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Tricritical Lifshitz point in uniaxial ferroelectrics
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The critical behavior at a Lifshitz tricritical point in systems with a short-range and uniaxial dipolar inter-
action is calculated using renormalized group theory. We consider the case in which we separated the wave-
vector space into the componetts (py,py ,q), with the dimensionsn, m, andd—m~—m for p, p,, andq,
respectively. The upper critical dimensidg was found to bed.=2+[(2m+m)/3]. The critical exponents
and the logarithmic corrections have been calculated and compared with the available experimental and
theoretical data.S0163-182806)02230-§

I. INTRODUCTION The same is true at the usual second-order phase transition
for systems with strong uniaxial dipolar interaction. How-
As several second-order phase transition lines meet at @ser, the exponent, characterizing the logarithmic correc-
specific point, multicritical behavior may arise. Among thesetion in the susceptibility, is different from the ULTP; one has
special transition points, much interest has been given ta=1/3 (Refs. 16, 17 instead ofx=1/10. Without uniaxial
Lifshitz points (LP’s)™? (for a review, see Ref.)3where dipolar forces one would find nonclassical power-law
three phases, a paraphase, a ferrophase, and a spatidiighavior’®
modulated phase, coexist, and to tricritical pdirifsr a re- The paper is arranged as follows: In Sec. Il we introduce
view, see Ref. § where a second-order phase transition linethe theoretical modeleffective Hamiltoniah used in the
becomes first order and where in f4it an enlarged space renormalization group procedure which is presented in Sec.
of the thermodynamic fieldghree second-order lines meet. Ill. There we carry out a field-theoretical renormalization-
One may have even lines of such multicritical points. Thes@roup analysi¥’ and give the general solutions for the renor-
lines are defined by specific conditions in the thermodynamiéhalized vertex functions related to the susceptibility and the
field space, and it may happen that these lines cross eadecific heat: I_n Sec. I\/, we reIaFe the critical exponents to
other, leading to a Lifshitz tricritical pointLTP).5=8 The the renor_ma“zmg functions, and in Sec. V we calcqlate the
critical behavior at this point has been studied within arenormallzatlon constants and the flow of the coupling con-

model described by the usual Landau-Ginzburg—WiIsor?ta”tS for the isotropic and anisotropic cases in one-loop or-

Hamiltonian, taking into account also the wave vector depend®'- Finally, in Sec. VI, we summarize our findings and dis-

dence of higher-order interactioh& Recently, a LTP within cuss their implications. In Appgndix A we list the Feynman’s
a variant of the axial next-nearest-neighbor Isi#NNNI) diagrams and the corresponding analytical forms for the ver-
model has been fourt. tex functions in one-loop order. Appendixes B and C will

Physical realizations of such a high-order critical IOOiminclude the evaluated integrals in the dimensional regulariza-

have been suggested for the antiferrodistortive transition jfjon scheme.
RbCaR (Ref. 10 and liquid crystald! Promising systems . THEORETICAL MODEL

for a realization of a LTP are the proper uniaxial ferroelectric  ne Ginzburg-Landau-Wilson Hamiltonian suitable to de-

SnP,(SeS; -y  (Ref. 1313 and solid mixtures of gerihe LTP-multicritical behavior in systems with short-
(PhSm_)oP5(SES, —y)e-~ These systems are of special in- range interactioh® can be written as
terest because of the uniaxial dipolar interaction present, and

in consequence a new kind of LP, namely, uniaxial dipolar 1
Lifshitz points (ULP’s) and also uniaxial dipolar Lifshitz tri- H=7 f dk[r o+ Cop?+ g+ dop* 1P o Dok
critical points(ULTP’s), may be observetf The critical be-
havior at ULP’s has already been calculated in one-loop Ug . adr. ad
order!® Here we study the ULTP’s completing the table of T f dk;dk2d k3P ok, P ok, P ok, Po—k, ,~k,.—k,
exponents presented in Ref. 15.

The strength of critical fluctuations at this high-order mul- W
Cpit ; i +— f d9%,d%,d%,d%,d%
ticritical compared with the usual second-order phase transi- 6! 15 R2H B3t Rat Bs
tion is the result of several competitive effects. On the one
hand, at a Lifshitz point the fluctuations =3 are en- X Doy, ok, P ok, Lok, Lok, Lok, ,~k,, —ks,~k
hanced; on the other hand, tricriticality reduces the fluctua-
tions and in the case considered here this reduction is even
larger because of the uniaxial dipolar forces. The overall
consequence is that, at an ULTP with a special modulation in 1)
one direction(this seems to be the physical caghe diver-
gences of susceptibility and the specific heatdin3 are  Here®y(k) represents the scalar order parameter, e.g., mag-
described by mean-field theory with logarithmic corrections.netization, polarization, etc.. Treedimensional wave vector

4~ Ks

Vo
*t3r d%,d%,dK3PiP o, P o, Lok, Lok, ,—ky, ks
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k is decomposed intp andqg components of dimensiom  and all terms shown ifil) have to be taken into account.

and d—m), respectively, for an-fold LTP.ry=(T—T.)/T, So far, the argumentation was based on short-range inter-
is the bare reduced relative temperature distance to the phaaetions of the order parameter only. It is known that suffi-
transition temperatur&,, c, andd, are the parameters of the ciently long-range interactions lead to a different critical be-
dispersion, and the coefficient gf has been chosen to be 1. havior. Uniaxial dipolar forces, present in ferroelectrics, are
The coupling constants,, vy, andwy may depend on tem- such long-range forces, which at a second-order phase tran-
perature and/or other physical parametéesy., pressure, sition lead to logarithmic corrections to the mean-field power
concentration, et. At the second-order critical point, only laws®!’ The effect of uniaxial dipolar forces is to suppress
ro goes to zero; all other coefficients stay finite, and thefluctuation in wave vector space in the direction of the
termsdop®, Wy, anduv, turn out to be irrelevant and can be uniaxiality. For the anisotropic systems with a Lifshitz point,
neglected. At a Lifshitz point, both, and ¢, go to zero; it is important in which direction the uniaxiality of the dipo-
then, the termd,p* has to be taken into account. In the lar forces is directed® Let us first consider the case where it
region, wherec,;<0 andd,>0, a second-order phase transi- is perpendicular to then-dimensional subspace. We are at
tion into an incommensurate phase, characterized by a now=3, m=2, and the appropriate term to be included in the
zerom-dimensional wave vector, takes place. The ferroelecdispersion of(1) is g2g°/k%.!° Because of the presence of
tric phase and the incommensurable phase are separated bthis term, theq? term becomes irrelevant and can be ne-
line of first-order phase transitions. All three lines meet at theglected. We also may neglegt in the denominator of the
Lifshitz point. At a tricritical point, bothr, and the fourth- dipolar term. So, finally, the effective Ginzburg-Landau-
order couplingug vanish. Thus, we have to take into accountWilson Hamiltonian for the ULTP with then directions per-

the sixth-order coupling,. At a LTP, g, Co, andug vanish  pendicular to the uniaxiality reads

2

1 q Wo
H=3 f d¥| ro+dop+ g5 F}CDOkCDOkﬂLa f ddklddkzddk3ddk4ddk5¢0kl¢0k2¢0k3¢0k4¢0k5q’0—kl,—kz,—k3,—k

Yo | qdi 4. k. n2
+31 | dkad ke Kap1Pok, Lok, Pok,Po-k, ,—k, ks v

4~ Ks

The physical relevant case is=2 so thatq becomesd—2 dimensional andik= d?pd’~?q.

The second case to be considered, and which may be realized in the above-mentioned ferroelectrics, is the case where the
uniaxial direction lies within than-dimensional subspace. However, the wave-vector-dependent terms in that direction are
irrelevant and the Lifshitz character is changed frommafold to an(m—1)-fold Lifshitz point!® We therefore generalize the
model Hamiltonian, Eq(2), to include three subspaces: amdimensional(the subspace of the modulated behayvian
m-dimensional, and ad—m— m)-dimensional(the subspace of the “uniaxial” dipolar behaviosubspace. The physical
relevant case imm=1, m=1. Then the Ginzburg-Landau-Wilson Hamiltonian reéuste that only thep§ term survives in the
denominator of the dipolar term

1
_— 4
H 2dk

2
q
Fo+CoPs+ dop§+ g5 02 DoPo-—k
y

40— Ks

Wo di, ~d, A4d ~dp 4d
+a dk;d%k,d"k3dk,d k5q)Oqu)OKZ(DOkS(DOkqu)OkSq)Ofkl,7k2,7k3,7k

Uo

*3

d%k;d%;d%sp; P ok, Poi, Pok, Lok, k. ks ()

The Hamiltoniang2) and(3) constitute the two cases we study in this paper. Some aspects will be treated for the general case
of arbitrary dimensionsn andm in the following.

IIl. RENORMALIZATION
A. Unscaled Hamiltonian

We study the critical behavior within the field-theoretical renormalization-group theory using the minimal subtraction
schemé?®
If we choosec, as a dimensionless quantity, then the dimensions of the coefficients i(B)Eare

[rol=n? [col=w® [dol=x"2 [gol=p, [Pol=pn @272 [vo]l=p®9 [wo]=pu’2

and u an arbitrary reference wave number. Therefore the following renormalizations of the original parameters are needed to
compensate these poles in the loop expansion of the vertex functions:



54 TRICRITICAL LIFSHITZ POINT IN UNIAXIAL. .. 3853

0=23'Zt, do=p ?Z5'Zd, Qo=nZs"0, vo=w? Z3°ZoAgt,  wo=pu® 2252, wBg ", ¢o=2$’2<1>-()
4

A4 is an appropriate dimension-dependent factor AderB4. There are no pole terms in thg/p? parts and(in one-loop

ordep none in thepﬁ,pf, parts of the inverse propagator; therefore, there is no indepe#dfadtor in g, and in one-loop
expansion we havzd=z¢=1.15 Regarding the phase transition phenomena, the accessible quantities are, for instance, the
susceptibility or specific heat. In order to obtain these quantities using the field renormalization-group procedure, we have to
calculate the renormalized vertex functidn§'® andI"®:?). They are related to the physical unrenormalized vertex functions
9 andT'P? by

I'&9(p,a,r0,d0.90,00.Wo) =25 TE(p,q,r,d,g,v.w,n),  TH2(p,q,r0,d0,90,00,Wo)=ZZTR2(p,q.r,d,9,0,W, ).

This leads to the following renormalization-group equations for the renormalized vertex functions, representing the specific
heat, and susceptibilitfwe have setl=3) stating theu independence of the bare vertex functions:

0 r
§¢>

R
2,0
1 ro

(0,2

0 (p.q.r.d,g,v, W, )

Byt By~ [Lg+1]g — 2+ d 2t gd|2]er 2 s
#oon B Gy By 55~ [34e ]gag[ fo—dald o5+, o

~B,(p,q,d,g,0,W)
0 ' (5)

As usual, we have defing8l,= u dv/du, By=p oWldu, and=—pu dIn Z;/du, i=®,r,g,d. The inhomogeneity of E(q5),
which is related to the additive renormalization of the specific heat, has the form

. d

B(d.0)=Z7n 5 Z 1ZT*(P=0)lsng: ()
Equation (5) could be solved using the method of characteri€ficsby means of u(l)=ul and (1)
=£;(Q(1).Q(1)=(g().d(1),v(1),w(l)), and 8;= B;(Q(1)), j =v,w, which in the present case leads to the set of the equa-
tions

d d d d
g n=a), 15 r=rOG0, 15 a=0Mg0), | 5 dh=d)Zg0), @
dW(l)_ dv(l)_
| T=ﬁw(|), | T=Bv(|): (8)

with the initial conditionsu(1)=pw, r(1)=r, d(1)=d, g(1)=g, w(1)=w, andv(1)=v. The flow, Eqs(7), is solved by

I d I d Id
p(h)=pl,r(h=r exp( fl 7"4@)), g(h=g exp( Jl fggm)). d(h=d exp( fl fmp)). ©

Via Eg. (9), a connection between the flow parameteand the temperature distande-T. is made by the condition
r(1)/w?1?=1, which assures finiteness of the amplitude functions. The general solutions of the renormalization-group equation
reads

rc)
Wﬂ('),g('),v(l),w(l)}

(10

Id N (' d -
F%N'L)(radygrvkuu‘)z(ﬂ‘l)dJr(N/Z)[Zd]2LeXF( LJ Fp gr) ex%i Fp gq)> l"g\“—)
1 1

Note that the higher-order interactiong andv, have different dimensions. A more suitable form of the theory can be
obtained by rescaling the variables (8) such a way that the relevant interactions have the santémension. This is
performed in the following section.

B. Scaled Hamiltonian

The specific form of the Hamiltonian8), where already irrelevant terms have been neglected, allows us to scale away the
parametersl, andg,. Indeed, by rescaling the wavelengths

a=godd"a, Px=Px, Py=0d3’p,, To=ro, ®y=Pody ™ gidy?H @ MM

with dimensions p,] =u"? [q] =%, and[ @] = u~(3d-2m-T+4)/4 effective interaction coefficients, insteadwaf andw,,
are introducedin fact, they are suggested by perturbation thgory
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U_O:Uodam/4(g(2)dé/2)—(l/2)(d—m—m)dal/2' Wozwodam/Z(ggdé/Z)—(d—m—m)' (11)

with dimensiong v ] = u3* M M2-342 gng[wy]= w8+ 2M*M-3d Then one may write the rescaled Hamiltonian in the form

----- 5

U_O -
T3y J ddklddkzddk36§1®0kl®0k2®0k3@o—kl,—kz,—ka- (12

The upper critical dimensions for an ULTP, above which fluctuations may be neglected, is found from the condition that the
effective couplings are marginal; thus, we have

2m+m
3

de=2+ (13

For the isotropic casen=2 andm=0, the upper critical dimension turns out to 8g=3 1/3, and in the anisotropic case,
m=m=1, the upper critical dimension ,=3. This may be compared with the cagg=0, where the effective interaction

coefficients are vo=v,d, Mdy Y? and wo=wod,™? with dimensions {o]=x> ™29 and [wo]=u®"m"%¢ and
d.=3+m/2.8 The relation between the scaled and unscaled bare vertex functions is given by
F_BN,L)(m’U—O'W—O):da(m/4)(N/271)(ggdé/2)7(1/2)(N/271)(dfmfm)I~§)N,L)(p,q'ro,do’go’vo’wo)_ (14)

Performing the bare loop expansion, pole terms of typavberee=d.(m,m)—d appearusing the renormalization group
theory with dimensional regularization and minimal subtracfipn
The renormalization constants for the rescaled theory are

— ol — _ U UA— —_ -3l lA— = _ _(1/8)(3d—2m—3)-,— (1/8)(d— )1
o=Z3'ZiT, Pyo=Zgz Z3 Py, Go=Zg Zga, =25 z; WM,

— Fio— 1/2)(3d— 2m— 3) + 1/2-, — (1/4) (d— ) — 12— —
o= M2 3d/22(5 )( m—3m) Za( )(d—h) 7oA,

o — M6+2m+’rﬁf3dzfﬁl/2)(3d*2m*3m)za*(1/4)(d*m)zww_Bg 1 (15)

Wo

From the definition of the renormalization factors of the scaled theory, it follows that they depend on the effective
interactions only and we have the relation

Zi(v,w)=Z(d=1g=1p=v,Ww=w). (16)
Then for the renormalized vertex functions
F_E)N’L)(miv—mw_o) _ Z%(1/2){N—(1/2)(N/2— 1)[m+3(d—m—ﬁ)]}ZIF_ZJ(lm)(N/Z— 1)(d_m)F_EN’L)(mM), 17

the renormalization group equation reads

J 1

P TR gt gt [m+3(d—m—m)]{5+

L _J 1
+TE ,+Z

X(r,W,U,,LL)zB(U,W)&OYNézyL, (18)

N L
2\2

N _ _
5 5—1)(d—m)§d]F(N’L)
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with the general solution

NS Y i — —1)(d—m—n —d]-2L— —1)(d—— - —1)(d—Tm
F%, )(r,d,g,v,W,,u)z(,ug)(N’z L(d=m=ff)( | )d+ (N2)[2=d]=2L—(1/2) (/2= 1)(d=T-2m)( |, =2(4) (1/4) (N2~ 1)(d=7F)

1 N _ I dp I dp
Xexp{z N‘(E*)“‘”‘*“MT“JEXP(LL I

1N1d_f|dp [0
Xexg —4| 5~ 1/(d—m) . 7(%—(@ P w(l),v(l)
The ¢ functions are defined correspondingly= — u d InZ/du, and depend on the effective interactiangndw only,

G(1) =GO = GQ)),
with Q(1)=@(1).w(l)), @()=(g()=1, d(1)=1, v(I)=v(l), w(l)=w(l)), andi=P,r,q,p,.Note that now the two wave
vector componentg and p, have to be renormalized. Th&functions ;= dv/dp and Bz=wp Iw/du also depend om

andw only, but there are additional terms, one connected with the shift in dimension and the others appearing in two-loop
order:

rgt : (19

B5(Q(1))=(g?)~ (M=M= -12-WW=T) (5 ()(1))+{(d—m—)(Lp+1)— 3[1+(d—M)](2— Lo+ La)}v),
B Q1)) =(g?) (@~ Mm-Mg~-2E-f g (1)) +[2(d—m—M)(:Le+1)— 2(d—T)(2— Lo+ {g) IW}.

IV. IDENTIFICATION OF THE EXPONENTS

Let us consider the order parameter susceptibjity ~T (Ff’o)(rd_,g,v,w,,u), where

(20

—_— I d a
F(RZ’O)(r,d,g,v,w,u)=(ul)zexr(J 7P§$>Fg,0)
1
Using the conditior (1)/x?1?=1, with its solution Eq(9) for eliminatingl, then asymptotically, fof—0, Eq.(20) gives
TR0~ G- 6), (21)

with ¢F is the ¢ function taken at the fixed point* ,w*. Sincer ~t=(T—T.)/T,, this is to compare with

Xt (22)
thus, we identify the susceptibility exponeptas
2+ 0%
= . 23
Y= 5o & (23

Considering the wave-vector-dependent susceptibility, we can now define three correlation &ndthsand §, divergin-
gdifferently. They can be found from rescaling the wave-vector-dependent vertex fungtiorp,,py.d.t)
NF (RZVO)(pX 1py ,q,l’,U,W),

N — _ * * * * * * * -
Fg‘O)(pxipy;q!rivvw)Nr VFEZ'O)(pXr _1/(2_§F)’pyr _(2+{$_(a)/4(2_(F)’q r_(6+3§5_§a)/4(2_§F)'v*,W ) (24)

By comparing with

Xﬁl(px vp_yvq_vt)mty)(il(prx ap_yfy ,q_gu)y (25
it leads to
=17 &=t §=t", (26)
where
1 2+ 53 643053

(27)

Vx

2= Yae-g) T e
At T. (I—0), the susceptibility is given by
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_xsf Ay p) py(l)

X(avap_y)w(/vbl)_zl £ ¢ (Ml)SIZ' (MI) ' (MI)UZ ' (28)

The correlations decay as a power law €pr0 with two different exponentsy, and 7

—2+ 9y

X(@=0p,,py=0)~p, 2", x(q=0p,=0py)~p, " ™. (29
Using the matching conditiong,/(ul)=1 andpy/(,ul)l/z=1 in Eq. (28), respectively, we identify
Ve
=_7r* = -
O Ny (30

For the specific heaG~ —T ©2)(r,d,g,v,w, 1), one has

F(RO’Z)(rdymﬂ): (Mg)7(dfmfm)(lu72d)7(1/4)(d7m)(/i|)d74+(dfmfm)7(1/2)(dfm)

o[£ o
SERE '

p
]B W(p), v(p)))
Asymptotically, with the conditiorr (1)/«212=1, Eq.(31) gives

{3+ (§<1> {a)+2¢

d
(2+§q>)+ (§<b {3g—2)+2f—4+d

(31)

I‘go'z)(rd_,m,u)wr_[(d_m_ﬁ")lz](2+5%)+[(d_ﬁ")’4](§*6_§§ -2)+28 —4+d]/(2—§;)' (32)

but V. FLOW EQUATIONS FOR THE EFFECTIVE
COUPLING
C~t 9 (33 A. Anisotropic case(m=m=1)

Performing the usual loop expansion of the bare vertex
functions in one-loop ordeffor the diagrams, see Appendix
A), we obtain[note that, in the scaled Hamiltoniaii2),

thus, we identify the exponent as

~| 1 2+ 0505 ~ Co=1, do=1, go=1]
a=-—m ————|—-m—————|—(d—m—-m)
(2=¢7) 4(2—-87) p—— T — 5 —4 A% Vg o,
T (rg.00.K) =gt P2+ Pi+ =+ — 194, (39)
6+3§%—§§ o (Fo,vo 0T PxT Py ?; 2 1
X Ta2-0) (34 L
& T4 (To.00,K) = Pp2uo—Pav 2481 26— 44135+ 161417
It is easy now to see that +96121— 180 3%+ 144919, (40)
4—n, T(ro,00,Wo) =Wo—30Weuol %+ 2431972, (41)
Ty T B9 here the integrals!') are defined in Appendix B. The ver-
tex functions, Eqs(39)—(41), have poles irg;=3—d.
The pole terms are absorbed into the renormalization fac-
V=1, 3- ﬂ} (36)  tors, so that the renormalized vertex functidi(r,k=0),
2 a1 dp2|—o, and[(r k=0) are finite. This leads to
7:Vx(2_77x):vy(4_ 77y)y (37) Z-=1+ i— Z-=1+ ° v
T 24, U A 12¢,
Zi=1+ —v— — —, (42)

In order to get the values of the exponents in one-loop order,
we have to calculaté,,ﬂv, and By only This will be done and the nonzerd and g functions
for the two casesn=m=1 andm=2, m=0 separately, and o
we will use the scaled Hamiltoniafi2). F=3v, (43
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-=—3ev+3v2 PBy=-—-6ew+ %vw—300_3.(44) ng>(r_o,u_o,k_)=r_o+p_4+sﬁ2+ 20_035'0- (53)
By means of8;= By=0, the following fixed points have I
been found: I6(ro,v0,k)=p 2o~ 2p 25| 5235 % 18435%°
0¥ =0, WF=0; I:v*=%¢, W=%i (45 +1443;°7, (54
Their stability is found from expanding around the fixed FBG)(T_O,U_O.WOFWO—SO\W\];OJF 64076‘]%3,0, (55)

point and looking at the corresponding eigenvalues. They are

\=—3€+3v and\,=—6e,+ Sv. Thus fore;>0 fixed point  where the integrald}°(r,) are defined in Appendix C. Now,

Il is stable, whereas fog; <0, the nontrivial fixed point 1 is  Egs.(53)—(55) have the pole,=2—d.

stable. Keeping in mind the normalization conditions, the cou-
The values of critical exponents, calculated for fixed pointpling renormalization constants and the correspongiragnd

Il read as 7=0, v=3+5€,, a=3+1€,, B=3—3so€,, and ¢ functions are

y=1+ ¢, for the correlation function, correlation length,

specific heat, order parameter, and susceptibility, respec- 2 — 16 —
pecil P HSCEpIbITY, Tesp Zi=1+5—0, Zy=1+ 0,

tively. 9¢, 9¢,
Note thate;=0 in the physically relevant dimensial+3.
In this case the power laws of mean-field theory are modified 40 _ 6407y 3
by powers of logarithms of. They may be calculated from Ly=ltg-v—go W (56)
the solutions of the flow equation solved at borderline di- 2 2
mension. =%v, (57)
1. Logarithmic correction = 362—_‘_ %61)—27 Br=— 662W_+ 40w %)73
Solving the flow equatiori44), with €,=0, (58)
dv 5 — Because oZg=2Z5=1, then{4={;=0.
b=l gr=a2v" (46) By means of8;= Bz=0, the following fixed points have
been found:
we QEt T x Tk Tx 9 Tk 23 2
_ Lv*=0, w*=0; Iv*=15e,, W'=%5€5 (59
v=—§|n_1l. (47) 16 €2 10 €2

The relevant eigenvalues ard;=—3e+%v and X\,
=—6e,+40v. For e,<0, then the fixed point | is stable. For
€>0, then the fixed point Il is stable. The calculfilteogl values

—i\ =T —x of critical exponents can read ag=1, v=3+36,,

r(I)—r(l)_|InI| ' (48) a=3++56, B=3—3¢,, and y=1+%¢,, for the correlation
Recall the matching condition(1)/1?=1 (we takeu=1 for  function, correlation length, specific heat, order parameter,
simplicity); the relation between the flow parameltemd the  and susceptibility, respectively. Note thgt=3 at d=3. Fi-
relative temperature distance redds t|inl|~* and iteration  nally, with the help of the Eq(52), the logarithmic correc-
gives tionl, which is present al., was calculated and found to be
X=g.

Since {=gv and |dr/dl=r{;, we have dr/r
=—xIn"tIdl/I, with x=+. Again, by integration one finds

1 1
|:tl/2||n||7x/2% - tl/2_ ||nt|7x/2. (49)
2725 2 VI. CONCLUSION
It is this relation between the flow parameter and the relative \ye have calculated the asymptotic static critical indices
temperature distance which introduces logarithmic powers iRy ricritical Lifshitz behavior in a system with strong
the mean-field power laws. E.g., the correlation length readgniaxial dipolar interaction in one-loop order. Our results are
collected in Table I. The values of the exponents are to be

[~ 1/2| Inl |x/2, (50) A : Wk
compared with the corresponding values when the uniaxial
the susceptibility reads dipolar interaction is absent and/or one is not at a Lifshitz
and/or a tricritical point. From this comparison one might
x~t~HInl ], (1)  guess the critical exponents to be found experimentally for

the different phase transitions realized in the mixtures

and the specific heat reads
pect SIPA(SES, )6 (Ref. 12 or (Ph,Sy_,)2P(S§S; )6 In

C~t~Y3|n|¥2, (52

B. Isotropic case(m=2)

fact, one would expect to see a crossover between the differ-
ent values of asymptotic exponents corresponding to the spe-
cific fixed points. However, it is difficult to calculate the

complicated crossover behavior because of the strong anisot-

In the case of renormalization of the coupling constantsopy of the complete dispersion. Only some limiting cases
and the flow diagram in one-loop order, the bare vertex funchave been considered so far, namely, the crossover between

tions for the casen=2 are given by(see the Appendix C

uniaxial dipolar and isotropic short-range interac-
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notes the whole wave vector space gndenotes the sub-

F(z) space perpendicular to the uniaxial dipolar space denoted by
Q)
v < ) [a]=G; (k) (Ala)
fa 1] 1= [ FpIGk. (A1b)
r® [c]=Fi(p)vo, (Alc)
>"< [d]=-302 | FApo—p)Gi(K)Gi(ko—k), (ALd)
>
el L] (e)=£03 [ FiPIFi(Po—P)G(KIG (KoK,
(Ale
€] If] [fl=—6v5 f Fi(p)GZ(k), (A1f)
[g]=Wo, (Alg)
(6)
I [h]z—somﬁ(mj Fi(pGik),  (Alh)
W
w
[11=6053F.(p) | PGk, (ALi)
[q] [h]
[115180?5Fi(p>f Fi(p)GY(k). (A1))
\'"J
\")
7y Vv In the anisotropic casen{=m=1) we have
Sy © (o (o7
i f | e ), ], ], | enanae-zasiv-taan

. . Fip)=p?, and Gi'(k)=ro+pi+py+a?pZ. In Egs.

FIG. 1. One-loop order for the vertex functiof§”, with N=2,  (A1d) and (Ale), we expand and keep only thel terms.

4, and 6. The dot symbolizes the factr(p) from the Fi(p)¢*  The bare vertex functions in Eq&9), (40), and(41) could
interaction. be calculated. In the isotropic caga=2, m=0) we have

tion for the normal second-order transitforand the cross- Sqz [ (=~ _

over between the normal second-order behavior and Lifshitz- f :W f J f d?pd?~2q sin'~*¢ do,

type behaviof? One also has to bear in mind the fact that in 07070

solid-state systems other disturbances like defects or elastic,(p)=p? andG,(k)=r,+ p*+ g% p?; then, one has
coupling to the strain may be of relevance. Taking all this

into account, it seems to be promising that indeed near the @ — . Vo 50

Lifshitz point in the phase diagram of §%S, logarithmic I'67(ro,wo,k)=Goz (k) + —== J17, (A2)
corrections to mean-field theory have been fotif.

I'§"(vo,k) =p?vo—p7v o[ 1607+ 3205~ 1235>°
APPENDIX A: FEYNMAN'S DIAGRAMS AND
CORRELATIONS FUNCTIONS — 1681332+ 144137, (A3)

In this appendix, we list the explicit results for perturba- and finally
tion theory in one loop-order using Feynman’s diagrams, as
shown in Fig. 1, and the corresponding analytical expres-  T'(rq,v0,Wo)=Wo— 80WovoJs '+ 640 33330, (A4)
sions for both the isotropic and the anisotropic cases give the _ _
final forms for the vertex functionE{"). The corresponding Using Appendix C, it is proved that'°=2J{2. By col-
analytical expressions, according to the graphs in Fig. 1, arkecting the terms in EqgA2), (A3), and(A4), one can cal-
(notice that we skipped the bar at the wave vectérste- culate Eqs(53), (54), and(55), respectively.
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TABLE I. Compilation of the critical dimensiod, and critical 12 d—2 5—3d d+1
04 m 5+3d)/4 +
exponents for the system with one component order parameter, with177(r) = g > Sqor” VA 5 2 7
and without uniaxial dipolar forces, in first order efat d=3. The

asterisk indicates that one has logarithmic corrections to the power (BS)
law (U=uniaxial dipolar,L=Lifshitz, T=tricritical, andm is the
dimension of Lifshitz subspate

1/2
|°’4(r)=7T—Sdr(‘5+3d)’4l“(d_2>1“(5_3d)1“ d+1
System d. a B y X Ref ! 16 2 4 4
(B6)
LT, m=1 3 2 i 1% 7,8
LT, m=2 4 % 3 13 7 _ _ o _
ULT. m=1 3 I Lx 1* L By applying e expansion with minimal subtraction we get
ULT, m=2 RN S T S
F(5—3d)_r(5—9+361 4 [3e+4
APPENDIX B: INTEGRALS OF |}7(R) 4 4 3e; 4 -
B7
The integrals required for the calculation BfV) in the
anisotropic casgsee Eqs(39)—(41)] are d
an
1(r)
w o (o p'pl p(=5+3d)/d_  —(—4+3ep)ld_ exr{ _3a Inr)
SN P dpdnd’ 4
0o Jo Jo [(r+pop,+py+a°] 3
€
B1) =r(1—Tllnr+--- =r. (B8)
Using the identities
o 1 p\¥® [a This implies
-1 by—c__" n—c| & _
fodxxa (p+qx®) 5P q Fb .
194r)=——=—rA (B9)
a 1 d»
xT| c— —) /F(c), 126
v where
B2
(823 _ e d—2 r 3e;t4 r d+1 s 510
s m 2 4 7 |S (BlO

f(d)=(2d?_)3 sinf~49de
0
APPENDIX C: INTEGRALS OF J!"A(R)
=(d—2)S4=(3—€,—2)S4=S4, B2b
(d=2)%=(3- e~ 2)%=S (B2b) The integrals required for the calculation BfV in the
whereS;1=29"17921(d/2), and consequently perform the isotropic casdsee Eqs(53)—(55)] are
integrations with respect tq, p,, andp,, it is straightfor-

ward to get ia _J j a
Je(r X%dp dg, C1
. ) o[rp+p+q] pdg (CD
iy — 1 (j+2i+3d—3-6l)/4 with
13(r) 6" Sy, (B3)
. Sa-3 (™. 4 .
with X3=—— [ sinf %9 co$d dd with a=0 or 2.
(2m)° Jo
o fd=2| (i+1) (j+d-1-2 (C2)
Mp=T 2 2 4 Using the identity Eq(B3a) and Eq.(B3c) with
6l +3—3d—2i—]j S
r 7 J) /1“(|). (B4) xo—(zd )32f sif =49 do=(d—2)Sy=(¥ —€,— 2)Sy
The pole in Eq.(B4) is ¢,=3—d, and the diverging part of =3Sy, (C33
the integrals in our calculations correspond to the values
il-!l = 014! 1 016! 1 01121 1 0118! 1 2!8l 1 2!14! ’
gng(ilgA_]) (0.6, { 3 ( 3. 283, ( 9 X2= (zd )ZJ sif=%9 cog0 do=Sy, (C3b

For example, we will show in detail the divergent of the
integral 1 9'%r). Using Eq. (B4) for the values i,j,I) then performing theg and p integrations, it is straightfor-
=(0,4,1, we get ward to have



3860

. M| .
J:,z(r):?'r(3d—5—6|+|)/48d (C4a

and
3% =337, (Cab)
with
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i+d—1—2l) (6|—3d+4—i)
r 2 r 7 ra
(CH

d—2
2

mi=r|

containing the pole terms wit,=2—d. The diverging parts
of the integrals correspond to the valued Y=(7,2), (13,3,
(19,4, and(5,1).
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