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A first-principles study of the vibrational modes of PbTiO3 in the ferroelectric tetragonal phase has been
performed at all the main symmetry points of the Brillouin zone~BZ!. The calculations use the local-density
approximation and ultrasoft pseudopotentials with a plane-wave basis, and reproduce well the available ex-
perimental information on the modes at theG point, including the LO-TO splittings. The work was motivated
in part by a previously reported transition to an orthorhombic phase at low temperatures@~J. Kobayashi, Y.
Uesu, and Y. Sakemi, Phys. Rev. B28, 3866~1983!.] We show that a linear coupling of orthorhombic strain
to one of the modes atG plays a role in the discussion of the possibility of this phase transition. However, no
mechanical instabilities~soft modes! are found, either atG or at any of the other high-symmetry points of the
BZ. @S0163-1829~96!04529-8#

I. INTRODUCTION

Due to their relatively simple structure and the variety of
phenomena they exhibit, the perovskite oxides have become
important subjects of study. Despite sharing a common for-
mulaABO3 and a highly symmetric high-temperature struc-
ture ~Fig. 1!, this family of compounds presents a rich and
varied low-temperature phenomenology. Among the perovs-
kites one finds ferroelectric crystals such as BaTiO3 and
PbTiO3 , antiferroelectrics such as PbZrO3 and NaNbO3,
and materials such as SrTiO3 that exhibit other, nonpolar
instabilities.

Much progress has been made in the last 50 years in the
experimental characterization of the properties of these com-
pounds. One of the main conclusions to emerge from these
studies is the fascinating dependence of the structural and
dynamical behavior on details of chemical composition. In-
deed, even within a given subgroup of materials one finds
significantly different phase diagrams. For example,
BaTiO3 exhibits a complicated sequence of phase transi-
tions, from cubic to tetragonal to orthorhombic to rhombo-
hedral, while PbTiO3 shows just one clearly established
transition withTc5493°C from the cubic paraelectric phase
to a tetragonal ferroelectric structure. Moreover, the replace-
ment of Pb for Ba also has important consequences for the
dynamical processes leading to the transition. It is acknowl-
edged that the soft mode in BaTiO3 is highly overdamped,
and therefore that the transition has some order-disorder fla-
vor, whereas PbTiO3 has been called a ‘‘textbook example
of displacive transition.’’1

Until recently, however, theoretical models of perovskite
properties could not properly take into account the fine
chemical details that distinguish the behavior of the different
materials in this family. Semi-empirical methods are not ac-
curate enough to model the sort of delicate balance between
effects ~long-range dipole interactions vs short-range cova-
lent and repulsion forces, for example!, and schemes based
on model Hamiltonians are usually too simple and too fo-

cused on a given material to be of much use in the unravel-
ing of the chemical trends within the perovskites.

This situation has improved in the last few years with the
use of accurate first-principles density-functional calcula-
tions to study the energy surfaces2–4 and even the
temperature-dependent phase diagrams5–7 of various perov-
skite oxides. These works have achieved a high degree of
success in reproducing qualitatively and even quantitatively
the experimental observations, giving us confidence that one
can now carry out accurate calculations to elucidate micro-
scopic behavior~importance of hybridization, competition
between long-range and short-range interactions, etc!. A

FIG. 1. Structure of ferroelectric~tetragonal! PbTiO3 . The ar-
rows represent the displacements of the atoms with respect to their
positions in the cubic high-temperature phase. Pb atoms are de-
picted by open circles, the Ti atom by the black dot in the center of
the cell, and the O atoms~O1, O2 , and O3 , displaced from the Ti
atom alongx, y, andz, respectively! by shaded circles.
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good example is the recent work of Rabe and Waghmare,7

which has helped revise the conventional wisdom relative to
the behavior of PbTiO3 . Indications of a problem with the
simple displacive picture were first seen experimentally in
extended x-ray absorption fine-structure measurements,8 but
the theoretical work7 has provided the microscopic underpin-
nings of a partial order-disorder character of the cubic-
tetragonal transition in which the atomic distortions in the
high-temperature phase are proposed to arise from a local
instability.

Another issue, with which we will be mainly concerned in
this paper, is the possible existence of a low-temperature
transition. In the 1950s, Kobayashiet al.9 reported the obser-
vation of what appeared to be a distorted~‘‘multiple’’ ! te-
tragonal phase of PbTiO3 below approximately2100°C.
After several negative attempts by other researchers to repro-
duce the observations,10 x-ray and optical measurements
were presented11 as corroborating the existence of a low-
temperature phase with an orthorhombic structure. The tran-
sition, at290°C, would be second order, and bring about a
very slight distortion of the tetragonal phase~with the ortho-
rhombic cell parametersa and b differing by just 4.5
31024Å at 2194°C! and the direction of the lattice vec-
tors kept unchanged. The absence of superlattice reflections
would imply a symmetry distortion without multiplication of
the size of the unit cell.

From the point of view of the microscopic dynamics of
the tetragonal structure, such a transition could be explained
by a mechanical instability of a zone-center phonon whose
associated atomic distortions break the tetragonal symmetry
and thus relax the requirement thata and b be equal. At
T50 the energy surface should then present a saddle point at
the configuration corresponding to the tetragonal phase, with
the energy decreasing along a coordinate representing the
amplitude of the soft mode and the coupled orthorhombic
strain.

In this paper we have used first-principles calculations to
study possible mechanical instabilities in the ferroelectric te-
tragonal phase of PbTiO3 . Our focus has been primarily on
homogeneous~zone-center! distortions of the tetragonal
symmetry, aimed at a detailed theoretical assessment of the
possibility of the phase transition suggested by Kobayashi
et al.11 However, in the interest of completeness, we have
also carried out an analysis of the normal modes at all the
main symmetry points on the surface of the Brillouin zone
~BZ!. Thus we also present a fairly complete collection of
normal-mode frequencies and eigenvectors for ferroelectric
PbTiO3 computed from first principles.

The paper is organized as follows. In Sec. II we undertake
a classification of the types of possible distortions of the
tetragonal phase of PbTiO3 according to their symmetry.
Section III briefly describes some technical aspects of our
calculations, whose results are presented in Sec. IV. Section
V discusses the implications of our work for the likelihood
of a low-temperature transition in PbTiO3 . The Appendix is
devoted to some issues related to the coupling of atomic
displacements to strain degrees of freedom.

II. THEORETICAL ANALYSIS OF POSSIBLE
INSTABILITIES

In the harmonic approximation, the calculation of phonon
frequencies and mode displacement patterns involves the di-

agonalization of the dynamical matrix, itself obtained in a
straightforward manner from the force constantsF i j

ab which
enter the expansion of the energy to second order in the
atomic displacements,

E5E01 (
i j ab

F i j
abua

i ub
j . ~1!

The force constants can easily be calculated by computing all
the forces caused by a given sublattice displacement.

It is well-known that the normal modes of vibration of a
crystal at a givenk point of the BZ transform according to
irreducible representations of the group of the wave vector.
Thus a judicious use of the symmetry information available
simplifies the analysis and saves computational work. Sym-
metry arguments can also profitably be used to determine the
form of the series expansion of the total energy of the crystal
around a given configuration, including the correct couplings
among various degrees of freedom~such as atomic displace-
ments and strains!. This is precisely what is needed for a
detailed study of the energy surface and the possible appear-
ance of mechanical instabilities.

In this section we present a brief account of the use of
symmetry considerations to characterize the possible insta-
bilities of the tetragonal ferroelectric phase of PbTiO3 .
Experimentally,11 it has been claimed that the low-
temperature structure has orthorhombic symmetry and there
is no sign of cell doubling. Accordingly, we devote a sub-
section to the study of zone-center instabilities of orthorhom-
bic character, and to the investigation of the form of the
energy as a function of the relevant degrees of freedom. A
second subsection considers distortions that might conceiv-
ably lead to a low-temperature phase transition but involve a
nonorthorhombic symmetry or a doubling of the unit cell.

A. Orthorhombic instabilities with no cell doubling

The ferroelectric phase of PbTiO3 ~Fig. 1! is tetragonal,
with space groupP4mm. At the G point, the group of the
wave vector is the point group of the crystal, 4mm, charac-
terized by a fourfold rotation axis and four symmetry planes
which contain it. Table I displays the character table for
4mm. There are five symmetry classes and thus five irreduc-
ible representations~irreps!, of which one (E) is two-
dimensional.

The decomposition of the vibrational representation atG
can be shown by standard techniques to be

Vib~G!54A1%B1%5E. ~2!

TABLE I. Character table and decomposition of the vector and
second-order symmetric tensor representations for point group
4mm.

E C4 ,C4
21 C2 mx ,my md ,md8 V Sym@V3V#

A1 1 1 1 1 1 z x21y2,z2

A2 1 1 1 -1 -1
B1 1 -1 1 1 -1 x22y2

B2 1 -1 1 -1 1 xy
E 2 0 -2 0 0 (x,y) (zx,yz)
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Physically, this means that the problem of diagonalizing the
15315 dynamical matrix reduces to three simpler tasks: the
diagonalization of a 434 matrix to decouple the four copies
of theA1 irrep, a similar 535 diagonalization forE, and a
simple calculation of a force constant to obtain the frequency
of the B1 mode ~its displacement pattern being completely
determined by symmetry!. The atomic motions are, there-
fore, coupled only within subspaces of the original 15-
dimensional configuration space. The four-dimensionalA1
subspace corresponds to coupled motions with basis@Pbz ,
Ti z , O1z1O2z , O3z# and the one-dimensionalB1 subspace
represents a normal mode with a displacement pattern of the
form @O1z2O2z#. Of course, atG there are three zero-
frequency acoustic modes. Two are degenerate~movements
alongx or y) and transform according toE, and the third is
polarized alongz and belongs toA1 . The complete symme-
try specification of all the normal modes atG and at other
high-symmetryk points appears in Table II.13

It is simple to use this symmetry information to analyze
the possible mechanisms leading to the experimentally sug-
gested phase transition from the tetragonal to an orthorhom-
bic structure. By looking at theG entry in Table II and con-
sidering the characters in Table I, it can be immediately
concluded that theB1 mode has the right transformation
properties. In this mode the O1 and O2 atoms move in op-
posite directions along thez axis, thus breaking the fourfold
symmetry.

A calculation of the frequency of this mode is not enough
to determine the existence of an instability, since one should
take into account possible couplings of the atomic displace-
ments to changes in the size and shape of the unit cell~strain
variables!. The possible strains that can be applied to the cell
are represented by the components of a second-order sym-
metric tensor (h), and can be classified according to irreduc-
ible representations of the point group of the crystal as
shown in the last column in Table I. In what follows we use
the notation

r5hzz,

s5~hxx1hyy!/2,

t5~hxx2hyy!/2.

Portions ofh transforming according to the identity repre-
sentationA1 leave the tetragonal symmetry unchanged. Such
is the case forr ands, which refer to symmetric axial and
in-plane strains, respectively. The other strain irreps are as-
sociated with lower lattice symmetries: monoclinic forE,
and orthorhombic forB1 andB2 . While aB2 (hxy) distor-
tion leads to an orthorhombic structure with axes rotated by
45° with respect to the tetragonal basis, a pureB1 (t) strain
transforms the cell into an orthorhombic one without a
change in the orientation of the axes. The latter is precisely
the kind of low-temperature phase suggested for PbTiO3 .

11

Apart from the change in the orientation of the axes, there
is an important difference betweenB2 (hxy) andB1 (t) cell
distortions. Since the orthorhombic straint transforms ac-
cording to theB1 irrep, it can couplelinearly to the B1
normal coordinate.14 Therefore, the crystal energy expansion
considering only theB1 mode and strain is of the form

E5E01
1
2 ku

21 1
2 Ct

21gut1•••. ~3!

It is shown in the Appendix that the linear coupling in Eq.
~3! implies a renormalizationCeff5C2g2/k. Thus strain
coupling could create instabilities againstB1 ~orthorhombic!
distortions even if the ‘‘bare’’ second-order coefficientsk
andC are positive.

In contrast, any coupling of theB2 strain to a given
atomic displacementu must be at least of second order,

E5E01
1
2 ku

21 1
2 Chxy

2 11gu2hxy
2 1au41bhxy

4 1•••,
~4!

with no renormalization of the elastic constantC ~see the
Appendix!.

In summary, if the purported low-temperature phase tran-
sition in PbTiO3 is indeed to an orthorhombic phase with no
cell doubling, and with the basis parallel to the tetragonal
one, it should be linked to a negative effective elastic con-
stantCeff for a t strain. If one allows for the possibility of a
rotation of the axes, the transition could be associated with a
negative ‘‘bare’’ elastic constant for aB2 strain.

B. Other instabilities

Apart from the experimentally suggested instability of the
tetragonal phase in favor of an orthorhombic structure with
no cell doubling, there are, in principle, other distortions that
might conceivably lead to phase transitions. To begin with,
and by reference to Table I, one could think of an instability
leading to a phase with monoclinic symmetry~but still with-
out multiplying the size of the unit cell! associated with dis-
tortions transforming according to theE irreducible repre-
sentation. The analysis of this case is conceptually very
similar to the one carried out for theB1 distortions, with the
difference that there are eight opticalE modes capable of
coupling to strain~four for each of the rows of the two-
dimensional irrepE). Thusx- andy-polarized normal modes

TABLE II. Symmetry analysis of the normal modes at different
points of the BZ.

k, ~Group! Irrep No. of copies Basis

G,Z ~4mm)
A1 4 Pbz ,Ti z ,O1z1O2z ,O3z

B1 1 O1z2O2z

E 5 ~2D! Pbx ,Ti x ,O1x ,O2x ,O3x

Pby ,Ti y ,O1y ,O2y ,O3y

X,M 8 (mm2!

A1 5 Pbz ,Ti x ,O1z ,O2z ,O3x

A2 3 Ti y ,O2y ,O3y

B1 2 Pby ,O1y

B2 5 Pbx ,Ti z ,O1x ,O2z ,O3z

M ,R ~4mm)
A1 2 Pbz ,O1y1O2x

A2 1 O1x2O2y

B1 1 O1y2O2x

B2 3 Ti z ,O1x1O2y ,O3z

E 4 ~2D! Pbx ,Ti y ,O2z ,O3y

Pby ,Ti x ,O1z ,O3x
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will couple linearly toxz andyz strains, respectively, result-
ing in a renormalized elastic constantCeff for E distortions.

Next to consider is the possibility of structural phase tran-
sitions associated with a multiplication of the size of the unit
cell. These would come about through the instability of non-
G modes. Since there is no possibility of coupling of these
modes to homogeneous strain at first order, one needs only to
compute the eigenvalues of the force-constant matrix to
check for any saddle points in the energy surface. It is not
feasible to study the modes at all the wave vectors in the BZ,
so we focus on a few high-symmetryk-points on the zone
surface~see Fig. 2! which represent cell-doubling distortions.

The symmetry analysis of zone-boundary modes proceeds
along the same lines as those forG. Operations that leave the
wave vector invariant will, in general, form subgroups of
4mm. For the purposes of our work it suffices to consider
just one more point group,mm2, whose character table is
given in Table III.12 We show the symmetry decomposition
of atomic displacements at the zone-boundary points in
Table II.

III. DETAILS OF CALCULATIONS

The determination of the force constants involves the con-
sideration of appropriately distorted crystal configurations.
Symmetry arguments are used to reduce to the minimum the
number of different calculations that need to be carried out,
and to obtain the relevant information in the most direct
form. Forz-polarized modes at theG point, for example, it is
only necessary to consider the four linearly independent
atomic distortions (1,0,0,0,0), (0,1,0,0,0), (0,0,1,21,0)/
A2, and (0,0,1,1,22)/A6, where the basis is formed by unit

z displacements of Pb, Ti, O1 , O2 , and O3.
Strain parameters are determined by subjecting the crystal

to pure strains and fitting the energy to a polynomial form.
The strain-phonon couplings are computed by finding the
forces on the atoms caused by a suitable strain, since, from
Eq. ~3!,

S ]E

]u D
u50

5gt. ~5!

We use ultrasoft pseudopotentials, a plane-wave basis set,
and a conjugate-gradients algorithm to compute total ener-
gies and forces for a variety of crystal configurations. The
method and the details of the pseudopotentials employed
have been described elsewhere.4 For this work we find that a
~4,4,4! Monkhorst-Pack15 sampling of the BZ is enough to
provide good precision in the calculated coefficients~see
next section!. Force constants are computed using the
Hellmann-Feynman theorem, with atomic displacements of
0.002 in lattice units.

A final methodological note concerns the calculation of
the frequencies of longitudinal optic~LO! modes at theG
point. Since our calculations use periodic boundary condi-
tions, we are not able to introduce a macroscopic electric
field, such as it would arise in an ionic crystal in the presence
of aq→0 longitudinal vibration. This field creates a splitting
of the frequencies of infrared-active phonons, with the cou-
pling constants being the ionic effective chargesZ* . The
force-constant matrix has to be augmented by the effect of a
screened~by electronic effects only! Coulomb interaction
among those effective charges,

F i j
ab→F i j

ab1
4pe2

Ve`
Zi*Zj* . ~6!

The effective charges can be obtained from first-principles
calculations. Here we use those computed for cubic
PbTiO3 by Zhong and Vanderbilt.16

IV. RESULTS

A first concern is the determination of the structural pa-
rameters of the ferroelectric tetragonal phase of PbTiO3 .
First-principles LDA calculations typically underestimate the
lattice constants of perovskite oxides by around 1%. Our
final objective is the study of dynamical properties of the
crystal, and it would be debatable whether it is better to
compute phonon frequencies and other dynamical param-
eters at the experimental or at the theoretical lattice constant.
Past experience with perovskites has shown that the dis-
placement patterns associated with some soft modes, and
even the existence of the latter, depend on lattice constant
and strain.2,3 In the case of ferroelectric PbTiO3 there is an
additional complication, namely the existence of internal
atomic displacements, which are of course coupled to the
cell dimensions. Our first strategy was to use the experimen-
tal lattice constantsa57.380 a.u.,c/a51.0635 and optimize
the internal atomic positions to obtain a base reference con-
figuration with zero forces with which to compute phonon
frequencies and strain coefficients. We call this ‘‘Theory I.’’
Later we determined an optimized structure~cell shape and
atomic positions coupled! via a special minimization proce-

FIG. 2. Sketch showing the irreducible wedge of the Brillouin
zone associated with theP4mm space group, and the positions of
the symmetry points considered in this work.

TABLE III. Character table for the point groupmm2. The sym-
bolsm1 ,m2 stand formx , my or md , md8, depending on the ori-
entation of the axes.

E C2 m1 my

A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1
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dure~see the Appendix!; we call this ‘‘Theory II.’’ Table IV
summarizes the structural information. While, as we shall
see, we obtain substantially the same phonon frequencies in
either case, the second approach, using as a reference the
structure which gives a theoretical energy minimum with
respect to strain, is, in principle, more appropriate for the
calculation of elastic properties and strain-phonon couplings.

As part of the investigation of the possible mechanical
instabilities,17 we have obtained a complete set of calculated
phonon frequencies for PbTiO3 . These are given, along with
experimental results when available, in Tables V and VI.18

The agreement of our theoretical results with experiment for
the zone-center modes~both TO and LO! is quite good. We
are thus confident that our computational approach can be
trusted in its predictions of zone-edge vibrational frequencies
that have not yet been determined experimentally. To our
knowledge, the only other calculation of vibrational frequen-
cies and modes for tetragonal PbTiO3 was carried out by
Freire and Katiyar.19 An important difference with our work
is that those authors used an empirical fitting procedure to
adjust the parameters of a rigid-ion model. We use no em-
pirical parameters of any kind, just the atomic numbers and
masses of the atoms involved. Table V can be used also to

estimate the degree of dependence of the phonon frequencies
upon the details of the base structure used in the calculations
~‘‘Theory I’’ or ‘‘Theory II’’ above !. Phonons at zone-
boundary points are computed using the ‘‘Theory I’’ struc-
ture.

To test the convergence of our results with respect to the
density of thek-point grid for BZ integrations, we recom-
puted the frequencies ofz-polarizedG modes using a~6,6,6!
Monkhorst-Pack grid. The results, displayed in Table VII,
indicate a high level of convergence.

As for the question of the existence of a phase transition
at low temperature, we find that all the vibrational frequen-
cies are real, as can be seen from the positive sign of all the
mode force constantsk. Thus there are no mechanical insta-
bilities in the ‘‘bare’’ vibrational degrees of freedom, either
at G or at the edges of the BZ. However, there still remains

TABLE IV. Structural parameters of PbTiO3 . Theory I and II
refer to a relaxation with constrained lattice constants, and a free
relaxation, respectively.z atomic coordinates are given in lattice
units. Experimental values are taken from Ref. 21.

Theory I Theory II Experiment

a ~a.u.! 7.380 7.298 7.380
c/a 1.063 1.054 1.063
z~Ti! 0.549 0.537 0.540
z~O1,O2) 0.630 0.611 0.612
z~O3) 0.125 0.100 0.112

TABLE V. Frequencies of optical modes atG in cm21.
Infrared-active modes exhibit LO-TO splitting. See text and Table
IV for the meaning of Theory I and Theory II. Experimental values
as compiled in Ref. 19.

Theory I Theory II Experiment

A1~TO! 151 146 147
A1~TO! 355 337 359
A1~TO! 645 623 646
E~TO! 81 82 88
E~TO! 183 195 220
E~TO! 268 237 289
E~TO! 464 501 505
B1 285 280 289

A1~LO! 187 186 189
A1~LO! 449 447 465
A1~LO! 826 799 796
E~LO! 114 125 128
E~LO! 267 273 289
E~LO! 435 418 436
E~LO! 625 675 723

TABLE VI. Computed frequencies of zone-edge phonons, clas-
sified by symmetry label. The base structure used in the calculations
is Theory I of Table IV. Experimental values are given when avail-
able ~Ref. 19!.

k Irrep Frequencies~cm21) Expt.

Z A1 102, 189, 447, 831
B1 292
E ~2! 46, 151, 184, 270, 454 59, 168

X A1 66, 237, 285, 309, 486 72
A2 131, 233, 426
B1 54, 321
B2 99, 177, 337, 608, 672

M A1 74, 452
A2 412
B1 138
B2 247, 635, 716
E ~2! 57, 203, 294, 398

M 8 A1 67, 110, 272, 406, 415
A2 152, 270, 401
B1 57, 329
B2 58, 188, 312, 579, 794

R A1 90, 411
A2 401
B1 135
B2 200, 626, 803
E ~2! 65, 136, 322, 386

TABLE VII. Test of the convergence of mode frequencies with
k-point grid. ~4,4,4! and ~6,6,6! grids are used for the ‘‘Theory I’’
choice of Table IV. The frequencies~in cm21) are those of the
transversez-polarized modes atG.

k-point grid ~4,4,4! ~6,6,6!

A1~TO! 151 153
B1 285 289
A1~TO! 355 359
A1~TO! 645 648
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the question of whether the linear coupling to strain degrees
of freedom could result in any instability.

We deal first with the renormalization of the elastic con-
stant corresponding to aB1 orthorhombic strain. By applying
pure B1 strains of different magnitudes~for which we set
b2aÞ0 while keeping the suma1b constant! and comput-
ing the resulting values of the total energy, we obtain the
data plotted in Fig. 3. A fit to a simple parabola is very good
up to sizable strains. The elastic constantC @see Eq.~3!#
turns out to be 5.0 hartree.20 As mentioned above, we use the
optimized structure~‘‘Theory II’’ ! for this and the rest of the
calculations involving elastic constants and strain-phonon
couplings.

From the same set of calculations, but extracting this time
the forces on the atoms and taking the scalar product~in
configuration space! with the eigenvector of theB1 mode, we
obtain from Eq.~5! ~see also Fig. 3! g50.15 hartree/bohr.
The force constant for theB1 mode is 0.048 hartree/bohr2,
so the renormalizedC is Ceff5 4.5 hartree. We see that even
though there is a 10% change in the value of the elastic
constant, the renormalization due to the coupling to the
phonons is not enough to cause aB1 instability of the tetrag-
onal cell.

We performed a similar set of calculations for the analysis
of the monoclinic distortion withE symmetry. The forces
along thex axis appearing upon application of anhxz strain
translated into coupling constants of 0.17, 0.05, 0.06, and
0.00 hartree for the opticalx-polarizedE modes of respec-
tive force constants 0.014, 0.042, 0.077, and 0.155 hartree/
bohr2. The bare elastic constant forhxz strain is 5.4 hartree.
Adding up the contributions to the renormalization from the
four modes we obtained an effective elastic constantCeff of
3.3 hartree. In this case the renormalization amounts to 40%

of the bare value, but still is not enough to drive anE insta-
bility.

As discussed above, there is no linear coupling ofB2
orthorhombic strains to atomic displacements. The calculated
elastic constant for this type of strain is positive~6.0 hartree!,
so there should be no instabilities ofB2 symmetry either.

Finally, recall that there is no first-order coupling of zone-
boundary modes to homogeneous strain. Thus we need only
check the bare force constants, which are all found to be
positive ~see Table VI!. This means that we do not expect
any mechanical instabilities associated with a cell doubling.

V. CONCLUSIONS

The low-temperature transition proposed by Kobayashi
et al.11 on the basis of x-ray and optical measurements is
supposed to involve a slight orthorhombic distortion of the
tetragonal phase, maintaining the orientation of the cell axes
with no cell doubling. Our analysis of the energetics ofB1
distortions shows that a low-temperature transition of this
kind is possible, in principle, but not likely in ferroelectric
PbTiO3 . In this connection, it should be noted that, to our
knowledge, the experimental observations of Ref. 11 have
not been reproduced since 1983.

We also checked more generally for other kinds of low-
temperature structural transitions. However, we find that all
unit-cell-preserving distortions exhibit positive elastic con-
stants, thus apparently ruling out transitions to a monoclinic
structure (E distortions! or to a 45°-rotated orthorhombic
structure (B2 strain!. Furthermore, we show that there are no
mechanical instabilities associated with zone-boundary nor-
mal modes that could cause a phase transition with cell dou-
bling.

Since we have not exhaustively explored the vibrational
spectrum of the crystal, it is conceivable that a mechanical
instability at ak point not on the BZ boundary may have
been missed. However, our work shows fairly clearly that a
simple transition is not likely in ferroelectric PbTiO3 at low
temperatures.

Note added in proof.After this paper had been submitted
for publication, we learned of a set of high-resolution x-ray
and neutron diffraction experiments on powder PbTiO3
samples which appear to indicate that PbTiO3 remains tetrag-
onal down to 10 K@J. M. Kiat ~private communication!#.
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APPENDIX

1. Renormalization of energy-surface coefficients

We show first how the linear coupling ofu to t in the
energy expansion of Eq.~3! implies a renormalization ofC
~or, equivalently, ofk). After a transformation of the qua-
dratic form to ‘‘principal axes’’ by a linear change of vari-

FIG. 3. Upper panel: Change in crystal energy~per cell! as a
function of the orthorhombicity parametert (B1 strain!. The curve
is a fit to a parabola. Lower panel: Derivative of the crystal energy
with respect to theB1 normal mode amplitude at zero amplitude, as
a function ofB1 strain. According to Eq.~5!, it measures the degree
of coupling between the normal mode and the strain.
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ables, the first partial derivatives of the energy will be zero.
We can achieve the transformation implicitly by setting the
derivative ofE with respect tou to zero, and solving for
u, to getu52gt/k. When this condition is inserted back
into Eq. ~3!, we obtain an expression forE as a function of
the free variablet,

E~ t !5
1

2 SC2
g2

k D t251

2
Cefft

2, ~A1!

from which it follows that the effective elastic constant is
Ceff5C2g2/k. ~If insteadu is chosen as a free variable, one
obtains a renormalized spring constantkeff5k2g2/C. How-
ever, the physical mode frequency is not renormalized, be-
cause of the ‘‘infinite mass’’ associated with the strain de-
grees of freedom.!

In the case of theB2 distortion with quadratic coupling,
Eq. ~4!, one needsb.0 anda.0 or else there would be
unphysical divergences to2` in the energy. But then, set-
ting the u derivative of the energy to zero, one gets either
u50 ~trivial! or u252(k12gt2)/4a ~meaningless sinceu
would be imaginary!. Thus there is no renormalization of the
elastic constant.

2. Optimization of structural parameters

Using the symmetry constraints of the 4mm point group,
one can write down the expression~to second order in the
strain and atomic displacements! for the energy of a general
tetragonal phase of that symmetry as

E5E01Estrain1Einternal1Estrain-ph, ~A2!

where

Estrain5a1s1b1r1a2s
21b2r

21dsr ~A3!

is the part that depends only on thes and r strains,

Einternal5(
i51

3
1
2 kiui

2 ~A4!

is the change in energy due to internal atomic displacements
compatible with the symmetry~and thus expanded as com-
binations of the threeA1 phonons polarized along thez axis!,
and

Estrain-ph5(
i51

3

~gs
i uis1g r

i ui r ! ~A5!

are the symmetry-allowed couplings ofs and r to the A1
phonons~both s and r transform according toA1).

The 14 coefficients in this expansion are easily computed
for a given base configuration. In our case, the starting point
is a tetragonal cell witha andc given by experiment and the
internal atomic positions along thez axis optimized theoreti-
cally to eliminate residual forces~column labeled ‘‘Theory
I’’ in Table IV !. ComputedA1 phonon frequencies directly
give the force constantski , and the strain and strain-
coupling coefficients are obtained in a manner analogous to
that described in the main body of the paper. Once the qua-
dratic form forE is known, it is a simple matter to find the
structural parameters which correspond to the minimum en-
ergy~column labeled ‘‘Theory II’’ in Table IV!. As is typical
of first-principles calculations, the calculated lattice param-
eters are smaller than the experimental values by around
1%.
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