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We develop the nonadiabatic polaron theory of superconductivity @ taking into account the polaron
band narrowing and realistic electron-phonon and Coulomb interactions. We argue that the crossover from the
BCS weak-coupling superconductivity to the strong-coupling polaronic and bipolaronic superconductivity
occurs at the BCS coupling constant 1 independent of the adiabatic ratio, and there is nothing “beyond”
Migdal's theorem except small polarons for any realistic electron-phonon interaction. By the use of the
polaronic-type function and the “exact” diagonalization in the truncated Hilbert space of viifphsnons”)
we calculate the ground-state energy and the electron spectral density ofsthel@cule. This allows us to
describe the photoemission spectrum qf, @ a wide energy region and determine the electron-phonon
interaction. The strongest coupling is found with the high-frequency phgR) mode and with the Frenkel
exciton. We clarify the crucial role of high-frequency bosonic excitations in doped fullerenes which reduce the
bare bandwidth and the Coulomb repulsion allowing the intermediate- and low-frequency phonons couple two
small polarons in a Cooper pair. The Eliashberg-type equations are solved for low-frequency phonons. The
value of the superconducting., its pressure dependence and the isotope effect are found in remarkable
agreement with the available experimental dgB0163-182@6)08829-7

[. INTRODUCTION tively different understanding of the nature of superconduc-
tivity of doped fullerenes. Therefore, the experimental deter-

Any phonon-mediated superconductivity is a nonadiabatienination of A and more extensive theoretical work are
phenomenon. Nonadiabaticity of electrons in metals mearequired.
sured by the ratio of the characteristic phonon frequency to Recent photoemission spectroscofBES of the mol-
the Fermi energy is normally smaks10 %), and so is their ecule G, (Ref. 10 allows us to estimate the relative contri-
superconducting .. High-temperature superconductivity of bution of different phonons. While the variational analysis
doped fullerene's’ seems to be due to large nonadiabaticity.by Gunnarssoret al. in the truncated space up to five
The phonon frequencies are highs<0.2 eV, while the bare phonons showed the strongest coupling witbv&frequency
Fermi energy is very loEg<0.2 eV? Tolmacheviogarithm H4 mode, we found by applying the polaron theory of PES
in the definition of the Coulomb pseudopotentidl does not  that the coupling with the high-frequenciy(2) mode
apply in this nonadiabatic case and the electron-phonon cowlominates The coupling constant with this mode appears
pling should be strong\=1) to overcome the Coulomb re- at least by a factor-1.5 larger than with any other mode in
pulsion. The strong electron-phonon interaction implies thea qualitative agreement with the tight-binding analysis by
nonadiabatic polaron or bipolaron superconductivity as disPicket et al® This demonstrates that an estimate of the
cussed in detail by Alexandrov and M8tHowever, the final  electron-phonon coupling constants from PES, the Raman
answer on the origin of high; depends not only on the and neutron scattering using the canonical theory of metals
adiabatic ratiow/E¢ but also on the coupling constants with may be inconclusive, since doped fullerenes are not conven-
different phonons. If a relatively weak coupling=<0.5 tional metals to which Migdal's “theorem” can be applied.
with low-frequency phonons dominates and the Coulomb re- There is some confusion in the literature concerning the
pulsion is not very large, then the Migdal-Eliashberg theoryviolation of Migdal’'s theorem. As was realized a long time
is applied with the BCS ground state. On the other hand, iagd? the Migdal® theory of electron-phonon effects in the
the coupling is strong antbr) high-frequency phonons are normal state and the Eliashberg the&tyyhich generalizes
involved, the nonadiabatic polaron theory is more appropriBCS theory to incorporate Migdal theory in the normal limit,
ate. provide a rigorous basis for understanding in the weak-

In the past years several different calculations of theand intermediate-coupling regimes. By the use of the 1/
electron-phonon coupling constants have been reported f@xpansion technigde one can readily show that small po-
fullerenes>~® Some of them yield the strongest coupling with larons appear at~1 and thus Migdal's theorem fails. The
the high-frequencyH; modes with a moderate electron- breakdown of the Migdal-Eliashberg theory at-1 has
phonon couplingh<0.5. On the other hand Picket al>  nothing to do with the nonadiabatic corrections due to the
predicted the strongest coupling with the high-frequencyso-called “crossing” diagramgvertex corrections Small
A4(2) mode and\~3. The difference in calculated coupling polarons are formed at=1 both in the initially adiabatic
constants is quite remarkable, and may result in a qualitawm<<E or nonadiabaticw=E, system irrespectively of the
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ratio w/Eg .1 Their formation is the result of the broken
translation symmetry as discussed in Refs. 17 and 18. Of
course, in special cases Migdal's theorem will not hold even
for small\<1: first, if either characteristic phonon has small
momentumg<(qp (qp is the Debye momentumand sec-
ond, if the Fermi surface has a nested topology. In these
textbook exampléd?® the “crossing” diagrams are no
longer small. Several authdPs?® suggested a theoretical
treatment of the vertex corrections with quite opposite con-
clusions about their role fof.. While many authors gener-
ated the opinion that vertex corrections should, in general, be
negative, Grimaldet al?® obtain a strong enhancementTof - +
from nonadiabatic terms.
In this paper we develop the theory of the superconduct- Z M Z i
ing T. which takes into account the nonadiabatic effects,
strong coupling with some phonons, and the realistic Cou-
lomb interaction. First, we discuss in more detail the origin

of the breakdown of Migdal's theorem due to the broken a b
translation symmetry. We argue that while a strong enhance-
ment of T, due to vertex correctioR$is an artifact of an FIG. 1. Self-energy in Migdal's approximation.

unrealistic electron-phonon interaction, the polaronic band-

narrowing provides such enhancement quite naturally. liry due to the lattice deformation followed by the self-
means that the multiphonon dressing is important for Figh-  trapping. To enable the electron to relax into the lowest po-
superconductivity as was predicted by one oftihen we  |aron state, one can introduce an infinitesimal translationally
analyze the PES dafafor Cg, using the polaronic displace- noninvariant potential, which should be set equal to zero
ment transformation foAy(2) mode and the truncated Hil- only in the final solution for GF'$7 As in the case of the
bert space for other phonons. Our fit to the experimental PEgft-diagonal superconducting order parameter, a small poten-
is just as good as the variational approddbr the low bind-  tia] violating a translational symmetry drives the system into
ing energies and better than that for the high-energy regiory new ground state at sufficiently larye Setting it equal to
We obtain the strongest coupling with the high-lyiAg(2)  zero in the solution to the equation of motion restores the
pinch mode and with the Frenkel-type excitons. As a resultyransiational symmetry but in a new polaronic band rather
we determine théare coupling constants to formulate and than in the electron one, which turns out to be an excited
solve the Eliashberg-type equations fully taking into accountiate.

multiphonon dressing and nonadiabatic motion of carriers. |n the Holstein model, in which electrons interact with the
These provide us with the value t, its pressure depen- |ocal (moleculay phonons one can notice the polaronic in-
dence and with the isotope effect which are in excellengtab”ity of the Fermi liquid at\~1 already with Migdal's

agreement with experiment. In conclusion we analyze a posgiagrams for the electron self-energy. The interaction is de-
sibility for the bipolaron formation and &€ Bose-liquid  scribed by the Hamiltonian

ground state of doped fullerenes.

1

Hepm——= > Y(@w(g)ch, cdg+He., (1)
Il. BROKEN TRANSLATIONAL SYMMETRY AND P 2N Gk k+aia

BREAKDOWN OF MIGDAL'S THEOREM .
where the coupling constantq) and the phonon frequency

In doped semiconductors the carriers become small pow(q) are momentum independent. The electron self-engrgy
larons or bipolarons at the intermediate value of the couplingn the Migdal approximation contains two contributiols ,
constant\=1 or A\=0.5, respectively> However, within the  Fig. 1(a) and 3, Fig. 1(b). Sy=Nw and therefore remains
adiabatic Migdal description of electrons and phononsadiabatically small compared with the bandwidth
coupled by the linear electron-phonon interaction there is n@D=N(0)"* in the relevant region of the coupling<D/
instability at any value of if the bare ionic plasmon mode is ), which guarantees the self-consistency of the approach. In
replaced by the acoustic-phonon mddd&he corrections to the dispersionless Holstein model the BCS coupling constant
the normal-state spectrum due to the coupling are adiabath is given byx=7?w/2D. On the other hand for the molecu-
cally small(~w/Eg). In particular, the critical temperature of lar phononsX ,=D\n is not small and it turns out to be
the BCS superconductor is adiabatically small,comparable or larger than the Fermi energy already-at
TJ/Er<w/Eg<1 for all relevant values ok. Therefore, the for any filling of the bandn is the electron density per cgll
self-consistent Migdal-Eliashberg approach does not allovAs a rule this diagram, which is momentum and frequency
for the possibility to study the smalbi) polaron formation independent, is included in the definition of the chemical
in the intermediate- and strong-coupling regime. This drawypotentialEr. While this is justified for a weak-coupling re-
back is due to the basic assumption of the canonical theorgime, X, leads to an instability for a strong couplifg.
that the Green’s function€GF’s) are translationally invari- In doped semiconductors and metals phonons are
ant, thusG(r,r',t)=G(r—r’,t). This assumption excludes the screened and the diagral, containing only zero momen-
possibility of the local violation of the translational symme- tum phonons vanishes. Therefore, one can erroneously con-
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clude that there is nothing to worry about as far as the appliThe system is stable if the derivativdu/dn is positive,
cability of the Migdal approach. However, it is sufficient to which yields the following region for the stability of the
violate the translation symmetry and then restore it to obMigdal solution:

serve the instability of the bare band. The polaronic instabil-

ity is essentially an adiabatic effet&!® Therefore, to see ™ m(n—1)
how the same self-energy diagraiy) leads to the polaronic )‘<Z co 2 '

collapse independent of the type of phonons we consider the _ ) ) _
extreme adiabatic limit of the classical deformation field For two- and three-dimensional lattices the numerical coef-

#(r) coupled with the electron fielg(r) as ficient is different, but the critical value of remains of the
order of unity. The broken translational symmetry lowers the
energy by the value2,=2\D per particle. The correspond-

H= He+f dr dr'[g(r—=r")e(r’) ing increase of the deformation energyEs. Therefore, the
system prefers to relax into the self-trapped statéiD.
X{ () (r)—n(r)}+H.c]+s?Vé(r]2 (2 The nonadiabatic vertex corrections neglected within the
Migdal approach are also completely irrelevant for the small-
tpolaron formation and, therefore for the breakdown of this
approach. The extension of the Migdal approximation to the
strong-coupling limitA>1 is unacceptable because of the
broken translation symmetry, rather than because of the ver-
tex corrections.
In the small-polaron regimey=1 the kinetic energy re-
32V2¢(r):f dr'g*(r—r"){n(r")—n%%r"}. 3 mains smaller than the interaction energy and a self-
consistent treatment of a many polaron system is possible

(€)

HereHy, is the electron kinetic energg,is the sound veloc-
ity, g(r) is the coupling constant with the Fourier componen
gq= w3 ?y(a)/\2N, n%r) is the periodic density of carriers
respecting the translational symmetry, ang=sq. Minimiz-
ing Eqg.(2) with respect to the classical fieltl (r) we obtain

The solution is with a ’1/?\’ _expansion techniqu®. In the extreme strong-
coupling limit A— one can neglect the hopping term of the
* Hamiltonian. The rest has analytically determined eigen-
9q 0 . ; ;o ;
d(r)=—2, — e'"{ng—ng}, (4) states and eigenvalu&sWith the finite hopping term po-
a Sq larons tunnel in a narrow band restoring the translational

wheren, is the Fourier component of the electron densitySYmmetry due to the degeneracy of the zero-order Hamil-

n(r)E<¢$(r)¢(r)). Substituting Eq(4) into the Hamiltonian tonian relative the site position of a single polaron in a regu-

Eq. (2) we find that the adiabatic lattice deformation leads to/@" lattice. Because of the degeneracy terms linear in the
the lowering of the electron energy by the value hopping integral should be included in the zero-order
Hamiltonian®® As a result the renormalized hopping integral

l9J? o averaged with the phonon equilibrium distribution is given
Su(r)=— 2% 7: €9 {n,—nd}. (5 by the familiar small-polaron formula as
—a2(m—
If the electron density is periodi®,=ng the shift of the a(m—n)=T(m—n)e 9 (M=", (10

energy is zero. Otherwise, it is not. For example, one cakynpere atT=0
consider a random statistically uncorrelated distribution with

the ansamble averagegn, )=Nn?s, _ . In that example ) 1 )
the chemical potential is shifted by the value 9" (m)=55 % |y(a)[[1—cogq-m)] (11)
1 1/2 _ . . .
= 4 2| _ andT(m—n) is the bare hopping integral. Earflwe have
(|oufy=n N % 7@ @g| =2M\D, © shown by the numerical diagonalization of a finite site Hol-

o _ _ _ _ stein model that the last expression for the polaron band-
which is practically the same as in the dispersionless Holwidth is valid for the nonadiabatic and intermediate regime

stein modef® However, now w=D for all coupling strengths. In the adiabatic case impor-
1 tant corrections appear. However, the main exponential term

E 2 remains almost the same in the strong-coupling regime,

AD=E, 2N Eq: 7@ “q ™ A>1. As a result we conclude that the major effect of high-

_ . frequency phonons is the reduction of the bandwidth. An-

depends on the phonon spectrum, integrated alleBril-  other important effect of the high-frequency phonons is the

louin zone rather than on zero momentum phonons. Thigeduction of the Coulomb repulsioV,. While optical
shift of the chemical pOtentlal leads to the InStablllty of the phonons cannot overscreen the repu|sion they reduce its
Migdal solution. To show this let us consider a one-yalue significantly down td/,—2E,. Then the acoustical
dimensional chain in the tight-binding approximation with and low-frequency molecular modes provide a net attraction.

the nearest-neighbor hopping integeaR. The renormalized It was argued by one of &&that the polaron band nar-
chemical potential is given by rowing can provide a high value df, because of the en-
hancement of the density of states. This enhancement does
W=D sin( w(n—l)) —2DAn ) not depend on the particular choice of the electron-phonon
2 ‘ interaction contrary to the enhancement of due to the
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vertex correctiond® The latter can be obtained only if the
electron-phonon scattering is dominated by small momentum
transferg<<qp . A simple estimate of the screening radius in
doped fullerenes and cuprates yields a value of the order or
even less than the lattice constant. Therefore, a long-range
electron-phonon interaction is ruled out by screening, which
makes the positive effect of the vertex corrections quite
unrealistic?’
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Ill. PES AND BARE ELECTRON-PHONON INTERACTION

Because of the diversity in the theoretical results for
electron-phonon interaction the coupling strength can be un-
ambiguously determined only from the experiment. Allow-
ing a small shift of the phonon frequencies due to screenin
the coupling with the intraball modes are expected to be th

same in ‘?'OF_’ed fullerenes as in th@’o'Oﬂole(iule. The recent modes are shown in the inset. For comparison we also show the
phOtoem'SS'or_‘ SpeCtrOSCOpY of a mqlecpl@ CRef. 10 al- coupling constant$g(Gun), insef and the calculated variational
lows us to estimate the relative contribution of different pho-pgs qotted ling of Ref. 10.

non modes and other bosonic excitations to the interaction.
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FIG. 2. Polaron theory fitfull line) to the experimental PES
ashed ling Frequenciesv=w,,, coupling constantg=g”, and
e contribution to the ground-state enerBy-E [ for different

In this section we analyze the PES d8tasing the exact
polaronic diagonalization with respect to thg(2) mode and
introducing the polaron-excitoncoupling. We obtain the
strongest coupling with the high-lyin§,(2) pinch mode and

Hamiltonian, Eq(12) by the exact numerical diagonalization
in truncated Hilbert spacéup to four phononsfor the Hg
modes as described in Ref. 26. A self-trapped exciton in
neutral G, was observed and discussed by

with a Frenkel-type exciton. As a result we provide a strongseveral authord!~*3Because of the polaron-exciton coupling
evidence for the nonadiabatic coupling with high-energywe add the same spectral function to the total spectral den-

bosonic excitations iM,Cg.

The Hamiltonian at hand, describing three degendrgte
states coupled with phonons, is diagonalized with respect t
the A4(2) coupling using the canonical Lang-Firsov displace-
ment transformatiof® The result is

3
T - A
H=eSHe S=— Ep“m; ART

5
2 wvnv 1
a1 "M

12

M e

8 3
+2 g'w, X YIMdnt
v=1 nm=1

where
S=(gdAgz— H.c.). (13

EﬁgzzgzwAgJ2 is the polaron shift due to thé,(2) mode,
3% 3 dimensionless matriM is taken from Ref. 29

A V3Q,+ Qs v3Q, V3Q;
M= v3Q, —v3Q,+Qs V3Q;3 |,
V3Q, V3Q; —2Qs

and multiplied by the

sity shifted by the exciton energy,,,
éx as

polaron-exciton coupling constag
(o}

I(w)zlpol(w)+ggxl pol(w+wex)- (14

This is an exact procedure if the interaction with excitons is
linear as with phonons. Then we integrdtes) with the
Gaussian instrumental resolution function of widthdl
meV (Ref. 10 taking into account the damping, of the
exciton in the secong@excitonig contribution with the sub-
StitUtion wey— wey i vex. We thus can fit the PES in a wide
energy region as shown in Fig. 2 witht’ being the fitting
parameterginsed. The polaron-exciton coupling constant is
found to beg2,=0.5, the exciton energys,,~0.5 eV in
agreement with the luminescent datalhe inverse exciton
lifetime is estimated to be,,=580 cm . The coupling to
the Ay(2) mode turns out most important in agreement with
the tight-binding calculatiorisand with the doping depen-
dence of the phonon frequencies and the Raman linewidths.
The A4(2) mode shows a clear shift with doping from 1467
cm ! in undoped G, to 1446 cm?! in K5Cq, and to 1431
cm 1 in K¢Cq. The linewidth increases by3 cm ! in the
metallic state(K;Cgo) and comes back to the value ofC
with further doping in an insulator §Cgy. At the same time
high-frequencyH,(7,8) modes also show large broadening in

andn, , are the phonon occupation numbers of eight five-the metallic state. However, Nagy, which does not exhibit

degeneratéd; modes with the phonon operat@=d:[’#

+d, . . The interaction wittHy modes is responsible for the
dynamic Jahn-Teller effect in . According to
calculationg® singly ionized G, is in the intermediate-
coupling regime, while the doubly and triple ionized mol-

a metallic state with doping, shows the same strong line
broadening and the bleaching of thiy(7,8) modes?* Con-
sequently, the broadening of phonon lines does not provide
information about the electron-phonon coupling. Moreover,
as has been pointed by Gelfaitdthe A4(2) mode cannot

ecules are in the strong-coupling limit with respect to thedecay into an electron-hole pair, no matter how strong the
coupling withH, modes. Therefore a reasonable estimate otlectron-phonon coupling is. This decay is prohibited by the

the ground-state energy is obtained by taking
account only diagonal part &fl. Nevertheless, to avoid any
ambiguity we calculated the spectral functigy(w) of the

intoconservation of the energy because the estimated half-

bandwidth is below thé,(2) frequency. We believe that an
increase of the linewidth dfi; modes in the metallic phase
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is associated with the crystal-field splitting of the fivefold laron band narrowing and in the reduction of the Coulomb
degenerate mode as confirmed by the recent experimentadpulsion by a simple redefinition of the high-frequency cou-
data®® If this splitting is not very large it may result in an pling constang.

increase of the Raman linewidth. Therefore, the large broad- With gzwAgzzO.06 eV (inset Fig. 2 we obtain the low-

ening of H; modes does not contradict our conclusion thatering of the Coulomb repulsion by about 0.12 eV. By the use
their coupling with the electron is weak. of the Coulomb law, the dielectric constaet4.4 and the

In general, an estimate of the electron-phonon couplingattice constana~14 A we estimaténtracell bare repulsion
constants from the Raman and neutron scattering using thesv_ ~0.25 eV. This value is in agreement with the binding
canonical theory of metals may be inconclusive since dopegyciton energy in solid 6.3* As a result, the residual repul-

fullerides are not conventional metals. In particular, thesjon is estimated as 0.13 eV. The polaron density of states
Migdal “theorem” can not be applied. determined as

IV. POLARON THEORY OF T, N, (0) =N(0)e” (19)

It follows from the PES analyses that the frequencies ofappears to be abodt,(0)=9 states/eV spin if the bare den-
essential bosonic excitatioghonons and excitopstrongly  sity N(0)=6.6 states/eV spin according to some LDA calcu-
coupled with electrongg~0.6) are above or of the same lations for KsCg,.2 Because different LDA calculations yield
order as the electron half-bandwidth in doped fullerenesrather different values of the baM(0) from 6.6 up to 12.5
This fact as well as the observation of the phonon andstates/eV spiRef. 35 the polaronic density can be in the
exciton-sided bands in PES by itself favor the nonadiabaticange from 9 states/eV spin up to about 17 states/eV spin.
small-polaron theo#y rather than the adiabatic Migdal- These values of the polaron density of states are compared
Eliashberg approach t¥l,Cgy. On the other hand, the total with those measured with NMR17 states/eV spin ther-
contribution of intermediate- and low-frequency modes ismopower(14 states/eV spjpand magnetic susceptibilitj4
not negligible, while their individual coupling is relatively states/eV spip? and estimated from the heat capacity jump
weak(g=<0.3). This allows us to treat these modes within theand ESR(~10 states/eV spinfor K;Cgo. We note that dif-
Migdal-Eliashberg approximation by the use of the Eliash-ferent from the ordinary metals the polaron heat capacity and
berg function the Pauli susceptibility are renormalized by the same amount

8 in the polaronic systefhBy taking 6.6 states/eV spin as the

1 bare total DOS of three degenerate bands we estimate the
2 I —
a’F(Q)=3 Zl N, 00 -o,), (19 pare intraband Coulomb pseudopotential as
wherev=1,...,8 is the sum over eiglit, modes with 1
©~== N(0)V.=0.55, (20
20 , 3
N 9,@,N(0), (180 and the renormalized one as

andg,,w, from the inset in Fig. 27 The additional coeffi- 1 _

cient 10 in the partiak, appears due to the fivefold degen- pr= 3 Np(0)V=0.4. (22)
eracy and the nondiagonal terms in the matix as ex-

plained in Ref. 8. At the same time the strong nonadiabatiéNow we are prepared to solve the Eliashberg equations for
interaction with the pinch mode is fully taken into accountT,:

by the renormalization of the half bandwidih as

Z(w,)=1+8T No(0) > tan ! L)
W=De 9 (17) @n N(0) oo “" 20mZ(wn)
and by the reduction of the bare Coulomb repulsion as %
xf dQa?F(Q)
0

V.=V~ 2¢%wn (18)
20

The excitonic contribution is taken into account via the high- X
J [(@n— 02+ Q[ (0 + 0p) 2+ Q7"

frequency dielectric constart Because of the covalent na-
ture of Gy molecules we do not expect any significant dis-

persion ofe, which is estimated as=4.438 In a solid the Alw,)= T D 24 (wn) 1( W )
exciton frequencyw,, appears to be rather close to the fun- " Z(wn) G o) 20 Z(wq)
damental gap~2 eV. Therefore, we assume that the exci-

tonic effect on the bandwidth is included in the local-density Np(0) deaZF(Q)
approximation(LDA) density of statesDOS) N(0)=3/2D. N(O) Jo

In the following we take into account the polaron band nar-

rowing due to the coupling with the pinch mode only. A % 2Q ok 22)
possibility remains that we overestimate this coupling at the (a)n/—wn)?-i—ﬂz K

expense of the coupling with the two high-frequenidy _

modes as discussed by Gunnarsebal° If so, one should First we show the normal DON(E) in Fig. 3 calculated

also include the contribution of these two modes in the powith the analytical continuation of the normal-state self-
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FIG. 3. Polaron density of states ing®s,. The bare DOS is FIG. 4. Pressure dependenceTaffor KsCqo and RCqo (Ref.
shown with the dashed line. 42) compared with the theory.

energy(~Z—1) to real frequencies(E) takes into account With the elastic modulu =24.5 Gpd'! Solving the Eliash-
the finite bandwidth, the band narrowing effect and scatterberg equations with the pressure-dependent bare and po-
ing by low-frequency phonons. These result in drasticaronic bandwidth we arrive with the curve of Fig. 4, which
changes of the renormalized DOS compared with the initiafdrees well with the available experimental data.
DOS. The latter is taken energy independent for simplicity.

The result forT, is V. CONCLUSION

T.=20 K, (23) A simple estimate of the characteristic energy scale of
phonons and electrons M ,Cg, clearly shows that the ca-
for K4Cqgp, and nonical Migdal-Eliashberg theory should be modified to in-
clude the polaronic nonadiabatic effects. As discussed in the
T.=35 K, (24)  beginning of the paper the polaron collapse of the band is the
consequence of the broken translation symmetry and has
gnothing to do with the vertex corrections. The polaron band
narrowing can provide a highz value in the intermediate
range of the coupling constagt If the coupling is too strong
g>1 a heavily narrowed polaronic band would suppress the
coherent motion and destroy the Fermi-liquid picture. In that
€ase the polaron hops from one site to another via thermo-
ctivation and there will be no superconductivity. We argue
hat the high-temperature superconductivity of doped
ullerenes with the intermediate coupling constgnts an

for RbyCqo. These values are obtained with the Eliashber
function, Eqg.(15) and with the baréLDA) DOS N(0)=6.6
states/eV spin andN(0)=7.5 states/eV spin for ¥Cg, and
Rb,Cqq, respectively.

Assuming the inverse square root dependence of all intr
ball frequencies on the carbon mass and the square-root d
pendence of)2 we calculate the isotope effect. Normally, in
the polaronic superconductor the isotope exponen
a=—d In(T;)/d In(M) is negative because of the increase of;
the polar02n|c der_15|ty of statsegs with the increase of t_h_e 'Orlaxample of the nonadibatic polaronic superconductivity dis-
massM [g ~ M in Eq.(19)].% However, the usual POSIIVE  ¢\ssed by one of us earli&In that regime the polaron half
contribution toa from low-frequency modes can change its ponqwidth is below the characteristic phonon frequency but
sign, which is indeed the case here. By the use of the Eliashj apove the effective attraction between polarons. There-
berg equations with thesotope mass dependepolaronic ¢y the canonical BCS-Migdal-Eliashberg theory can be ap-
DOS Eq.(19) we obtain plied with the finite polaronic bandwidth and reduced Cou-
lomb repulsion. The high-frequency bosonic excitations play

@=0.27 (29 an important role reducing the bandwidth and the repulsion.

for K4Cgp, and They can be integrated out with the canonical displacement
transformation, while the interaction with the low-frequency

a=0.31 (26)  modes is still described by the Eliashberg equations. As a

result our theory gives the experimentally observed values of
for Rb;Cgy. These values are rather close to those reported i, the isotope and pressure effectshigCgqo with the real-
the literature® istic coupling constants based on the PES data, the Coulomb
Finally, we calculate the dependenceTafon pressurd® law and common sense.
assuming that only hopping integrals depend on pressure. In Our calculated polaron half bandwidth is abdft=150
that case the polaronic half bandwidt# has the same pres- meV, or less, Fig. 3. The total contribution of all vibration
sure dependence as the bare one, which according to Ref. #4fodes to the attraction isE%“a'z 330 meV(insert in Fig. 2.
is described by As a result the attractive interaction between two small po-
cp larons is estimated a§=2E“"®—V_.~80 meV. The condi-
_ >F tion W=A, necessary for the Fermi-liquid approach seems to
W(P)—W(O)exp{ K ) 27) be satisfied. However, the system is very close to the bipo-
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(iv) double elementary chargee2n the normal state.

state. The final answer on the nature of the ground state The first three features are clearly observed in doped

remains with the experiment. The hallmarks of small bipo-

larons are those of small polarons, plus
(i) superfluid phase transition similar to that ofHe
(i) spin gap in the magnetic susceptibility, thajis—~0 at

cuprated. The upwardH .,(T) curvature neal . is measured
also inM,Cq, as discussed in Refs. 43 and 3.

ACKNOWLEDGMENTS

T—0 if a singlet is the ground state, and the absence of the

Hebel-Slichter peak in the NMR,

We acknowledge helpful discussions with Sir Neuvill

(iii) electrodynamics of the charged Coulomb Bose gadott, O. Dolgov, J. Ranninger, E. Salje, and J. Samson, and

with the divergent .»(T),

the Royal Society financial support for one of 6V.K.).

1A. F. Hebardet al. Nature(London 350, 600(1991).
2A. P. Ramirez, inSuperconductivity Reviewdited by P. Kumar
(Gordon and Breach, New York, 1994/0l. 1, p. 1.

23C. Grimaldi, L. Pietronero, and S. Srassler, Phys. Rev. [Z&t.
1158(1995; L. Pietronero, S. Strassler, and C. Grimaldi, Phys.
Rev. B52, 10 516(1995.

3W. E. Pickett, inSolid State Physics: Advances in Research and®*A. S. Alexandrov, Russ. J. Phys. Cheb7, 167 (1983.

Applications edited by H. Ehrenreich and F. Spaepérca-
demic, New York, 1994 Vol. 48, p. 225.

4A. S. Alexandrov and N. F. MottHigh Temperature Supercon-
ductors and Other SuperfluidéTaylor and Francis, London,
1994; Rep. Prog. Physs7, 1197 (1994).

5S. E. Erwin and W. E. Pickett, Phys. Rev.48, 14 257(1992);
Science254, 842 (1992; W. E. Pickettet al,, J. Supercond?,
651 (1999.

25A. S, Alexandrov and N. F. MottPolarons and Bipolarons
(World Scientific, Singapore, 1995

26A. S. Alexandrov, V. V. Kabanov, and D. K. Ray, Phys. Rev. B
49, 9915(1994).

2"We are grateful to O. Dolgov for pointing to the role of the
screening.

28|, G. Lang and Yu. A. Firsov, Zh. Eksp. Teor. Fi43, 1843
(1962 [Sov. Phys. JETR6, 1301(1963].

V. P. Antropov, O. Gunnarsson, and A. I. Liechtenstein, Phys2°M. Lannooet al, Phys. Rev. B44, 12 106(1991).

Rev. B48, 7551(1993.

7C. M. Varma, J. Zaanen, and K. Raghavachari, Sci&iek 989
(1991).

8M. Schluteret al, Phys. Rev. Lett.68, 526 (1992; J. Phys.
Chem. Solidsb3, 1473(1992.

300, Gunnarsson, Phys. Rev.®, 3493(1995.

3IM. Matus, H. Kuzmany, and E. Sohmen, Phys. Rev. L&8§.
2822(1992; The value of the exciton energy0.5 eV in the gas
phase of G is readily obtained using the luminescence line at
~1.55 eV and the dielectric constant5) of the solid G, (see

9J. C. R. Faulhaber, D. Y. K. Ko, and P. R. Briddon, Phys. Rev. B  Ref. 3.

48, 661 (1993.

100, Gunnarssoet al, Phys. Rev. Lett74, 1875(1995.

A, S. Alexandrov and V. V. Kabanov, Pis'ma Zh. Eksp. Teor.
Fiz. 62, 920(1995 [JETP Lett.62, 937(1995].

12p_B. Allen and B. Mitrovic, inSolid State Physics: Advances in
Research and Applicationgdited by H. Ehrenreich, F. Seitz,
and D. Turnbull(Academic, New York, 1982 Vol. 37, p. 1.

13A. B. Migdal, Zh. Eksp. Teor. Fiz34, 1438(1958.

14G. M. Eliashberg, Zh. Eksp. Teor. Fi38, 966 (1960; 39, 1437
(1960.

15A. S. Alexandrov, Phys. Rev. B6, 2838(1992.

16T, Holstein, Ann. Phys(N.Y.) 8, 325(1959; 8, 343(1959.

A, S. Alexandrov and E. A. Mazur, Zh. Eksp. Teor. F6, 1773
(1989.

18y, V. Kabanov and O. Yu. Mashtakov, Phys. Rev.4B, 6060
(1993; Zh. Eksp. Teor. Fiz103 1322(1993 [Sov. Phys. JETP
76, 647 (1993].

High Temperature Superconductivitgdited by V. L. Ginzburg
and D. A. Kirzhnits(Consultant Bureau, New York, 1982

2OM. Grabowsky and L. J. Sham, Phys. Rev28 6132(1984)

213, Engelsberg and J. R. Schrieffer, Phys. Re1, 993(1963.

22y, Takada, J. Phys. Chem. Soli&ig, 1779(1993.

32\, Z. Wanget al, Phys. Rev. B51, 10 209(1995.

33A.-M. Janneret al, Phys. Rev. B52, 17 158(1995.

34H. Kuzmanyet al, Adv. Mater.6, 731 (1994.

35M. P. Gelfand, inSuperconductivity Revievedited by P. Kumar
(Gordon and Breach, New York, 1994/0l. 1, p. 103.

363, Winter and H. Kuzmany, Phys. Rev.33, 655(1996.

37The pair binding energy can be significantly enhanced over this
classical value in the nonadiabatic weak-coupling regime as the
exact diagonalization of £ molecules show$A. Auerbach,

N. Manini, and E. Tosatti, Phys. Rev. 49, 12 998(1994)]. In

the case of doped fullerenes with a finite polaronic band of the
order of 100 meV the retardation effects are expected to be
important for the binding via low-frequendyy modes thus jus-
tifying the classical formula, Eq15).

38A. F. Hebardet al, Appl. Phys. Lett59, 2109(1991).

39A. S. Alexandrov, Phys. Rev. B6, 14 932(1992.

403, L. Martins and N. Troullier, Phys. Rev. 85, 1766(1992.

410. Zhou, G. B. M. Vaughan, Q. Zhu, J. E. Fisher, P. A. Heiney,
N. Coustel, J. B. McCauley, Jr., and A. B. Smith, Scie@68,
883(1992.

42G. Sparnet al, Phys. Rev. Lett68, 1228(1992.

“3A. S. Alexandrov, JETP Let65, 189(1992.



