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We develop the nonadiabatic polaron theory of superconductivity ofMxC60 taking into account the polaron
band narrowing and realistic electron-phonon and Coulomb interactions. We argue that the crossover from the
BCS weak-coupling superconductivity to the strong-coupling polaronic and bipolaronic superconductivity
occurs at the BCS coupling constantl;1 independent of the adiabatic ratio, and there is nothing ‘‘beyond’’
Migdal’s theorem except small polarons for any realistic electron-phonon interaction. By the use of the
polaronic-type function and the ‘‘exact’’ diagonalization in the truncated Hilbert space of vibrons~‘‘phonons’’!
we calculate the ground-state energy and the electron spectral density of the C60

2 molecule. This allows us to
describe the photoemission spectrum of C60

2 in a wide energy region and determine the electron-phonon
interaction. The strongest coupling is found with the high-frequency pinchAg~2! mode and with the Frenkel
exciton. We clarify the crucial role of high-frequency bosonic excitations in doped fullerenes which reduce the
bare bandwidth and the Coulomb repulsion allowing the intermediate- and low-frequency phonons couple two
small polarons in a Cooper pair. The Eliashberg-type equations are solved for low-frequency phonons. The
value of the superconductingTc , its pressure dependence and the isotope effect are found in remarkable
agreement with the available experimental data.@S0163-1829~96!08829-7#

I. INTRODUCTION

Any phonon-mediated superconductivity is a nonadiabatic
phenomenon. Nonadiabaticity of electrons in metals mea-
sured by the ratio of the characteristic phonon frequency to
the Fermi energy is normally small~<1022!, and so is their
superconductingTc . High-temperature superconductivity of
doped fullerenes1,2 seems to be due to large nonadiabaticity.
The phonon frequencies are high,v<0.2 eV, while the bare
Fermi energy is very lowEF<0.2 eV.3 Tolmachevlogarithm
in the definition of the Coulomb pseudopotentialm* does not
apply in this nonadiabatic case and the electron-phonon cou-
pling should be strong~l>1! to overcome the Coulomb re-
pulsion. The strong electron-phonon interaction implies the
nonadiabatic polaron or bipolaron superconductivity as dis-
cussed in detail by Alexandrov and Mott.4 However, the final
answer on the origin of high-Tc depends not only on the
adiabatic ratiov/EF but also on the coupling constants with
different phonons. If a relatively weak coupling~l<0.5!
with low-frequency phonons dominates and the Coulomb re-
pulsion is not very large, then the Migdal-Eliashberg theory
is applied with the BCS ground state. On the other hand, if
the coupling is strong and~or! high-frequency phonons are
involved, the nonadiabatic polaron theory is more appropri-
ate.

In the past years several different calculations of the
electron-phonon coupling constants have been reported for
fullerenes.5–9Some of them yield the strongest coupling with
the high-frequencyHg modes with a moderate electron-
phonon coupling,l<0.5. On the other hand Picketet al.5

predicted the strongest coupling with the high-frequency
Ag~2! mode andl;3. The difference in calculated coupling
constants is quite remarkable, and may result in a qualita-

tively different understanding of the nature of superconduc-
tivity of doped fullerenes. Therefore, the experimental deter-
mination of l and more extensive theoretical work are
required.

Recent photoemission spectroscopy~PES! of the mol-
ecule C60

2 ~Ref. 10! allows us to estimate the relative contri-
bution of different phonons. While the variational analysis
by Gunnarssonet al. in the truncated space up to five
phonons showed the strongest coupling with alow-frequency
Hg mode, we found by applying the polaron theory of PES
that the coupling with the high-frequencyAg~2! mode
dominates.11 The coupling constant with this mode appears
at least by a factor;1.5 larger than with any other mode in
a qualitative agreement with the tight-binding analysis by
Picket et al.5 This demonstrates that an estimate of the
electron-phonon coupling constants from PES, the Raman
and neutron scattering using the canonical theory of metals
may be inconclusive, since doped fullerenes are not conven-
tional metals to which Migdal’s ‘‘theorem’’ can be applied.

There is some confusion in the literature concerning the
violation of Migdal’s theorem. As was realized a long time
ago12 the Migdal13 theory of electron-phonon effects in the
normal state and the Eliashberg theory,14 which generalizes
BCS theory to incorporate Migdal theory in the normal limit,
provide a rigorous basis for understandingTc in the weak-
and intermediate-coupling regimes. By the use of the 1/l
expansion technique15 one can readily show that small po-
larons appear atl;1 and thus Migdal’s theorem fails. The
breakdown of the Migdal-Eliashberg theory atl;1 has
nothing to do with the nonadiabatic corrections due to the
so-called ‘‘crossing’’ diagrams~vertex corrections!. Small
polarons are formed atl>1 both in the initially adiabatic
v!EF or nonadiabaticv>EF system irrespectively of the
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ratio v/EF .
16 Their formation is the result of the broken

translation symmetry as discussed in Refs. 17 and 18. Of
course, in special cases Migdal’s theorem will not hold even
for smalll,1: first, if either characteristic phonon has small
momentumq!qD ~qD is the Debye momentum!, and sec-
ond, if the Fermi surface has a nested topology. In these
textbook examples12,19 the ‘‘crossing’’ diagrams are no
longer small. Several authors20–23 suggested a theoretical
treatment of the vertex corrections with quite opposite con-
clusions about their role forTc . While many authors gener-
ated the opinion that vertex corrections should, in general, be
negative, Grimaldiet al.23 obtain a strong enhancement ofTc
from nonadiabatic terms.

In this paper we develop the theory of the superconduct-
ing Tc which takes into account the nonadiabatic effects,
strong coupling with some phonons, and the realistic Cou-
lomb interaction. First, we discuss in more detail the origin
of the breakdown of Migdal’s theorem due to the broken
translation symmetry. We argue that while a strong enhance-
ment of Tc due to vertex corrections23 is an artifact of an
unrealistic electron-phonon interaction, the polaronic band-
narrowing provides such enhancement quite naturally. It
means that the multiphonon dressing is important for high-Tc
superconductivity as was predicted by one of us.24 Then we
analyze the PES data10 for C60

2 using the polaronic displace-
ment transformation forAg~2! mode and the truncated Hil-
bert space for other phonons. Our fit to the experimental PES
is just as good as the variational approach10 for the low bind-
ing energies and better than that for the high-energy region.
We obtain the strongest coupling with the high-lyingAg~2!
pinch mode and with the Frenkel-type excitons. As a result,
we determine thebare coupling constants to formulate and
solve the Eliashberg-type equations fully taking into account
multiphonon dressing and nonadiabatic motion of carriers.
These provide us with the value ofTc , its pressure depen-
dence and with the isotope effect which are in excellent
agreement with experiment. In conclusion we analyze a pos-
sibility for the bipolaron formation and 2e Bose-liquid
ground state of doped fullerenes.

II. BROKEN TRANSLATIONAL SYMMETRY AND
BREAKDOWN OF MIGDAL’S THEOREM

In doped semiconductors the carriers become small po-
larons or bipolarons at the intermediate value of the coupling
constantl>1 or l>0.5, respectively.25 However, within the
adiabatic Migdal description of electrons and phonons
coupled by the linear electron-phonon interaction there is no
instability at any value ofl if the bare ionic plasmon mode is
replaced by the acoustic-phonon mode.12 The corrections to
the normal-state spectrum due to the coupling are adiabati-
cally small~;v/EF!. In particular, the critical temperature of
the BCS superconductor is adiabatically small,
Tc/EF,v/EF!1 for all relevant values ofl. Therefore, the
self-consistent Migdal-Eliashberg approach does not allow
for the possibility to study the small-~bi! polaron formation
in the intermediate- and strong-coupling regime. This draw-
back is due to the basic assumption of the canonical theory
that the Green’s functions~GF’s! are translationally invari-
ant, thusG~r ,r 8,t!5G~r2r 8,t!. This assumption excludes the
possibility of the local violation of the translational symme-

try due to the lattice deformation followed by the self-
trapping. To enable the electron to relax into the lowest po-
laron state, one can introduce an infinitesimal translationally
noninvariant potential, which should be set equal to zero
only in the final solution for GF’s.17 As in the case of the
off-diagonal superconducting order parameter, a small poten-
tial violating a translational symmetry drives the system into
a new ground state at sufficiently largel. Setting it equal to
zero in the solution to the equation of motion restores the
translational symmetry but in a new polaronic band rather
than in the electron one, which turns out to be an excited
state.

In the Holstein model, in which electrons interact with the
local ~molecular! phonons one can notice the polaronic in-
stability of the Fermi liquid atl;1 already with Migdal’s
diagrams for the electron self-energy. The interaction is de-
scribed by the Hamiltonian

He-ph5
1

A2N (
q,k

g~q!v~q!ck1q
† ckdq1H.c., ~1!

where the coupling constantg~q! and the phonon frequency
v~q! are momentum independent. The electron self-energyS
in the Migdal approximation contains two contributions,SM ,
Fig. 1~a! andSm , Fig. 1~b!. SM.lv and therefore remains
adiabatically small compared with the bandwidth
2D.N(0)21 in the relevant region of the coupling~l,D/
v!, which guarantees the self-consistency of the approach. In
the dispersionless Holstein model the BCS coupling constant
l is given byl5g2v/2D. On the other hand for the molecu-
lar phononsSm.Dln is not small and it turns out to be
comparable or larger than the Fermi energy already atl;1
for any filling of the band~n is the electron density per cell!.
As a rule this diagram, which is momentum and frequency
independent, is included in the definition of the chemical
potentialEF . While this is justified for a weak-coupling re-
gime,Sm leads to an instability for a strong coupling.26

In doped semiconductors and metals phonons are
screened and the diagramSm containing only zero momen-
tum phonons vanishes. Therefore, one can erroneously con-

FIG. 1. Self-energy in Migdal’s approximation.
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clude that there is nothing to worry about as far as the appli-
cability of the Migdal approach. However, it is sufficient to
violate the translation symmetry and then restore it to ob-
serve the instability of the bare band. The polaronic instabil-
ity is essentially an adiabatic effect.16,18 Therefore, to see
how the same self-energy diagramSm leads to the polaronic
collapse independent of the type of phonons we consider the
extreme adiabatic limit of the classical deformation field
f~r ! coupled with the electron fieldc~r ! as

H5He1E dr dr 8@g~r2r 8!f~r 8!

3$c†~r !c~r !2n0~r !%1H.c.#1s2u¹f~r !u2. ~2!

HereHe is the electron kinetic energy,s is the sound veloc-
ity, g~r ! is the coupling constant with the Fourier component
gq5vq

3/2g(q)/A2N, n0~r ! is the periodic density of carriers
respecting the translational symmetry, andvq5sq. Minimiz-
ing Eq.~2! with respect to the classical fieldf* ~r ! we obtain

s2¹2f~r !5E dr 8g* ~r2r 8!$n~r 8!2n0~r 8!%. ~3!

The solution is

f~r !52(
q

gq*

s2q2
eiq•r$nq2nq

0%, ~4!

wherenq is the Fourier component of the electron density
n~r ![^c†~r !c~r !&. Substituting Eq.~4! into the Hamiltonian
Eq. ~2! we find that the adiabatic lattice deformation leads to
the lowering of the electron energy by the value

dm~r !522(
q

ugqu2

vq
2 eiq•r$nq2nq

0%. ~5!

If the electron density is periodic,nq5nq
0 the shift of the

energy is zero. Otherwise, it is not. For example, one can
consider a random statistically uncorrelated distribution with
the ansamble average^nqnq8&5Nn2dq,2q8 . In that example
the chemical potential is shifted by the value

^udmu&5nF 1N (
q

ug~q!u4vq
2G1/2.2nlD, ~6!

which is practically the same as in the dispersionless Hol-
stein model.26 However, now

lD[Ep5
1

2N (
q

ug~q!u2vq ~7!

depends on the phonon spectrum, integrated overall Bril-
louin zone rather than on zero momentum phonons. This
shift of the chemical potential leads to the instability of the
Migdal solution. To show this let us consider a one-
dimensional chain in the tight-binding approximation with
the nearest-neighbor hopping integralD/2. The renormalized
chemical potential is given by

m5D sinS p~n21!

2 D22Dln. ~8!

The system is stable if the derivativedm/dn is positive,
which yields the following region for the stability of the
Migdal solution:

l,
p

4
cosS p~n21!

2 D . ~9!

For two- and three-dimensional lattices the numerical coef-
ficient is different, but the critical value ofl remains of the
order of unity. The broken translational symmetry lowers the
energy by the value 2Ep.2lD per particle. The correspond-
ing increase of the deformation energy isEp . Therefore, the
system prefers to relax into the self-trapped state ifEp.D.
The nonadiabatic vertex corrections neglected within the
Migdal approach are also completely irrelevant for the small-
polaron formation and, therefore for the breakdown of this
approach. The extension of the Migdal approximation to the
strong-coupling limitl.1 is unacceptable because of the
broken translation symmetry, rather than because of the ver-
tex corrections.

In the small-polaron regime,l>1 the kinetic energy re-
mains smaller than the interaction energy and a self-
consistent treatment of a many polaron system is possible
with a 81/l8 expansion technique.15 In the extreme strong-
coupling limit l→` one can neglect the hopping term of the
Hamiltonian. The rest has analytically determined eigen-
states and eigenvalues.25 With the finite hopping term po-
larons tunnel in a narrow band restoring the translational
symmetry due to the degeneracy of the zero-order Hamil-
tonian relative the site position of a single polaron in a regu-
lar lattice. Because of the degeneracy terms linear in the
hopping integral should be included in the zero-order
Hamiltonian.15 As a result the renormalized hopping integral
s averaged with the phonon equilibrium distribution is given
by the familiar small-polaron formula as

s~m2n!5T~m2n!e2g2~m2n!, ~10!

where atT50

g2~m!5
1

2N (
q

ug~q!u2@12cos~q•m!# ~11!

andT~m2n! is the bare hopping integral. Earlier26 we have
shown by the numerical diagonalization of a finite site Hol-
stein model that the last expression for the polaron band-
width is valid for the nonadiabatic and intermediate regime
v>D for all coupling strengths. In the adiabatic case impor-
tant corrections appear. However, the main exponential term
remains almost the same in the strong-coupling regime,
l@1. As a result we conclude that the major effect of high-
frequency phonons is the reduction of the bandwidth. An-
other important effect of the high-frequency phonons is the
reduction of the Coulomb repulsionVc . While optical
phonons cannot overscreen the repulsion they reduce its
value significantly down toVc22Ep . Then the acoustical
and low-frequency molecular modes provide a net attraction.

It was argued by one of us24 that the polaron band nar-
rowing can provide a high value ofTc because of the en-
hancement of the density of states. This enhancement does
not depend on the particular choice of the electron-phonon
interaction contrary to the enhancement ofTc due to the

54 3657THEORY OF SUPERCONDUCTINGTc OF DOPED FULLERENES



vertex corrections.23 The latter can be obtained only if the
electron-phonon scattering is dominated by small momentum
transferq!qD . A simple estimate of the screening radius in
doped fullerenes and cuprates yields a value of the order or
even less than the lattice constant. Therefore, a long-range
electron-phonon interaction is ruled out by screening, which
makes the positive effect of the vertex corrections quite
unrealistic.27

III. PES AND BARE ELECTRON-PHONON INTERACTION

Because of the diversity in the theoretical results for
electron-phonon interaction the coupling strength can be un-
ambiguously determined only from the experiment. Allow-
ing a small shift of the phonon frequencies due to screening
the coupling with the intraball modes are expected to be the
same in doped fullerenes as in the C60

2n molecule. The recent
photoemission spectroscopy of a molecule C60

2 ~Ref. 10! al-
lows us to estimate the relative contribution of different pho-
non modes and other bosonic excitations to the interaction.

In this section we analyze the PES data10 using the exact
polaronic diagonalization with respect to theAg~2! mode and
introducing thepolaron-excitoncoupling. We obtain the
strongest coupling with the high-lyingAg~2! pinch mode and
with a Frenkel-type exciton. As a result we provide a strong
evidence for the nonadiabatic coupling with high-energy
bosonic excitations inMxC60.

The Hamiltonian at hand, describing three degeneratet1u
states coupled with phonons, is diagonalized with respect to
theAg~2! coupling using the canonical Lang-Firsov displace-
ment transformation.28 The result is

H̃5eSHe2S52Ep
Ag2 (

m51

3

cm
†cm

1 (
n51

8

gnvn (
n,m51

3

cn
†Mnm

n cm1(
n

8

(
m51

5

vnnn,m ,

~12!

where

S5~gdAg22H.c.!. ~13!

Ep
Ag25g2vAg2

is the polaron shift due to theAg~2! mode,
333 dimensionless matrixM̂ is taken from Ref. 29

M̂5S)Q41Q5

)Q1

)Q2

)Q1

2)Q41Q5

)Q3

)Q2

)Q3

22Q5

D ,
and nn,m are the phonon occupation numbers of eight five-
degenerateHg modes with the phonon operatorsQm

n 5dn,m
†

1dn,m . The interaction withHg modes is responsible for the
dynamic Jahn-Teller effect in C60. According to
calculations30 singly ionized C60

2 is in the intermediate-
coupling regime, while the doubly and triple ionized mol-
ecules are in the strong-coupling limit with respect to the
coupling withHg modes. Therefore a reasonable estimate of
the ground-state energy is obtained by taking into
account only diagonal part ofM̂ . Nevertheless, to avoid any
ambiguity we calculated the spectral functionI pol~v! of the

Hamiltonian, Eq.~12! by the exact numerical diagonalization
in truncated Hilbert space~up to four phonons! for the Hg
modes as described in Ref. 26. A self-trapped exciton in
neutral C60 was observed and discussed by
several authors.31–33Because of the polaron-exciton coupling
we add the same spectral function to the total spectral den-
sity shifted by the exciton energyvex, and multiplied by the
polaron-exciton coupling constantgex

2 as

I ~v!5I pol~v!1gex
2 I pol~v1vex!. ~14!

This is an exact procedure if the interaction with excitons is
linear as with phonons. Then we integrateI ~v! with the
Gaussian instrumental resolution function of width;41
meV ~Ref. 10! taking into account the dampinggex of the
exciton in the second~excitonic! contribution with the sub-
stitutionvex→vex1igex. We thus can fit the PES in a wide
energy region as shown in Fig. 2 withgn being the fitting
parameters~inset!. The polaron-exciton coupling constant is
found to begex

2 50.5, the exciton energyvex.0.5 eV in
agreement with the luminescent data.31 The inverse exciton
lifetime is estimated to begex.580 cm21. The coupling to
theAg~2! mode turns out most important in agreement with
the tight-binding calculations3 and with the doping depen-
dence of the phonon frequencies and the Raman linewidths.
TheAg~2! mode shows a clear shift with doping from 1467
cm21 in undoped C60 to 1446 cm21 in K3C60 and to 1431
cm21 in K6C60. The linewidth increases by;3 cm21 in the
metallic state~K3C60! and comes back to the value of C60
with further doping in an insulator K6C60. At the same time
high-frequencyHg~7,8! modes also show large broadening in
the metallic state. However, NaxC60, which does not exhibit
a metallic state with doping, shows the same strong line
broadening and the bleaching of theHg~7,8! modes.

34 Con-
sequently, the broadening of phonon lines does not provide
information about the electron-phonon coupling. Moreover,
as has been pointed by Gelfand,35 the Ag~2! mode cannot
decay into an electron-hole pair, no matter how strong the
electron-phonon coupling is. This decay is prohibited by the
conservation of the energy because the estimated half-
bandwidth is below theAg~2! frequency. We believe that an
increase of the linewidth ofHg modes in the metallic phase

FIG. 2. Polaron theory fit~full line! to the experimental PES
~dashed line!. Frequenciesv5vn , coupling constantsg5gn, and
the contribution to the ground-state energyE5Ep

n for different
modes are shown in the inset. For comparison we also show the
coupling constants@g~Gun!, inset# and the calculated variational
PES~dotted line! of Ref. 10.
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is associated with the crystal-field splitting of the fivefold
degenerate mode as confirmed by the recent experimental
data.36 If this splitting is not very large it may result in an
increase of the Raman linewidth. Therefore, the large broad-
ening ofHg modes does not contradict our conclusion that
their coupling with the electron is weak.

In general, an estimate of the electron-phonon coupling
constants from the Raman and neutron scattering using the
canonical theory of metals may be inconclusive since doped
fullerides are not conventional metals. In particular, the
Migdal ‘‘theorem’’ can not be applied.

IV. POLARON THEORY OF Tc

It follows from the PES analyses that the frequencies of
essential bosonic excitations~phonons and excitons! strongly
coupled with electrons~g;0.6! are above or of the same
order as the electron half-bandwidth in doped fullerenes.
This fact as well as the observation of the phonon and
exciton-sided bands in PES by itself favor the nonadiabatic
small-polaron theory4 rather than the adiabatic Migdal-
Eliashberg approach toMxC60. On the other hand, the total
contribution of intermediate- and low-frequency modes is
not negligible, while their individual coupling is relatively
weak~g<0.3!. This allows us to treat these modes within the
Migdal-Eliashberg approximation by the use of the Eliash-
berg function

a2F~V!5
1

2 (
n51

8

lnvnd~V2vn!, ~15!

wheren51,...,8 is the sum over eightHg modes with

ln5
20

3
gn
2vnN~0!, ~16!

andgn ,vn from the inset in Fig. 2.37 The additional coeffi-
cient 10 in the partialln appears due to the fivefold degen-
eracy and the nondiagonal terms in the matrixM̂ as ex-
plained in Ref. 8. At the same time the strong nonadiabatic
interaction with the pinch mode is fully taken into account
by the renormalization of the half bandwidthD as

W5De2g2 ~17!

and by the reduction of the bare Coulomb repulsion as

Ṽc5Vc22g2vAg2
. ~18!

The excitonic contribution is taken into account via the high-
frequency dielectric constante. Because of the covalent na-
ture of C60 molecules we do not expect any significant dis-
persion ofe, which is estimated ase.4.4.38 In a solid the
exciton frequencyvex appears to be rather close to the fun-
damental gap;2 eV. Therefore, we assume that the exci-
tonic effect on the bandwidth is included in the local-density
approximation~LDA ! density of states~DOS! N(0)53/2D.
In the following we take into account the polaron band nar-
rowing due to the coupling with the pinch mode only. A
possibility remains that we overestimate this coupling at the
expense of the coupling with the two high-frequencyHg
modes as discussed by Gunnarssonet al.10 If so, one should
also include the contribution of these two modes in the po-

laron band narrowing and in the reduction of the Coulomb
repulsion by a simple redefinition of the high-frequency cou-
pling constantg.

With g2vAg2
.0.06 eV ~inset Fig. 2! we obtain the low-

ering of the Coulomb repulsion by about 0.12 eV. By the use
of the Coulomb law, the dielectric constante.4.4 and the
lattice constanta.14 Å we estimateintracell bare repulsion
asVc.0.25 eV. This value is in agreement with the binding
exciton energy in solid C60.

34 As a result, the residual repul-
sion is estimated as 0.13 eV. The polaron density of states
determined as

Np~0!5N~0!eg
2

~19!

appears to be aboutNp~0!.9 states/eV spin if the bare den-
sity N~0!.6.6 states/eV spin according to some LDA calcu-
lations for K3C60.

3 Because different LDA calculations yield
rather different values of the bareN~0! from 6.6 up to 12.5
states/eV spin~Ref. 35! the polaronic density can be in the
range from 9 states/eV spin up to about 17 states/eV spin.
These values of the polaron density of states are compared
with those measured with NMR~17 states/eV spin!, ther-
mopower~14 states/eV spin!, and magnetic susceptibility~14
states/eV spin!,2 and estimated from the heat capacity jump
and ESR~;10 states/eV spin! for K3C60. We note that dif-
ferent from the ordinary metals the polaron heat capacity and
the Pauli susceptibility are renormalized by the same amount
in the polaronic system.4 By taking 6.6 states/eV spin as the
bare total DOS of three degenerate bands we estimate the
bare intraband Coulomb pseudopotential as

m5
1

3
N~0!Vc50.55, ~20!

and the renormalized one as

m*5
1

3
Np~0!Ṽc50.4. ~21!

Now we are prepared to solve the Eliashberg equations for
Tc :

Z~vn!5118T
Np~0!

N~0! (
vn8.0

vn8tan
21S W

2vn8Z~vn8!
D

3E
0

`

dVa2F~V!

3
2V

@~vn82vn!
21V2#@~vn81vn!

21V2#
,

D~vn!5
T

Z~vn!
(
vn8

2D~vn8!

vn8
tan21S W

2vn8Z~vn8!
D

3FNp~0!

N~0!
E
0

`

dVa2F~V!

3
2V

~vn82vn!
21V22m* G . ~22!

First we show the normal DOSÑ(E) in Fig. 3 calculated
with the analytical continuation of the normal-state self-
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energy~;Z21! to real frequencies.Ñ(E) takes into account
the finite bandwidth, the band narrowing effect and scatter-
ing by low-frequency phonons. These result in drastic
changes of the renormalized DOS compared with the initial
DOS. The latter is taken energy independent for simplicity.

The result forTc is

Tc520 K, ~23!

for K3C60, and

Tc535 K, ~24!

for Rb3C60. These values are obtained with the Eliashberg
function, Eq.~15! and with the bare~LDA ! DOSN~0!56.6
states/eV spin andN~0!57.5 states/eV spin for K3C60 and
Rb3C60, respectively.

Assuming the inverse square root dependence of all intra-
ball frequencies on the carbon mass and the square-root de-
pendence ofgn

2 we calculate the isotope effect. Normally, in
the polaronic superconductor the isotope exponent
a52d ln(Tc)/d ln(M ) is negative because of the increase of
the polaronic density of states with the increase of the ion
massM @g2;AM in Eq. ~19!#.39 However, the usual positive
contribution toa from low-frequency modes can change its
sign, which is indeed the case here. By the use of the Eliash-
berg equations with theisotope mass dependentpolaronic
DOS Eq.~19! we obtain

a50.27 ~25!

for K3C60, and

a50.31 ~26!

for Rb3C60. These values are rather close to those reported in
the literature.3

Finally, we calculate the dependence ofTc on pressureP
assuming that only hopping integrals depend on pressure. In
that case the polaronic half bandwidthW has the same pres-
sure dependence as the bare one, which according to Ref. 40
is described by

W~P!5W~0!expS 5PK D ~27!

with the elastic modulusK.24.5 Gpa.41 Solving the Eliash-
berg equations with the pressure-dependent bare and po-
laronic bandwidth we arrive with the curve of Fig. 4, which
agrees well with the available experimental data.

V. CONCLUSION

A simple estimate of the characteristic energy scale of
phonons and electrons inMxC60 clearly shows that the ca-
nonical Migdal-Eliashberg theory should be modified to in-
clude the polaronic nonadiabatic effects. As discussed in the
beginning of the paper the polaron collapse of the band is the
consequence of the broken translation symmetry and has
nothing to do with the vertex corrections. The polaron band
narrowing can provide a high-Tc value in the intermediate
range of the coupling constantg. If the coupling is too strong
g@1 a heavily narrowed polaronic band would suppress the
coherent motion and destroy the Fermi-liquid picture. In that
case the polaron hops from one site to another via thermo-
activation and there will be no superconductivity. We argue
that the high-temperature superconductivity of doped
fullerenes with the intermediate coupling constantg is an
example of the nonadibatic polaronic superconductivity dis-
cussed by one of us earlier.24 In that regime the polaron half
bandwidth is below the characteristic phonon frequency but
still above the effective attraction between polarons. There-
fore, the canonical BCS-Migdal-Eliashberg theory can be ap-
plied with the finite polaronic bandwidth and reduced Cou-
lomb repulsion. The high-frequency bosonic excitations play
an important role reducing the bandwidth and the repulsion.
They can be integrated out with the canonical displacement
transformation, while the interaction with the low-frequency
modes is still described by the Eliashberg equations. As a
result our theory gives the experimentally observed values of
Tc , the isotope and pressure effects inMxC60 with the real-
istic coupling constants based on the PES data, the Coulomb
law and common sense.

Our calculated polaron half bandwidth is aboutW.150
meV, or less, Fig. 3. The total contribution of all vibration
modes to the attraction is 2Ep

total.330 meV~insert in Fig. 2!.
As a result the attractive interaction between two small po-
larons is estimated asD52Ep

total2Vc.80 meV. The condi-
tionW>D, necessary for the Fermi-liquid approach seems to
be satisfied. However, the system is very close to the bipo-

FIG. 3. Polaron density of states in K3C60. The bare DOS is
shown with the dashed line.

FIG. 4. Pressure dependence ofTc for K3C60 and Rb3C60 ~Ref.
42! compared with the theory.
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laronic instability D.W with the 2e Bose-liquid ground
state. The final answer on the nature of the ground state
remains with the experiment. The hallmarks of small bipo-
larons are those of small polarons, plus

~i! superfluid phase transition similar to that of He4,
~ii ! spin gap in the magnetic susceptibility, that isxs→0 at

T→0 if a singlet is the ground state, and the absence of the
Hebel-Slichter peak in the NMR,

~iii ! electrodynamics of the charged Coulomb Bose gas
with the divergentHc2(T),

~iv! double elementary charge 2e in the normal state.
The first three features are clearly observed in doped

cuprates.4 The upwardHc2(T) curvature nearTc is measured
also inMxC60 as discussed in Refs. 43 and 3.
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