B5!

I 1
0,4~r !5

p1/2

16
Sdr

~2513d!/4GS d22

2 DGS 523d

4 DGS d11

4 D .
~B6!

By applyinge expansion with minimal subtraction we get

GS 523d

4 D5GS 52913e1
4 D52

4

3e1
GS 3e114

4 D
~B7!

and

r ~2513d!/45r2~2413e1!/45r expS 2
3e1
4

lnr D
5r S 12

3e1
4

lnr1••• D.r . ~B8!

This implies

I 1
0,4~r !52

1

12e1
rAd , ~B9!

where

Ad5p1/2GS d22

2 DGS 3e114

4 DGS d11

4 DSd . ~B10!

APPENDIX C: INTEGRALS OF J L
I ,A
„R…

The integrals required for the calculation ofG (N) in the
isotropic case@see Eqs.~53!–~55!# are

Jl
i ,a~r !5E

0

`E
0

` piqd23

@rp21p61q2# l
Xadp dq, ~C1!

with

Xa5
Sd23

~2p!2
E
0

p

sind24u cosau du with a50 or 2.

~C2!

Using the identity Eq.~B3a! and Eq.~B3c! with

X05
Sd23

~2p!2
E
0

p

sind24u du5~d22!Sd5~ 10
3 2e222!Sd

5 4
3Sd , ~C3a!

X25
Sd23

~2p!2
E
0

p

sind24u cos2u du5Sd , ~C3b!

then performing theq and p integrations, it is straightfor-
ward to have

TABLE I. Compilation of the critical dimensiondc and critical
exponents for the system with one component order parameter, with
and without uniaxial dipolar forces, in first order ofe at d53. The
asterisk indicates that one has logarithmic corrections to the power
law ~U[uniaxial dipolar,L[Lifshitz, T[tricritical, andm is the
dimension of Lifshitz subspace!.

System dc a b g x Ref.

LT, m51 312
9
14

1
7 1 1

28 7, 8
LT, m52 4 31

40
3
80 1 3

40 7, 8
ULT, m51 3 1

2*
1
4* 1* 1

10

ULT, m52 313
19
48

13
48 1 1

16
1
8
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Jl
i ,2~r !5

Ml
i

8
r ~3d2526l1 i !/4Sd ~C4a!

and

Jl
i ,0~r !5 4

3Jl
i ,2 , ~C4b!

with

Ml
i5GS d22

2 DGS i1d2122l

4 DGS 6l23d142 i

4 D YG~ l !

~C5!

containing the pole terms withe25
10
3 2d. The diverging parts

of the integrals correspond to the values (i ,l )[~7,2!, ~13,3!,
~19,4!, and~5,1!.
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