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We have performed a molecular-dynamics simulation for a sample of amorphous SiO2 subject to a
compression-decompression process at ambient temperature, using a recently proposed two-body potential
model. For moderate compression the simulated glass maintains the ideal tetrahedral coordination and displays
reversible elastic behavior. For compressions beyond 6 GPa, the glass becomes anelastic and its density and
average atomic coordination increase irreversibly. Density, compressibility, and structure of the simulated
material compare favorably with the experiments on both undensified and densified SiO2 glass. The stability of
Si-O coordination greater than four in samples subject to high pressure appears to drive the densification
process.@S0163-1829~96!06130-9#

I. INTRODUCTION

Amorphous silica~a-SiO2! has been known for a long
time to display anomalous behavior at high pressure.1 In par-
ticular, experiments2–11 have shown that glass samples com-
pressed beyond'10–12 GPa and then decompressed exhibit
an increase in density by as much as 20%. The original den-
sity is not fully recovered even in samples stored at ambient
pressure for many years.8

The results of various techniques such as neutron and
x-ray diffraction,3–5 Brillouin, Raman, and IR
spectroscopy,6–10as well as model calculations4,12–17suggest
that the densification after compression can be attributed to
microscopic structural changes and atomic rearrangements,
though the mechanism of the process undergone bya-SiO2 is
not yet fully understood.

A clue to such a mechanism is provided by the behavior
of crystalline SiO2 which forms a variety of stable polymor-
phs with a wide range of densities.18,19 It is widely
accepted20,21 that silica glass obtained from the melt forms a
network of SiO4 tetrahedra, like in quartz, cristobalite, and
coesite, the most common polymorphs of silica. In these
low-density structures each Si atom is bound to four O atoms
in Si~O1/2!4 tetrahedral coordination, while each O atom is
bound to two Si atoms which link the tetrahedra in a con-
tinuous network. The various SiO4 polymorphs differ in the
relative arrangement of the tetrahedra. Upon compression be-
yond 16 GPa quartz is irreversibly transformed into
stishovite,22 an extremely dense form of silica which differs
from the other polymorphs by containing Si atoms bound to
six O atoms in Si~O1/3!6 octahedral coordination.

The behavior of the crystalline polymorphs suggests that a
possible mechanism for the densification ofa-SiO2 is the
formation of some additional Si-O bonds, which leads to the
appearance of a small number of Si atoms with coordination
greater than four.

Stolper, Ahrens23 and Jeanloz24 model geometrically the
coordination increase of silicates under pressure, and suggest
that the compressed glass, unconstrained by crystal structure,
can actually distort more readily into a more compact ar-
rangement. This hypothesis is consistent with the high-
pressure x-ray results,5 which indicate a continuous increase

in the Si coordination for pressures greater than 12 GPa. The
permanent densification of the glass is explained23,24 by as-
suming that part of the high-pressure octahedrally coordi-
nated Si will not spring apart to the tetrahedral configuration
when the pressure is released. A mechanism of increase of
coordination is also postulated25 for germania~GeO2! glass,
which is isoelectronic with silica, and which also undergoes
an irreversible densification upon compression.

In order to obtain some insight on the densification
mechanism, we have performed a molecular-dynamics~MD!
simulations26 of a sample of glassy silica subject to a
compression-decompression process.

It is often assumed that the presence of SiO4 units indi-
cates the dominance of directional covalent bonding over
central pairwise-additive interactions, so that three-body po-
tential models should be employed.27 Models of this type
have been proved15,27–29 to reproduce many properties of
silica but, with some exceptions,27 they are unable to model
changes in the Si coordination number, as their analytical
form discriminates in favor of SiO4 tetrahedral coordination.

The reasons for adopting three-body models are not, in
our opinion, very compelling. In fact, several
calculations13,16–18,30–45have shown that two-body interac-
tion potentials are as effective as the three-body ones in de-
scribing both crystalline and amorphous silica.

A recent breakthrough is the construction, by Tsuneyuki
et al.18 and by van Beest, Kramer, and van Santen,45 of two-
body potential models fitted toab initio calculations on tet-
rahedral SiO4

42 clusters. The two models have the same ana-
lytical form, but different parametrizations. Because of their
quantum-mechanical origin, these new two-body models ef-
fectively incorporate an average of the many-body interac-
tions.

Most MD and Monte Carlo studies on densifieda-SiO2
have been performed by quenching a high-density, high-
temperature melt rather than by compressing a room-
temperature glass.15–17,44As far as we know, the only avail-
able direct simulation of a compression-decompression
process at room temperature is an important calculation by
Tse, Klug, and Le Page13 with the potential model of van
Beest, Kramer, and van Santen.45 We have performed a MD
calculation similar to that of Tse, Klug, and Le Page,13 but
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more focused on the densification mechanism and on the
properties of the densified glass.

Following previous works,42,43 we have adopted the po-
tential of Tsuneyukiet al.18 The model reproduces structure,
density, compressibility, and vibrational frequencies of both
the crystalline,18,40,41and amorphous42,43 forms of silica, and
has been applied to the study of pressure-induced39 and
thermal-induced40 phase transitions in crystalline silica. As
the potential successfully reproduces the stability for both
four-coordinated and six-coordinated crystalline silica at am-
bient pressure,18,40 and predicts an increased coordination in
compressed liquid,44 crystalline and amorphous16,17 silica at
high temperatures, we expect it also to be able to describe the
densification of amorphous silica without anya priori coor-
dination constraint.

In Sec. II the methods and the conditions of the simula-
tion are presented, and in Sec. III we give some details of the
treatment undergone by the sample during the simulated
compression-decompression cycles. Results and comparisons
with the experimental data are presented and discussed in
Sec. IV. We conclude in Sec. V by proposing a possible
densification mechanism.

II. METHODS

We have simulated a sample of amorphous SiO2 subject
to a compression-decompression process at constant tem-
perature. For this purpose we have performed a MD calcu-
lation for 250 Si and 500 O atoms interacting through a
pairwise additive atom-atom potential developed by
Tsuneyuki et al.18 The initial amorphous sample was a
slightly defective continuous random network46 of corner-
sharing SiO4 tetrahedra, originally obtained by simulating
the cooling of liquid silica.42 The cooling simulation, and the
structural and vibrational properties of the simulated glass at
room conditions, have been discussed in detail
elsewhere.42,43

The compression-decompression runs described in this
paper have been carried out with the isothermal-isobaric
Andersen method,47 which simulates a sample in contact
with an heat bath and subject to an hydrostatic pressure. The
bath temperature was maintained at 300 K for all runs, while
the applied pressure was either changed continuously with
time ~for most runs!, or suddenly switched to a constant
value~‘‘instantaneous’’ compression or decompression!. The
equations of motion were integrated using the velocity Verlet
algorithm,48–50with a time step of 1 fs. Further details of the
simulation procedure appear in Refs. 42 and 43.

III. CALCULATIONS

Starting from the amorphous state obtained by simulated
cooling of liquid SiO2,

42 MD simulation runs were carried
out under the following conditions:

~1! equilibration of the initial sample at 300 K and 0 GPa;
~2! instantaneous compression to 25 GPa of the final state

of run 1, followed by equilibration;
~3! instantaneous decompression to 0 GPa of the final

state of run 2, followed by equilibration;
~4! continuous compression up to 25 GPa of the final state

of run 1, with a compression rate of 0.25 GPa/ps, followed

by continuous decompression, with the same rate;
~5! continuous compression followed by continuous de-

compression, similar to run 4, but with a rate of 0.0625 GPa/
ps;

~6! decompression to 0 GPa for several states recorded
during the continuous compression of runs 4 and 5.

The compression-decompression rates of runs 4 and 5
were chosen after a careful study of the stabilization of den-
sity and potential energy during runs 1, 2, and 3, which em-
ployed at least 80 000 steps each. We have found that the
equilibration of the system is extremely sluggish. This is to
be expected, because it is experimentally known8 that com-
presseda-SiO2 is still relaxing after a period of months.
Complete equilibration is very difficult to attain even on the
long-time scales allowed by laboratory experiments. How-
ever, since we only aim to understand the densification
mechanism, a precise determination of the predictions of the
potential model at each pressure is not necessary. Therefore,
rather than wasting computer time in the vain attempt of
equilibrating the system at each pressure, we have decided to
investigate the relaxation effects by repeating the
compression-decompression process with a rate sufficiently
slow for partial equilibration~0.25 GPa/ps!, and with the
slowest rate allowed by our computer time constraints
~0.0625 GPa/ps!.

IV. RESULTS

The equilibrated glass at room temperature and pressure is
similar to the glass obtained in the cooling simulation at
constant volume described in Ref. 42, and which was found
to reproduce reasonably well the structural and vibrational
properties ofa-SiO2.

42,43

The density calculated at 1 atm~'1024 GPa! with the
model of Tsuneyukiet al.18 is 2.35 g/cm3, a value almost
identical to that of 2.36 g/cm3 obtained by Tse, Klug, and Le
Page.13 These authors note that their value is better than most
computed data reported in the literature. The experimental
density51 value at atmospheric pressure is 2.20 g/cm3, about
7% lower than the calculation results.

A. Density and compressibility results

A convenient summary of the MD results fora-SiO2 is
provided by Fig. 1, where the relative densities at the end of
runs 1, 2, and 3 and the running averages during runs 4 and
5 are compared to the available experiments as a function of
pressure.3,4,10By displaying the densities relative to the value
at atmospheric pressure~r/r0!, rather than the absolute data,
we effectively compensate for the initial 7% discrepancy be-
tween calculations and experiments. The variations in den-
sity among runs with different compression-decompression
rates, i.e., 0.25 GPa/ps, 0.0625 GPa/ps and ‘‘instantaneous,’’
are very small. Such a small dependence ofr on the pressure
rate indicates that our partially equilibrated system closely
resembles a fully equilibrated sample.

The computed densities of Fig. 1 exhibit a characteristic
anelastic behavior in the compression-decompression cycle.
On compression a partly irreversible densification appears so
that, at least on MD time scales, the density of the starting
material is never fully recovered upon equilibration after de-
compression. The residual density increase of the samples
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decompressed at 0 GPa from a pressure of 25 GPa shows
little or no dependence on the compression-decompression
rate and is very close to that detected in the experiments at
the end of similar pressure cycles~about 20%!.3,4

Owing to experimental difficulties under nonelastic con-
ditions, separate density and compressibility measurements
during decompression are not yet available. Thus the anelas-
tic behavior clearly shown by the MD results for the density
cannot yet be followed directly in the experiments. However,
a very clear anelasticity is evidenced by sound velocity
measurements,10,52 and in particular byr/B, the ratio be-
tween density and bulk modulus,52 which is compared in Fig.
2 with the MD results.

We have computedr/B for an isothermal system asdr/
dp, by dividing the compression-decompression run at 0.25
GPa/ps~run 4! in segments of 10 000 steps~i.e., at intervals
of 2.5 GPa!, and then performing a linear least-squares fit for
r as a function ofp in each segment. This yields two curves
which agree with the experimental data at both low and high
pressures. At intermediate pressures on the compression side
the calculations exhibit the correct trend but do not agree
quantitatively with the experiments. As shown by the error
bars of Fig. 2, also the uncertainties onr/B are larger in this
range. This behavior can be attributed to the large density
fluctuations accompanying the structural relaxation under-
gone by the sample during the process, as discussed below in
Sec. IV D. As discussed in Ref. 25, the discrepancy between
the calculations and the ultrasonic data has to be attributed to
the fact that the ultrasonic waves propagate on time scales
that are much faster than those required for the structural

relaxation. Since the calculations are quasistatic and allow
enough time for the occurrence of relaxation, while the ul-
trasonic measurements reflect an essentially unrelaxed sys-
tem, the calculated low-frequency bulk modulusB is system-
atically lower than the high-frequency ultrasonicB in the
pressure range where structural relaxation takes place.

The results of Figs. 1 and 2 forr and r/B vs p suggest
that an essentially continuous transformation takes place dur-
ing the compression-decompression process, in agreement
with previous findings5 and understandings.23,24 Our results
are at odds with those of Tse, Klug, and Le Page,13 who
claim a sudden density increase around 15 GPa. The poten-
tial model used here18 and that used by Tse, Klug, and Le
Page45 look so similar that we are reluctant to attribute such
a significant discrepancy to differences in the potentials,
even though no other explanation seems very likely.

B. Radial correlation functions

For the normal and densified samples at 0 GPa we have
computed the total neutron pair-correlation functionT(r ),
given in Fig. 3 together with the experimental results.3,4 In
our case the densified sample is the one recovered at 0 GPa
after applying a pressure of 25 GPa, as described in Sec. III
for run 4. TheT(r ) function has been obtained by first
weighting the computed partial pair radial correlation func-
tionsgi j (r ) with the nuclear-scattering lengths

20 and then by
convoluting with the same experimental resolution function
that is used in the neutron-scattering experiments.3,4

The Rx5A( i@Tobs(r i)2Tcalc(r i)#
2/( iTobs

2 (r i) agreement
factor20,53 between observations3,4 and calculations is
Rx'15%. Since we account for both undensified and densi-
fied silica, we consider our result quite satisfactory. The best

FIG. 1. Relative densityr/r0 of a-SiO2 vs pressurep. Squares 1
through 3 indicate equilibrated configurations at the end of runs 1,
2, and 3, i.e., initial equilibration, instantaneous compression and
instantaneous decompression. Filled and empty symbols indicate
running averages during compression and decompression, respec-
tively, with rates of 0.25 GPa/ps~circles! and 0.0625 GPa/ps~tri-
angles!. The line is for static pressure experiments by Zhaet al.
~Ref. 10! under compression. Measurements for decompressed
silica are available only for samples recovered at 0 GPa. The dia-
mond is for a sample recovered after room-temperature compres-
sion to 16 GPa@Susman and co-workers~Refs. 3 and 4!#.

FIG. 2. Ratior/B of density and bulk modulus vs pressurep.
Sound velocity measurements~Ref. 52! under increasing and de-
creasing pressures: filled and empty circles, respectively. Calculated
r/B5dr/dp under increasing and decreasing pressures: solid and
dotted lines, respectively. The center and half width of the error
bars represent the mean and standard deviation ofr/B, as obtained
from the linear fit tor vs p.
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MD result to date20 for undensified silica only isRx59.1%
~Ref. 29! ~obtained with a three-body potential model!.
These calculated values should be compared with the typical
experimental accuracy,Rx'1.5%.20

The experimentalT(r ) contains information on the distri-
butions of coordination distances and bond angles in the
glass. Unfortunately the extraction of this information from
the measurements depends on the functional form chosen for
the distributions and on the assumed correlation~or lack of
correlation! between distances and angles.20,53–56At the mo-
ment only the experimental peaks around 1.6 and 2.6 Å are
clearly assigned3–5,53to Si-O and O-O nearest neighbors, re-
spectively, while an unambiguous deconvolution of the mea-
suredT(r ) has not been possible for densifieda-SiO2 at
distances beyond 3 Å.4 The model dependence of the experi-
mental analysis, which may even lead to differences of sev-
eral degrees in the average bond angles estimated from the
sameexperimental data,51,56 is probably responsible for the
somewhat conflicting results found in the literature.

A cursory glance at Fig. 3 indicates that the calculations
agree with the experiments on the global shape of theT(r )
and on its overall change upon densification. A more careful
analysis reveals that even the changes in the area and width
of the peaks are well described. The calculations reproduce
well the increased area and the broadening of the O-O peak,
which has been attributed to a broadening of the angle
distribution,3 and the increased area at distances between 2.8
and 3.4 Å. The calculations also reproduce the small increase
upon densification of the area of theT(r ) in the 1.9–2.3 Å
range observed by Susmanet al.4 and which was tentatively
assigned to a small number of additional Si-O bonds created
during the densification process. The success of the calcula-

tions in this range is probably due to the absence of coordi-
nation constraints in the two-body potential model,18 since
theT(r ) area does not increase in the MD simulations with
three-body interactions.4

C. Structural changes upon densification

The mechanisms which accompany the densification can
be identified by comparing the structural properties of the
densified glass with those of the starting material. We recall
that in the pressure induced transformation from the low-
density polymorphs of crystalline silica~quartz, cristobalite
and coesite! to the high density form~stishovite! the Si co-
ordination grows from 4 to 6, while the Si-O bond length is
forced to increase to accommodate for the additional O
neighbors. In the light of the processes which occur for crys-
talline SiO2,

18,19,57we have carefully analyzed the distribu-
tions of coordination numbers, of interatomic distances and
of bond angles in the simulated samples.

Since the first minimum of the partial pair radial correla-
tion function gSiO(r ) is around 2.4 Å, we have chosen to
consider closer Si-O pairs as bound neighbors, while O-O~or
Si-Si! pairs are taken as neighbors if they are both bound to
a common Si~or O! atom.

The structure of the initial sample corresponds to the
usual model for SiO2, consisting of SiO4 tetrahedra that
share corners and are arranged in a random network46 with
very few coordination defects: 99% of the Si atoms have
four O atom neighbors, and 99% of the O atoms have two Si
neighbors. Virtually no pairs of tetrahedra sharing edges
~0.04%! are found. A significant disruption of the tetrahedral
order occurs upon densification: in our recovered sample
20% of the Si atoms have five or six O neighbors, while 10%
of the O atoms have three Si neighbors. About 4% of all
connected pairs of tetrahedra now share edges.

For each pairi - j of atomic species, we have computed the
average coordination numbersni j , and the average and stan-
dard deviation of the interatomic distancesr i j and of the
anglesi j î , both for the starting and recovereda-SiO2. The
calculated distributions, which have been obtained directly
from the atomic coordinates during the simulation, are com-
pared in Table I with the results of the analyses of NMR,
neutron and x-ray-scattering experiments.3,4,9,20,51,53,54,56,58

The table shows that the computations are in reasonable
agreement with the results of the experimental analyses, for
both the starting and the densified material.

In the simulation of the densification process, we find a
slight increase of the average Si-O bond length accompanied
by a decrease of the average Si-O-Si angle and Si-Si separa-
tion. The number of Si-O, O-O, and Si-Si neighbors in-
creases, and the O-Si-O and Si-O-Si angle distributions
broaden significantly. These results agree with most, al-
though not all, of the experimental investigations.3,4,54,55Ex-
perimentally, longer Si-O bonds and reduced Si-O-Si angles
are found in electron-spin-resonance measurements on 24%
densified glass.55 The neutron data on 20% densified glass3,4

suggest a slight increase of the Si-O coordination, accompa-
nied by a lengthening of the Si-O bond and by a decreased
O-Si-O angle. X-ray-diffraction experiments on silica glass
under pressure in the range 8–28 GPa~Ref. 5! also indicate
an increase in the Si-O bond length, which is interpreted as

FIG. 3. Total neutron pair radial correlation functionT(r ) @up-
per panel: experiment~Refs. 3 and 4!, lower panel: calculation# for
a-SiO2 before~solid line! and after~dotted line! the compression-
decompression cycle.
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the result of a higher Si coordination.5 These high-pressure
data, although qualitatively different from those on densified
glass at ambient pressure, clearly suggest a common mecha-
nism and are consistent with the gradual coordination in-
crease proposed in Refs. 23 and 24.

We have searched for possible links between Si coordina-
tion and Si-O bond length in the simulated system and have
found a rather direct correlation. By separately analyzing the
distributions of Si-O distances around Si atoms with coordi-
nation 4 and.4, we have obtained two smooth monomodal
distributions centered at different bond lengths. In the unden-
sified glass, the average length is'1.65 Å for Si atoms with
coordination 4, and'1.83 Å for atoms with higher coordi-
nation. Because these averages remain essentially identical
when going to the densified glass, the direct cause of the
increased average and dispersion of the Si-O lengths~Table
I! must be the increased population of Si atoms with higher
coordination and longer Si-O bonds, rather than an overall
lengthening of the bonds.

To obtain more information on the relations between the
coordination number and the local glass structure, we have
analyzed the O-Si-O bond angle distribution in terms of in-
dividual contributions due to Si atoms with four, five, and six
O neighbors. As shown in the lower panel of Fig. 4, this
analysis indicates that the broadening of the O-Si-O distribu-
tion in the densified glass~Table I! is to be attributed to the
appearance of Si atoms with coordination of five or higher,
rather than to an increased frustration of the tetrahedral pack-
ing, which would simply result in a broadening of the distri-
bution of the four-coordinated atoms. The average O-Si-O
angle around Si with coordination four remains close to the

ideal tetrahedral angle of 109.5°, while the average angle
around Si with higher coordination is'90°, as expected for
an octahedral coordination.

A similar mechanism holds for the Si-O-Si distribution,
shown in the upper panel of Fig. 4. Around two-coordinated
O we find an asymmetric distribution of O-Si-O angles ex-
tending from 120° to 180°, in both undensified and densified
glass. In the densified material, due to the abundance of
three-coordinated O, which exhibit a broad distribution ex-
tending from 80° to 140°, the Si-O-Si distribution broadens
and the average angle decreases~Table I!. This behavior is
consistent with the NMR results.54

The angular distributions calculated in this work are
roughly similar to that found in the MD simulation of Tse,
Klug, and Le Page.13 A more careful comparison with the
previous MD results13 reveals that the angular distributions
calculated for the densified material are quite different, un-
like those for undensified glass, which are virtually identical.
In particular, Tse, Klug, and Le Page13 find that the O-Si-O
distributions become much more structured upon densifica-
tion and develop a peak at 165°, which they attribute to the
presence of edge sharing tetrahedra. In our sample the occur-
rence of pairs of edge sharing tetrahedra is found to be sig-
nificant, as previously mentioned, but no feature due to such
pairs is found in the O-Si-O distribution.

D. Onset of anelasticity

To investigate the anelasticity effects, a sequence of con-
figurations was recorded during the continuous compression
of runs 4 and 5. These stored states were subject to two

TABLE I. Average coordination numbersni j , and average and standard deviation for the bond distances
r i j and the bond anglesi j î of starting and densified silica glass. Calculations are at 300 K, 0 GPa. Most
experiments are for samples compressed at room temperature.

i - j

ni j r i j ~Å! s r i j
~Å!

Starting Densified Starting Densified Starting Densified

Si-O Calc. 4.009 4.209 1.648 1.686 0.047 0.104

Obs. 3.85,a3.97b 3.93b 1.608,a1.62b,c 1.62,c1.63b 0.047,a0.049b 0.053b

O-O Calc. 6.035 6.846 2.682 2.714 0.130 0.265

Obs. 5.94,a6.00b 6.59b 2.626,a2.65b 2.64,c2.66b 0.091,a0.087b 0.12b

Si-Si Calc. 4.042 4.837 3.145 3.139 0.119 0.173

Obs. 4.13d 3.077,a3.07c 3.02c 0.111a

i - j - i i j î ~degrees! s i j î ~degrees!

Starting Densified Starting Densified

O-Si-O Calc. 109.3 108.3 8.0 16.8

Obs. 109.7,a109.5b 109.2b 4.5a

Si-O-Si Calc. 147.8 139.1 14.1 19.8

Obs. 142,c143,e144f 137,c138e 26e 25e

aReferences 20 and 53.
bReferences 3 and 4.
cReference 9.
dReference 58.
eReference 54.
fReferences 51 and 56.
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distinct kinds of processes:~a! instantaneous decompression
to 0 GPa and, for some states of run 4,~b! repeated equili-
bration for 30, 60, 90, and 120 ps at constant volume, fol-
lowed by instantaneous decompression down to 0 GPa
~annealing-decompression process!. The system was equili-
brated at 0 GPa for 30 ps for both kinds of processes.

The relative densitiesr/r0 calculated for processes~a! and
~b! are reported as a function of the pressure applied during
the compression run in the upper panel of Fig. 5. In order to
analyze the possible correlation between density and Si co-
ordination we show in the lower panel of Fig. 5 the average
Si coordination number vs the applied pressure.

The symbols of the upper panel of Fig. 5 originate from
the instantaneous decompression process~a!. The center and
half width of the error bars represent means and standard
deviations of the density values for the annealed states~b!.
Therefore, the bars span the range of density into which the
state annealed at high pressure falls when the compression is
instantaneously released. The presence of a range of avail-
able density values proves that a variety of configurations are
accessible to the equilibrating sample.

The plot shows that for compression below 6 GPa the
initial equilibrium density is fully recovered, and that above
this point irreversible densification occurs. Above 15 GPa
the residual density increase is nearly independent of the
applied pressure. Experimentally, elastic behavior is ob-
served up to'8–10 GPa,7,10,52and most of the densification
takes place between 12 and 24 GPa.10 The transformation is
complete above 30 GPa.10

Below 6 GPa and above 14, that is in thep range of
elastic behavior and in the one where most irreversible struc-
tural changes have already taken place, the trends of the

computed densities prove to be virtually independent of the
sample history: the density for states instantaneously decom-
pressed to 0 GPa falls into the range defined by the bars.
Instead, at intermediate pressures the density of the recov-
ered sample increases with the amount of equilibration to
which the state has been subjected. The larger density for the
samples equilibrated under pressure and for those subjected
to a slower compression rate~run 5! indicates that some an-
nealing takes place during the longer time spent at the high
pressures. It is annealing, i.e., the thermally activated process
in which the system slowly overcomes the potential energy
barriers hindering the structural changes, which is respon-
sible for the large density fluctuations mentioned in Sec.
IV A.

Important structural changes induced by compression are
evidenced by the plot of the average Si coordination number
vs the applied pressure shown in the lower panel of Fig. 5.
Again, the error bars represent mean and standard deviation
of the coordination number distribution for the states an-
nealed under pressure and then decompressed. The most re-
markable feature of the results is the increasing of the aver-
age coordination, determined by the appearance of Si atoms
with coordination 5 and 6, in the states undergoing irrevers-
ible densification. The population of Si atoms with coordina-
tion >5 still present when the pressure is released turns out
to be nearly constant above an applied pressures of'15
GPa.

The data of Fig. 5 clearly show that density and coordi-
nation number exhibit a very similar trend with increasing

FIG. 4. Average distributions of O-Si-O and Si-O-Si angles for
a-SiO2 before ~a! and after ~b! the compression-decompression
cycle. The total O-Si-O distribution~solid lines! is decomposed in
the contributions from Si atoms with coordination 4~dotted lines!,
and>5 ~dashed lines!. The Si-O-Si distribution~solid lines! is de-
composed in the contributions from two- and three-coordinated O
atoms~dotted and dashed lines, respectively!.

FIG. 5. Equilibrium properties ofa-SiO2 at zero pressure for
states recovered after compression. The relative densityr/r0 ~upper
panel! and the average numbernSiO of O neighbors for Si atoms
~lower panel! are shown as a function of the maximum pressure
applied. Symbols indicate states recorded during the compression at
0.25 GPa/ps~circles! or 0.0625 GPa/ps~triangles! and subject to
instantaneous decompression. The center and half width of the error
bars represent means and standard deviations for the samples an-
nealed under pressure and then decompressed.
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pressure, thus suggesting a closer analysis of the correlation
between these two quantities. This has been done in Fig. 6,
where the density of the recovered material is shown to in-
crease monotonically with the Si coordination number. Fur-
thermore, this happens regardless of the history of the
sample, as proved by the same behavior displayed both by
the symbols and the ‘‘errors bars’’ of the figure. This leads to
the conclusion that in the simulation the density is predomi-
nantly a function of the Si atom coordination.

V. DISCUSSION AND CONCLUSIONS

Our results prove that classical MD calculations with a
two-body potential model18 are capable of describing a den-
sification process irreversible on MD time scales, and which
closely emulates the observations on silica glass. Using
Tsuneyuki’s potential,18 we have obtained density and com-
pressibility data in reasonable agreement with the experi-
ments, and very good results for radial correlation functions,
coordination numbers, bond distances and angles of both un-
densified and densified glasses.

The MD results appear similar to those obtained by Tse,
Klug, and Le Page13 with the model of van Beest, Kramer,
and van Santen.45 The interatomic distances, correlation
functions and angular distributions reported for the starting
material13 are close to those found in our simulation.
Samples recovered after compression to 15–20 GPa gave
Si-O coordination numbers in the 4.2–4.4 range and angle
distributions similar to ours, although more structured. Ra-
dial correlations for densified glass have not been reported in
Ref. 13.

The MD results indicate that the increased atomic coordi-
nation is the main driving force behind most of the transfor-
mations encountered by the simulated glass. For the samples
recovered after compression, ‘‘irreversible’’ densification be-

gins around compressions.6 GPa, the point where Si atoms
with O coordination greater than four also appear~Sec.
IV D !. After this, the amount of densification increases
monotonically with the average coordination number up to
compressions'15 GPa, where both coordination and den-
sity seem to saturate. These results are in reasonable agree-
ment with the experiments.5,7,10,52

The appearance of Si atoms with coordination.4 is also
directly connected to the changes found in the computed
bond lengths and angles. The changes in the angular distri-
bution functions are in fact directly related to the increased
number of Si atoms with octahedral coordination~Sec.
IV C!. The rather surprising lengthening of the average Si-O
bond distance takes place when the bonds are stretched to
make room for additional O neighbors. Finally, the broaden-
ing of the distance and angle distributions~Table I, Fig. 4!, is
also clearly linked to the increased population of Si and O
atoms with high coordination.

Similar transformations in the average coordination, bond
lengths and bond angles are well documented for the x-ray
experiments under pressure,5 while most measurements on
densified glass at room conditions detect only a negligible
increase in coordination.3,4 In our opinion, this discrepancy
might be partly due to the analysis methods. In the simula-
tion we have found that most of the Si atoms with coordina-
tion .4 have Si-O bond distances in the larger tail of the
first peak of theT(r ). In fact, as shown by Fig. 3 for the
densified glass, this peak is asymmetric and definitely not
Gaussian. We have estimated the average coordination num-
ber by fitting a Gaussian to the simulatedT(r ), as is often
done in the experimental analysis, and erroneously found a
small decreaseof the coordination. The larger tail of the
T(r ), and thus most of the contribution from the Si atoms
with high coordination, is therefore missed by fitting to a
single Gaussian. We have found that a direct integration of
the simulatedrT(r ) yields a number of neighbors in agree-
ment with the correct one obtained by a direct analysis of the
interatomic distances~as described in Sec. IV C!. With this
method we reproduce the known coordination increase.

The structural changes in the simulated glass, although
less dramatic, resemble the behavior observed in crystalline
silica18,19,57when the tetrahedral arrangement is replaced by
the octahedral coordination as the low-density polymorphs
transform into stishovite. The concept of a coordination
driven transformation is also consistent with the MD results
of Tse, Klug, and Le Page,13 with the current understanding
of the densification process in compressed GeO2 glass,25

with a large part of the experimental analysis on silica3–5,57

and with the model of pressure-induced coordination
changes by Stolper and Ahrens23 and Jeanloz.24 We are con-
vinced that the high-pressure instability of the tetrahedral
network with respect to an increase in coordination, which
triggers the irreversible transition from quartz to stishovite, is
also the cause of the densification of compresseda-SiO2.
Further experimental and theoretical work is required to
verify the validity of these concepts.
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FIG. 6. Correlation between relative densityr/r0 and average
Si-O coordination numbernSiO for decompresseda-SiO2. Symbols
and errors bars are as described in Fig. 3.
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