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Stability criteria for homogeneously stressed materials and the calculation of elastic constants

Z. Zhou and B. Jog
Ottawa-Carleton Institute for Physics, University of Ottawa Campus, Ottawa, Ontario, Canada, K1IN 6N5
(Received 5 July 1995; revised manuscript received 25 April 1996

Second-order elastic constants cannot be applied directly to the study of the mechanical stability of a
stressed material. We derive general expressions for stability criteria by constructing appropriate thermody-
namic potentials. For a system under isotropic initial stress, elastic stiffness coefficients which govern stress-
strain relations can be used as stability criteria. However, for a system under anisotropic initial stress, stability
criteria are different from either elastic constants or elastic stiffness coefficients. We show that stability
conditions in the constant pressure ensemble are stronger than in the constant volume ensemble, i.e., a state can
be stable in the constant volume ensemble but unstable in the constant pressure ensemble. From the general
formalism simple fluctuation formulas for the stability criteria are deduced for systems in the canonical
ensemble, for arbitrary streES0163-182606)01130-1

[. INTRODUCTION rium” fluctuation formulas for the calculation of elastic con-
stants, the reference configurati@Gre., before virtual defor-
Elastic constants provide important information concern-mations are applied to the systemust be the stressed one.
ing the strength of materials, and often act as stability criteriaVith a single shape tensor, simple fluctuation formulas, con-
or order parameters to study the problem of structural transvenient for computer simulations, are obtained for a system
formations. For comparison of experimental results withunder arbitrary stress in the canonical ensemble.
theory, it is necessary not only to have accurate experimental The paper is organized as follows. After a brief review of
data, but also to have a reliable method of calculation. ReSome fundamental concepts in Sec. II, Sec. Il establishes the

cent advances in computer-simulation techniques and foconnection between stability criteria and elastic constants.
malism have made this possidie Section |V derives stability criteria for a stressed system for

In Spite of Significant progress, there are still some Outboth iSOtrOpiC and aniSOtrOpiC Stresses, with and without vol-
standing issues, in particular on how to deal with systemgime fluctuations. In Sec. V we present, within the canonical
under stress, especially when far from their equilibrium con-ensemble, general fluctuation formulas for elastic constants,
figuration. For systems under arbitrary stress, we derive glastic stiffness coefficients, and stability criteria, and spe-
general stability criterion and clarify some points concerningCific ones for systems with central force interactions. A
the calculation of the relevant elastic constants when usin§imple illustrative example is given at the end of the section.

“equilibrium” fluctuation formulas. summary concludes the paper.
Elastic constants are often used as stability criteria with-
out giving much justification. Barron and Kléirwere the Il. FUNDAMENTAL CONCEPTS

first to clarify this situation. They pointed out that the tradi-
tional definition of the elastic constants derived from the We first recall some fundamental concepts to introduce
internal energy or Helmholtz free energy cannot be directl)ﬁhe formulas on which our discussion is based. The variety of
applied to the study of the stress-strain relationship of derminology and symbols used in this field make this presen-
stressed state. They derived the correct form of the stres$ation necessary.
strain relations for a stressed system in the microcanonical or
canonical ensembles. Wang and co-workets demon- A. Strain
strated, however, that elastic constants cannot be used as ) ) )
stability criteria for a stressed system. They suggested the In the theory of elastic contlnugirzlll\/éi/e can assign to every
use of elastic stiffness coefficients as stability criteria forP0INt in the material a coordinate™ ™ “After deformation,
isotropic stress. For anisotropic stress, they obtained a motbe displacement of a point initially atis
general form from path-dependent finite displaceméhise
establish the thermodynamic foundation of their argument u(X) =x(X)—
and elaborate on their significance.

We also show that stability conditions are dependent on,,
the ensemble used. In particular, stability conditions are
stronger in the constant pressure ensemble than in the con- R o e
stant volume ensemble, i.e., a state can be stable in the con- Ua(X) =Xo(X) =Xo, a=1,2,3. 1)
stant volume ensemble but unstable in the constant pressure
ensemble. In systems with anisotropic stress, several en-is also referred to as the reference positiorxofThe ref-
sembles can also be envisaged. erence state can be either stressed or stress free.

We emphasize in this paper that, when using “equilib- For a small deformation, we can write

o
X
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o AUL(X)o (0% @ densed Voigt notation (for instance Ci1y=Ciy,
Uy(X)= ——F—Xg=U,g(X)X5. o o o o
‘ IXp g g C1127=C12, Ci21=Cy4, €tc).

For a central force system, we can der&gﬁw straight-
orwardly from its definition, since the strain energy can
be written explicitly as a function ofy by using2

In this equation, and all subsequent, the Einstein summatio

convention for repeated suffices is followed. Note that in

generalu,z#Ug,. Sometimes the deformation parameters

U, are also called the strain tens@or instance, see Refs. by oo o o

13 and 15. X" = XT= 270 pXaXg ©
For simplicity, we shall consider only systems under ho-

. o . But for a noncentral force system, we have to use a dif-
mogeneous deformation’?***%so theu,z(X) are indepen- Y

ferent approach since in general it is impossible to express

dent ofx. _ the strain energy explicitly as a function gf Instead, we
Uqp Can be written as can expand\W—W,)/V, as a Taylor serie¥,
U,g=€up~t , 3
ap™ Cap™ Pap ®) W-W, o 12 10
with Vo Saplapt 2Saportaplor T (10)
1
€,5=5(U,g+Ug,) =€ 4)
apB™ 2\Hap Ba Ba o ol
and =CapMap™ %Caﬂtﬂ'naﬁﬂ‘”_l— o (1D

whereW, is the reference value &. éaﬁ is the component
of the applied stress tenddr'*for the reference state. The
wheree,; are the components of the elongation Or puretensorsS, 4, related to the elastic constants are sometimes
strain tensor, and .z those of the rotation tensdt*In gen-  called displacement gradient moduli.
eral, »,z are disregarded for a small deformation since they Wwe do not discuss the higher-order terms of Eg6) and
represent an infinitesimal rotation of the whole system, anq11) in this paper. They are only necessary when the stability
in the absence of internal torques cannot give rise to stressestiteria are zero.

~ The elongatione,; is preferably used in experiments,  Substituting Eq(6) into Eq.(11) and using Eq(10), we
since it is what is measured. In constrast, another strain, thghd ° with the assumption of rotational invariance,
Lagrangian strain tensdtt* defined by

waﬁz%(uaﬁ_uﬁa):_wﬁa! (5)

Tap=3(UapT Upa Uyallys) = 70, (6) Cap=Sap AN Capyr=Supor=Sp:0ar- (12

is more often used in theoretical models, as it can completely hese reliationso in E12) assume rotational invariance, in
determine the deformation of the systé#:"*An advantage particularS, =S, .
of the Lagrangian strain tensor is that, if we expand a func-

tion in a power series of;, the expansion coefficients will C. Stress-strain relations
automatically satisfy the requirement of rotational i ,
invariancet® In thermodynamics, a thermodynamic stress tenggy

In the following, when we refer to strain, we shall refer to defined by
the Lagrangian strain tensor. Another often used symbol for
the Lagrangian strain tensor égz.%"" 1 W

tog=cr
p VO &7]015

o

:osaﬁ+caﬁar7707! (13)

B. Elastic constants is introduced:* (Often an opposite sign fdr,;z is used than

Elastic constants, or more exactly, second-order elastithat in Refs. 4 and Yt,, should not be confused with the

constants, are in general defined by applied stress 4.
5 The actual measurable stre3s, corresponds to the
° _ i ( 9°W ) ) strained syste,and its reference configuration is different
BoT— o .
I NG\ 00050 N gr 7=0 from that ofC 4,,. T,g is formally equal to

whereW is the strain energy. It can refer either to the Helm-
holtz free energyF in the derivation of isothermal elastic «B=
constantgthe canonical ensembler to the internal energy V(u)
E in the derivation of adiabatic elastic constaftte micro-

canonical ensembleV, is the reference value of the volume The reference configuration is the system deformed by
V, i.e., before deformation. By definition the elastic con-Uas. @ndv g is the small deformation made on that system.
stants have the following symmetries: Using

1 (aW(UQﬁ,UQB)) (14)

é’vaﬁ UaB:O

éaﬁoT: étrfaﬁ:(o:aﬁra- (8) Xﬂ’(;):(5aﬁ+uaﬁ)(5ﬁy+vﬁ7)§(’y (15)

Equation(8) reduces the number of independent elastic conan expansion oiV(u,z,v ) leads, as shown by Barron and
stants from 81 to 21, which are often expressed in the corKlein,’ to
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:Saﬁ+ca507770'7+ Sﬁrwa7+ SaTwBT (17)
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For a mechanically isolated, i.e., constant volume system,
or unstressed system, V=0, and Eq.(24) leads to the re-
quirement thaW (E or F) be minimum in microcanonical
or canonical ensembles for stability.

where they introduce another symbol, the elastic stiffness

coefficient®

o

_ o 1 o o 0 o
Caﬁo"r= CaBo’T_ E(ZSaﬁao'T_ 8010'5,87'_ Sa'rﬁﬂo’_ 8137500'

=85, 800). (18)

f’:aﬁm is symmetric with respect to the interchangesgf) or
(o,7). However, it does not have the full symmetry of Eq.
(8). Instead, it satisfies the equalities

o

Caﬁo’r_ E(J'Tdﬁz 8076(1,3_ Saﬁé(rT ' (19)

The thermodynamic stres,; and the applied stress
T,z are related by the relation

top= de(3)I 535 T, (20)

whereJ, ;= 6,5+ Uy [det(J) is the ratioV/V,]. This fol-
lows in a straightforward way from Eqgl2), (13), and(16),

and the assumption of rotational invariance. The two quanti-

tiest,g and T,z are equal whem, or 7, is zero.
In a direct experimen®,; ande,; (or u,z) are mea-

sured, and hence, s,

D. Unstressed system

For an unstressed systeé},B=0, therefore, we have

)

&a,Ba"rz Saﬁo’rz E):a,é?a'v' (21)
Ta,B: CaB(rTu(rT: Caﬁ(rr’?(m’: taB ’ (22)
W_ WO _ 1 o 23
V—O - E aBarNapNor- ( )

In this situation, the different definitions of the elastic con-

stants are identical.

A. Unstressed system
For W in Eg. (23) to be a minimum in the absence of

strain,&aﬁm must be a positive definite tensor, i.e., all its
eigenvalues must be positive.

Explicitly, for a three-dimensional3D) cubic solid the
stability conditions ar¥

Cyy+2C1>0,

C.s>0, (25)

éll_ 612>O.

For an isotropic solioﬁtll— &12= 2644 and conditiong(25)
reduce to

SB: 2&44"_ 3&12>0
o (26
C44> 0,

where B is the bulk modulus an€,, the shear modulus.
Similar conditions are obtained for two-dimension@abD)
isotropic solids, to which belongs the triangular lattice

(27)

C.>0.

B. Stressed sytem

In the same way, for a stressed system, @4) leads to
the requirement thad=W-— be minimum in constant
stress ensembles for stability. For a system under constant
hydrostatic pressure; W=pV, so that the stability criteria

The symmetry of the crystal reduces the number of indeean be derived by requiring that the the traditional Gibbs’
pendent elastic constants to less than 21. For example, for dree energy or the enthalpy be minimum. It is equivalent to
isotropic system, there are only two independent elastic corfinding the minimum of the Legendre transfdthof W, i.e.,

stants. Traditionally\= éuzzE 6212 and u= 612125 &44 are
chosen to characterize the system.

Ill. STABILITY CRITERIA AND ELASTIC CONSTANTS

One of the most important applications of elastic moduli,

H=W+pV, and use instead ofV as anindependent state
variable However, for a system under anisotropic loading,
the traditional Gibbs’ free energy or enthalpy requires a more
careful definition. We will discuss this point in detail later.

IV. STABILITY CRITERIA FOR A STRESSED SYSTEM

such as elastic constants in theoretical models, is to use them

as stability criteria. The stability of any system is essentially
determined by the second law of thermodynamics. For a sys-

A. System with isotropic initial stress
and constant volume

tem with a fixed number of particles undergoing an arbitrary o, 4 system with isotropic reference stféss

but small transformation from stafe to stateB, the second
law say$®-2°

AW=AE—-TAS=AF (24

where —AW is the work done by the system during the

OSQB:_p(Sa'B, (28)

wherep is the isotropic stresqositive for compression
To study the problem of stability in both microcanonical

transformation. The equality sign applies for reversible transand canonical ensembles, we need to checWifs mini-

formations. If statéA is an equilibrium configuration, stabil-
ity requires that in moving to a nearby stat& — AW>0.

mum. In those ensembles the minimum W must be
achieved at constant volume, so shape changes are allowed
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without volume fluctuations. The instantaneous volukhe For an isotropic solid, either two or three dimensional, only
can be written a®/ =V, det(,z+U,p),"* whereV, is the  the first condition remains,
volume of the stressed system before deformation. This leads

to

V-V,
Vo

1
=Naat E(éaﬁ50'7'_ 5a05B'r_ 5(17'5ﬁo') NapNor
(29)

Cy>0. (37)

B. System with isotropic initial stress
and allowing volume fluctuations

Keeping the volume constant is, however, too restrictive.

to second order in the strain. To fix the volume requiresin general, instability is always accompanied by volume

V—V,=0 or
Naa™ Trﬂ: - % (501[3507'_ 50{0'5[37_ 5a75ﬁ0) NapMNor-
(30)
Substituting Eq(30) into Eq.(11) leads to

W-W, 1

vV, 2

Caﬁornaﬂn(rﬂ (31)

where

Ca’ﬁo’TE Ca,Bo"r+ p( 5aﬁ60'7_ 5ao'5ﬁ’r_ 5&’7'5[30) . (32)

Equation(31) has to be a positive definite quadratic form,

with the constraints given by E@30).

fluctuations. To allow for volume fluctuations we study the
minimum of the Legendre transfofh of W, ie.,
H=W+pV, which is the enthalpy or the Gibbs’ free energy,
and fix the pressure instead of the volume.

This problem is quite similar to the stability problem in
the study of membranes using the curvature médét:in
which the Legendre transform requires two parameters, one
is the surface tensile stress and the other the pressure.
Petersoff* clarified the distinction between the conditions of
fixed volume and fixed pressure.

By using Egs.(11), (12), and(29), we obtain

H-H,
Vo = ECaﬁarnaﬁna’T' (38)

Note that theC,4,,, have the same symmetry as the elas-and hence the same quadratic form as in B4) but now
tic constants, so they can be condensed using the Voigt navithout the volume constraints. The stability conditions re-

tation. With the constraints of Eq30) this leads to

W-Wo 1o s =2.....6 33
V0 _E aﬁaﬁvarﬁ_ 3o 30, ( )

where
f2o=C11+ Cy—2Cy5,
fog=f3,=C11+ Cp3—C15—Cy3,

f24=14p=Cpy—Cyy, Tr5=T5,=Cy5—Cys,

f26=f62=Co—Ci6, f33=C111+C33—2Cy3,

(34)

f34: f43: C34_ Cl4: f35: f53: C35_ ClS'

fa6=f63=C36—Ci6:  f44=Cua,

fas=T54=Cas, Ta6=T64=Cus,

fo5=Css,  fse=fes=Cs6,  fe6=Cos:

and
S,= 72,

S5= 2731,

S3= 733,

Se= 2712 (39

S4=21,3,

duce to an eigenvalue problem for thg, ;. tensor as op-

posed to&aﬁw for the stress-free case.
From Egs.(18), (12), and(32), it is easy to show that in

this caseC,,, is identical toEaBW, the elastic stiffness
coefficient. Since the stress-strain relations are still linear in
the strains, with Eq(17) simplifying to

TaB: - p5aﬁ+ EaﬁUTu(TT: - p5aﬁ+ Eaﬁarnari (39)

Eaﬁw and hence als€, . and Colaﬁm have the same sym-
metry relations as in the unstressed state. Moreover, we can
expect thaC 4, will yield the same stability conditions as
those obtained from the long acoustic lattice wave theory as
the latter contains the effects of stress. This point will be
illustrated in Sec. Il C, with an example of a central force
system. We can also confirm this by noticing that the equa-
tions of motion in the isotropic state can be reduced to

o PULX) o PULX)
(9:2 :Caﬁa'f o = o (40)
IX gIX

wherep is the reference density, a4, plays the same
role as the elastic constants in the stress-free state.

The stability conditions are obtained by substituting in
Egs.(25), (26), and(27), theC’s with the C’s. Explicitly, for
a cubic system, the relevant elastic constants are

The S, are a set of independent strains. Stability requires that

Eq. (33) be a positive definite quadratic form, so the stability

conditions reduce to an eigenvalue problem ffigg .

Explicitly the stability conditions for a three-dimensional

cubic solid are

C44>O and Cll_ C12>0. (36)

C11=Cui—p,
012:(0312"' p=A, (41)

Cus= 644_ P=pu.
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This is what has been suggested by Wan@l!° Earlier, are variables conjugated ©,s and €,5 vary along some
using a different approach, the same result was obtained hyath frome,;=0 to €,5=7,5. Thus the minimum of the

Basinskiet al!® in a system at zero temperature, where thetraditional Gibbs’ free energy or enthalpy is in general dif-
pressure results from the electronic cloud. ferent from that oH=W-W.

It is interesting to note that Eq31) or (33) will be a
positive definite quadratic form provided E®8) is, but the 2. System with constant applied stress

converse is not necessarily true. Therefore, we can conclude grom the above discussion. for the constant loading en-
that the condition of stability for the constant pressure engemple we need a thermodynamic potential usfig in-

semble is stronger than in the constant volume ensemble. FQfeadt,,; as independent-state variables, and stability criteria
instance, for an isotropic solid, in the constant pressure eNsan then be derived by requiring this thermodynamic poten-

Semble,B.>O is necessary for stability, but this is not re- {5 15 he minimum. Such a thermodynamic potential can be
quired with constant volume. As a consequence, a statgptained by a Legendre transfcdtn

stable in the constant volume ensemble may be unstable in
the constant pressure ensemble. This may account for the H=W-V,T,5f0s- (44)
: . . apSap
fact that two-phase coexistence is allowed in the constant
volume ensemble but prohibited in the constant pressure en- To find the stability criteria, we need to consider a small
semble. deformation from some reference configuration. To first or-
derinu,g, we have

C. System with anisotropic initial stress de(J)J;jJ;Bl: (14 Uii) (50— Uga) (875— U, p)
For a system under anisotropic stress, it is even more = (14 Uj))(8400,5— Ugadrs—U,5650)
crucial to consider volume fluctuations; since a system with-
out volume and shape fluctuations is always in mechanical =05a078F 05a0:pUii —Uya b5~ U 505, -
equilibrium, no stability criteria is required. In general, shape (45)
fluctuations require mechanical works, so stability is not _ _
achieved by requiringV to be minimum. Neglecting the rotational terms,,z,
. de(‘])‘];i‘-];l: 50’a57'ﬁ+ i 5001573_ 770'(1/57'[3_ nTﬁao'a .
1. System with constant,ls (46)

At first thought, one could try using the traditional
Gibbs’ free energy G=F—V,t,z7,s Or enthalpy,
=E—Volapas, > to determine the stability of an an-
isotropic stressed system as we did in the last two sectionia,ezf (O5aOrpt €ii05adrp™ €5abrp™ €:3040)UEy,
But since the quantity conjugate to the straj, is the

Therefore, to second order in,z,

thermodynamic stress tensog;, the minimum must be

achieved under the condition obnstant §4. In this case it - ’7&B+J (€rodeas™ €saless™ €450 700)

follows from Eqgs.(11) and (12) that stability requires that

the elastic constant tenséraﬁw be a positiye de_finite ten- = ”“ﬁ+%f [€rodenpt €upde,,t €ppde, g~ €,pde€,,
sor. The constartt,; ensemble can be realized in computer

simulations’® However, as seen from E¢O), the applied —20(€qn€so)]

stressT 4 fluctuates in this ensemble. Also, a diagotigl ;w 7

does not lead to a diagonal, or isotropic,;, and this is =Nagt 3 NoeNaB™ Nac B0

why the corresponding stability criteria are different from

those obtained in Secs. IV A and IV B. Therefore, this con- +%f (€rpd€np— €qpldeyy) 47)

stantt,; ensemble is not equivalent to the ensemble of con-
stant applied stress, and so one has to be careful in compaing
ing the results obtained from this ensemble with experiments

or theory. We can also see this point by noting that under Topbap=Tap( 77a/3+%77w77a5— Nao o)
constant loadingA W+ Vt, 57,4 Instead, for a quasistatic
proces§,1'13’l4'17

1
+ ETaﬁj (eoa'déaﬁ_ Eaﬁdeo'o)

= Taﬂ( naﬂ+ % NoocNap™ 77&0'7730')
-14-1
AW:VOJ de(‘J)‘JaJ‘JﬁrTUTdeaﬂ:VOTaﬁgaﬁ1 (42)

1
+ EBQBUTJ Eo"rdéa,l?! (48)
where where
Baﬁ(ﬂ': Taﬁ‘s(rr_ T(J'Tgllﬁ: - Baraﬁ . (49)

_ —-14-1
gaﬁ_J detJ)dged pdes, (43 The last term in Eqsi47) and (48), Taﬁg;B, where
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g;ﬁzf €s0d€0p— €pd€q,, (50)

is path dependent, and of the same order of magnitude as

NapMer- 1he deformation-path-dependent naturefég{ was
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H=W- VOTa,Bnaﬁ_ %VOALYBUT”&’,B”O'T' (56)
with
gaB: Nap™ Nao 7750'+ % NapNoo (57)

first pointed out by Wangt al!! For instance, along a path and

defined by
o +
Napl 1— coszx , aFf
eaﬁ: . (51)
Nap singx, a=p,

&0p=L(m12)=1](1= 8,p) 7apnse (NO SUMMation forr and
B). Equation(50) can be rewritten as

Ea
Eup™ f (ewﬁd(e—ﬁ). (52
Along a straight line it is trivial to see th@l;ﬁ=0. The same
applies to volume-preserving pathg, (=0). And if one
considersTaﬁg;B, it will be zero if T,z€,4 is proportional
to the volume change,, . This is similar to the isotropic

(oo

case, where the work is always proportional to the volume

change.

The important thing for our purpose is that paths can be

paired. To every path,

EaB:faB(X)1 faB(O):O, faﬁ'(l): naﬂv
1
0= | THo0001400= 1000 1,0010x, (53
, B df,s(x)
faﬁ(x)_ dX ’
there exists another path,
€ap™ Nap™ fa,li’(l_x)! (54)

such that¢, 5(1) + &,4(1") =0. From which it follows that

(&,5)=0. (55)

This allows us to define a thermodynamic potential for
each point in spite of the path-dependence of the work. We
define the change iH, in going from one point to another,
as an average over all possible paths. The path-depend

term is eliminated becausg,z)=0. This is also what is

obtained by following a straight line between two points.
Choosing the average is more convenient than looking fo

2-’4&,80'7': Ta,850'7'+ Toraaﬁ_ Trﬁaao'_ Traéﬁa'_ Taa'aﬁf
- Tﬁ(rgaf : (58)

Aqpo- has the same symmetry as elastic constants.
Between any two points in configuration space, the differ-
ence in this thermodynamic potentidlis the change in the
free energyW minus the average work between the two
points, which is the same as the work along a direct straight-
line segment joining the two points. One has to be careful
not to infer from this that, when connecting two points by a
trajectory made of small straight line segments, that the work
done by the system, is the same as if the points had been
connected by a single direct straight-line segment. The path
dependence of the work requires us always to consider the
work as being an average over all trajectories connecting the
two points.
Requiring thatH, be a minimum leads, from Eq$l1)
and(12), to

Top=Sup, (59)

and the corresponding energy variation close to the mini-
mum is of the form

H-H, 1

vV, 2

aﬁo"rnaﬁ Nor (60)

whereosaﬁ is fixed and not diagonal, and

jo] o o

Caﬁ(rTE CuzBU'T_ Aaﬂo’TE %(Caﬁ(n'_'— C(M‘aﬁ)
= Caﬁo’f_ %(SQB50'7'+ S(r‘réaﬁ_ éa(r(sﬁr_ SaT(SBa'

- 0837'5(10'_ éﬁ(r&af) (61)
is the positive definite quantity for stability. Note that the
only difference between&aﬁ,” and C,z,, is that the term
28,55,, N C,p,. is replaced Y5, 55,,+8,,8.5-

It is easy to check tha€C,gz,, has the proper isotropic
limit. Condensed expressions in terms of the Voigt notation

A still possible, but the number of independent elements

determined, not only by the symmetry of the crystal but also
by the symmetry of the applied stresg,, will likely be

plcreased, this, in particular, since the reference state itself
will usually have a lower symmetry, and hence more elastic

the minimum. As discussed in the Appendix, extrema of J _ _
¢.,5 do not usually exist for general deformations in the an-constantsC,,, will be required.
isotropic case. It should be noted that for a stressed systenqy,,,

In discussing stability, th ,z¢,, 5 term is not required. f:aﬁw, and éaﬂm are dependent on the stress. They are no
Stability criteria are always with respect to infinitesimal dis- longer intrinsic properties of the system, and hence cannot be
placements from some equilibrium configuration; displace-used as probes of the interatomic forces.

ments, in such limits, are linear, hence fhgs¢, , term is
zero anyway.

Therefore, up to second order iny,gz,
—V,Tapéap Can be written as

H=W

This result is the same as the one recently obtained by
Wang et al!! for isothermal systems. They considered
AG=AF— AW and required\ G>0 for stability, a condition
identical to minimizingg=F —W. We strengthen their argu-
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ment by considering in detail the effect of the deformationwhere the(...) designates configurational averages and
path-dependent terrd, ;. As pointed out above, without &(A)=A—(A). The last term comes from the identity
considering it, the positive definiteness ©f,z,. does not

automatically lead t&AG>0 or G minimum. ( 2inv

V. CALCULATION OF THE ELASTIC CONSTANTS
aﬁaﬁanor

) =—( 5a0'5ﬁ7'+ 5&76Ba') : (66)
7=0

There are various approaches to calculating elastic con-
stants: direct computation of the stress-strain relations b . .
deformation of the simulation cell, strain-strain ﬂuctuation}'f-he NkgT/V, terms can be simply understood as resulting

methods where the elastic constants are extracted from tHE2™ Fhe finite Size of th(_a sample. One way to IOOK at it 1S
fluctuations in the shape of the simulation cell, and the at, if thg spatial coor'dln:?\tes are scaled to the simulation
“equilibrium” fluctuation method. It is this last technique box coordinates to maintain them constant under deforma-

that we shall discuss. In this method, a formal expression i§0ns, V" appears in front of the partition function leading to
derived for the elastic constants, from the second derivativ&" N InV term in the free energy. In this way we can avoid
of the free energysee Eq.(7)]. The elastic constants are the use of the scaled momenta used in Refs. 4-8, and the
directly obtained from the microscopic fluctuations within kinetic energy in the Hamiltonian does not depend on the
the system. The method has the advantage that no actusirain.
deformations are made, so no symmetry breaking occurs, From Eg. (18) we get the elastic stiffness coefficients
and all elastic constants can be obtained from a single run. Which are the quantities determined from direct experiment,
must be emphasized that the derivatives are taken with re-
spect to a reference configuration, the one on which virtual 1 < 92H >

7

o

deformationsy,; are applied for the purpose of calculating Capor=\ 7
the elastic constants. Hence, at every step of a computer run, Vo \ apdNer

the reference configuration and volume must be the instan-

taneous one 1 IH IH
- S S
I(BTVO (97751,8 (9770'7'
A. Equilibrium fluctuation formulas in the canonical ensemble 7=0
Since the reference configuration is the instantaneous con- 1 oH IH

figuration, a straightforward derivation of the elastic con- ) E) o\ g BT

. . . . naﬂ Nao _
stants can be accomplished as in Ref. 3, resulting in easy to U =
program formulas. The canonical ensemble is used because it
! IH IH
is the most commonly used ensemble, and the most appro- — B~ o
priate for the calculation of elastic constaffhere are dif- IMar INp; =0
ficulties in calculating elastic constants on other ensembles,
such as the constant pressure ensefMi&W is in this en- IH NkgT 5 s 5
semble the Helmholtz free energy With the Hamiltonian B Mgy ar v, CaBCor (67)
H, n

H:H(erv 7]lN)l (62) 1 i i
x andp representing the coordinates and momenta ofNhe Replacing 291/974p),-09,- In the above expression by
; (OHI I a5) =005+ (IHIINGr) n=00a5, WE get the ele-
particles, aprn=0"or. . tor n=07ap . .
ments of the positive definite tens0t, 5., which determines

1 iy
F=—ksTINZ with z= | e ™*sTd7. (63  Stability:

C
C is a constantdr the differential volume element in the 1 PH
6 N-dimensional phase space, akg the Boltzmann con- caﬂ07=_<—>
stant. It follows from Eqs(7) and (12) that Vo \ 07apdNgr
°Saﬁ=c°;aﬁ=vi<_jH > _ N\I;BT Z'nv) L[ o) [
0 naﬁ 7=0 © naﬁ 7=0 I(BTVO 077701[3’ ‘97707' -0
! < ot > NkeT (64) 1/ oH IH v
VO 57]043 -0 VO “k - = 50.T+ 5&,8
K 2 077701[3’ 0770'7'
and 7=0 7=0
o 1 I*H _ IH So— IH 5
CCKBU'T=V_ W (?770(0' BT 0777&7 BO—
0 7]0{[3 Nor 7=0 7n=0 7n=0
ALE L) pCA e Y
KeTVo \ "\ 0%ap) \0n0:) [ g Ipr| g Ipo |,
NkgT N NkgT 5 s 69
+ V—o( 5ar75ﬁ7+ 5:17-5[3(7-)1 (65 V, aBYor-
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The first term inC,z,, . is referred to as the “Born term,” erence valué, should have the value of the instantaneous
since it corresponds to elastic constants at zero temperaturgressed system. In other worldlg=h. However, ifhg#h,

The second term is the “fluctuation term.” The third arises Eg.(4.3) in Ref. 7 will differ from the formulas given below;
from the effect of the stress. The last, discussed above, r the simplest case of isotropic stress by an additional un-

sometimes called “the kinetic term®” required factor Y//Vo)*?.
We mentioned earlier that the reference state should be
the instantaneous state. The effects of the choice of the ref- B. Special case of the central force system

erence state will be negligible for small deformatigqnsla-
tive to the stress-free statbut not for large deformations.
The definition of elastic constants in most papéis in-
stance, see Refs. 4—8 and) ¥dquires implicitly the natural
(stress-frepreferenceinitial) configurations, therefora pri- H= E
ori their expressions are only valid for systems under mod-

erate stress. Their expressions involve a tehsoonstructed

from the three vectors forming a parallelipiped, which is theBy using Eqs.(9) and (64)—(69), it is straightforward to de-
periodic simulation cell. By definition, from Eq7), its ref-  rive

For a central force system,

+2 D(|x—x;]). (69)

g & 1 > A, (1] )AX4( ] O\ _NkeT 70
BT aﬁ_v < Xa(IJ) X,B(IJ)T - vV aB ( )

o

1 TR I B
caﬁm=v<i2<j Axam>Axﬂ<u>Axg<u>AxT<u>r—2(¢"——)>

r

!

1 d’ P
kBTV< (2 Ax (u)Ame)—) (;J AX,(i])Ax,(i]) —

NkgT
+—y (BarOprt 8ardpo), (71)

. 1 T B B X
Ca,Ba'T:v 2 Axa(lj)AXB(IJ)AXU(IJ)Axf(IJ)r_Z((D -

r

1 d’ P’ 1 d’
—kﬁ,< (2 Ax, u)Ame)—) (; Axg<ij)AxT<ij>T)> 2\,( <2 Ax(i]) Axg(if) — >

i<j

(D/ @I q)l
—<§] Axa<ij>Axc,<ij>7><S,;T—<;j Axa<ij>AxT<ij>7>6&,—<i2<j Axﬁ<ij>AxT<ij>T>5M

o’ NkgT
—\ 2 AXg())AX, (1)~ ) Bur | + = BapBor (72
i<j
|
where we have dropped the symbof*for the reference It is interesting to note that for the central force system,

state, andp=0 on the averages for simplicity. In addition, the Cauchy relatiort$ (in Voigt's notation
Ax,(ij) andr were defined as

Ax, (i) =X, (1) =X, (), (73) C23=Cys, C31=Cs5, C12=Cgp, C14=Cs6C25=Ceg4
2= Ax,(i)[2 (74 Cao=Cas:
Capo- IS Obtained by replacing the terms hold at zero temperature for arbitrary stress, but&ggm

and C,z, . the Cauchy relations require both conditions of
zero temperature and zero stress.

q)l
2AX (1] )AXg(1)) — 6 o
Xa(l1)AXg(1]) r o7 For a cubic crystal under hydrostatic pressutgg,, . in
Eq. (71) reduces to the form obtained by Squire, Holt and

in &aﬁ(rT with Hoover! and is valid even for high pressures. The relevant
) , quantities for stability are the relate@, s, ,. The three in-
AXo(i])AXg(I] ) — 8,y + AX, (1] ) AX,(i]) dependent ones in the condensed notation are given in Eq.

(41). The pressure is obtained from Eqs(28) and (70).
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C. An example respect to infinitesimal displacements about an equilibrium
In two dimensions at zero temperature, EZ@) with Eq. conf!guration: _The general stability criterion under constant
(41) yields loading conditions is the same as the one derived by Wang
et al through finite deformations: it is the positive definite-
ness of

1 ¢N l ¢/
N=g2 7 (A0%AY)P- G2 13 (A0)(Ay)?
1 CaBUTE CaBa'T_ %(Sa,B50'7'+ Sa'féaﬁ_ Saogﬁf_ Sa7'5/30'
— oy 1, (75 _ °SBTgw_ fgﬂagm), (81)

1w & 1w @ Only for unstressed systemsa(ﬂZO) do we have the usual
m= vE Tz(AX)z(AY)Z— vz Tg(AX)Z(AY)Z condition of a positive definite elastic constant tensor

&aﬁm. With isotropic stres€ 4, ,= Eaﬁm, the elastic stiff-
ness tensor. But for arbitrary anisotropic str€sg,, . will be
distinct from both. We have also shown that, in the isotropic
case, the stability conditions are stronger in the constant
It follows from Egs. (75 and (76) that, for a two- pressure ensemble than in the constant volume ensembile.
dimensional isotropic crystal under hydrostatic pressure and It should be noted that each physical situation may call for
at zero temperature, >0, then\ + u>2u, and the shear a different relevant quantity. Acoustic experiments, related to
instability will always occur prior to the spinodal instability the stability question, would measug, s, in the absence
(in the sense of vanishing bulk modulus, i.e.,of stress and for isotropic stress. In direct experiments, such

B=A+u=0). In contrast, ifp<0, then\ + n<2u, and the  as elongation, the elastic stiffness coefficiengg, , are mea-
spinodal instability will always occur prior to the shear in- syred. When constructing interatomic potentials, it may be

stability. We can expect these conclusions also to be valid greferable to work with an unstressed system, the only situ-
low temperature. But they cannot be applied to bulk systemgltion where the elastic constarli°1§ robe intrinsic orop-
since in three dimensiorB=(3\ +2u)/3. por P prop

As an example, we consider a two-dimensional systen(?rtie.S of the system. The formalism has b‘?e” developed as-
with a piecewise linear interparticle interaction, suming a rotgtlonal Invariance, 1.€., rptat|ons prqduce no
stress. There is, however, no obstacle in generalizing to sys-
tems where rotations produce internal stresses. But this
would mean, from Eq(7), a significant increase in the total

1 i
oy 14 (76)

2 k(r—do)?—kw?, r=<dy+w

D(r)=4 —1(r—do—2w)% do+w<r=dy+2w (77) number of elastic constants to be considéred.
’ A thermodynamic potentiaH under constant loading
0, r>dy+2w. condition T, ; can be defined even in the anisotropic case,

where the work has a path-dependent component, by consid-

ken bond in the core of a dislocatidhWhen the density ering the average over all paths. In principle, therefore, we

p=(do/d)?<1.78, the system forms a triangular lattice, andhave’ fora spemﬂd’aﬁ, anH for all value§ of strairm, g .
#n small deformations of a reference configuration, the work
0

only nearest-neighbor interactions need to be considered. : ; : ;
From the above equation, it follows that r straight I|n_e paths are simply obtained, but for more com-
plex deformations a path-dependent term should also be con-
3 sidered.
u=Cy=—(4—3pk, (79 Finally, we have clarified the problem of the choice of the
4 reference configuration in the calculation of elastic quantities
(it has to be the instantaneous @ndhe same applies
to other ensembles such asHt(N),® (TtN),°> and
(H,T.N).? Simple fluctuation formulas are given for the

stability criteria of a system under arbitrary stress in the ca-
where p is the density relative to equilibrium. This agrees nonical ensemble.
with the results obtained from a long-wave expangfoand

with w=0.15d,. This choice ofw corresponds to one bro-

J3
xzc12=7(5p1’2— 4)k, (79

gives the correct shear instability at= 3. In contrast, ACKNOWLEDGMENTS
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VI. CONCLUSION APPENDIX: EXTREME DEFORMATION PATHS
FOR Taﬁg;ﬂ

The stability of homogeneously stressed systems has been
discussed in a thermodynamic framework by requiring that Using Eq.(50) with €,5= €,5(X), wherex is a path pa-
the appropriate thermodynamic potential be a minimum withrameter, we have, for an arbitrary path
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Taﬁg:zﬂz f (TQBIGQBGO'O'_TCYBGCYB.GO'U')dX' (Al)

The Euler equations for the deformation paths maximizin
TQB§;B are

Taﬁb‘o’T.EaB_TUT.eaazo' (AZ)

For isotropic stressT,z=—pd,s), the above equation is
satisfied automatically. But for anisotropic stress, EAR)
with o# 7, yieldse, =0, ore, =0, using the initial bound-
ary condition, andy,,=0. These are volume-preserving de-
formations, reached by volume-preserving paths. &her
terms then giveTa,;isa,ﬁO, or T,g€,5=0 along the path,
and the final valuer ,z7,5=0. For these special paths, it

follows immediately thaﬂ'a[,g;B: 0. The linear deformation
paths toz,,, satisfying the above two conditions, are obvi-
ously part of this set. Therefore there may exist, in aniso-

gtropic cases, a set of volume-preserving deformation direc-

tions with extreme paths attaining them, which have path-
independent work with the above constraints. For arbitrary
745, however, there usually will be no extremum path. If
€, are bounded, the extremum path will be determined by
the boundary.
For the case of uniaxial tensioh,z=—pé;,615, and

ap€ap™ —P€17=0; Or €;=0 with constant volume. Defor-
mations obeying these constraints have a path-independent
work with T, g/, ,=0.
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