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First-principles study of stability and vibrational properties of tetragonal PbTiO 5
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A first-principles study of the vibrational modes of PbTEith the ferroelectric tetragonal phase has been
performed at all the main symmetry points of the Brillouin zgB&). The calculations use the local-density
approximation and ultrasoft pseudopotentials with a plane-wave basis, and reproduce well the available ex-
perimental information on the modes at theoint, including the LO-TO splittings. The work was motivated
in part by a previously reported transition to an orthorhombic phase at low temperatiiréobayashi, Y.

Uesu, and Y. Sakemi, Phys. Rev.2B, 3866(1983.] We show that a linear coupling of orthorhombic strain
to one of the modes dt plays a role in the discussion of the possibility of this phase transition. However, no
mechanical instabilitiegsoft modeg are found, either af' or at any of the other high-symmetry points of the
BZ. [S0163-18206)04529-9

I. INTRODUCTION cused on a given material to be of much use in the unravel-
ing of the chemical trends within the perovskites.

Due to their relatively simple structure and the variety of ~ This situation has improved in the last few years with the
phenomena they exhibit, the perovskite oxides have becomgse of accurate first-principles density-functional calcula-
important subjects of study. Despite sharing a common fortions to study the energy surfaée$ and even the
mulaABO; and a highly symmetric high-temperature struc-temperature-dependent phase diagramef various perov-
ture (Fig. 1), this family of compounds presents a rich and skite oxides. These works have achieved a high degree of
varied low-temperature phenomenology. Among the perovssuccess in reproducing qualitatively and even quantitatively
kites one finds ferroelectric crystals such as BaJiénd the experimental observations, giving us confidence that one
PbTiO;, antiferroelectrics such as PbZgGand NaNbQ, can now carry out accurate calculations to elucidate micro-
and materials such as SrTiChat exhibit other, nonpolar scopic behavior(importance of hybridization, competition
instabilities. between long-range and short-range interactions). &c

Much progress has been made in the last 50 years in the
experimental characterization of the properties of these com-
pounds. One of the main conclusions to emerge from these
studies is the fascinating dependence of the structural and
dynamical behavior on details of chemical composition. In-
deed, even within a given subgroup of materials one finds
significantly different phase diagrams. For example,
BaTiO5 exhibits a complicated sequence of phase transi-

C/Q
J
tions, from cubic to tetragonal to orthorhombic to rhombo-
hedral, while PbTiQ shows just one clearly established
O

O

\

transition withT.=493°C from the cubic paraelectric phase
to a tetragonal ferroelectric structure. Moreover, the replace-
ment of Pb for Ba also has important consequences for the
dynamical processes leading to the transition. It is acknowl-
edged that the soft mode in BaTiQs highly overdamped,
and therefore that the transition has some order-disorder fla- II\ -
vor, whereas PbTi@ has been called a “textbook example
of displacive transition.® ‘ p

Until recently, however, theoretical models of perovskite
properties could not properly take into account the fine
chemical details that distinguish the behavior of the different £ 1. structure of ferroelectrittetragonal PbTiOs. The ar-
materials in this family. Semi-empirical methods are not acows represent the displacements of the atoms with respect to their
curate enough to model the sort of delicate balance betwegsbsitions in the cubic high-temperature phase. Pb atoms are de-
effects (long-range dipole interactions vs short-range cova-icted by open circles, the Ti atom by the black dot in the center of
lent and repulsion forces, for exampland schemes based the cell, and the O aton®;, O,, and O;, displaced from the Ti
on model Hamiltonians are usually too simple and too fo-atom alongx, y, andz, respectively by shaded circles.
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good example is the recent work of Rabe and Waghﬂ]are, TABLE |. Character table and decomposition of the vector and
which has helped revise the conventional wisdom relative te¢econd-order symmetric tensor representations for point group
the behavior of PbTiQ. Indications of a problem with the 4mm.

simple displacive picture were first seen experimentally ir
extended x-ray absorption fine-structure measureniems, E C,,C;' C, memy mgmg V  Sym{VXV]
the theoretical workhas provided the microscopic underpin-

nings of a partial order-disorder character of the cubicht 1 1 1 1 1 z X +y?,2?

tetragonal transition in which the atomic distortions in theAz 1 1 1 -1 -1

high-temperature phase are proposed to arise from a locB: 1 -1 1 1 -1 x2—y?

instability. B, 1 -1 1 -1 1 Xy
Another issue, with which we will be mainly concerned in E 2 0 -2 0 0 &,y) (zx,y2)

this paper, is the possible existence of a low-temperature
transition. In the 1950s, Kobayas#ti al® reported the obser-
vation of what appeared to be a distortgdultiple” ) te-  agonalization of the dynamical matrix, itself obtained in a
tragonal phase of PbTiQbelow approximately—100°C.  straightforward manner from the force constam%g which

After several negati_ve attempts by othe_r researchers to reprenter the expansion of the energy to second order in the
duce the observatior$, x-ray and optical measurements atomic displacements,

were presentéd as corroborating the existence of a low-
temperature phase with an orthorhombic structure. The tran- o

sition, at—90°C, would be second order, and bring about a E=Eo+ >, DiPul ul. (1)
very slight distortion of the tetragonal phaseth the ortho- jap

rhombic cell parametera and b differing by just 4.5

X 10 *A at —194°Q and the direction of the lattice vec-
tors kept unchanged. The absence of superlattice reflectio

would imply a symmetry distortion without multiplication of It is well-kr_lown th"?‘t the normal modes of V|brat|o_n of a
the size of the unit cell. crystal at a giverk point of the BZ transform according to

From the point of view of the microscopic dynamics of irreducible representations of the group of the wave vector.
the tetragonal structure, such a transition could be explaineghus @ judicious use of the symmetry information available
by a mechanical instability of a zone-center phonon whos&MPlifies the analysis and saves computational work. Sym-
associated atomic distortions break the tetragonal symmetryetry arguments can also profitably be used to determine the
and thus relax the requirement thatand b be equal. At orm of the series expansion of the total energy of the crystal
T=0 the energy surface should then present a saddle point §f°und a given configuration, including the correct couplings
the configuration corresponding to the tetragonal phase, witRTong various degrees of freedgsuch as atomic displace-
the energy decreasing along a coordinate representing tBENtS and strains This is precisely what is needed for a
amplitude of the soft mode and the coupled orthorhombic€tailed study of the energy surface and the possible appear-
strain. ance of mechanical instabilities.

In this paper we have used first-principles calculations to ' this section we present a brief account of the use of
study possible mechanical instabilities in the ferroelectric teSYmmetry considerations to characterize the possible insta-
tragonal phase of PbTiQ Our focus has been primarily on b|||t|e§ of the tletragonal ferroelectflc phase of PbTiO
homogeneous(zone-center distortions of the tetragonal Experimentally’” it has been claimed that the low-
symmetry, aimed at a detailed theoretical assessment of tf}{§mPerature structure has orthorhombic symmetry and there
possibility of the phase transition suggested by KobayasH® NO Sign of cell doubling. Accordingly, we devote a sub-
et all! However, in the interest of completeness, we havesection to the study of zone-center instabilities of orthorhom-

also carried out an analysis of the normal modes at all th@C character, and to the investigation of the form of the
main symmetry points on the surface of the Brillouin zone€"€rgy as a function of the relevant degrees of freedom. A
(BZ). Thus we also present a fairly complete collection ofSecond subsection considers distortions that might conceiv-

normal-mode frequencies and eigenvectors for ferroelectri@Ply 18ad to a low-temperature phase transition but involve a
PbTiO; computed from first principles. nonorthorhombic symmetry or a doubling of the unit cell.

The paper is organized as follows. In Sec. Il we undertake
a classification of the types of possible distortions of the A. Orthorhombic instabilities with no cell doubling

tetragonal phase of PbTiDaccording to their symmetry.  The ferroelectric phase of PhTiQFig. 1) is tetragonal,

Section Il briefly describes some technical aspects of ouyii space groufP4mm. At the T point, the group of the
calc_ulations, who_se rgsu!ts are presented in Sec. _IV. .Secti ave vector is the point group of the crystam#n, charac-
V discusses the implications of our work for the likelihood o ;64 by a fourfold rotation axis and four symmetry planes
of a low-temperature transition in PbT{OThe Appendixis  \yhich contain it. Table | displays the character table for
devoted to some issues related to the coupling of atomigmm There are five symmetry classes and thus five irreduc-
displacements to strain degrees of freedom. ible representationgirreps, of which one E) is two-
dimensional.

The decomposition of the vibrational representation’ at
can be shown by standard techniques to be

In the harmonic approximation, the calculation of phonon
frequencies and mode displacement patterns involves the di- Vib(I')=4A,¢B;®5E. 2

The force constants can easily be calculated by computing all
ﬁge forces caused by a given sublattice displacement.

Il. THEORETICAL ANALYSIS OF POSSIBLE
INSTABILITIES
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TABLE Il. Symmetry analysis of the normal modes at different

r=mn,,
points of the BZ. “

S=(yxt 77yy)/2a

k, (Group Irrep  No. of copies Basis
I',Z (4mm) t= (7 x— 77yy)/2-
';‘1 ‘11 PbZ’T'SOiZ;OZZ’O& Portions of » transforming according to the identity repre-
1 iz Mz sentatiomA; leave the tetragonal symmetry unchanged. Such
E 5 (2D) Pby , Tiy,01y,054,03y

is the case for ands, which refer to symmetric axial and

Pby, Tiy 01y,0z .03y in-plane strains, respectively. The other strain irreps are as-

X,M’ (mm2) sociated with lower lattice symmetries: monoclinic fiy
A, 5 Pb,,Ti,,01,,0,,,04 gnd orthorhombic foB,; and !32. While aB_z (77xy) distor-
A, 3 Tiy,0py,0s, tion leads to an orthorhombic structure with axes rotated by
B, 2 P, Oy, 45° with respect to th_e tetragonal basis, a pBret) strain
B, 5 Ph,,Ti,,01¢,05,0s, transforms the (_:eII into an orthorhombic one _Wlthou_t a
change in the orientation of the axes. The latter is precisely
M,R (4mm) the kind of low-temperature phase suggested for PRTIO
Ay 2 Pb,,0;y+ 0y Apart from the change in the orientation of the axes, there
A, 1 01— Oy is an important difference betwedy (7,,) andB, (t) cell
B, 1 O1y— Oy distortions. Since the orthorhombic strdirtransforms ac-
B, 3 Ti,,03,+0y,03, cording to theB; irrep, it can couplelinearly to the B;
E 4 (2D) Pb,,Tiy,0,,,03 normal coordinaté? Therefore, the crystal energy expansion
Pby, Tix,01,,03 considering only thé8; mode and strain is of the form
E=Ey+ s ku’+ : Ct?+ yut+- - -. ©)

Physically, this means that the problem of diagonalizing the
15X15 dynamical matrix reduces to three simpler tasks: thet js shown in the Appendix that the linear coupling in Eq.
diagonalization of a X4 matrix to decouple the four copies (3) jmplies a renormalizatiorC.4=C— y%k. Thus strain
of the A, irrep, a similar 5<5 diagonalization folE, and a  ¢qypling could create instabilities agaiBs (orthorhombig

simple calculation of a force constant to obtain the frequencyisiortions even if the “bare” second-order coefficierits
of the B; mode (its displacement pattern being completely andC are positive

determined by symmetfy The atomic motions are, there- In contrast, any coupling of th&, strain to a given

fore, coupled only within subspaces of the original 15'atomic displacemeri must be at least of second order
dimensional configuration space. The four-dimensiofal P '

subspace corresponds to coupled motions with Hdis, 12, 12 5 2 4 4

Ti,, O4,+0,,, Os,] and the one-dimension&, subspace ~ E=EoT 2ku™+ 3 Copieyt + yumy+ au™+ gyt - -,

represents a normal mode with a displacement pattern of the 4

form [O4,—Oy,]. Of course, atl’ there are three zero- ih no renormalization of the elastic constadt(see the

frequency acoustic modes. Two are degenefai@vements Appendiy.

anng_x ory) and transform according t6, and the third is In summary, if the purported low-temperature phase tran-

polarized along and belongs t&\,. The complete symme-  gjtion in PHTIO, is indeed to an orthorhombic phase with no

try specification of all the normal modeswﬁtand at other  ce|| doubling, and with the basis parallel to the tetragonal

high-symmetryk points appears in Table if. one, it should be linked to a negative effective elastic con-
It is simple to use this symmetry information to analyze siantc.,, for at strain. If one allows for the possibility of a

the possible mechanisms leading to the experimentally SUguation of the axes, the transition could be associated with a
gested phase transition from the tetragonal to an orthorhorrh-egmive “bare” elastic constant for B, strain.

bic structure. By looking at th€ entry in Table Il and con-
sidering the characters in Table I, it can be immediately

concluded that théB; mode has the right transformation B. Other instabilities

properties. In this mode the Oand O, atoms move in op- Apart from the experimentally suggested instability of the
posite directions along the axis, thus breaking the fourfold tetragonal phase in favor of an orthorhombic structure with
symmetry. no cell doubling, there are, in principle, other distortions that

A calculation of the frequency of this mode is not enoughmight conceivably lead to phase transitions. To begin with,
to determine the existence of an instability, since one should@nd by reference to Table I, one could think of an instability
take into account possible couplings of the atomic displaceleading to a phase with monoclinic symmethut still with-
ments to changes in the size and shape of the unifstedin ~ out multiplying the size of the unit c¢lassociated with dis-
variableg. The possible strains that can be applied to the celtortions transforming according to tre irreducible repre-
are represented by the components of a second-order syrsentation. The analysis of this case is conceptually very
metric tensor ¢), and can be classified according to irreduc-similar to the one carried out for tH#, distortions, with the
ible representations of the point group of the crystal adifference that there are eight optical modes capable of
shown in the last column in Table I. In what follows we use coupling to strain(four for each of the rows of the two-
the notation dimensional irrefE). Thusx- andy-polarized normal modes
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Z z displacements of Pb, Ti, Q O,, and G;.
M’ Strain parameters are determined by subjecting the crystal
to pure strains and fitting the energy to a polynomial form.

S The strain-phonon couplings are computed by finding the

RSOSSN USRI forces on the atoms caused by a suitable strain, since, from
| R Eq. (3),

(&E) . 5
______ o =7t
b X aul _,

We use ultrasoft pseudopotentials, a plane-wave basis set,
M and a conjugate-gradients algorithm to compute total ener-
gies and forces for a variety of crystal configurations. The
method and the details of the pseudopotentials employed
FIG. 2. Sketch showing the irreducible wedge of the Brillouin haye been described elsewh@feor this work we find that a
zone associated _with thé4_mm space group, and the positions of (4,4,9 Monkhorst-Packe sampling of the BZ is enough to
the symmetry points considered in this work. provide good precision in the calculated coefficiefdse
] ] ] ] next section Force constants are computed using the
will couple linearly toxz andyz strains, respectively, result- Hellmann-Feynman theorem, with atomic displacements of
ing in a renormalized elastic constaDy for E distortions. g 002 in lattice units.
~ Next to consider is the possibility of structural phase tran- A final methodological note concerns the calculation of
sitions associated with a multiplication of the size of the unitine frequencies of longitudinal optid.O) modes at the’
cell. These would come about through the instability of non-yoint. Since our calculations use periodic boundary condi-
I' modes. Since there is no possibility of coupling of thesetjons, we are not able to introduce a macroscopic electric
modes to homogeneous strain at first order, one needs only @4, such as it would arise in an ionic crystal in the presence
compute the eigenvalues of the force-constant matrix tf 54— 0 longitudinal vibration. This field creates a splitting
check for any saddle points in the energy surface. It is Nopf the frequencies of infrared-active phonons, with the cou-
feasible to study the modes at all the wave vectors in the BZpIing constants being the ionic effective charggs. The
so we focus on a few high-symmetkypoints on the zone  fgrce-constant matrix has to be augmented by the effect of a

surface(see Fig. 2which represent cell-doubling distortions. screened(by electronic effects only Coulomb interaction
The symmetry analysis of zone-boundary modes proceedgmong those effective charges,

along the same lines as those farOperations that leave the
wave vector invariant will, in general, form subgroups of oB B dme
4mm. For the purposes of our work it suffices to consider PiT =P Qe
just one more point groupnm2, whose character table is ) ) ] o

given in Table 112 We show the symmetry decomposition The effective charges can be obtained from first-principles

of atomic displacements at the zone-boundary points iff@lculations. Here we use those computed for cubic
Table 1. PbTiO; by Zhong and Vanderbiff

2

Zrzy. (6)

Ill. DETAILS OF CALCULATIONS IV. RESULTS

The determination of the force constants involves the con- A first concemn is the determination of the structural pa-

sideration of appropriately distorted crystal configurations rameters of the ferroelectric tetragonal phase of PRTIO
Pprop y y 9y First-principles LDA calculations typically underestimate the
Symmetry arguments are used to reduce to the minimum th

. . . attice constants of perovskite oxides by around 1%. Our
number of different calculations that need to be carried out,; S ’ .

X X LT .~ final objective is the study of dynamical properties of the
and to obtain the relevant information in the most direct

form. Forz-nolarized modes at thé point. for examole. it is crystal, and it would be debatable whether it is better to
' P . point, npie, ompute phonon frequencies and other dynamical param-
only necessary to consider the four linearly independen

AR ; ters at the experimental or at the theoretical lattice constant.
?/%)m; d?gtgrﬁisz)(/%)’ov'v?{gzé tfgg’ll)gé%?g,fo%gjlé())lﬁnit Past experience with perqukites. has shown that the dis-
' ittt ' y placement patterns associated with some soft modes, and
even the existence of the latter, depend on lattice constant
and strair?® In the case of ferroelectric PbTi(there is an
additional complication, namely the existence of internal
atomic displacements, which are of course coupled to the
cell dimensions. Ouir first strategy was to use the experimen-

TABLE Ill. Character table for the point groupn2. The sym-
bols m;,m, stand form,, m, or myq, my,, depending on the ori-
entation of the axes.

E C2 M My tal lattice constanta=7.380 a.u.¢/a=1.0635 and optimize
Ay 1 1 1 1 the internal atomic positions to obtain a base reference con-
A, 1 1 -1 -1 figuration with zero forces with which to compute phonon
B; 1 -1 1 -1 frequencies and strain coefficients. We call this “Theory I.”
B, 1 1 1 1 Later we determined an optimized structyeell shape and

atomic positions couplgdvia a special minimization proce-
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TABLE IV. Structural parameters of PbTiO Theory | and I TABLE VI. Computed frequencies of zone-edge phonons, clas-
refer to a relaxation with constrained lattice constants, and a fresified by symmetry label. The base structure used in the calculations
relaxation, respectivelyz atomic coordinates are given in lattice is Theory | of Table IV. Experimental values are given when avail-

units. Experimental values are taken from Ref. 21. able (Ref. 19.
Theory | Theory Il Experiment k Irrep Frequenciescm 1) Expt.
a (a.u) 7.380 7.298 7.380 z A 102, 189, 447, 831
c/a 1.063 1.054 1.063 B, 292
z(Ti) 0.549 0.537 0.540 E (2 46, 151, 184, 270, 454 59, 168
2(0,,0,) 0.630 0.611 0.612
2(05) 0125 0.100 0.112 X A 66, 237, 285, 309, 486 72
A, 131, 233, 426
B, 54, 321
dure(see the Appendjx we call this “Theory II.” Table IV B2 99, 177, 337, 608, 672
summarizes the structural information. While, as we shalm A, 74, 452
see, we obtain substantially the same phonon frequencies in A, 412
either case, the second approach, using as a reference the B, 138
structure which gives a theoretical energy minimum with B, 247, 635, 716
respect to strain, is, in principle, more appropriate for the E (2 57, 203, 294, 398
calculation of elastic properties and strain-phonon couplings-
As part of the investigation of the possible mechanicalM’ Ay 67, 110, 272, 406, 415
instabilities!” we have obtained a complete set of calculated Az 152, 270, 401
phonon frequencies for PbTiO These are given, along with B1 57, 329
experimental results when available, in Tables V and/I. B, 58, 188, 312, 579, 794
The agreement of our theoretical results with experiment for
the zone-center moddéboth TO and LQ is quite good. We At 90, 411
are thus confident that our computational approach can be Az 401
trusted in its predictions of zone-edge vibrational frequencies By 135
B, 200, 626, 803

that have not yet been determined experimentally. To our
knowledge, the only other calculation of vibrational frequen- E@ 65, 136, 322, 386
cies and modes for tetragonal PbTiWas carried out by
Freire and Katiyat® An important difference with our work
is that those authors used an empirical fitting procedure te@stimate the degree of dependence of the phonon frequencies
adjust the parameters of a rigid-ion model. We use no emupon the details of the base structure used in the calculations
pirical parameters of any kind, just the atomic numbers and“Theory I” or “Theory II” above). Phonons at zone-
masses of the atoms involved. Table V can be used also feoundary points are computed using the “Theory I struc-
ture.

TABLE V. Frequencies of optical modes 4t in cm™™. To test the convergence of our results with respect to the

Infrared-active modes exhibit LO-TO splitting. See text and Tabled€nsity of thek-point grid for BZ integrations, we recom-
IV for the meaning of Theory | and Theory II. Experimental values Puted the frequencies afpolarizedl” modes using &6,6,6

as compiled in Ref. 19. Monkhorst-Pack grid. The results, displayed in Table VII,

indicate a high level of convergence.
Theory | Theory Il Experiment As for the question of the existence of a phase transition

at low temperature, we find that all the vibrational frequen-

A4(TO) 151 146 147 cies are real, as can be seen from the positive sign of all the

A(TO) 355 337 359 mode force constante Thus there are no mechanical insta-

A4(TO) 645 623 646 bilities in the “bare” vibrational degrees of freedom, either

E(TO) 81 82 88 atT or at the edges of the BZ. However, there still remains

E(TO) 183 195 220

E(TO) 268 237 289 TABLE VII. Test of the convergence of mode frequencies with

E(TO) 464 501 505 k-point grid. (4,4,4 and(6,6,6 grids are used for the “Theory 1”

B, 285 280 289 choice of Table IV. The frequencigin cm™?!) are those of the

A,(LO) 187 186 189 transverse-polarized modes df.

A;(LO) 449 447 465 ..

AL(LO) 826 299 296 k-point grid (4,4,9 (6,6,9

E(LO) 114 125 128 A(TO) 151 153

E(LO) 267 273 289 B, 285 289

E(LO) 435 418 436 A,(TO) 355 359

E(LO) 625 675 723 A,(TO) 645 648
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of the bare value, but still is not enough to drive Rrnnsta-
bility.

As discussed above, there is no linear couplingBof
orthorhombic strains to atomic displacements. The calculated
elastic constant for this type of strain is positi¥e0 hartreg
so there should be no instabilities B symmetry either.

Finally, recall that there is no first-order coupling of zone-
boundary modes to homogeneous strain. Thus we need only
check the bare force constants, which are all found to be

w o

AE {(mhartree)
v
e R RREE S AR

ol LT e b ey g o 1%

| | P [ . .

T sl L — N positive (see Table V). This means that we do not expect
§ - any mechanical instabilities associated with a cell doubling.
o
Sal
5 0L
é [ ] V. CONCLUSIONS
- 2 —
2 I . The low-temperature transition proposed by Kobayashi
% - J et al!! on the basis of x-ray and optical measurements is

S S S E supposed to involve a slight orthorhombic distortion of the

0 0.01 0.02 0.03 0.04

tetragonal phase, maintaining the orientation of the cell axes
with no cell doubling. Our analysis of the energeticsByf
FIG. 3. Upper panel: Change in crystal enefger cel) as a  distortions shows that a low-temperature transition of this

function of the orthorhombicity parametei(B; strain. The curve ~ Kind is possible, in principle, but not likely in ferroelectric
is a fit to a parabola. Lower panel: Derivative of the crystal energyPPTiOs. In this connection, it should be noted that, to our
with respect to thd@; normal mode amplitude at zero amplitude, as knowledge, the experimental observations of Ref. 11 have
a function ofB; strain. According to Eq(5), it measures the degree Nnot been reproduced since 1983.

of coupling between the normal mode and the strain. We also checked more generally for other kinds of low-
temperature structural transitions. However, we find that all
gnit-cell-preserving distortions exhibit positive elastic con-
Stants, thus apparently ruling out transitions to a monoclinic

B, strain

the question of whether the linear coupling to strain degree

o U\?ee (3;;2' ?i(r):tl(jlvﬁsgrlwtelr:eir:));r:wnz;sg;ilgﬁ. of the elastic Con_structure € dlstc_)rtlons or to & 45°-rotated orthorhombic
. ) . . structure B, strain. Furthermore, we show that there are no

stant corresponding to, orthorhombic strain. By applying e chanical instabilities associated with zone-boundary nor-
pure B, strains of different magnitudegor which we set 5| modes that could cause a phase transition with cell dou-
b—a+#0 while keeping the sura+b constantand comput- bling.
ing the resulting values of the total energy, we obtain the sjnce we have not exhaustively explored the vibrational
data plotted in Fig. 3. A fit to a simple parabola is very goodspectrum of the crystal, it is conceivable that a mechanical
up to sizable strains. The elastic const@{see Eq.(3)] instability at ak point not on the BZ boundary may have
turns out to be 5.0 hartré@ As mentioned above, we use the been missed. However, our work shows fairly clearly that a
optimized structuré“Theory II” ) for this and the rest of the simple transition is not likely in ferroelectric PbTiCat low
calculations involving elastic constants and strain-phononemperatures.
couplings. Note added in proofAfter this paper had been submitted

From the same set of calculations, but extracting this timgor publication, we learned of a set of high-resolution x-ray
the forces on the atoms and taking the scalar prodimct and neutron diffraction experiments on powder PLiO
configuration spadewith the eigenvector of thB; mode, we ~ samples which appear to indicate that PbJi€mains tetrag-
obtain from Eq.(5) (see also Fig. By=0.15 hartree/bohr. ©onal down to 10 K[J. M. Kiat (private communicatior).
The force constant for thB; mode is 0.048 hartree/bohr
so the renormalize@ is C.4= 4.5 hartree. We see that even
though there is a 10% change in the value of the elastic ACKNOWLEDGMENTS
constant, the renormalization due to the coupling to the ) )
phonons is not enough to caus8ainstability of the tetrag- This work was supported in part by the ONR Grant
onal cell. N00014-91-J-1184 and by the UPV research Grant No.

We performed a similar set of calculations for the analysis060-310-EA149/95. Thanks are due to J.MrezeMato, M.
of the monoclinic distortion withE symmetry. The forces Ar0Y0, W. Zhong, and U. Waghmare for useful comments.

along thex axis appearing upon application of aR, strain

translated into coupling constants of 0.17, 0.05, 0.06, and APPENDIX
0.00 hartree for the opticad-polarizedE modes of respec-
tive force constants 0.014, 0.042, 0.077, and 0.155 hartree/
bohr?. The bare elastic constant fag, strain is 5.4 hartree. We show first how the linear coupling ef to t in the
Adding up the contributions to the renormalization from theenergy expansion of Eq3) implies a renormalization o€
four modes we obtained an effective elastic cons@untof  (or, equivalently, ofk). After a transformation of the qua-
3.3 hartree. In this case the renormalization amounts to 40%ratic form to “principal axes” by a linear change of vari-

1. Renormalization of energy-surface coefficients
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ables, the first partial derivatives of the energy will be zero.
We can achieve the transformation implicitly by setting the
derivative of E with respect tou to zero, and solving for
u, to getu=— yt/k. When this condition is inserted back
into Eqg. (3), we obtain an expression f& as a function of
the free variabld,

Esyair= @15+ B + a8+ Bor 2+ sr (A3)

is the part that depends only on thendr strains,

3

Einterna™ Z:l % I(iuiz (A4)

2
')’_) t2

1
> Cest?,

is the change in energy due to internal atomic displacements
compatible with the symmetriand thus expanded as com-
binations of the thred,; phonons polarized along tlzeaxis),

. (AD

4
E(t)= 5 C
from which it follows that the effective elastic constant is
Ce= C— v?/k. (If insteadu is chosen as a free variable, one
obtains a renormalized spring constagi=k— y?/C. How-
ever, the physical mode frequency is not renormalized, be-
cause of the “infinite mass” associated with the strain de-
grees of freedon.

In the case of thd3, distortion with quadratic coupling, are the symmetry-allowed couplings sfandr to the A
Eq. (4), one need$3>0 anda>0 or else there would be Phonons(boths andr transform according té,).
unphysical divergences te « in the energy. But then, set- The 14 coefficients in this expansion are easily computed
ting the u derivative of the energy to zero, one gets eitherfOr @ given base configuration. In our case, the starting point
u=0 (trivial) or u?= — (k+2yt?)/4a (meaningless sinca IS a tetragonal cell witla andc given by experiment and the
would be imaginary. Thus there is no renormalization of the internal atomic positions along tizeaxis optimized theoreti-
elastic constant. cally to eliminate residual force&olumn labeled “Theory
I” in Table 1V). ComputedA; phonon frequencies directly
give the force constant;, and the strain and strain-
] ) ] coupling coefficients are obtained in a manner analogous to

Using the symmetry constraints of thenn point group,  that described in the main body of the paper. Once the qua-
one can write down the expressi¢io second order in the gratic form forE is known, it is a simple matter to find the
strain and atomic displacemehfsr the energy of a general gtryctural parameters which correspond to the minimum en-
tetragonal phase of that symmetry as ergy (column labeled “Theory I in Table V. As is typical
of first-principles calculations, the calculated lattice param-
eters are smaller than the experimental values by around
1%.

3
Estrain—ph: ;L ( 7isui S+ '}’irui r (A5)

2. Optimization of structural parameters

E=Eo+ Estraint Einternart Estrain-pha (A2)

where
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