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We determine the properties and leading instabilities of a spin liquid with a Fermi surface passing near a
van Hove singularity. Our study is motivated by recent photoemission experiments on high-Tc cuprates in
which it is found that for the optimally doped material the experimental Fermi surface passes near a van Hove
singularity, while for underdoped materials, a pseudogap in the electron spectral function is formed in the
vicinity of the van Hove point. We show theoretically that proximity to the van Hove singularity suppresses the
inelastic scattering due to the gauge field and permits the formation of ad-wave RVB state in which the gap
exists only near the van Hove points while finite regions of the Fermi surface remain gapless. Thisd-wave
pairing provides a natural explanation of the pseudogap observed in photoemission. We also discuss the
relation of the pseudogap observed in the spectral function to the pseudogaps observed in the magnetic
susceptibility.@S0163-1829~96!04729-7#

I. INTRODUCTION

In this paper we report results of a theoretical study of a
‘‘spin liquid’’ with a van Hove singularity near the Fermi
surface. By the term ‘‘spin liquid’’ we mean a liquid of
charge 0 spin-1/2 fermions filling a large Fermi sea and
coupled by a singular gauge-field interaction1,2 and by addi-
tional nonsingular interactions. We determine exactly the ef-
fect of the van Hove singularity on the fermion gauge-field
physics and treat the additional interactions by a ‘‘leading
logarithm’’ renormalization-group analysis.

The problem of a spin liquid with a van Hove singularity
is of interest on experimental and theoretical grounds. The
experimental motivation for describing the high-Tc super-
conductors as spin liquids has been discussed at length
elsewhere.3 Recent angle-resolved photoemission
experiments4 also suggest that van Hove points are impor-
tant. The qualitative doping dependence expected theoreti-
cally for noninteracting electrons is sketched in Fig. 1. For
heavily overdoped samples~dotted curve! the Fermi surface
is closed and electron-like. In a noninteracting model, the
Fermi surface would grow as electrons are added, until it
reached the van Hove points. A Fermi surface passing
through the van Hove points,M , is shown as the thick
dashed line in Fig. 1. The experimental result4 is that for
optimally doped materials the Fermi surface is very close to
the van Hove singularity. It is not clear exactly where the
Fermi surface is near van Hove points because quasiparticle
peak is very broad there; most likely it intersects zone
boundary at a point slightly displaced fromM in the X di-
rection. For instance, the data on slighly overdoped Bi-Sr-
Ca-Cu-O presented in Fig. 4 of Ref. 4 seem to show that the
Fermi surface crosses theM -X line rather than theM -G line.
However, the area enclosed by the Fermi surface in this fig-
ure corresponds to a doping of 7%, whereas optimal doping
is approximately 20%. Because the states at (p,0) point

shown in Fig. 2 of Ref. 4 are so close to the Fermi level, we
suspect that there are uncertainties in the experimental deter-
mination of the Fermi surface, and that the true Fermi sur-
face is much closer to the (p,0) point than shown in Fig. 4 of
Ref. 4.

More significantly, as more electrons are added the Fermi
surface does not continue to evolve in the manner expected

FIG. 1. Large square: Brillouin zone for fermions. Heavy
dashed line: Fermi surface of noninteracting electrons with spec-
trum ~2! andt8520.3t passing through the van Hove point. Dotted
line: Fermi surface of heavily overdoped material. Heavy arcs: re-
gion where Fermi surface was observed in photoemission experi-
ment in underdoped Bi-Sr-Ca-Cu-O. Dashed square: inset showing
phase space for gauge-field fluctuations. Gauge-field fluctuations
with momentumk in one of the four shaded regions are described
by the conventional overdamped propagator; fluctuations withk
outside of these regions are much larger because there is no part of
the Fermi-surface tangent tok.
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from the band theory. Instead, the material develops a gap
near the van Hove points. States in the vicinity of the van
Hove points are pushed away from the Fermi surface. For
‘‘underdoped’’ materials no states with energies near the
chemical potential are observed near the zone edges. States
are observed near the chemical potential only in the discon-
nected regions along the zone diagonal shown as solid arcs
in Fig. 1. It is important to note that the experimental claim
is not that the material develops a ‘‘hole pocket’’ Fermi sur-
face centered around the point labeledX in Fig. 1 but that no
states at all are observed near the chemical potential any-
where along the lines connectingM to G andM to X. The
existence and consequences of this ‘‘non-Luttinger’’ Fermi
surface require theoretical explanation.

The subject of non-Luttinger Fermi surfaces has attracted
substantial theoretical attention. The general approach has
been to start with fermions with a large~Luttinger! Fermi
surface and then to invoke a physical mechanism to open a
‘‘pseudogap’’ which eliminates part or all of the Fermi sur-
face. Three classes of mechanisms have been extensively
considered: ~i! quasi-long-ranged antiferromagnetic spin
fluctuations, ~ii ! the ‘‘d-wave RVB’’ state, and~iii ! the
‘‘staggered flux phase.’’ None has proven completely satis-
factory; we discuss each in turn.

The logic behind the antiferromagnetic spin fluctuations
approach is that static antiferromagnetic order at wave vector
Q leads to Bragg scattering atQ which may open a gap over
all or part of the Fermi surface. Schrieffer and co-workers
have argued that sufficiently slowly varying antiferromag-
netic fluctuations with a sufficiently long correlation length
may also lead, if not to a gap, at least to a rather strong
suppression of the Fermi surface density of states.5 A theo-
retical difficulty with this picture is that magnetic instabili-
ties of a wide variety of models have been investigated;
pseudogaps have only been found in parameter regimes lead-
ing to long-ranged order atT50.6,7 The essential reason is
that quasistatic~i.e., frequency much less than temperature!
spin fluctuations are required for pseudogap formation.5–7 In
metallic and superconducting high-Tc materials, the spin
fluctuations observed by NMR have characteristic frequency
scale of orderT or greater8 ~corresponding to no long-range
order atT50) and are not sufficient to open a pseudogap in
the models which have been considered.

An alternative model for the origin of the pseudogap is
the ‘‘d-wave RVB’’ model. This is a mathematical expres-
sion of Anderson’s original insight9 that in models involving
a strong on-site repulsion and a density near one electron per
site, singlet pairing and antiferromagnetism do not differ
much in their short-ranged correlations and energies. To
implement Anderson’s idea one assumes that ‘‘spin-charge
separation’’ occurs, and that the spin degrees of freedom are
described by charge 0 fermionic ‘‘spinons.’’ These fill a
Fermi sea with a large~Luttinger! Fermi surface. This Fermi
sea of spinons may be derived in a mean-field theory, ‘‘the
uniform RVB phase,’’2,10 of the t-J model. Thet-J model is
believed by many3 but not all11,12 authors to contain the es-
sential physics of high-Tc superconductors, and the uniform
RVB phase is believed to be the most physically appropriate
starting point, at least for materials near the optimal doping.
To understand pseudogap formation one then considers in-
stabilities of the uniform RVB state, which are due to re-
sidual interactions neglected in the mean-field theory. Before
now calculations have been based on ‘‘generic’’ Fermi sur-
faces without van Hove points and have considered instabili-
ties to antiferromagnetism, tod-wave pairing, and to a stag-
gered flux phase. The antiferromagnetic instability has been
considered and found not to lead to a pseudogap for essen-
tially the same reason as in the Fermi-liquid case.13,14

The staggered flux phase involves the appearance of cir-
culating spin currents. This entails spontaneous breaking of
time-reversal symmetry which has been observed not to oc-
cur in cuprates.15 For this phenomenological reason the stag-
gered flux phase has been discarded.

Thed-wave RVB state naturally leads to the formation of
a pseudogap, and the resulting phenomenology provides an
attractive scenario for the cuprates.16 Thed-wave RVB state
may be viewed as arising from a pairing instability of the
uniform RVB state; the resulting theory is very similar to
that arising from conventional superconducting pairing. One
important difference is that because the pairing involves
chargeless ‘‘spinons’’ it does not lead to superfluidity or in-
deed any other observable which could serve as an order
parameter. For this reason fluctuation corrections convert the
pairing transition to a smooth crossover.

A difficulty with this scenario has been pointed out by
Ubbens and Lee.17 Their results, we believe, are most simply
interpreted as saying that the spinon-gauge-field interaction
produces a very short inelastic lifetime for the spinons. This
inelastic scattering is so strongly pairbreaking that it com-
pletely suppresses thed-wave pairing instability. Of course,
a first-order transition to a paired state would be possible,17

but is not observed.
Very recently, a model with an SU~2!3 SU~2! symmetry

has been considered.18 This symmetry is, in principle, broken
down to SU~2! only at any nonzero doping, but the symme-
try breaking is argued not to be important. In this model a
staggered flux instability occurs which does not break time-
reversal symmetry and can be transformed using an opera-
tion in the SU~2!3 SU~2! group to ad-wave pairing state.
The effects of gauge fluctuations on this state have not yet
been determined. On the mean-field level it leads to a phe-
nomenology very similar to the one we shall derive in this
paper.

All of the previously discussed theoretical calculations

FIG. 2. Diamagnetic susceptibility of noninteracting Fermi gas
with spectrum given by Eq.~2! as a function of filling,r, for
t51 and several values of the next-neighbor hopping,t8.
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were based on ‘‘generic’’ models which did not contain van
Hove singularities. In this paper we show that when the ef-
fects of proximity to van Hove singularities are properly in-
cluded, the theoretical predictions are very substantially al-
tered. Most notably, near Van Hove points the inelastic
scattering is suppressed, permitting the formation of a
d-wave paired state with a gap which is nonzero only near
van Hove points. Thisd-wave state should be reconsidered
as a possible explanation for the pseudogap.

Near a van Hove singularity the fermion density of states
diverges, so that even arbitrarily weak interactions can pro-
duce large effects. This line of thinking has led to a large
literature devoted to analyzing the implications of van Hove
singularities in Fermi-liquid models.19–24 We have already
mentioned the strong phenomenological evidence for regard-
ing high-Tc materials as spin liquids.3 An additional diffi-
culty with Fermi-liquid-based treatments is that the singulari-
ties due to the van Hove points are cut off by coherent
hopping in third dimension. The bare value of this hopping
may be determined from band-structure calculations and is
not small.25 Evidently in the actual materials the interplane
coupling is renormalized down to a very small value in Bi-
Sr-Ca-Cu-O and underdoped YBa2Cu3O72x as seen in
c-axis penetration depth26 and resistivity27 measurements.
These measurements have been shown by Anderson and
Ren28 to imply that there is no coherent interplane hopping.
This absence of coherentc-axis hopping cannot be under-
stood in a Fermi-liquid picture but follows naturally in sev-
eral non-Fermi-liquid pictures11 including the spin-liquid
model studied here. Although the absence of coherent hop-
ping in the spin liquid is known to many workers a deriva-
tion has apparently not been published. For completeness we
give it in the Appendix. Finally, we mention an alternative
explanation of the pseudogap29 based on thek-diagonal in-
terplane pairing mechanism of Anderson and Chakravarty.11

The remainder of this paper is organized as follows. In
Sec. II we formulate and solve a model of a spin liquid with
a van Hove singularity coupled to a gauge field. In Sec. III
we employ a leading logarithm approximation to determine
the effects of residual nonsingular interactions. Section IV is
a conclusion which summarizes the approximations em-
ployed, results obtained and consequences for photoemission
and other physical properties. The Appendix gives deriva-
tions of some results used in the body of the paper.

II. SPINON-GAUGE MODEL

The spin-liquid state we shall start from is the ‘‘uniform
RVB’’ state. The Hamiltonian is

H5(
ps

epcps
† cps1

1

2(pks aW kcp1k/2,s
† @vW p1k/21vW p2k/2#cp2k/2,s

1W(
p
cp1s
† cp2scp3s

† cp4sd~Spi !1
1

4g0
2 f mn

2 . ~1!

This Hamiltonian is the usual one~see, e.g., Refs. 1 and 30!,
however we have written the fermion-gauge-field coupling in
its general form. HerevW (p)5]ep /]pW and f mn5emn]man . It
represents the low-energy spin degrees of freedom of the
t-J model. Low energy in this context means energies less

than J, which in high-Tc materials is about 0.15 eV. The
coefficientg0

22 contains the contributions to the gauge-field
stiffness from the higher-energy spin degrees of freedom
which were integrated out in the derivation of Eq.~1!. It may
be expressed in terms of the high-energy part of a six-spin-
correlation function and is of the order ofJ in magnitude; it
is discussed further in the Appendix.

We assume the fermion spectrum is

ep522t@cos~pxa!1cos~pya!#

24t8cos~pxa!cos~pya!2m24t8. ~2!

Herea is the lattice constant,m14t8 is the chemical poten-
tial with m50 corresponding to the van Hove point,t is a
first-neighbor hopping due mostly to the superexchangeJ
with an additional contribution coming from a band structure
tbandrenormalized by the hole density and the parametert8 is
derived from further neighbor hopping in the underlying
band structure also renormalized by the hole density;
roughly, we expect asd→0

t5QJ1tbandd, ~3!

t85tband8 d. ~4!

HereQ is a number of the order of unity, in the large-N limit
Q52/p2. It is believed that t8,0 in high-Tc
superconductors.25 Note that there is no coherent hopping of
spinons in the third dimension; in the model such hopping
cannot occur unless the band-structuret'*tband. The deri-
vation of the spinonep from thet-J model is outlined in the
Appendix. In Eq. ~1! interplane hopping is entirely ne-
glected. Even if there is no coherent hopping, interplane cou-
pling may be important. We return to this issue in the con-
clusion.

Near a van Hove point~e.g.,px5p,py50) we have

ep52u0~px
22a2py

2! ~5!

with u05(t12t8)a2 and a25(t22t8)/(t12t8). If t8Þ0
thena2Þ1 and the energy contour which passes through the
van Hove points is not nested. An example of such a contour
is shown as the solid line in Fig. 1. At the van Hove points
the velocity vanishes, implying a diverging density of states
and a vanishing of the fermion-gauge-field coupling.

We now consider the fermion-gauge-field interaction.
Previous work30 has shown that it is correct to analyze this
interaction in two steps using a loop expansion controlled by
the parameterN, the fermion spin degeneracy. In the physi-
cal problemN52. It has been shown that results obtained at
leading order in a 1/N expansion are not significantly
changed at higher orders. First, one constructs the renormal-
ized gauge-field propagatorD by dressing the termf mn

2 /g0
2

by the fermion transverse current-current polarizability
P5*vvGG. Second, one uses this to compute the fermion
self-energy. For a closed Fermi surface far from van Hove
points,p(v,kW )5p0uvu/puku1xk2. For a given direction of
kW , the dissipative termuvu/uku comes from fermions near the
points on the Fermi surface which are tangent tokW ; p0 is the
curvature of the Fermi surface at these points andx is the
diamagnetic susceptibility of the fermions.
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The presence of van Hove singularities leads to two ef-
fects. First, as can be seen from Fig. 1, there is a range of
directions ofkW which are not tangent to any point on the
Fermi surface. For these directions, the dissipative term in
P(v,k), P diss, is much smaller. To display the behavior of
the dissipative term it is convenient to define coordinates
k65kx6aky .

If

12a

11a
,uk1 /k2u,

11a

12a
,

then

Pdiss~v,k!5
aNuvu
4p S k2

kx
22a2ky

2 1
k2

ky
22a2kx

2D , ~6!

while if uk1 /k2u is outside this range then

Pdiss~v,k!5
Np0uvu
2puku

. ~7!

Second, states in the vicinity of the van Hove point produce
a negative, divergent contribution tox, so

x52
Nu0
6p2 lneF /L1x reg. ~8!

Here the logarithm cutoffL5max(T,m,u0k
2) andx reg is the

contribution from fermions far from the van Hove points.
The total x calculated for noninteracting fermions with
N52 moving in the band structure defined by Eq.~2! is
shown in Fig. 2; as seen in this figurex near half filling is
negative and of small magnitude with a weak divergence
near van Hove points as expected from Eq.~8!. The full
gauge propagator is thus

D~v,k!5
1

Pdiss1~g0
221x!k2

. ~9!

The divergence ofx implies that in the vicinity of the van
Hove singularity the uniform RVB state is unstable to a state
of nonzero flux, at a temperature

Tflux;eFexp2F6p2~x reg1g0
22!

Nu0
G , ~10!

unless a different instability occurs first. States of nonzero
flux break time-reversal invariance; as there is no evidence
that this occurs in high-Tc materials we shall assume that
x reg1g0

22 is sufficiently large and thatTflux is negligibly
small. This assumption is consistent with the previously
mentioned theoretical estimateg0

22;J which is greater than
the typical values ofx;0.1t;0.1J shown in Fig. 2. Also, a
previous analysis of theT dependence of the resistivity at
T.100 K predicted by Eq. ~1! found g0

221x reg

'500a2K;Ja2/3. These estimates combined with the large
numerical factor in Eq.~10! imply that the instability will
occur only very close to the van Hove point, and only at very
low temperature.

At scales of interest we may then neglect the logarithm
and write

D~v,k!5
1

Pdiss1k2/g2
, ~11!

whereg225g0
221x'500a2K. We now use thisD(v,k) to

calculate the fermion self-energy. For fermions far from the
van Hove points the calculation is identical to that given in
previous work.30 The kinematics of a scattering event imply
that the fermion is scattered parallel to the Fermi surface. For
these momenta one must use theuvu/uku form of Pdiss, lead-
ing to

S far~e,pW !5@v0~pW !#1/3e2/3. ~12!

Here

v0~pW !5
vF
3~pW !g4

p2p0~2A3!3
~13!

at leading order inN. The Fermi velocityvF(p) vanishes
linearly as one approaches the van Hove point, implying
S far does also. Note also that 1/p0 vanishes for a nested
Fermi surface; from Eq.~4! we conclude that 1/p0}d, so
v0}d.

For fermions near the van Hove point, scattering pro-
cesses involving the other form ofPdiss become allowed.
These lead to a contribution

Snear~e,p!52
1

2p2 S lneF
e
ln

u

px D @ iAe2Bu~px
22a2py

2!#,

~14!

where the numerical coefficientsA5 ln(11a)/(12a)21,
B53ln(11a)/(12a)21. Snear(e,p) becomes important for
e,e* where (1/2p2)ln(eF /e* )ln(u/px)51; ln(u/px)'1, so
ln(eF /e* ) is within a factor of 2 of ln(eF /Tflux), thus, for
consistency, we must assumeSnear(e,p) is negligible. The
instability in Snear(e,p) reinforces that inx. To study this
instability more carefully we have written and solved
coupled renormalization-group~RG! equations foru andg;
we find that the more careful considerations do not change
the estimate of the scaleTflux where these effects become
important. Thus we assume

S~e,pW !>S far~e,pW !; ~15!

in other words the self-energy due to fermion-gauge field
scattering is important far from the van Hove points and
unimportant near them, provided that the instability towards
the flux phase may be neglected.

III. EFFECT OF NONSINGULAR INTERACTIONS

We now turn to the residual, nonsingular interactions. It
has already been shown that the short-range interaction be-
tween fermions far from van Hove points is renormalized to
zero by the gauge field.30,31 We thus need only to consider
processes involving fermions near van Hove points. For
these processes, vertex renormalizations due to the gauge
field lead to the same logarithms we have already agreed to
neglect. The theory we must consider is therefore of fermi-
ons near the van Hove points, with self-energyS far(e,p),
coupled by short-range interactions which may be param-
etrized by four constants: particle-particle and particle-hole
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interactions with momentum transfer near zero or
G5(p,p).

The theory has some formal similarity to theories of fer-
mions in one dimension. In one-dimensional models one
considers only fermions near the Fermi surface of the left-
and right-hand branches of the dispersion relation; here one
considers only fermions near van Hove points. In one-
dimensional~1D! models a weak-coupling leading logarithm
approximation exists because some particle-hole and
particle-particle propagators diverge logarithmically due to
kinematics in one dimension. In the present model the diver-
gent density of states at the van Hove singularity similarly
leads to logarithmic divergences of susceptibilities.

The theory is more complicated than theories of fermions
in one dimension because there are two small scales:
va5@(12a)/(11a)#eF which will be shown below to set
the scale at which deviations from the perfect nesting be-
come important, andv0 which sets the scale at which gauge-
field effects become important. Bothva andv0 are propor-
tional to d as previously discussed; because they have the
same doping dependence andv0 is small even at large dop-
ing due to the large value of the gauge stiffnessg22 in Eq.
~13!, we believe thatv0,va is the only relevant case.

The charges in the antiferromagnetic andd-wave pairing
channels diverge. At scales larger thanva andv0 both chan-
nels have a ln2(1/e) divergence. At scales less thanva the
antiferromagnetic divergence becomes ln(1/e). At scales less
thanv0 the coefficient of the ln

2(1/e) in the superconductiv-
ity channel~and, ifv0.va , in the antiferromagnetic chan-
nel! is reduced, because the gauge field produces a strong
inelastic scattering in some regions of momentum space.

In the remainder of this section we present the results of
the leading logarithm calculations. We assume throughout
that at most one coupling becomes large. Especially in the
regime of ln2(1/e) renormalizations the problem of coupled
charges is very involved and has been treated elsewhere.20

A. Antiferromagnetic instability

We proceed to construct leading logarithm RG equations.
There is no logarithm in the small momentum transfer
particle-hole susceptibility, so the corresponding charge is
not renormalized. Moreover, in contrast to 1D, the small mo-
mentum transfer particle hole susceptibility has only a weak
singularity asv5vq, so these processes can be neglected.
The G momentum transfer particle-hole processes lead to
logarithmic divergences. For a nested Fermi surface
(a251) the two momentum integrals areeach logarithmi-
cally divergent leading to a ln2(1/e) renormalization of the
charge. For a non-nested Fermi surface (a2Þ1) one loga-
rithm is cut off by (12a2) if it has not already been cut off
by temperature. The crossover occurs at the scalev'va .
The existence of a logarithmic divergence in the particle-
hole bubble means that the charge,gAF , associated withG
momentum transfer particle-hole processes grows. In the
leading logarithm approximation we find that antiferromag-
netic charge is renormalized by

dgAF
gAF

5H gAF
8p2u

ln2
eF
T
, T.v0 ,va

gAF
8p2u

ln
11a

12a
ln

eFva

T2
, T,va .

~16!

The second of these formulas was derived on the assumption
thatva.v0; if not, an additional crossover occurs. The for-
mulas relevant to this case will be presented and discussed in
the next subsection treating pairing. The renormalization of
gAF calculated from Eq.~16! is shown as the dashed line in
Fig. 3. The existence of the crossover scaleva was noted by
Schultz in Ref. 21 and an expression similar to our Eq.~16!
was obtained by Markiewicz22 in the context of a Fermi-
liquid model.

We defineTAF as the scale at whichdgAF /gAF becomes
of the order of unity. At scales larger thanTAF , the effects of
gAF are negligible within the weak-coupling approximation.
At scales of orderTAF , the antiferromagnetic susceptibility
becomes large, the renormalization of the fermion propaga-
tor becomes large, and perturbation theory breaks down. It is
difficult to make definite predictions for temperatures lower
thanTAF because one is then dealing with a strongly inter-
acting model. We can imagine two scenarios — a crossover
to thed-wave RVB regime to be discussed below or a cross-
over to an antiferromagnetic regime involving critical fluc-
tuations. We discuss the antiferromagnetic regime here, fo-
cusing on whether the important fluctuations are quantum or
classical and whether they can open a gap in the fermion
spectrum.

It is helpful to compare the present calculation to the well-
known BCS theory of superconductivity which also has a
logarithmic divergence of the couplinggsc. In superconduc-
tivity the important fluctuations are classical~i.e., involve
modes with energies less thankBT) and are generally weak
but grow asT approachesTc . These fluctuations are de-
scribed by the classical Landau theory

Fsc5nE ddk~t1j0
2k2!Dk

21b scE ddrD r
4 , ~17!

wheren;1/eF is the density of states, the coherence length
j05vF /Tc andbsc;n/Tc

2 . The renormalization ofbsc may
be estimated to be32

dbsc

bsc
;S TceF

D d21

t~d24!/2 ~18!

FIG. 3. Renormalization of the interaction constants
g5dgAF /gAF , dgp /gp plotted againstt5 ln(eF /T). Solid line:
dgp /gp calculated from Eq. ~22! with initial condition
gp/8p2u50.1. Dashed line:dgAF /gAF calculated from Eq.~16!
with initial conditiongAF/8p2u50.2.
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wheret5(T2Tc)/Tc . This estimate shows that at the scale
t'1 where the couplinggsc has scaled to the order of unity,
thermal fluctuations are negligible in dimensiond.1. By
continuity quantum fluctuations must be also negligible at
this scale. This may be seen directly: at scales larger than
Tc , the f4 vertex of the quantum Landau theory
bsc(e,k);1/@e21(vk)2# and the Cooper propagator has
negligible momentum dependence so the leading correction
dbsc/bsc;(Tc /eF)

d21. Thus we see from the quantum cal-
culation thatd51 is the marginal dimensionality for the
quantum fluctuations; this fact is revealed in the classical
calculation because ind51 the Ginzburg parameter
(Tc /eF)

d21 ceases to be small.
In the antiferromagnetic problem of interest here, the mar-

ginal dimension isd52 because the fermion spectrum is
e}p2 rather thane}p. The free energy for the classical
fluctuations is

Fcl5
ln@~11a!/~12a!#

u E ~d2k!fk
2FF1t1F2

uk2

TAF
G

1bAFE f r
4d2r ~19!

with bAF5F3 /(uTAF
2 ) and t5(T2T AF)/TAF (Fi are nu-

merical coefficients of the order of unity!. From the free
energy~19! one finds

dbAF

bAF
;
Gi

utu
, Gi5 ln22

11a

12a
. ~20!

We see thatd52 is the critical dimension because the only
parameter~apart fromt) controlling the fluctuation correc-
tion is ln@(11a)/(12a)# which does not depend onTc /eF .
The calculation of the leading quantum fluctuation correc-
tions shows that these also are small only by a power of
ln@(11a)/(12a)#. We cannot proceed further in the general
case, but in the limit a→1 we can use the
ln@(11a)/(12a)# to control the calculation assuming that the
antiferromagnetic charge is the only relevant one. However,
a theory of the generala→1 case found more than one
relevant charge and the resulting theory of the competing
instabilities is very involved.20

In our a→1 limit, the only important fluctuations are
classical. There is no long-range order at anyT.0; rather,
for T,T AF , D crosses over toD;exp(Gi /t) implying an
exponentially growing correlation lengthj AF;D21/2. These
fluctuations are thus quasistatic and long ranged and in par-
ticular have energy much less than the typical fermion en-
ergykBT and momentum much less than the typical fermion
momentum,p;AT/u, so as far as the fermions are con-
cerned these fluctuations may be treated as static periodic
scatterers, and lead to a gapDF'TAFA2t. The magneti-
cally induced fermion pseudogap found in this model is not
relevant to the underdoped high-Tc materials because the
fluctuations producing the pseudogap would also lead to a
very rapidT dependence of the Cu NMR relaxation rates
proportional to powers ofjAF;exp(GiTAF /T); such a rapid
temperature dependence is not consistent with Cu relaxation
rate measurements in high-Tc materials.

8

B. Superconducting instability

We now consider particle-particle processes. As usual the
leading divergence happens in theq50 momentum channel.
The Cooper propagator,C(T), is

C~T!5E d2pde

~2p!3
gp

ep
21@e1v0~p!1/3e2/3#2

. ~21!

Near the cornersv0(p6);(p1p2)
3 andep52up1p2 , so

one finds

C~T!'5
gp

8p2u
ln2

eF
T
, T>v0 ,

gp
24p2u S ln2 eF

3

v0
2T

26 ln2
eF
v0

D , T,v0 .

~22!

Heregp is the pairing coupling constant.
The ln2(eF /T) divergence ofC(T) is due to the divergence

of the density of states and the vanishing of the inelastic
lifetime near the corners. The change inC(T) as T is re-
duced belowv0 reflects the pair-breaking effect of the gauge
fluctuations in the regions away from van Hove points. One
sees immediately from~21! that C(T) is nondivergent in
models wherev0(p);const, as shown by Ubbens and
Lee.17 Ubbens and Lee derived their results by an energy
argument which demonstrated that a second-order pairing
transition is not possible in models withv0(p);const. We
believe the argument using the gap equation is equivalent but
more transparent, however we note that if we apply their
energy arguments to the present model we discover that a
second-order transition is possible.

The ln2(eF /T) divergence ofC(T) means that pairing is
the instability which dominates the logarithmic antiferro-
magnetic and flux instabilities in weak coupling. However,
because the interactions are repulsive the pairing instability
occurs in thed-wave channel. Formally, one must consider
the pairing amplitudesD11 andD22 near the two inequivalent
corners 1 and 2 and the appropriate interaction amplitudes
g11, g12. The gap equation is dominated by the corners, so
becomes a 232 matrix equation

S D11

D22
D 52C~T!S g11 g12

g12 g11
D S D11

D22
D . ~23!

The growing eigenvalue is forD1152D22 ~corresponding
to d-wave symmetry! and requires thatgp[g122g11.0.
The pairing scaleTp at which the interaction becomes of
order unity is given by

Tp'5 eFexp2A8p2u

gp
, Tp.v0 ,

eF
3

v0
2 exp2A24p2u

gp
16ln2

eF
v0
, Tp,v0 .

~24!

In a model with pointlike interactions,g125g11; it is then
necessary to go to higher order. Contributions to the pairing
instability of orderg12

2 ln3(eF /T) exist and, for sufficiently
small coupling dominate over the AF instability. The renor-
malization ofgp is shown in Fig. 3.
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By repeating the arguments of the previous section we see
that the Ginsburg parameter isGi'1/ln(eF /Tp), so mean-
field theory provides a reasonable description at temperatures
less thanTp in weak coupling. There is, however, one im-
portant caveat: mean-field theory predicts a phase transition
to a paired stateTp ; in reality this is not a true transition.
The interaction between vortices of the pairing field is not
logarithmic because of screening by the gauge field, so as
long as spin-charge separation occurs vortices exist and pre-
vent long-range order. However, the small value of the
Ginzburg parameter implies that the number of vortices
present is very small, so the magnitude of the pairing field
and the implications of the pairing for the physical properties
are well described by the mean-field theory. In particular, in
regions of momentum space where the pairing amplitude is
appreciable there will be a strong suppression of the electron
spectral function.

If the Fermi surface does not pass through a van Hove
point the ln2 divergence in Eq.~22! is cut off whenT;m
~recall that we measure the chemical potential relative to the
van Hove point!; however becausev0(p) is small near the
van Hove point there is an additional contribution of

DC~T!5
gp

24p2u
ln

eF
3

v0
2m

ln
m

T
~25!

from the part of the Fermi surface withv0(p),T. This con-
tribution exists only for intermediate temperature range
T.v0

min;m3/2.
We now discuss the momentum space structure of the gap

function focusing on the physically relevantTp,v0 case.
The gap equation is

De,p5E gpair~e,p!De8,p8~dp8!

@e81v0
1/3~p8!e2/3#21~ep81De8,p8!

2 . ~26!

The integral in~26! is dominated by the van Hove point
which allows us to ignore thep8, e8 dependence ofg pair in
~26!. For p away from the van Hove pointsgp(e,p,p8) is
suppressed at low scales by the gauge-field fluctuations,30

roughly gpair(e,p)5gp@e/v0(p)#
k for e,v0(p) with

k.2/3. Equation~26! implies

De,p5H D, v0~p!,D ,

S e

v0~p! D
k

D, v0~p!.D.
~27!

HereD;Tp is the pairing amplitude at the van Hove points.
Clearly, as one moves far enough from the van Hove points
so thatv0(p).D, the pairing amplitude drops rapidly and
becomes less than the scattering ratev0

1/3(p8)e2/3 due to the
gauge field; these portions of the Fermi surface may be re-
garded as gapless.

IV. CONCLUSION

We have studied theoretically a model of a spin liquid
with a Fermi surface which passes near a van Hove singu-
larity. We considered two sorts of interactions: the singular
gauge interaction arising from the spin-charge separation
which established the spin liquid in the first place, and re-

sidual short-range interactions between spinons. The gauge-
field interactions lead to two effects. One is an instability at
T5Tflux to a ‘‘flux phase’’ in which time-reversal symmetry
is spontaneously broken. An expression forTflux is given in
Eq. ~10!. The numerical factors are such thatTflux is negli-
gible in the weak-coupling limit. As there is no experimental
evidence for time-reversal symmetry breaking in high-Tc
materials, we assume that parameters in the physical model
are such thatTflux is negligibly low. This assumption allows
us to neglect also the logarithmic renormalization of the
fermion dispersion shown in Eq.~15!. The second effect is a
suppression, for spinons near the van Hove point, of inelastic
scattering due to the gauge field. The physics is simple: the
gauge field couples to the fermions via the velocity; this
vanishes at the van Hove point and the vanishing coupling
overcomes the diverging density of states.

We then turned to the nonsingular interactions. Processes
involving spinons far from the van Hove points are known to
be renormalized to zero by the gauge field, but near the van
Hove points the vanishing of the coupling implies that the
renormalization is ineffective. We therefore argued that we
could specialize to a model involving fermions near van
Hove points coupled by nonsingular interactions. We treated
this theory via weak-coupling leading logarithm methods
similar to those used to study one-dimensional models.

We found diverging interactions in thed-wave pairing
and antiferromagnetic channels. The coupling constant flows
are shown in Fig. 3. For sufficiently weak couplings,
d-wave pairing dominates and a controlled expansion based
on the parameter ln(eF /T) is possible. Below the pairing tem-
peratureTp given in Eq.~24! the d-wave pairing leads to a
gap in the fermion spectrum near the van Hove points but
leaves a finite region of gapless Fermi surface near the zone
diagonal. The resulting fermion spectrum is similar to that
observed in recent photoemission experiments.4 This pairing
which eliminates some but not all of the Fermi surface will
have implications for other physical properties. For example,
the uniform spin susceptibility will decrease asT is de-
creased through the pairing scale, but will tend to a nonzero
limit as T→0 because some of the Fermi surface remains
ungapped. Precisely this behavior occurs in La22xSrxCuO4
at an x-dependent pairing scaleT* (x) varying from
T* (x50.15)'300 K toT* (x50.04)'700 K. Other proper-
ties of La22xSrxCuO4 also exhibit crossover atT* (x).33

Similar behavior occurs in YBaCu3O61x , although the situ-
ation is complicated by the occurence of a second, lower
scaleTSG(x) below which all susceptibilities and relaxation
rates drop rapidly. A detailed phenomenological discussion
of the data was given by Barzykin and Pines.34 The identifi-
cation of the RVB pairing scaleTp with the empirical
T* (x) was suggested by Tanamotoet al.;16 the features of
the present paper are a theoretical justification for the exist-
ence of the gap despite strong inelastic scattering and the
result that the gap opens only over a small portion of the
Fermi surface.

The present theory does not explain therapid drop of
xs(T) and NMR relaxation rates observed in bilayer and
trilayer materials below a spin-gap temperatureTSG;200 K.
Explaining these observations requires opening a gap over
the whole Fermi surface; one possibile mechanism has been
discussed elsewhere.35
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The theoretical situation is less clear if the antiferromag-
netic channel is dominant. There is no generic small param-
eter to control fluctuations in this regime. However, if the
antiferromagnetic channel is dominant and the Fermi surface
is nearly nested, a controlled calculation turned out to be
possible. In this case we showed that the physics is con-
trolled by classical spin fluctuations with correlations which
grow exponentially asT decreases below a mean-field scale
TAF . These quasistatic fluctuations produce a gap,DF , in
the fermion spectrum near the van Hove points which varies
asDF5TAFATAF2T/TAF for T,T AF . This mechanism for
producing a pseudogap predicts a very rapidT dependence
of NMR rates which is not observed in experiment on super-
conducting materials.8

We now discuss the doping dependence of our results.
Our calculations are based on a spin-liquid saddle point. At
low T or large doping it is believed3 that the behavior of the
model is better described by a Fermi-liquid fixed point. In
the Fermi-liquid regime our results are not directly relevant
and the pairing scaleTp , if it exists, corresponds to the true
superconducting transition temperature,Tc . In a Fermi-
liquid model one would expectTp[Tc to rise and then fall
as the chemical potential is tuned up to the van Hove point
and then beyond. This expectation does not agree with ex-
periment: as the chemical potential is increased,Tp becomes
larger thanTc and continues to increase as the chemical po-
tential is increased beyond the van Hove point. This is natu-
ral in the spin-liquid model because the particle-hole sym-
metry breaking termt8 itself depends on doping as seen in
Eq. ~4!. As the doping is decreased the Fermi surface gets
flatter. This tends to pin the Fermi level to the corners. Note
that the van Hove point may be slightly above orbelow the
chemical potential, depending on the magnitude oft8 when
the spin-liquid regime is entered. The important point is that
the van Hove singularity gets closer to the chemical potential
as half-filling is approached. Further, as the Fermi surface
flattens,p0 increases, so thatv0 in Eq. ~13! decreases and
Tp increases. However,va also decreases so the importance
of antiferromagnetism grows. As the doping is reduced to-
wards zero, all instability scales become greater than both
v0 andva . In this regime the pairing and antiferromagnetic
charges scale in the same way, as shown in Fig. 3. Because
we expect the bare value of the antiferromagnetic charge to
be larger than the bare value of the pairing charge we expect
antiferromagnetism to be dominant, as was also found by
Dzyaloshinshkii and Yakovenko.20

Within our leading logarithm approximation we have
shown that the observed pseudogap cannot be due to long-
ranged antiferromagnetic fluctuations, and must be due to
RVB pairing. We now offer qualitative arguments that this
conclusion survives even when the leading logarithm ap-
proximation is not reasonable. First, it seems that antiferro-
magnetic fluctuations can produce a pseudogap only if they
are long ranged and quasistatic; such fluctuations are ruled
out by NMR so we believe that a pairing origin of a
pseudogap is more likely. Second, increases in the antiferro-
magnetic charge apparently feed back into the pairing equa-
tion in a way that increasesTc , so it seems natural to expect
that the theory with antiferromagnetic charge;1 is unstable
to d-wave pairingif the Fermi surface is not too flat. How-
ever, when the Fermi surface becomes flat, antiferromag-

netism becomes favored. On the basis of these considerations
we propose the phase diagram shown in Fig. 4.

The results of this paper concern the interplay of the spin-
liquid ~SL!, pseudogap~PG!, and antiferromagnetic regimes.
For completeness we have also added to the figure a dotted
line representing the ‘‘Bose condensation’’ considered by
previous workers.3 Below this line our calculations are not
relevant. At large doping this line represents a crossover
from spin-liquid~SL! to Fermi-liquid~FL! behavior; at small
doping it represents the transition to the true superconducting
state. Finally, we note that the key assumption underlying
our work is that as the doping is varied the Fermi surface
reaches the van Hove point somewhere near the maximum
superconductingTc , but the precise location of the van Hove
point is not crucial.

Finally, we discuss the spin fluctuations expected in a
different regime of this phase diagram. In the larged, spin
liquid, regime and in the pseudogap regime near the SL-PG
boundary we expect spin fluctuations dominated by the
‘‘2 pF’’ effects discussed elsewhere.13 As d is decreased we
expect enhancement of the spin fluctuations near the (p,p)
point due to the flattening of the Fermi surface and the in-
crease of the renormalized interaction. Moreover, inside the
PG regime the density of states will be very much sup-
pressed on those parts of the Fermi surface which could
damp a (p,p) fluctuation. Therefore these fluctuations
would be undamped as is apparently required by analyses of
Cu NMR T1 andT2 experiments.

36

Last, we note that in all of the theoretical development of
this paper the effects of the between-planes hopping were
neglected. One such effect is a between-planes coupling
J' , which has been shown to lead to spinon pairing.35 How-
ever, other effects may occur as emphasized by
Anderson.11,29 A complete theory of the effects oft' is an
important open problem.

In summary, we have studied the effect of van Hove
points on the ‘‘uniform RVB’’ state with weak residual in-
teractions. We have identified three instabilities: to a flux
phase with spontaneous breaking of time-reversal symmetry,
magnetic phase, and ad-wave RVB phase. We argued that

FIG. 4. Qualitative phase diagram of the spin liquid near van
Hove point. AF denotes antiferromagnetic phase, SL denotes spin
liquid with ungapped Fermi surface, PG denotes the pseudogap
regime of the spin liquid, FL denotes the Fermi-liquid regime, and
SC denotes the superconducting phase. The dotted line indicates the
Bose condensation which leads to the SL-FL crossover at high dop-
ing and the superconducting transition at low doping.

3652 54L. B. IOFFE AND A. J. MILLIS



the d-wave state is likely to happen at large doping while
antiferromagnetism dominates at small doping. Our proposed
phase diagram is shown in Fig. 4. We showed that the in-
elastic scattering due to the gauge field is negligible for fer-
mions near the corners and that this in combination with the
divergent density of states permits a continuous crossover to
ad-wave RVB state, which is not allowed in models without
corners.
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APPENDIX: PARAMETERS OF THE SPINON
HAMILTONIAN

The spinon Hamiltonian is obtained expanding about a
mean-field approximation to thet-J model which may be
written

HtJ52(
i , j

t i j
~band!bi

†bjcja
† cia1

J

2( SiWSjW . ~A1!

Herec† is the spinon creation operator discussed in the text,
SW i5(1/2)(abcia

† sW abcia , the Bose operatorbi
† creates a spin-

less charge 1 ‘‘holon’’ and the constraint
bi
†bi1(acia

† cia51 is assumed. To obtain the fermion dis-
persion one writes the second term inHtJ as a product of
four fermion operators2

SiWSjW52
1

2
cja
† ciacib

† cjb1
1

4
~A2!

and approximates this by

SiWSj'2
1

2
~cja

† cia1H.c.!^cib
† cjb&. ~A3!

If ^cib
† cjb&Þ0 then the bosons acquire a dispersion

HBose52^cib
† cjb&t i j

bandbi
†bj ; because the density of bosons is

low the bosons are mostly in smallk states so it follows that
for nearbyi and j ^bi

†bj&5d. Inserting this in Eq.~A1! we
get the fermionic part of Eq.~1! with

t i j5dt i j
~band!1

1

2
J^cib

† cjb&. ~A4!

The expectation value ^cib
† cjb& turns out to be

4/p21O(d).
We now estimate the bare gauge stiffnessg0 . This repre-

sents the effect of short-wavelength fluctuations which are
integrated out in the definition of Eq.~1!; in theN→` limit
g0

22 vanishes,2 but it is nonzero for the physicalN52. If the
only term inH, Eq. ~1!, were (1/4g0

2) f mn
2 , then one would

find

E
2`

`

dt^hi~ t !hi~0!&5g0
2 . ~A5!

Here as usualh5]xay2]yax . To find g0
2 we evaluate the

^hi(t)hi(0)& correlator directly fromS51/2 Heisenberg
model, including in our calculation only short-wavelength

degrees of freedom. Formally, the gauge field is related to
the phase of the operatorD i j which decouples the four ferm-
ion operator in Eq.~A2!2; the fieldh is equal to the gauge
flux through the elementary placquette with verticesi , j ,k,l ;
the latter is related to theD operators by

Reih5D i jD jkDklD l i . ~A6!

HereR is a real operator. By undoing the decoupling one
may express the product of fourD around the placquette in
terms of fermion operators; in the low doping limit these in
turn may be expressed in terms of spin operators@with cor-
rectionsO(d)#, yielding

Reih5
1

8
1
1

2(~ i j ! S
W
iSW j1 i (

~ i jk !
SW i~SW j3SW k!12@~SW iSW j !~SW kSW l !

1~SW iSW l !~SW kSW j !2~SW iSW k!~SW jSW l !#, ~A7!

where (i j ) denotes all distinct pairs of spins, (i jk ) denotes
all distinct triads with the clockwise order ofi , j ,k around the
placquette. If there are strong short-range antiferromagnetic
correlations then we may replace the real terms byc num-
bers, obtaining

Reih5
1

2
1 i (

~ i jk !
SW i~SW j3SW k!. ~A8!

This allows us to identify

h52(
~ i jk !

SW i~SW j3SW k!, ~A9!

and thus to relateg0
2 to a six-spin correlator. Evaluating this

in the spin-wave approximation leads to

g0
25B(

k,p

1

vk1vp
, ~A10!

whereB is a number of the order of unity andvk andvp are
spin-wave energies. Because the typical value forvk;2J
and the sums are dominated by short wavelengths, we see
that g0

225B8J with B8 a number of the order of unity. Of
course we cannot expect this simple estimate to yield a reli-
able value forB8, but it does show that it is reasonable to
expect a large contribution to the gauge stiffness from short-
range correlations.

Finally we consider the effective between-planes hopping
t' . If t'Þ0 then also the between-planes exchangeJ'Þ0
and we must add to Eq.~A1! the terms

H'5(
i
t'bi

~1!†bi
~2!cia

~1!†cia
~2!1

J'

2 ( SiW
~1!SjW

~2!. ~A11!

One may factorize the four fermion term as in Eqs.
~A2,A3!; however the equation determining the amplitude is

D'[~J'1dt'!^cib
~1!†cib

~2!&5(
e,p

~J'1dt'!

~ i e2ep!
22D'

2 . ~A12!

A solution only becomes possible forJ'1dt''t, so for
physically relevant parameters there is no coherent between-
planes hopping in the model.

54 3653EFFECT OF VAN HOVE SINGULARITIES ON A SPIN LIQUID



1G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Commun.
63, 973 ~1987!.

2L. B. Ioffe and A. I. Larkin, Phys. Rev. B39, 8988~1989!.
3P. A. Lee, inHigh Temperature Superconductivity: Proceedings,
edited by K. S. Bedell, D. Coffey, D. E. Meltzer, D. Pines, and
J. R. Schreiffer~Addison-Wesley, Reading, MA, 1990!, p. 96;
L. B. Ioffe and B. G. Kotliar, Phys. Rev. B42, 10 348~1990!; L.
B. Ioffe, V. Kalmeyer, and P. B. Wiegmann,ibid. 43, 1219
~1991!.

4D. M. King, D. S. Dessau, A. G. Loeser, Z.-X. Shen, and B. O.
Wells, J. Phys. Chem. Solids56, 1865~1995!.

5J. R. Schreiffer, X. G. Wen, and S. C. Zhang, Phys. Rev. Lett.60,
944 ~1980!; A. Kampf and J. R. Schreiffer, Phys. Rev. B41,
6399 ~1990!; 42, 7967~1990!.

6P. A. Lee, T. M. Rice, and P. W. Anderson, Phys. Rev. Lett.31,
462 ~1973!.

7M. V. Sadovskii, Zh. E´ksp. Teor. Fiz.66, 1720~1974!.
8See, e.g., A. J. Millis, inHigh Temperature Superconductivity:
Proceedings~Ref. 3!, p. 198; or C. P. Slichter, inStrongly Cor-
related Electronic Materials, edited by K. S. Bedell, Z. Wang,
D. Meltzer, A. V. Balatsky, and E. Abrahams~Addison-Wesley,
Redwood City, CA, 1990!, p. 427.

9P. W. Anderson, Science235, 1196~1987!.
10I. A. Affleck and J. B. Marston, Phys. Rev. B37, 3774~1988!.
11S. Chakravarty, A. Sudbo, P. W. Anderson, and S. P. Strong,

Science261, 337 ~1993!; A. Sudbo, S. Chakravarty, S. Strong,
and P. W. Anderson, Phys. Rev. B49, 12 245~1994!.

12C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid State
Commun.62, 681 ~1987!.

13B. Altshuler, L. B. Ioffe, A. I. Larkin, and A. J. Millis, Phys. Rev.
B 52, 4607~1995!.

14B. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B52, 5563
~1995!.

15S. Spielman, K. Fester, C. B. Eom, T. H. Geballe, M. M. Fejer,
and A. Kapitulnik, Phys. Rev. Lett.65, 123 ~1990!.

16T. Tanamoto, K. Kohno, and H. Fukuyama, J. Phys. Soc. Jpn.61,
1886 ~1992!.

17M. Ubbens and P. A. Lee, Phys. B50, 438 ~1994!.
18X.-G. Wen and P. A. Lee, Phys. Rev. Lett.76, 503 ~1996!.

19P. A. Lee and N. Read, Phys. Rev. Lett.50, 2691~1987!.
20I. E. Dzyaloshinshkii, Sov. Phys. JETP66, 848 ~1987!; I. E.

Dzyaloshinshkii and V. Yakovenko,ibid. 67, 844 ~1988!; Int. J.
Mod. Phys. B2, 667 ~1988!.

21H. J. Schultz, Europhys. Lett.4, 609 ~1987!.
22R. S. Markiewicz, Physica C169, 63 ~1990!; J. Phys. Chem.

Solids56, 1637~1995!.
23D. C. Newns, C. C. Tseui, P. C. Pattnaik, and C. L. Kane, Com-

mun. Condens. Matter Phys.15, 273 ~1992!; D. M. Newns and
P. C. Paittnaik, inStrong Correlations and Superconductivity,
edited by H. Fukuyama, S. Maekawa, and A. Malozemoff
~Springer-Verlag, Heidelberg, 1989!, p. 146.

24E. Dagotto, A. Nazarenko, and A. Moreo, Phys. Rev. Lett.74,
310 ~1995!.

25See, e.g., Table I of W. E. Pickett, Rev. Mod. Phys.61, 463
~1989!.

26See, e.g., the tabulation of observed penetration depths in C. C.
Homes, T. Timusk, D. A. Bonn, R. Liang, and W. N. Hardy,
Physica C254, 265 ~1995!.

27See, e.g., S. Martinet al., Phys. Rev. B41, 846 ~1990!.
28P. W. Anderson and Y. Ren, inHigh temperature Superconduc-

tivity: Proceedings~Ref. 3!, p. 3.
29P. W. Anderson~private communication!.
30B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B50,

14 048~1994!.
31J. Polchinski, Nucl. Phys. B422, 617 ~1994!.
32L. D. Landau and E. M. Lifshitz,Statistical Physics~Pergamon,

Oxford, 1988!, Vol. II, Sec. 45.
33H. Y. Hwang, B. Batlogg, H. Takagi, H. L. Kao, J. Kwo, R. J.

Cava, J. J. Krajewski, and W. F. Peck, Jr., Phys. Rev. Lett.72,
2636 ~1994!.

34V. Barzykin, D. Pines, A. V. Sokol, and D. Thelen, Phys. Rev. B
49, 1544~1994!.

35B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B53, 423
~1996!; B. L. Altshuler, L. B. Ioffe, A. I. Larkin, and A. J.
Millis, JETP Lett.59, 67 ~1994!; B. L. Altshuler and L. B. Ioffe,
Solid State Commun.82, 253 ~1992!.

36A. V. Sokol and D. Pines, Phys. Rev. Lett.71, 2813~1993!.

3654 54L. B. IOFFE AND A. J. MILLIS


