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Second-order elastic constants cannot be applied directly to the study of the mechanical stability of a
stressed material. We derive general expressions for stability criteria by constructing appropriate thermody-
namic potentials. For a system under isotropic initial stress, elastic stiffness coefficients which govern stress-
strain relations can be used as stability criteria. However, for a system under anisotropic initial stress, stability
criteria are different from either elastic constants or elastic stiffness coefficients. We show that stability
conditions in the constant pressure ensemble are stronger than in the constant volume ensemble, i.e., a state can
be stable in the constant volume ensemble but unstable in the constant pressure ensemble. From the general
formalism simple fluctuation formulas for the stability criteria are deduced for systems in the canonical
ensemble, for arbitrary stress.@S0163-1829~96!01130-7#

I. INTRODUCTION

Elastic constants provide important information concern-
ing the strength of materials, and often act as stability criteria
or order parameters to study the problem of structural trans-
formations. For comparison of experimental results with
theory, it is necessary not only to have accurate experimental
data, but also to have a reliable method of calculation. Re-
cent advances in computer-simulation techniques and for-
malism have made this possible.1–8

In spite of significant progress, there are still some out-
standing issues, in particular on how to deal with systems
under stress, especially when far from their equilibrium con-
figuration. For systems under arbitrary stress, we derive a
general stability criterion and clarify some points concerning
the calculation of the relevant elastic constants when using
‘‘equilibrium’’ fluctuation formulas.

Elastic constants are often used as stability criteria with-
out giving much justification. Barron and Klein9 were the
first to clarify this situation. They pointed out that the tradi-
tional definition of the elastic constants derived from the
internal energy or Helmholtz free energy cannot be directly
applied to the study of the stress-strain relationship of a
stressed state. They derived the correct form of the stress-
strain relations for a stressed system in the microcanonical or
canonical ensembles. Wang and co-workers10,11 demon-
strated, however, that elastic constants cannot be used as
stability criteria for a stressed system. They suggested the
use of elastic stiffness coefficients as stability criteria for
isotropic stress. For anisotropic stress, they obtained a more
general form from path-dependent finite displacements.11We
establish the thermodynamic foundation of their argument
and elaborate on their significance.

We also show that stability conditions are dependent on
the ensemble used. In particular, stability conditions are
stronger in the constant pressure ensemble than in the con-
stant volume ensemble, i.e., a state can be stable in the con-
stant volume ensemble but unstable in the constant pressure
ensemble. In systems with anisotropic stress, several en-
sembles can also be envisaged.

We emphasize in this paper that, when using ‘‘equilib-

rium’’ fluctuation formulas for the calculation of elastic con-
stants, the reference configuration~i.e., before virtual defor-
mations are applied to the system! must be the stressed one.
With a single shape tensor, simple fluctuation formulas, con-
venient for computer simulations, are obtained for a system
under arbitrary stress in the canonical ensemble.

The paper is organized as follows. After a brief review of
some fundamental concepts in Sec. II, Sec. III establishes the
connection between stability criteria and elastic constants.
Section IV derives stability criteria for a stressed system for
both isotropic and anisotropic stresses, with and without vol-
ume fluctuations. In Sec. V we present, within the canonical
ensemble, general fluctuation formulas for elastic constants,
elastic stiffness coefficients, and stability criteria, and spe-
cific ones for systems with central force interactions. A
simple illustrative example is given at the end of the section.
A summary concludes the paper.

II. FUNDAMENTAL CONCEPTS

We first recall some fundamental concepts to introduce
the formulas on which our discussion is based. The variety of
terminology and symbols used in this field make this presen-
tation necessary.

A. Strain

In the theory of elastic continuum, we can assign to every
point in the material a coordinatex.9,12–14After deformation,
the displacement of a point initially atx° is

u~x°!5x~x°!2x°

or

ua~x°!5xa~x°!2x°a , a51,2,3. ~1!

x° is also referred to as the reference position ofx. The ref-
erence state can be either stressed or stress free.

For a small deformation, we can write
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ua~x°!5
]ua~x°!

]x°b

x°b[uab~x°!x°b . ~2!

In this equation, and all subsequent, the Einstein summation
convention for repeated suffices is followed. Note that in
generaluabÞuba . Sometimes the deformation parameters
uab are also called the strain tensor~for instance, see Refs.
13 and 15!.

For simplicity, we shall consider only systems under ho-

mogeneous deformation,9,12–14,16so theuab(x°) are indepen-

dent ofx°.
uab can be written as

uab5eab1vab , ~3!

with

eab5 1
2 ~uab1uba!5eba ~4!

and

vab5 1
2 ~uab2uba!52vba , ~5!

where eab are the components of the elongation or pure
strain tensor, andvab those of the rotation tensor.

9,14 In gen-
eral,vab are disregarded for a small deformation since they
represent an infinitesimal rotation of the whole system, and
in the absence of internal torques cannot give rise to stresses.

The elongationeab is preferably used in experiments,
since it is what is measured. In constrast, another strain, the
Lagrangian strain tensor,9,14 defined by

hab[ 1
2 ~uab1uba1ugaugb!5hba , ~6!

is more often used in theoretical models, as it can completely
determine the deformation of the system.9,13,14An advantage
of the Lagrangian strain tensor is that, if we expand a func-
tion in a power series ofh, the expansion coefficients will
automatically satisfy the requirement of rotational
invariance.13

In the following, when we refer to strain, we shall refer to
the Lagrangian strain tensor. Another often used symbol for
the Lagrangian strain tensor iseab .

4–7

B. Elastic constants

Elastic constants, or more exactly, second-order elastic
constants, are in general defined by

C° abst[
1

Vo
S ]2W

]hab]hst
D

h50

, ~7!

whereW is the strain energy. It can refer either to the Helm-
holtz free energyF in the derivation of isothermal elastic
constants~the canonical ensemble! or to the internal energy
E in the derivation of adiabatic elastic constants~the micro-
canonical ensemble!. Vo is the reference value of the volume
V, i.e., before deformation. By definition the elastic con-
stants have the following symmetries:

C° abst5C° stab5C° abts . ~8!

Equation~8! reduces the number of independent elastic con-
stants from 81 to 21, which are often expressed in the con-

densed Voigt notation ~for instance C° 11115C° 11,

C° 11225C° 12, C
°
12125C° 44, etc.!.

For a central force system, we can deriveC° abst straight-
forwardly from its definition, since the strain energyW can
be written explicitly as a function ofh by using9,12,14

x22x°252habx°ax°b . ~9!

But for a noncentral force system, we have to use a dif-
ferent approach since in general it is impossible to express
the strain energy explicitly as a function ofh. Instead, we
can expand (W2Wo)/Vo as a Taylor series,12

W2Wo

Vo
5S° abuab1 1

2S
°

abstuabust1••• ~10!

5c°abhab1 1
2C
°

absthabhst1•••, ~11!

whereWo is the reference value ofW. S° ab is the component
of the applied stress tensor9,13,14 for the reference state. The

tensorsS° abst related to the elastic constants are sometimes
called displacement gradient moduli.

We do not discuss the higher-order terms of Eqs.~10! and
~11! in this paper. They are only necessary when the stability
criteria are zero.

Substituting Eq.~6! into Eq. ~11! and using Eq.~10!, we
find,9 with the assumption of rotational invariance,

c°ab5S° ab and C° abst5S° abst2S° btdas . ~12!

These relations in Eq.~12! assume rotational invariance, in

particularS° ab5S° ba .

C. Stress-strain relations

In thermodynamics, a thermodynamic stress tensortab ,
defined by

tab5
1

Vo

]W

]hab
5S° ab1C° absthst , ~13!

is introduced.14 ~Often an opposite sign fortab is used than
that in Refs. 4 and 7.! tab should not be confused with the
applied stressTab .

The actual measurable stressTab corresponds to the
strained system,9 and its reference configuration is different

from that ofC° abst . Tab is formally equal to

Tab5
1

V~u! S ]W~uab ,vab!

]vab
D
vab50

. ~14!

The reference configuration is the system deformed by
uab , andvab is the small deformation made on that system.

Using

xa~x°!5~dab1uab!~dbg1vbg!x°g ~15!

an expansion ofW(uab ,vab) leads, as shown by Barron and
Klein,9 to
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Tab5S° ab1~S° abst2S° abdst1S° atdbs!ust ~16!

5S° ab1c°absthst1S° btvat1S° atvbt ~17!

where they introduce another symbol, the elastic stiffness
coefficient10

c°abst[C° abst2 1
2 ~2S° abdst2S° asdbt2S° atdbs2S° btdas

2S° bsdat!. ~18!

c°abst is symmetric with respect to the interchanges (a,b) or
(s,t). However, it does not have the full symmetry of Eq.
~8!. Instead, it satisfies the equalities

c°abst2c°stab5S° stdab2S° abdst . ~19!

The thermodynamic stresstab and the applied stress
Tab are related by the relation

tab5 det~J!Jas
21Jbt

21Tst , ~20!

whereJab5dab1uab @det(J) is the ratioV/V0#. This fol-
lows in a straightforward way from Eqs.~12!, ~13!, and~16!,
and the assumption of rotational invariance. The two quanti-
ties tab andTab are equal whenu, or h, is zero.

In a direct experimentTab and eab ~or uab) are mea-

sured, and hencec°abst .

D. Unstressed system

For an unstressed system,S° ab50, therefore, we have

C° abst5S° abst5c°abst ~21!

Tab5C° abstust5C° absthst5tab , ~22!

W2Wo

Vo
5
1

2
C° absthabhst . ~23!

In this situation, the different definitions of the elastic con-
stants are identical.

The symmetry of the crystal reduces the number of inde-
pendent elastic constants to less than 21. For example, for an
isotropic system, there are only two independent elastic con-

stants. Traditionallyl[C° 1122[C° 12 andm[C° 1212[C° 44 are
chosen to characterize the system.

III. STABILITY CRITERIA AND ELASTIC CONSTANTS

One of the most important applications of elastic moduli,
such as elastic constants in theoretical models, is to use them
as stability criteria. The stability of any system is essentially
determined by the second law of thermodynamics. For a sys-
tem with a fixed number of particles undergoing an arbitrary
but small transformation from stateA to stateB, the second
law says18–20

DW>DE2TDS5DF ~24!

where2DW is the work done by the system during the
transformation. The equality sign applies for reversible trans-
formations. If stateA is an equilibrium configuration, stabil-
ity requires that in moving to a nearby stateDF2DW.0.

For a mechanically isolated, i.e., constant volume system,
or unstressed system,DW50, and Eq.~24! leads to the re-
quirement thatW (E or F) be minimum in microcanonical
or canonical ensembles for stability.

A. Unstressed system

For W in Eq. ~23! to be a minimum in the absence of

strain,C° abst must be a positive definite tensor, i.e., all its
eigenvalues must be positive.

Explicitly, for a three-dimensional~3D! cubic solid the
stability conditions are10

C° 1112C° 12.0,

C° 44.0, ~25!

C° 112C° 12.0.

For an isotropic solidC° 112C° 1252C° 44 and conditions~25!
reduce to

3B52C° 4413C° 12.0
~26!

C° 44.0,

whereB is the bulk modulus andC44 the shear modulus.
Similar conditions are obtained for two-dimensional~2D!
isotropic solids, to which belongs the triangular lattice

B5C° 441C° 12.0,
~27!

C° 44.0.

B. Stressed sytem

In the same way, for a stressed system, Eq.~24! leads to
the requirement thatH5W2W be minimum in constant
stress ensembles for stability. For a system under constant
hydrostatic pressure,2W5pV, so that the stability criteria
can be derived by requiring that the the traditional Gibbs’
free energy or the enthalpy be minimum. It is equivalent to
finding the minimum of the Legendre transform21 of W, i.e.,
H5W1pV, and usep instead ofV as anindependent state
variable. However, for a system under anisotropic loading,
the traditional Gibbs’ free energy or enthalpy requires a more
careful definition. We will discuss this point in detail later.

IV. STABILITY CRITERIA FOR A STRESSED SYSTEM

A. System with isotropic initial stress
and constant volume

For a system with isotropic reference stress14

S° ab52pdab , ~28!

wherep is the isotropic stress,positive for compression.
To study the problem of stability in both microcanonical

and canonical ensembles, we need to check ifW is mini-
mum. In those ensembles the minimum ofW must be
achieved at constant volume, so shape changes are allowed
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without volume fluctuations. The instantaneous volumeV
can be written asV5Vo det(dab1uab),

14 whereV0 is the
volume of the stressed system before deformation. This leads
to

V2Vo

Vo
5haa1

1

2
~dabdst2dasdbt2datdbs!habhst

~29!

to second order in the strain. To fix the volume requires
V2Vo50 or

haa5 Trh52 1
2 ~dabdst2dasdbt2datdbs!habhst .

~30!

Substituting Eq.~30! into Eq. ~11! leads to

W2Wo

Vo
5
1

2
Cabsthabhst , ~31!

where

Cabst[C° abst1p~dabdst2dasdbt2datdbs!. ~32!

Equation~31! has to be a positive definite quadratic form,
with the constraints given by Eq.~30!.

Note that theCabst have the same symmetry as the elas-
tic constants, so they can be condensed using the Voigt no-
tation. With the constraints of Eqs.~30! this leads to

W2Wo

Vo
5
1

2
f abSaSb , a,b52, . . . ,6 , ~33!

where

f 225C111C2222C12,

f 235 f 325C111C232C122C13,

f 245 f 425C242C14, f 255 f 525C252C15,

f 265 f 625C262C16, f 335C111C3322C13,
~34!

f 345 f 435C342C14, f 355 f 535C352C15,

f 365 f 635C362C16, f 445C44,

f 455 f 545C45, f 465 f 645C46,

f 555C55, f 565 f 655C56, f 665C66,

and

S25h22, S35h33, S452h23,

S552h31, S652h12. ~35!

TheSa are a set of independent strains. Stability requires that
Eq. ~33! be a positive definite quadratic form, so the stability
conditions reduce to an eigenvalue problem forf ab .

Explicitly the stability conditions for a three-dimensional
cubic solid are

C44.0 and C112C12.0. ~36!

For an isotropic solid, either two or three dimensional, only
the first condition remains,

C44.0. ~37!

B. System with isotropic initial stress
and allowing volume fluctuations

Keeping the volume constant is, however, too restrictive.
In general, instability is always accompanied by volume
fluctuations. To allow for volume fluctuations we study the
minimum of the Legendre transform21 of W, i.e.,
H5W1pV, which is the enthalpy or the Gibbs’ free energy,
and fix the pressure instead of the volume.

This problem is quite similar to the stability problem in
the study of membranes using the curvature model,22–24 in
which the Legendre transform requires two parameters, one
is the surface tensile stress and the other the pressure.
Peterson24 clarified the distinction between the conditions of
fixed volume and fixed pressure.

By using Eqs.~11!, ~12!, and~29!, we obtain

H2Ho

Vo
5 1

2Cabsthabhst , ~38!

and hence the same quadratic form as in Eq.~31! but now
without the volume constraints. The stability conditions re-
duce to an eigenvalue problem for theCabst tensor as op-

posed toC° abst for the stress-free case.
From Eqs.~18!, ~12!, and~32!, it is easy to show that in

this case,Cabst is identical toc°abst , the elastic stiffness
coefficient. Since the stress-strain relations are still linear in
the strains, with Eq.~17! simplifying to

Tab52pdab1c°abstust52pdab1c°absthst , ~39!

c°abst and hence alsoCabst andC
°

abst have the same sym-
metry relations as in the unstressed state. Moreover, we can
expect thatCabst will yield the same stability conditions as
those obtained from the long acoustic lattice wave theory as
the latter contains the effects of stress. This point will be
illustrated in Sec. II C, with an example of a central force
system. We can also confirm this by noticing that the equa-
tions of motion in the isotropic state can be reduced to9

r°
]2ua~x°!

]t2
5c°abst

]2us~x°!

]x°b]x° t

~40!

wherer° is the reference density, andc°abst plays the same
role as the elastic constants in the stress-free state.

The stability conditions are obtained by substituting in
Eqs.~25!, ~26!, and~27!, theC̊ ’s with theC’s. Explicitly, for
a cubic system, the relevant elastic constants are

C115C° 112p,

C125C° 121p5l, ~41!

C445C° 442p5m.

3844 54Z. ZHOU AND B. JOÓS



This is what has been suggested by Wanget al.10 Earlier,
using a different approach, the same result was obtained by
Basinskiet al.15 in a system at zero temperature, where the
pressure results from the electronic cloud.

It is interesting to note that Eq.~31! or ~33! will be a
positive definite quadratic form provided Eq.~38! is, but the
converse is not necessarily true. Therefore, we can conclude
that the condition of stability for the constant pressure en-
semble is stronger than in the constant volume ensemble. For
instance, for an isotropic solid, in the constant pressure en-
semble,B.0 is necessary for stability, but this is not re-
quired with constant volume. As a consequence, a state
stable in the constant volume ensemble may be unstable in
the constant pressure ensemble. This may account for the
fact that two-phase coexistence is allowed in the constant
volume ensemble but prohibited in the constant pressure en-
semble.

C. System with anisotropic initial stress

For a system under anisotropic stress, it is even more
crucial to consider volume fluctuations; since a system with-
out volume and shape fluctuations is always in mechanical
equilibrium, no stability criteria is required. In general, shape
fluctuations require mechanical works, so stability is not
achieved by requiringW to be minimum.

1. System with constant tab

At first thought, one could try using the traditional
Gibbs’ free energy G5F2Votabhab or enthalpy,
5E2Votabhab ,

13,14,17 to determine the stability of an an-
isotropic stressed system as we did in the last two sections.
But since the quantity conjugate to the strainhab is the
thermodynamic stress tensortab , the minimum must be
achieved under the condition ofconstant tab . In this case it
follows from Eqs.~11! and ~12! that stability requires that

the elastic constant tensorC° abst be a positive definite ten-
sor. The constanttab ensemble can be realized in computer
simulations.4,5 However, as seen from Eq.~20!, the applied
stressTab fluctuates in this ensemble. Also, a diagonaltab
does not lead to a diagonal, or isotropic,Tab , and this is
why the corresponding stability criteria are different from
those obtained in Secs. IV A and IV B. Therefore, this con-
stanttab ensemble is not equivalent to the ensemble of con-
stant applied stress, and so one has to be careful in compar-
ing the results obtained from this ensemble with experiments
or theory. We can also see this point by noting that under
constant loading,DWÞVotabhab . Instead, for a quasistatic
process,11,13,14,17

DW5VoE det~J!Jas
21Jbt

21Tstdeab5VoTabjab , ~42!

where

jab5E det~J!Jsa
21Jtb

21dest ~43!

are variables conjugated toTab and eab vary along some
path fromeab50 to eab5hab . Thus the minimum of the
traditional Gibbs’ free energy or enthalpy is in general dif-
ferent from that ofH5W2W.

2. System with constant applied stress

From the above discussion, for the constant loading en-
semble we need a thermodynamic potential usingTab in-
steadtab as independent-state variables, and stability criteria
can then be derived by requiring this thermodynamic poten-
tial to be minimum. Such a thermodynamic potential can be
obtained by a Legendre transform21

H5W2VoTabjab . ~44!

To find the stability criteria, we need to consider a small
deformation from some reference configuration. To first or-
der inuab , we have

det~J!Jsa
21Jtb

215~11uii !~dsa2usa!~dtb2utb!

5~11uii !~dsadtb2usadtb2utbdsa!

5dsadtb1dsadtbuii2usadtb2utbdsa .

~45!

Neglecting the rotational termsvab ,

det~J!Jsa
21Jtb

215dsadtb1h i idsadtb2hsadtb2htbdsa .
~46!

Therefore, to second order inhab ,

jab5E ~dsadtb1e i idsadtb2esadtb2etbdsa!dest

5hab1E ~essdeab2esadesb2esbdhsa!

5hab1 1
2 E @essdeab1eabdess1essdeab2eabdess

22d~easebs!#

5hab1 1
2hsshab2hashbs

1 1
2 E ~essdeab2eabdess! ~47!

and

Tabjab5Tab~hab1 1
2hsshab2hashbs!

1
1

2
TabE ~essdeab2eabdess!

5Tab~hab1 1
2hsshab2hashbs!

1
1

2
BabstE estdeab , ~48!

where

Babst5Tabdst2Tstdab52Bstab . ~49!

The last term in Eqs.~47! and ~48!, Tabjab8 , where
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jab8 [E essdeab2eabdess , ~50!

is path dependent, and of the same order of magnitude as
habhst . The deformation-path-dependent nature ofjab8 was
first pointed out by Wanget al.11 For instance, along a path
defined by

eab5H habS 12 cos
p

2
xD , aÞb

hab sin
p

2
x, a5b,

~51!

jab8 5@(p/2)21#(12dab)habhss ~no summation fora and
b). Equation~50! can be rewritten as

jab8 5E ~ess!2dS eab

ess
D . ~52!

Along a straight line it is trivial to see thatjab8 50. The same
applies to volume-preserving paths (ess50). And if one
considersTabjab8 , it will be zero if Tabeab is proportional
to the volume changeess . This is similar to the isotropic
case, where the work is always proportional to the volume
change.

The important thing for our purpose is that paths can be
paired. To every pathl ,

eab5 f ab~x!, f ab~0!50, f ab~1!5hab ,

jab8 ~ l !5E
0

1

@ f ss~x! f ab8 ~x!2 f ab~x! f ss8 ~x!#dx, ~53!

f ab8 ~x!5
d fab~x!

dx
,

there exists another pathl 8,

eab5hab2 f ab~12x!, ~54!

such thatjab8 ( l )1jab8 ( l 8)50. From which it follows that

^jab8 &50. ~55!

This allows us to define a thermodynamic potential for
each point in spite of the path-dependence of the work. We
define the change inH, in going from one point to another,
as an average over all possible paths. The path-dependent
term is eliminated becausêjab8 &50. This is also what is
obtained by following a straight line between two points.
Choosing the average is more convenient than looking for
the minimum. As discussed in the Appendix, extrema of
jab8 do not usually exist for general deformations in the an-
isotropic case.

In discussing stability, theTabjab8 term is not required.
Stability criteria are always with respect to infinitesimal dis-
placements from some equilibrium configuration; displace-
ments, in such limits, are linear, hence theTabjab8 term is
zero anyway.

Therefore, up to second order inhab , H5W
2VoTabjab can be written as

H5W2VoTabhab2 1
2VoAabsthabhst , ~56!

with

jab5hab2hashbs1 1
2habhss ~57!

and

2Aabst5Tabdst1Tstdab2Ttbdas2Ttadbs2Tasdbt

2Tbsdat . ~58!

Aabst has the same symmetry as elastic constants.
Between any two points in configuration space, the differ-

ence in this thermodynamic potentialH is the change in the
free energyW minus the average work between the two
points, which is the same as the work along a direct straight-
line segment joining the two points. One has to be careful
not to infer from this that, when connecting two points by a
trajectory made of small straight line segments, that the work
done by the system, is the same as if the points had been
connected by a single direct straight-line segment. The path
dependence of the work requires us always to consider the
work as being an average over all trajectories connecting the
two points.

Requiring thatHo be a minimum leads, from Eqs.~11!
and ~12!, to

Tab5S° ab , ~59!

and the corresponding energy variation close to the mini-
mum is of the form

H2Ho

Vo
5
1

2
Cabsthabhst , ~60!

whereS° ab is fixed and not diagonal, and

Cabst[C° abst2Aabst[
1
2 ~c°abst1c°stab!

5C° abst2 1
2 ~S° abdst1S° stdab2S° asdbt2S° atdbs

2S° btdas2S° bsdat! ~61!

is the positive definite quantity for stability. Note that the

only difference betweenc°abst andCabst is that the term

2S° abdst in c°abst is replaced byS° abdst1S° stdab .
It is easy to check thatCabst has the proper isotropic

limit. Condensed expressions in terms of the Voigt notation
are still possible, but the number of independent elements
determined, not only by the symmetry of the crystal but also
by the symmetry of the applied stressTab , will likely be
increased, this, in particular, since the reference state itself
will usually have a lower symmetry, and hence more elastic

constantsC° abst will be required.
It should be noted that for a stressed systemCabst ,

c°abst , andC
°

abst are dependent on the stress. They are no
longer intrinsic properties of the system, and hence cannot be
used as probes of the interatomic forces.

This result is the same as the one recently obtained by
Wang et al.11 for isothermal systems. They considered
DG5DF2DW and requiredDG.0 for stability, a condition
identical to minimizingG5F2W. We strengthen their argu-
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ment by considering in detail the effect of the deformation
path-dependent termjab8 . As pointed out above, without
considering it, the positive definiteness ofCabst does not
automatically lead toDG.0 or G minimum.

V. CALCULATION OF THE ELASTIC CONSTANTS

There are various approaches to calculating elastic con-
stants: direct computation of the stress-strain relations by
deformation of the simulation cell, strain-strain fluctuation
methods where the elastic constants are extracted from the
fluctuations in the shape of the simulation cell, and the
‘‘equilibrium’’ fluctuation method. It is this last technique
that we shall discuss. In this method, a formal expression is
derived for the elastic constants, from the second derivative
of the free energy@see Eq.~7!#. The elastic constants are
directly obtained from the microscopic fluctuations within
the system. The method has the advantage that no actual
deformations are made, so no symmetry breaking occurs,
and all elastic constants can be obtained from a single run. It
must be emphasized that the derivatives are taken with re-
spect to a reference configuration, the one on which virtual
deformationshab are applied for the purpose of calculating
the elastic constants. Hence, at every step of a computer run,
the reference configuration and volume must be the instan-
taneous one.

A. Equilibrium fluctuation formulas in the canonical ensemble

Since the reference configuration is the instantaneous con-
figuration, a straightforward derivation of the elastic con-
stants can be accomplished as in Ref. 3, resulting in easy to
program formulas. The canonical ensemble is used because it
is the most commonly used ensemble, and the most appro-
priate for the calculation of elastic constants.6 There are dif-
ficulties in calculating elastic constants on other ensembles,
such as the constant pressure ensemble.25,26W is in this en-
semble the Helmholtz free energyF. With the Hamiltonian
H,

H5H~x,p,h,N!, ~62!
x andp representing the coordinates and momenta of theN
particles,

F52kBT lnZ with Z5
1

CE e2H/kBTdt. ~63!

C is a constant,dt the differential volume element in the
6 N-dimensional phase space, andkB the Boltzmann con-
stant. It follows from Eqs.~7! and ~12! that3

S° ab5C° ab5
1

V0
K ]H

]hab
L

h50

2
NkBT

Vo
S ] lnV

]hab
D

h5o

5
1

V0
K ]H

]hab
L

h50

2
NkBT

Vo
dab ~64!

and

C° abst5
1

Vo
K ]2H

]hab]hst
L

h50

2
1

kBTVo
K dS ]H

]hab
D dS ]H

]hst
D L

h50

1
NkBT

Vo
~dasdbt1datdbs!, ~65!

where the ^ . . . & designates configurational averages and
d(A)5A2^A&. The last term comes from the identity

S ]2lnV

]hab]hst
D

h5o

52~dasdbt1datdbs!. ~66!

The NkBT/Vo terms can be simply understood as resulting
from the finite size of the sample. One way to look at it is
that, if the spatial coordinates are scaled to the simulation
box coordinates to maintain them constant under deforma-
tions,VN appears in front of the partition function leading to
anN lnV term in the free energy. In this way we can avoid
the use of the scaled momenta used in Refs. 4–8, and the
kinetic energy in the Hamiltonian does not depend on the
strain.

From Eq. ~18! we get the elastic stiffness coefficients
which are the quantities determined from direct experiment,

c°abst5
1

Vo
K ]2H

]hab]hst
L

h50

2
1

kBTVo K dS ]H
]hab

D dS ]H
]hst

D L
h50

2
1

2 S 2K ]H
]hab

L
h50

dst2K ]H
]has

L
h50

dbt

2K ]H
]hat

L
h50

dbs2K ]H
]hbt

L
h50

das

2K ]H
]hbs

L
h50

datD 1
NkBT

Vo
dabdst . ~67!

Replacing 2̂]H/]hab&h50dst in the above expression by
^]H/]hab&h50dst1^]H/]hst&h50dab , we get the ele-
ments of the positive definite tensorCabst which determines
stability:

Cabst5
1

Vo
K ]2H

]hab]hst
L

h50

2
1

kBTVo K dS ]H
]hab

D dS ]H
]hst

D L
h50

2
1

2 S K ]H
]hab

L
h50

dst1K ]H
]hst

L
h50

dab

2K ]H
]has

L
h50

dbt2K ]H
]hat

L
h50

dbs

2K ]H
]hbt

L
h50

das2K ]H
]hbs

L
h50

datD
1
NkBT

Vo
dabdst . ~68!
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The first term inCabst is referred to as the ‘‘Born term,’’
since it corresponds to elastic constants at zero temperature.
The second term is the ‘‘fluctuation term.’’ The third arises
from the effect of the stress. The last, discussed above, is
sometimes called ‘‘the kinetic term.’’1

We mentioned earlier that the reference state should be
the instantaneous state. The effects of the choice of the ref-
erence state will be negligible for small deformations~rela-
tive to the stress-free state! but not for large deformations.
The definition of elastic constants in most papers~for in-
stance, see Refs. 4–8 and 14! requires implicitly the natural
~stress-free! reference~initial! configurations, thereforea pri-
ori their expressions are only valid for systems under mod-
erate stress. Their expressions involve a tensorh constructed
from the three vectors forming a parallelipiped, which is the
periodic simulation cell. By definition, from Eq.~7!, its ref-

erence valueh0 should have the value of the instantaneous
stressed system. In other wordsh05h. However, ifh0Þh,
Eq. ~4.3! in Ref. 7 will differ from the formulas given below;
for the simplest case of isotropic stress by an additional un-
required factor (V/V0)

4/3.

B. Special case of the central force system

For a central force system,

H5(
i

pi
2

2m
1(

i, j
F~ uxi2xj u!. ~69!

By using Eqs.~9! and ~64!–~69!, it is straightforward to de-
rive

S° ab5C° ab5
1

V K (
i, j

Dxa~ i j !Dxb~ i j !
F8

r L 2
NkBT

V
dab , ~70!

C° abst5
1

V K (
i, j

Dxa~ i j !Dxb~ i j !Dxs~ i j !Dxt~ i j !
1

r 2 S F92
F8

r D L
2

1

kBTV
K dS (

i, j
Dxa~ i j !Dxb~ i j !

F8

r D dS (
i, j

Dxs~ i j !Dxt~ i j !
F8

r D L 1
NkBT

V
~dasdbt1datdbs!, ~71!

c°abst5
1

V K (
i, j

Dxa~ i j !Dxb~ i j !Dxs~ i j !Dxt~ i j !
1

r 2 S F92
F8

r D L
2

1

kBTV
K dS (

i, j
Dxa~ i j !Dxb~ i j !

F8

r D dS (
i, j

Dxs~ i j !Dxt~ i j !
F8

r D L 2
1

2V S 2K (
i, j

Dxa~ i j !Dxb~ i j !
F8

r L dst

2K (
i, j

Dxa~ i j !Dxs~ i j !
F8

r L dbt2K (
i, j

Dxa~ i j !Dxt~ i j !
F8

r L dbs2K (
i, j

Dxb~ i j !Dxt~ i j !
F8

r L das

2K (
i, j

Dxb~ i j !Dxs~ i j !
F8

r L datD 1
NkBT

V
dabdst , ~72!

where we have dropped the symbol ‘‘o’’ for the reference
state, andh50 on the averages for simplicity. In addition,
Dxa( i j ) and r were defined as

Dxa~ i j !5xa~ i !2xa~ j !, ~73!

r 25uDxa~ i j !u2. ~74!

Cabst is obtained by replacing the terms

2Dxa~ i j !Dxb~ i j !
F8

r
dst

in c°abst with

Dxa~ i j !Dxb~ i j !
F8

r
dst1Dxs~ i j !Dxt~ i j !

F8

r
dab .

It is interesting to note that for the central force system,
the Cauchy relations12 ~in Voigt’s notation!

C° 235C° 44, C° 315C° 55, C° 125C° 66, C° 145C° 56,C
°
255C° 64

C° 365C° 45,

hold at zero temperature for arbitrary stress, but forc°abst
andCabst the Cauchy relations require both conditions of
zero temperature and zero stress.

For a cubic crystal under hydrostatic pressure,C° abst in
Eq. ~71! reduces to the form obtained by Squire, Holt and
Hoover,1 and is valid even for high pressures. The relevant
quantities for stability are the relatedCabst . The three in-
dependent ones in the condensed notation are given in Eq.
~41!. The pressurep is obtained from Eqs.~28! and ~70!.
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C. An example

In two dimensions at zero temperature, Eq.~72! with Eq.
~41! yields

l5
1

V(
f9

r 2
~Dx!2~Dy!22

1

V(
f8

r 3
~Dx!2~Dy!2

2
1

2V( rf8, ~75!

m5
1

V(
f9

r 2
~Dx!2~Dy!22

1

V(
f8

r 3
~Dx!2~Dy!2

1
1

2V( rf8 . ~76!

It follows from Eqs. ~75! and ~76! that, for a two-
dimensional isotropic crystal under hydrostatic pressure and
at zero temperature, ifp.0, thenl1m.2m, and the shear
instability will always occur prior to the spinodal instability
~in the sense of vanishing bulk modulus, i.e.,
B5l1m50). In contrast, ifp,0, thenl1m,2m, and the
spinodal instability will always occur prior to the shear in-
stability. We can expect these conclusions also to be valid at
low temperature. But they cannot be applied to bulk systems
since in three dimensionsB5(3l12m)/3.

As an example, we consider a two-dimensional system
with a piecewise linear interparticle interaction,

F~r !5H 1
2 k~r2d0!

22kw2, r<d01w

2 1
2 k~r2d022w!2, d01w,r<d012w

0, r.d012w.

~77!

with w50.15d0 . This choice ofw corresponds to one bro-
ken bond in the core of a dislocation.27 When the density
r5(d0 /d)

2,1.78, the system forms a triangular lattice, and
only nearest-neighbor interactions need to be considered.
From the above equation, it follows that

m[C445
A3
4

~423r1/2!k, ~78!

l[C125
A3
4

~5r1/224!k, ~79!

wherer is the density relative to equilibrium. This agrees
with the results obtained from a long-wave expansion,28 and

gives the correct shear instability atr5 16
9 . In contrast,

C° 445C° 125
A3
4

r1/2k ~80!

does not show any instability.

VI. CONCLUSION

The stability of homogeneously stressed systems has been
discussed in a thermodynamic framework by requiring that
the appropriate thermodynamic potential be a minimum with

respect to infinitesimal displacements about an equilibrium
configuration. The general stability criterion under constant
loading conditions is the same as the one derived by Wang
et al.11 through finite deformations: it is the positive definite-
ness of

Cabst[C° abst2 1
2 ~S° abdst1S° stdab2S° asdbt2S° atdbs

2S° btdas2S° bsdat!. ~81!

Only for unstressed systems (Sab
50) do we have the usual

condition of a positive definite elastic constant tensor

C° abst . With isotropic stressCabst5c°abst , the elastic stiff-
ness tensor. But for arbitrary anisotropic stressCabst will be
distinct from both. We have also shown that, in the isotropic
case, the stability conditions are stronger in the constant
pressure ensemble than in the constant volume ensemble.

It should be noted that each physical situation may call for
a different relevant quantity. Acoustic experiments, related to
the stability question, would measureCabst in the absence
of stress and for isotropic stress. In direct experiments, such

as elongation, the elastic stiffness coefficientsc°abst are mea-
sured. When constructing interatomic potentials, it may be
preferable to work with an unstressed system, the only situ-

ation where the elastic constantsC° abst probe intrinsic prop-
erties of the system. The formalism has been developed as-
suming a rotational invariance, i.e., rotations produce no
stress. There is, however, no obstacle in generalizing to sys-
tems where rotations produce internal stresses. But this
would mean, from Eq.~7!, a significant increase in the total
number of elastic constants to be considered.29

A thermodynamic potentialH under constant loading
conditionTab can be defined even in the anisotropic case,
where the work has a path-dependent component, by consid-
ering the average over all paths. In principle, therefore, we
have, for a specificTab , anH for all values of strainhab .
In small deformations of a reference configuration, the work
for straight line paths are simply obtained, but for more com-
plex deformations a path-dependent term should also be con-
sidered.

Finally, we have clarified the problem of the choice of the
reference configuration in the calculation of elastic quantities
~it has to be the instantaneous one!. The same applies
to other ensembles such as (HtN),6 (TtN),5 and
(H,Tab,N).

26 Simple fluctuation formulas are given for the
stability criteria of a system under arbitrary stress in the ca-
nonical ensemble.
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APPENDIX: EXTREME DEFORMATION PATHS
FOR Tabjab8

Using Eq.~50! with eab5eab(x), wherex is a path pa-
rameter, we have, for an arbitrary path
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Tabjab8 5E ~Tabėabess2Tabeabėss!dx. ~A1!

The Euler equations for the deformation paths maximizing
Tabjab8 are

Tabdstėab2Tstėaa50. ~A2!

For isotropic stress (Tab52pdab), the above equation is
satisfied automatically. But for anisotropic stress, Eq.~A2!
with sÞt, yieldsėaa50, oreaa50, using the initial bound-
ary condition, andhaa50. These are volume-preserving de-
formations, reached by volume-preserving paths. Thes5t
terms then giveTabėab50, or Tabeab50 along the path,
and the final valueTabhab50. For these special paths, it

follows immediately thatTabjab8 50. The linear deformation
paths tohaa , satisfying the above two conditions, are obvi-
ously part of this set. Therefore there may exist, in aniso-
tropic cases, a set of volume-preserving deformation direc-
tions with extreme paths attaining them, which have path-
independent work with the above constraints. For arbitrary
hab , however, there usually will be no extremum path. If
eab are bounded, the extremum path will be determined by
the boundary.

For the case of uniaxial tensionTab52pd1ad1b , and
Tabeab52pe1150; or e1150 with constant volume. Defor-
mations obeying these constraints have a path-independent
work with Tabjab8 50.
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