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Effect of van Hove singularities on a spin liquid
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We determine the properties and leading instabilities of a spin liquid with a Fermi surface passing near a
van Hove singularity. Our study is motivated by recent photoemission experiments off halprates in
which it is found that for the optimally doped material the experimental Fermi surface passes near a van Hove
singularity, while for underdoped materials, a pseudogap in the electron spectral function is formed in the
vicinity of the van Hove point. We show theoretically that proximity to the van Hove singularity suppresses the
inelastic scattering due to the gauge field and permits the formatiordefiave RVB state in which the gap
exists only near the van Hove points while finite regions of the Fermi surface remain gaplesd-\Wing
pairing provides a natural explanation of the pseudogap observed in photoemission. We also discuss the
relation of the pseudogap observed in the spectral function to the pseudogaps observed in the magnetic
susceptibility.[S0163-182@6)04729-1

I. INTRODUCTION shown in Fig. 2 of Ref. 4 are so close to the Fermi level, we
suspect that there are uncertainties in the experimental deter-
In this paper we report results of a theoretical study of amination of the Fermi surface, and that the true Fermi sur-
“spin liquid” with a van Hove singularity near the Fermi face is much closer to ther(,0) point than shown in Fig. 4 of
surface. By the term “spin liquid” we mean a liquid of Ref. 4.
charge 0 spin-1/2 fermions filing a large Fermi sea and More significantly, as more electrons are added the Fermi
coupled by a singular gauge-field interactidmnd by addi- surface does not continue to evolve in the manner expected
tional nonsingular interactions. We determine exactly the ef-
fect of the van Hove singularity on the fermion gauge-field
physics and treat the additional interactions by a “leading
logarithm” renormalization-group analysis.
The problem of a spin liquid with a van Hove singularity
is of interest on experimental and theoretical grounds. The
experimental motivation for describing the hidgh-super-
conductors as spin liquids has been discussed at length
elsewheré. Recent angle-resolved photoemission
experiment$ also suggest that van Hove points are impor-
tant. The qualitative doping dependence expected theoreti-
cally for noninteracting electrons is sketched in Fig. 1. For
heavily overdoped samplédotted curve the Fermi surface
is closed and electron-like. In a noninteracting model, the
Fermi surface would grow as electrons are added, until it
reached the van Hove points. A Fermi surface passing
through the van Hove pointdfl, is shown as the thick
dashed line in Fig. 1. The experimental re$ugt that for
optimally doped materials the Fermi surface is very close to I .
thpe vanyHovpe singularity. It is not clear exactly W¥1ere the FIG. 1. .Large square- Br|II0u|_n zone for fermions. Heavy
. . . - .—dashed line: Fermi surface of noninteracting electrons with spec-
Fermi .surface Is near van Hove pomts be_ca_use quaSIpartICF?qu) andt’ = — 0.3t passing through the van Hove point. Dotted
peak is very brqad there; most likely it mtersects ZON8jine: Fermi surface of heavily overdoped material. Heavy arcs: re-
bou_ndary at a point slightly dlsplace(_d from in the X d"_ gion where Fermi surface was observed in photoemission experi-
rection. For instance, the data on slighly overdoped Bi-Sriyent in underdoped Bi-Sr-Ca-Cu-O. Dashed square: inset showing
Ca-Cu-O presented in Fig. 4 of Ref. 4 seem to show that thgpase space for gauge-field fluctuations. Gauge-field fluctuations
Fermi surface crosses thé-X line rather than thé/-I" line.  \ith momentumk in one of the four shaded regions are described
However, the area enclosed by the Fermi surface in this fighy the conventional overdamped propagator; fluctuations With
ure corresponds to a doping of 7%, whereas optimal dopingutside of these regions are much larger because there is no part of
is approximately 20%. Because the states &ai0Of point  the Fermi-surface tangent to

X
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An alternative model for the origin of the pseudogap is
0.1 the “d-wave RVB” model. This is a mathematical expres-
sion of Anderson’s original insighthat in models involving
a strong on-site repulsion and a density near one electron per
site, singlet pairing and antiferromagnetism do not differ
much in their short-ranged correlations and energies. To
implement Anderson’s idea one assumes that “spin-charge
separation” occurs, and that the spin degrees of freedom are
described by charge 0 fermionic “spinons.” These fill a
Fermi sea with a largé_uttinger Fermi surface. This Fermi
1 sea of spinons may be derived in a mean-field theory, “the
uniform RVB phase,#1°of thet-J model. Thet-J model is
p believed by manybut not alt''? authors to contain the es-
sential physics of higfi-. superconductors, and the uniform
FIG. 2. Diamagnetic susceptibility of noninteracting Fermi gasRVB phase is believed to be the most physically appropriate
with spectrum given by Eq(2) as a function of filling,p, for ~ starting point, at least for materials near the optimal doping.
t=1 and several values of the next-neighbor hopptng, To understand pseudogap formation one then considers in-
stabilities of the uniform RVB state, which are due to re-
from the band theory. Instead, the material develops a gapidual interactions neglected in the mean-field theory. Before
near the van Hove points. States in the vicinity of the vannow calculations have been based on “generic” Fermi sur-
Hove points are pushed away from the Fermi surface. Fofaces without van Hove points and have considered instabili-
“underdoped” materials no states with energies near thdies to antiferromagnetism, -wave pairing, and to a stag-
chemical potential are observed near the zone edges. Statgsred flux phase. The antiferromagnetic instability has been
are observed near the chemical potential only in the disconconsidered and found not to lead to a pseudogap for essen-
nected regions along the zone diagonal shown as solid ar¢illy the same reason as in the Fermi-liquid chS¥.
in Fig. 1. It is important to note that the experimental claim The staggered flux phase involves the appearance of cir-
is not that the material develops a “hole pocket” Fermi sur-culating spin currents. This entails spontaneous breaking of
face centered around the point labe}ih Fig. 1 but that no  time-reversal symmetry which has been observed not to oc-
states at all are observed near the chemical potential angur in cuprates? For this phenomenological reason the stag-
where along the lines connecti to I' andM to X. The  gered flux phase has been discarded.
existence and consequences of this “non-Luttinger” Fermi Thed-wave RVB state naturally leads to the formation of
surface require theoretical explanation. a pseudogap, and the resulting phenomenology provides an
The subject of non-Luttinger Fermi surfaces has attractedttractive scenario for the cupratésThe d-wave RVB state
substantial theoretical attention. The general approach hamsay be viewed as arising from a pairing instability of the
been to start with fermions with a largéuttingen Fermi  uniform RVB state; the resulting theory is very similar to
surface and then to invoke a physical mechanism to open that arising from conventional superconducting pairing. One
“pseudogap” which eliminates part or all of the Fermi sur- important difference is that because the pairing involves
face. Three classes of mechanisms have been extensivathargeless “spinons” it does not lead to superfluidity or in-
considered: (i) quasi-long-ranged antiferromagnetic spin deed any other observable which could serve as an order
fluctuations, (ii) the “d-wave RVB” state, and(iii) the parameter. For this reason fluctuation corrections convert the
“staggered flux phase.” None has proven completely satispairing transition to a smooth crossover.
factory; we discuss each in turn. A difficulty with this scenario has been pointed out by
The logic behind the antiferromagnetic spin fluctuationsUbbens and Le&’ Their results, we believe, are most simply
approach is that static antiferromagnetic order at wave vectdnterpreted as saying that the spinon-gauge-field interaction
Q leads to Bragg scattering & which may open a gap over produces a very short inelastic lifetime for the spinons. This
all or part of the Fermi surface. Schrieffer and co-workersinelastic scattering is so strongly pairbreaking that it com-
have argued that sufficiently slowly varying antiferromag- pletely suppresses tlilewave pairing instability. Of course,
netic fluctuations with a sufficiently long correlation length a first-order transition to a paired state would be possible,
may also lead, if not to a gap, at least to a rather strongdput is not observed.
suppression of the Fermi surface density of statastheo- Very recently, a model with an S@)x SU(2) symmetry
retical difficulty with this picture is that magnetic instabili- has been consideréThis symmetry is, in principle, broken
ties of a wide variety of models have been investigateddown to SU2) only at any nonzero doping, but the symme-
pseudogaps have only been found in parameter regimes leaily breaking is argued not to be important. In this model a
ing to long-ranged order & =0.5" The essential reason is staggered flux instability occurs which does not break time-
that quasistatidi.e., frequency much less than temperafture reversal symmetry and can be transformed using an opera-
spin fluctuations are required for pseudogap formatidin  tion in the SU2)x SU(2) group to ad-wave pairing state.
metallic and superconducting high- materials, the spin The effects of gauge fluctuations on this state have not yet
fluctuations observed by NMR have characteristic frequencpeen determined. On the mean-field level it leads to a phe-
scale of ordefT or greateft (corresponding to no long-range nomenology very similar to the one we shall derive in this
order atT=0) and are not sufficient to open a pseudogap irnpaper.
the models which have been considered. All of the previously discussed theoretical calculations
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were based on “generic” models which did not contain vanthan J, which in highT. materials is about 0.15 eV. The
Hove singularities. In this paper we show that when the efcoefficientg, ? contains the contributions to the gauge-field
fects of proximity to van Hove singularities are properly in- stiffness from the higher-energy spin degrees of freedom
cluded, the theoretical predictions are very substantially alwhich were integrated out in the derivation of Ef). It may
tered. Most notably, near Van Hove points the inelastiche expressed in terms of the high-energy part of a six-spin-
scattering is suppressed, permitting the formation of aorrelation function and is of the order dfin magnitude; it
d-wave paired state with a gap which is nonzero only neais discussed further in the Appendix.
van Hove points. Thisl-wave state should be reconsidered We assume the fermion spectrum is
as a possible explanation for the pseudogap.

Near a van Hove singularity the fermion density of states €p= —2t[cogp,a) +cogpya)]
diverges, so that even arbitrarily weak interactions can pro- , ,
duceglarge effects. This line ofythinking has led to a Ia?ge —4t’codp,a)cogpya) —pu—At'. 2

literature devoted to analyzing the implications of van HoveHerea is the lattice constan +4t’ is the chemical poten-
singularities in Fermi-liquid modefS~** We have already tial with =0 corresponding to the van Hove poitis a
mentioned the strong phenomenological evidence for regardiyst-neighbor hopping due mostly to the superexchadge
ing high-T, materials as spin liquidsAn additional diffi-  with an additional contribution coming from a band structure
culty with Fermi-liquid-based treatments is that the singulari-t, _renormalized by the hole density and the param&tes
ties due to the van Hove points are cut off by cohereniyerived from further neighbor hopping in the underlying

hopping in third dimension. The bare value of this hoppingphand structure also renormalized by the hole density;
may be determined from band-structure calculations and igoughly, we expect as— 0

not small?® Evidently in the actual materials the interplane

coupling is renormalized down to a very small value in Bi- t=0J+tpand, (3
Sr-Ca-Cu-O and underdoped YBau;0;_, as seen in
c-axis penetration depth and resistivity’ measurements. t' =t . (4

These measurements have been shown by Anderson and
Rerf® to imply that there is no coherent interplane hopping.Here® is a number of the order of unity, in the largelimit
This absence of coherestaxis hopping cannot be under- ®=2/7*. It is believed that t'<O in highT
stood in a Fermi-liquid picture but follows naturally in sev- superconductor®’ Note that there is no coherent hopping of
eral non-Fermi-liquid picturés$ including the spin-liquid spinons in the third dimension; in the model such hopping
model studied here. Although the absence of coherent hogannot occur unless the band-structtiresty,,q. The deri-
ping in the spin liquid is known to many workers a deriva- vation of the spinore, from thet-J model is outlined in the
tion has apparently not been published. For completeness wippendix. In Eq. (1) interplane hopping is entirely ne-
give it in the Appendix. Finally, we mention an alternative glected. Even if there is no coherent hopping, interplane cou-
explanation of the pseudogdbased on thé-diagonal in-  pling may be important. We return to this issue in the con-
terplane pairing mechanism of Anderson and Chakravarty. clusion.

The remainder of this paper is organized as follows. In Near a van Hove pointe.g., px=,p,=0) we have
Sec. Il we formulate and solve a model of a spin liquid with s o2
a van Hove singularity coupled to a gauge field. In Sec. IlI €p= —Uo(Py— a@“py) )

we employ a leading logarithm approximation to determmewi,[h Uo=(t+2t")a? and a?=(t—2t")/(t+2t'). If ' %0

the effects of residual nonsingular interactions. Section IV isthenazil and the energy contour which passes through the

a conclusion which summarizes the approximations em:- o

. .__.van Hove points is not nested. An example of such a contour
ployed, results obtained and consequences for phOtoem'SS'?spshown as the solid line in Fia. 1. At the van Hove points
and other physical properties. The Appendix gives deriva; g. - P

tions of some results used in the body of the paper. the veIOC|t_y v_anlshes, |mply|_ng a dlverg_lng densn_y of states
and a vanishing of the fermion-gauge-field coupling.

We now consider the fermion-gauge-field interaction.
Il. SPINON-GAUGE MODEL Previous worR® has shown that it is correct to analyze this
interaction in two steps using a loop expansion controlled by
the parameteN, the fermion spin degeneracy. In the physi-
cal problemN=2. It has been shown that results obtained at

1 R R ) leading order in a N expansion are not significantly
H=>, epc;rmcpg+ 52 akc;+k,2vg[vp+k,2+vp,k,z]cp,k,zg changed at higher orders. First, one constructs the renormal-
i pko ized gauge-field propagat@ by dressing the ternﬁfw/gg

The spin-liquid state we shall start from is the “uniform
RVB” state. The Hamiltonian is

1 by the fermion transverse current-current polarizability
+W2 cglacpzocgaacpwé(E pi)+ 4_21:;21,1/' (1) IT=[vvGG. Second, one uses this to compute the fermion
P % self-energy. For a closed Fermi surface far from van Hove

This Hamiltonian is the usual oreee, e.g., Refs. 1 and80  Points, m(w,k) = polw|/m|k|+ xk?. For a given direction of
however we have written the fermion-gauge-field coupling ink, the dissipative termw|/|k| comes from fermions near the
its general form. Heré(p)=aep/ﬂ5 andf,,=€,,d,a,. It  points on the Fermi surface which are tangenkt, is the
represents the low-energy spin degrees of freedom of theurvature of the Fermi surface at these points gnid the
t-J model. Low energy in this context means energies lessliamagnetic susceptibility of the fermions.
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The presence of van Hove singularities leads to two ef-
fects. First, as can be seen from Fig. 1, there is a range of D(w,k)= Myt K202 (11)
directions ofk which are not tangent to any point on the I 5 s ]
Fermi surface. For these directions, the dissipative term ifvhereg“=g, “+ x~500°K. We now use thid(w k) to
(w,k), II 4, is much smaller. To display the behavior of calculate the fermion self-energy. For fermions far from the
the dissipative term it is convenient to define coordinateyan Hove points the calculation is identical to that given in

ke =Ky ak, . previous work®® The kinematics of a scattering event imply
I that the fermion is scattered parallel to the Fermi surface. For
these momenta one must use theé/|k| form of Il 4, lead-
l-«a 1+ a ing to
Tra ke lkol<i—
Stal €,0) = [ wo( p)]1/3€2/3- 12
then
Here
- )= aN| o k? N k? 6 3(5)g*
diss(wa )_ At ki—azki ki_a2k)2( ’ ( ) (,00(-) _ Up p)g (13)

N PNCE

at leading order inN. The Fermi velocityv(p) vanishes
N po| | linearly as one approaches the van Hove point, implying
Hdiss(ka):T“('- (7) 3, does also. Note also thatpl/ vanishes for a nested
Fermi surface; from Eq(4) we conclude that ppec s, so
Second, states in the vicinity of the van Hove point produceawye« é.

while if |k, /k_| is outside this range then

a negative, divergent contribution jg so For fermions near the van Hove point, scattering pro-
cesses involving the other form &1y become allowed.
Nuo These lead to a contribution
X:_WIHEF/A_FXreg- (8)

1 €p u ) 2 2
Here the logarithm cutoff\ =max(T,,Ugk’) and x.eq is the 2 neaf €,0) = — ﬁ( |n?|nW—X> [iAe—Bu(pg—a’py)],
contribution from fermions far from the van Hove points. (14
The total y calculated for noninteracting fermions with _ .-
N=2 moving in the band structure defined by H@) is where the numerical coeff|C|entA=In(1+cg)/(1—a)—1,
shown in Fig. 2; as seen in this figugenear half filling is B=3In(1+a)/(1~a)—1. Zpef€,p) becomes important for

2 —_1- —~
negative and of small magnitude with a weak divergence <€ Where (1/2r)In(ee/e*)in(W/mx)=1; In(W/mx)~1, so

near van Hove points as expected from Eg. The full  IN(€e/€) is within a factor of 2 of Ing:/Ty,), thus, for
gauge propagator is thus _consgtgnqy, we must as_surﬁe,ea,(e,p) is negligible. The
instability in 2,05 €,p) reinforces that iny. To study this
1 instability more carefully we have written and solved
D(w,k)= — 3 (9  coupled renormalization-groufRG) equations foru andg;
1_[diss_|'(go +x)k

we find that the more careful considerations do not change
The divergence of implies that in the vicinity of the van the estimate of the scal&,, where these effects become
Hove singularity the uniform RVB state is unstable to a statdmportant. Thus we assume

of nonzero flux, at a temperature

) . 2(e,p)=Zrale,p); (15)
Thux~ €FEXP— M} (100  in other words the self-energy due to fermion-gauge field
W Nuo ’ scattering is important far from the van Hove points and

unless a different instability occurs first. States of nonzercijhn;rgﬁgranatsge;r;;irg'nzgjl\ggtig that the instability towards

flux break time-reversal invariance; as there is no evidence
that this occurs in higf-, materials we shall assume that
Xregt 952 is sufficiently large and thaly,, is negligibly
small. This assumption is consistent with the previously we now turn to the residual, nonsingular interactions. It
mentioned theoretical estimagg °~J which is greater than has already been shown that the short-range interaction be-
the typical values of~0.1t~0.1J shown in Fig. 2. Also, a tween fermions far from van Hove points is renormalized to
previous analysis of th& dependence of the resistivity at zero by the gauge fiefff:*! We thus need only to consider
T>100 K predicted by Eq.(1) found 962+Xreg processes involving fermions near van Hove points. For
~500a%K ~Ja?/3. These estimates combined with the largethese processes, vertex renormalizations due to the gauge
numerical factor in Eq(10) imply that the instability will ~ field lead to the same logarithms we have already agreed to
occur only very close to the van Hove point, and only at veryneglect. The theory we must consider is therefore of fermi-
low temperature. ons near the van Hove points, with self-eney(e,p),

At scales of interest we may then neglect the logarithmcoupled by short-range interactions which may be param-
and write etrized by four constants: particle-particle and particle-hole

Ill. EFFECT OF NONSINGULAR INTERACTIONS
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interactions with momentum transfer
G=(m,m).

The theory has some formal similarity to theories of fer-
mions in one dimension. In one-dimensional models one
considers only fermions near the Fermi surface of the left-
and right-hand branches of the dispersion relation; here one
considers only fermions near van Hove points. In one-
dimensional1D) models a weak-coupling leading logarithm
approximation exists because some particle-hole and
particle-particle propagators diverge logarithmically due to
kinematics in one dimension. In the present model the diver-
gent density of states at the van Hove singularity similarly
leads to logarithmic divergences of susceptibilities. t

The theory is more complicated than theories of fermions

near zero or

g(t)

in one dimension because there are two small scales: FIG. 3

w,=[(1—a)/(1+ «)]er which will be shown below to set

the scale at which deviations from the perfect nesting bes;
come important, and, which sets the scale at which gauge-

field effects become important. Both, and w are propor-

interaction constants

the
89,19, plotted againstt=In(e:/T). Solid line:

Renormalization of
9= 09ar/9ar,
gp/gzp calculated from Eq. (22) with initial condition
gp/8m“u=0.1. Dashed line:dgae/gar calculated from Eq(16)
with initial condition gae/8m2u=0.2.

tional to § as previously discussed; because they have the

same doping dependence amglis small even at large dop-
ing due to the large value of the gauge stiffngs$ in Eq.
(13), we believe thatvg<w, is the only relevant case.
The charges in the antiferromagnetic ahavave pairing
channels diverge. At scales larger thapandwg both chan-
nels have a If(1/€) divergence. At scales less tharn), the
antiferromagnetic divergence becomes le[1/At scales less
thanw, the coefficient of the If(1/e) in the superconductiv-
ity channel(and, if wg>w,, in the antiferromagnetic chan-

The second of these formulas was derived on the assumption
that w ,> w; if not, an additional crossover occurs. The for-
mulas relevant to this case will be presented and discussed in
the next subsection treating pairing. The renormalization of
gar Calculated from Eq(16) is shown as the dashed line in
Fig. 3. The existence of the crossover saajewas noted by
Schultz in Ref. 21 and an expression similar to our @)

was obtained by MarkiewiéZ in the context of a Fermi-
liquid model.

nel) is reduced, because the gauge field produces a strong we defineT ¢ as the scale at whichgas/gar becomes
inelastic scattering in some regions of momentum space. of the order of unity. At scales larger thap., the effects of

In the remainder of this section we present the results o@AF are negligible within the weak-coupling approximation.
the leading logarithm calculations. We assume throughouht scales of ordefT 5¢, the antiferromagnetic susceptibility
that at most one coupling becomes large. Especially in thgecomes large, the renormalization of the fermion propaga-
regime of Irf(1/e) renormalizations the problem of coupled tor becomes large, and perturbation theory breaks down. It is
charges is very involved and has been treated elsevifiere. gitficult to make definite predictions for temperatures lower
than T e because one is then dealing with a strongly inter-
acting model. We can imagine two scenarie- a crossover

We proceed to construct leading logarithm RG equationsto thed-wave RVB regime to be discussed below or a cross-
There is no logarithm in the small momentum transferover to an antiferromagnetic regime involving critical fluc-
particle-hole susceptibility, so the corresponding charge isuations. We discuss the antiferromagnetic regime here, fo-
not renormalized. Moreover, in contrast to 1D, the small mo-cusing on whether the important fluctuations are quantum or
mentum transfer particle hole susceptibility has only a wealclassical and whether they can open a gap in the fermion
singularity asw=wvq, so these processes can be neglectedspectrum.
The G momentum transfer particle-hole processes lead to It is helpful to compare the present calculation to the well-
logarithmic divergences. For a nested Fermi surfac&known BCS theory of superconductivity which also has a

A. Antiferromagnetic instability

(«?=1) the two momentum integrals asach logarithmi-
cally divergent leading to a fil/e) renormalization of the
charge. For a non-nested Fermi surfacg€+£1) one loga-
rithm is cut off by (1— «?) if it has not already been cut off
by temperature. The crossover occurs at the sealav,, .

logarithmic divergence of the couplirg,.. In superconduc-
tivity the important fluctuations are classic@le., involve
modes with energies less th&pT) and are generally weak
but grow asT approachesl,. These fluctuations are de-
scribed by the classical Landau theory

The existence of a logarithmic divergence in the particle-

hole bubble means that the charggg, associated witlG

momentum transfer particle-hole processes grows. In the
leading logarithm approximation we find that antiferromag-

netic charge is renormalized by

gaF

€F
In®—=
87U

-I—1
OaF , 1+t a €rw,
872U 1—a T2

T>wq,w,
59AF:

JaF

(16)

T<w

a-

Fsc=yf d9k(7+ E3k2) A2+ B o | dIrA?, 17

wherev~ 1/eg is the density of states, the coherence length
&o=ve /T, and Bs~ v/TE. The renormalization oBg;. may
be estimated to &

d-1
5ﬂSCN(E) Ad=4)12
Bsc €F

(18
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wherer=(T—T.)/T.. This estimate shows that at the scale B. Superconducting instability

7~1 where the couplings has scaled to the order of unity,  \ye now consider particle-particle processes. As usual the

thermal fluctuations are negligible in dimensidr-1. By leading divergence happens in the:0 momentum channel.
continuity quantum fluctuations must be also negligible atypq Cooper propagato€(T), is

this scale. This may be seen directly: at scales larger than

T., the ¢* 2vertex2 of the quantum Landau theory d?pde g
Bsd €,K)~1[ €%+ (vk)?] and the Cooper propagator has C(M= 32 3. 27372 -
negligible momentum dependence so the leading correction (2m) et et wo(p)™e %]
8Bscl Bsc~ (Te/er)?~ . Thus we see from the quantum cal- Near the cornerssg(p.)~(p.p_)° and €p=—UpP.P_, SO
culation thatd=1 is the marginal dimensionality for the gne finds

guantum fluctuations; this fact is revealed in the classical

(21)

calculation because ind=1 the Ginzburg parameter Op |, ,€F
(T./€r)4"! ceases to be small. s T T=eo
In the antiferromagnetic problem of interest here, the mar- C(T)~ 3 (22)
ginal dimension isd=2 because the fermion spectrum is 9p Inzi—G |nzi T<
exp? rather thanexp. The free energy for the classical 247%u waT wg)’ @o-

fluctuations is . ., .
Hereg, is the pairing coupling constant.

k2 The Iré(e=/T) divergence of£(T) is due to the divergence
Fir+ Fz_} of the density of states and the vanishing of the inelastic
Tar lifetime near the corners. The change@{T) asT is re-
duced beloww, reflects the pair-breaking effect of the gauge
+,6’A,:J ¢>fd2r (190  fluctuations in the regions away from van Hove points. One
sees immediately fron§21) that C(T) is nondivergent in
models wherewqy(p)~const, as shown by Ubbens and
Leel” Ubbens and Lee derived their results by an energy
argument which demonstrated that a second-order pairing
transition is not possible in models with,(p) ~const. We
believe the argument using the gap equation is equivalent but
more transparent, however we note that if we apply their
energy arguments to the present model we discover that a
second-order transition is possible.
We see thatl=2 is the critical dimension because the only The Irf(e-/T) divergence ofC(T) means that pairing is
parameterapart fromr) controlling the fluctuation correc- the instability which dominates the logarithmic antiferro-
tion is I(1+ a)/(1— )] which does not depend oR./er.  mMagnetic and flux instabilities in weak coupling. However,
The calculation of the leading quantum fluctuation correcbecause the interactions are repulsive the pairing instability
tions shows that these also are small only by a power oéccurs in thed-wave channel. Formally, one must consider
In[(1+a)/(1—a)]. We cannot proceed further in the generalthe pairing amplituded ;; andA,, near the two inequivalent
case, but in the Ilimit a—1 we can use the corners 1 and 2 and the appropriate interaction amplitudes
In[(1+a)/(1— )] to control the calculation assuming that the 911, 912. The gap equation is dominated by the corners, so
antiferromagnetic charge is the only relevant one. Howeverbecomes a 2 matrix equation
a theory of the generak—1 case found more than one
relevant charge and the resulting theory of the competing (Au) B C(T)(gll 912)(A11)
instabilities is very !nvolvedf’ _ _ Agp 912 G11) \Ag)”
In our «—1 limit, the only important fluctuations are
classical. There is no long-range order at anyO; rather, The growing eigenvalue is fak,;= — A,, (corresponding
for T<T ar, A crosses over tdA~exp(G;/7) implying an  to d-wave symmetry and requires thag,=g;,—g,,>0.
exponentially growing correlation lengthae.~A "2 These  The pairing scaleT, at which the interaction becomes of
fluctuations are thus quasistatic and long ranged and in paorder unity is given by
ticular have energy much less than the typical fermion en-

2k) p2

cl

IN[(1+ a@)/(1—a)]
SELCITTS [

with Bar=F3/(uT2;) and 7=(T—T Ap)/Tar (F; are nu-
merical coefficients of the order of unjtyFrom the free
energy(19) one finds

518AF Gi 721+a

—~—, G=In"—. 20
Bar |T| ' l1-a 20

(23

ergy kg T and momentum much less than the typical fermion 8m°u
momentum,p~ {T/u, so as far as the fermions are con- €rEXp— 9 Tp>wo,
cerned these fluctuations may be treated as static periodic T, ~ (24

3
scatterers, and lead to a gag~T-\/— 7. The magneti- i Eexp— [2Aru L6 T<w
cally induced fermion pseudogap found in this model is not wS 9p wq' p =0
relevant to the underdoped hidh- materials because the
fluctuations producing the pseudogap would also lead to a In a model with pointlike interactiong};,=g;;; it is then
very rapid T dependence of the Cu NMR relaxation ratesnecessary to go to higher order. Contributions to the pairing
proportional to powers o=~ expGiTac/T); such a rapid instability of ordergZ,In3(e-/T) exist and, for sufficiently
temperature dependence is not consistent with Cu relaxatiosmall coupling dominate over the AF instability. The renor-
rate measurements in high- materials® malization ofg, is shown in Fig. 3.
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By repeating the arguments of the previous section we sesidual short-range interactions between spinons. The gauge-
that the Ginsburg parameter G;~1/In(e:/T), so mean- field interactions lead to two effects. One is an instability at
field theory provides a reasonable description at temperatures= Ty, to a “flux phase” in which time-reversal symmetry
less thanT, in weak coupling. There is, however, one im- is spontaneously broken. An expression Tq, is given in
portant caveat: mean-field theory predicts a phase transitioRq. (10). The numerical factors are such tHgf,, is negli-
to a paired statd,; in reality this is not a true transition. gible in the weak-coupling limit. As there is no experimental
The interaction between vortices of the pairing field is notevidence for time-reversal symmetry breaking in high-
logarithmic because of screening by the gauge field, so amaterials, we assume that parameters in the physical model
long as spin-charge separation occurs vortices exist and prare such thaTy,, is negligibly low. This assumption allows
vent long-range order. However, the small value of theus to neglect also the logarithmic renormalization of the
Ginzburg parameter implies that the number of vorticesfermion dispersion shown in E¢15). The second effect is a
present is very small, so the magnitude of the pairing fieldsuppression, for spinons near the van Hove point, of inelastic
and the implications of the pairing for the physical propertiesscattering due to the gauge field. The physics is simple: the
are well described by the mean-field theory. In particular, ingauge field couples to the fermions via the velocity; this
regions of momentum space where the pairing amplitude iganishes at the van Hove point and the vanishing coupling
appreciable there will be a strong suppression of the electropvercomes the diverging density of states.
spectral function. We then turned to the nonsingular interactions. Processes

If the Fermi surface does not pass through a van Hovénvolving spinons far from the van Hove points are known to
point the Irf divergence in Eq(22) is cut off whenT~x  be renormalized to zero by the gauge field, but near the van
(recall that we measure the chemical potential relative to theéiove points the vanishing of the coupling implies that the
van Hove point, however becauseq(p) is small near the renormalization is ineffective. We therefore argued that we

van Hove point there is an additional contribution of could specialize to a model involving fermions near van
3 Hove points coupled by nonsingular interactions. We treated
AC(T)= 9p €F Inﬁ 25) this theory via weak-coupling leading logarithm methods

242U nwg,u T similar to those used to study one-dimensional models.

) _ ) We found diverging interactions in theé-wave pairing

from the part of the Fermi surface withy(p) <T. This con-  and antiferromagnetic channels. The coupling constant flows

tribution exists only for intermediate temperature rangeare shown in Fig. 3. For sufficiently weak couplings,

T>womm”,u3/%- d-wave pairing dominates and a controlled expansion based
We now discuss the momentum space structure of the gagn the parameter lieg /T) is possible. Below the pairing tem-

function focusing on the physically relevaii,<wo case. peratureT, given in Eq.(24) the d-wave pairing leads to a

The gap equation is gap in the fermion spectrum near the van Hove points but
) leaves a finite region of gapless Fermi surface near the zone
A Opaid €,P)A¢r pr(dp") (26) diagonal. The resulting fermion spectrum is similar to that

P [€+wg((p) e+ (e + A p)? observed in recent photoemission experiménihis pairing
which eliminates some but not all of the Fermi surface will
The integral in(26) is dominated by the van Hove point have implications for other physical properties. For example,
which allows us to ignore thp’, €' dependence af ,,; in the uniform spin susceptibility will decrease dsis de-
(26). For p away from the van Hove pointg,(e,p,p’) is  creased through the pairing scale, but will tend to a nonzero
suppressed at low scales by the gauge-field fluctuatfbns,limit as T—0 because some of the Fermi surface remains

roughly gpaid €,p) =gpl €/ wo(p)]© for e<wo(p) with ungapped. Precisely this behavior occurs in, Lgsr,CuO,

«>2/3. Equation(26) implies at an x-dependent pairing scald*(x) varying from
T*(x=0.15)~300 K toT* (x=0.04)~700 K. Other proper-
A, wo(p)<A, ties of La,_,Sr,CuO, also exhibit crossover at*(x).*
Acp= e \¥ 27) Si_mila.r behavic_)r occurs in YBaG®@g ., although the situ-
wo(P) A, wo(p)>A. ation is complicated by the occurence of a second, lower
0

scaleTg(Xx) below which all susceptibilities and relaxation
HereA~T, is the pairing amplitude at the van Hove points. rates drop rapidly. A detailed phenomenological discussion
Clearly, as one moves far enough from the van Hove pointf the data was given by Barzykin and Pirég.he identifi-
so thatwy(p)>A, the pairing amplitude drops rapidly and cation of the RVB pairing scalel, with the empirical
becomes less than the scattering raff(p’)e?® due to the ~ T*(x) was suggested by Tanamagoal;'® the features of
gauge field; these portions of the Fermi surface may be redhe present paper are a theoretical justification for the exist-
garded as gapless. ence of the gap despite strong inelastic scattering and the
result that the gap opens only over a small portion of the
Fermi surface.
The present theory does not explain ttepid drop of
We have studied theoretically a model of a spin liquid xs(T) and NMR relaxation rates observed in bilayer and
with a Fermi surface which passes near a van Hove singurilayer materials below a spin-gap temperatlieg~ 200 K.
larity. We considered two sorts of interactions: the singularExplaining these observations requires opening a gap over
gauge interaction arising from the spin-charge separatiothe whole Fermi surface; one possibile mechanism has been
which established the spin liquid in the first place, and re-discussed elsewhefe.

IV. CONCLUSION
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The theoretical situation is less clear if the antiferromag-
netic channel is dominant. There is no generic small param-
eter to control fluctuations in this regime. However, if the
antiferromagnetic channel is dominant and the Fermi surface
is nearly nested, a controlled calculation turned out to be

possible. In this case we showed that the physics is con- [ - SL

trolled by classical spin fluctuations with correlations which T~

grow exponentially aJ decreases below a mean-field scale s

Tae. These quasistatic fluctuations produce a giap, in AF PG SN e

the fermion spectrum near the van Hove points which varies SC\ FL
aSAp=Tap\VTap— T/Tpe for T<T p¢. This mechanism for

producing a pseudogap predicts a very rapidependence o

of NMR rates which is not observed in experiment on super-

conducting material$. FIG. 4. Qualitative phase diagram of the spin liquid near van

We now discuss the doping dependence of our resultddove point. AF denotes antiferromagnetic phase, SL denotes spin
Our calculations are based on a spin-liquid saddle point. Aliquid with ungapped Fermi surface, PG denotes the pseudogap
low T or large doping it is believédhat the behavior of the regime of the spin liquid, FL denotes the Fermi-liquid regime, and
model is better described by a Fermi-liquid fixed point. InSC denotes the superconducting phase. The dotted line indicates the
the Fermi-liquid regime our results are not directly relevantBose condensation which leads to the SL-FL crossover at high dop-
and the pairing scal&,, if it exists, corresponds to the true g and the superconducting transition at low doping.
superconducting transition temperatufg,. In a Fermi-
liquid model one would expecE,=T, to rise and then fall netism becomes favored. On the basis of these considerations
as the chemical potential is tuned up to the van Hove pointve propose the phase diagram shown in Fig. 4.
and then beyond. This expectation does not agree with ex- The results of this paper concern the interplay of the spin-
periment: as the chemical potential is increasgdbecomes  liquid (SL), pseudogagPG), and antiferromagnetic regimes.
larger thanT. and continues to increase as the chemical pofor completeness we have also added to the figure a dotted
tential is increased beyond the van Hove point. This is natuline representing the “Bose condensation” considered by
ral in the spin-liquid model because the particle-hole sym-previous workers.Below this line our calculations are not
metry breaking ternt’ itself depends on doping as seen in relevant. At large doping this line represents a crossover
Eq. (4). As the doping is decreased the Fermi surface getfrom spin-liquid(SL) to Fermi-liquid(FL) behavior; at small
flatter. This tends to pin the Fermi level to the corners. Notedoping it represents the transition to the true superconducting
that the van Hove point may be slightly abovebaiowthe  state. Finally, we note that the key assumption underlying
chemical potential, depending on the magnitude’ofvhen  our work is that as the doping is varied the Fermi surface
the spin-liquid regime is entered. The important point is thatreaches the van Hove point somewhere near the maximum
the van Hove singularity gets closer to the chemical potentiasuperconducting, but the precise location of the van Hove
as half-filling is approached. Further, as the Fermi surfaceoint is not crucial.
flattens,py increases, so thab, in Eq. (13) decreases and Finally, we discuss the spin fluctuations expected in a
T, increases. Howeveuy,, also decreases so the importancedifferent regime of this phase diagram. In the la@espin
of antiferromagnetism grows. As the doping is reduced todiquid, regime and in the pseudogap regime near the SL-PG
wards zero, all instability scales become greater than bothoundary we expect spin fluctuations dominated by the
wo andw, . In this regime the pairing and antiferromagnetic “2 pg” effects discussed elsewhetéAs & is decreased we
charges scale in the same way, as shown in Fig. 3. Becausgpect enhancement of the spin fluctuations near ther)
we expect the bare value of the antiferromagnetic charge tpoint due to the flattening of the Fermi surface and the in-
be larger than the bare value of the pairing charge we expecrease of the renormalized interaction. Moreover, inside the
antiferromagnetism to be dominant, as was also found byG regime the density of states will be very much sup-
Dzyaloshinshkii and Yakovenkd. pressed on those parts of the Fermi surface which could

Within our leading logarithm approximation we have damp a ¢r,w) fluctuation. Therefore these fluctuations
shown that the observed pseudogap cannot be due to longrould be undamped as is apparently required by analyses of
ranged antiferromagnetic fluctuations, and must be due t€u NMR T, and T, experiments?®
RVB pairing. We now offer qualitative arguments that this  Last, we note that in all of the theoretical development of
conclusion survives even when the leading logarithm apthis paper the effects of the between-planes hopping were
proximation is not reasonable. First, it seems that antiferroneglected. One such effect is a between-planes coupling
magnetic fluctuations can produce a pseudogap only if they, , which has been shown to lead to spinon paifhglow-
are long ranged and quasistatic; such fluctuations are ruleglver, other effects may occur as emphasized by
out by NMR so we believe that a pairing origin of a Andersont?° A complete theory of the effects af is an
pseudogap is more likely. Second, increases in the antiferramportant open problem.
magnetic charge apparently feed back into the pairing equa- In summary, we have studied the effect of van Hove
tion in a way that increasek;, so it seems natural to expect points on the “uniform RVB” state with weak residual in-
that the theory with antiferromagnetic chargd. is unstable teractions. We have identified three instabilities: to a flux
to d-wave pairingif the Fermi surface is not too flat. How- phase with spontaneous breaking of time-reversal symmetry,
ever, when the Fermi surface becomes flat, antiferromagnagnetic phase, anddxwave RVB phase. We argued that
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the d-wave state is likely to happen at large doping whiledegrees of freedom. Formally, the gauge field is related to
antiferromagnetism dominates at small doping. Our proposethe phase of the operatds; which decouples the four ferm-
phase diagram is shown in Fig. 4. We showed that the inion operator in Eq(A2)% the fieldh is equal to the gauge
elastic scattering due to the gauge field is negligible for ferflux through the elementary placquette with verticgsk,|;
mions near the corners and that this in combination with thehe latter is related to thA operators by

divergent density of states permits a continuous crossover to ,

ad-wave RVB state, which is not allowed in models without REM=A;AjAKA . (AB)

corners. HereR is a real operator. By undoing the decoupling one

may express the product of fodr around the placquette in
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photoemission data. rectionsO(d)], yielding
101 5 s s o ss o oo
APPENDIX: PARAMETERS OF THE SPINON Réh=§+ EE SS+i 2 S(SxS)+2[(SS)(5S)
HAMILTONIAN (ij) (ijk)

The spinon Hamiltonian is obtained expanding about a +(SS)(SS) - (SS)(SS)], (A7)
mean-field approximation to theJ model which may be . - _ -
written where (j) denotes all distinct pairs of sping,jk) denotes

all distinct triads with the clockwise order ofj .k around the
J . placquette. If there are strong short-range antiferromagnetic
Hy=—2 t7P*blbjc/,ciot 52 SS;.  (Al)  correlations then we may replace the real termschyum-
" bers, obtaining

Herec' is the spinon creation operator discussed in the text,
S =(1/2)S 4Cl, o sCi » the Bose operatds] creates a spin- RA"=Z 41> &(5x3). (A8)
less <charge 1 “holon” and the constraint 2 ([ .
b?bifzacfaciafl is assumed. To obtain the fermion dis- rpis allows us to identify
persion one writes the second termHh; as a product of
four fermion operators

h=2> S(§xS), (A9)
. 1 N N 1 (ijk)
SS= 75 CCiaCilint g (A2) " and thus to relatg3 to a six-spin correlator. Evaluating this
and approximates this by in the spin-wave approximation leads to
1
~ 1 2_
S8~ — 5(cluCiat H.C)(ClsCip)- (A3) 0=B i (A10)

If <CiT'BCjﬁ>7,:O then the bosons acquire a dispersionWh_ereB isa numper of the order of uni'_[y ane andw, are
ban spin-wave energies. Because the typical value d@fr-2J

Heose= — (Ci5Ci 5)t2*"bb; ; because the density of bosons is _
low the bosons are mos’ély in smédistates so it follows that 2Nd trl% sums are dc/>m|nated by short wavelengths, we see
for nearbyi andj (bfb;)= 8. Inserting this in Eq(A1) we thatg, “=B’J with B" a number of the order of unity. Of -
get the fermionic part of Eq(1) with course we cannot exp_ect this simple estl_m_ate to yield a reli-
able value forB’, but it does show that it is reasonable to
1 expect a large contribution to the gauge stiffness from short-
t = otpand ¢ EJ(ciTﬁch>- (Ad)  range correlations.
Finally we consider the effective between-planes hopping
The expectation vaIue(ciTﬁcj[Q turns out to be t,.Ift; #0 then also the between-planes exchadge 0
412+ 0(5). and we must add to E¢A1) the terms
We now estimate the bare gauge stiffnggs This repre-

sents the effect of short-wavelength fluctuations which ar o 2=
integrated out in the definition of Ithl); in the N— oo limit (?_'lZEi tu bV Tbi?'e,Teld + ?2 S‘(l)SJ(Z)' (A11)
do 2 vanisheg, but it is nonzero for the physicl=2. If the
only term inH, Eq. (1), were (1/gg)ffw, then one would One may factorize the four fermion term as in Egs.
find (A2,A3); however the equation determining the amplitude is
* J, + 6t
f_ dt(hi(t)h;(0))=g3. (A5) A =3 +ot)(cplcF)=2> (,(_T)Az (A12)
w €,p p 1

Here as usuah=d,a,—da,. To find gS we evaluate the A solution only becomes possible far, + t, ~t, so for
(hi(t)h;(0)) correlator directly fromS=1/2 Heisenberg physically relevant parameters there is no coherent between-
model, including in our calculation only short-wavelength planes hopping in the model.
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