
Tunneling in two-channel Kondo superconducting junctions

A. Golub
Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84 105, Israel

~Received 8 April 1996!

Charge transport in the short weak links (K) between two superconductors (S) or between a normal metal
(N) and a superconductor is considered. The electron scattering in the weak link is accomplished by two-level
systems acting as two-channel Kondo impurities. The impact of this interaction on conductance in theNKS
tunnel structure as well as on the Josephson current inSKS junctions is analyzed. It is shown that the
conductance ofNKSsystems as a function of temperatureT has a dip at low temperatures, an effect similar to
that in NKN junctions. The critical Josephson current ofSKS junctions shows a temperature dependence
which deviates from such a dependence of ballistic superconducting contacts.@S0163-1829~96!09029-7#

In recent experiments on Cu-point contacts,1,2 an anomaly
consisting in a dip in the differential conductance around
zero bias was observed. This zero-bias anomaly in the tem-
perature dependence of the conductance was attributed to the
interaction of the electrons with two-level systems acting as
two-channel Kondo~2CK! impurities.1,2 Here the role of the
spin state is played by some orbital degree of freedom, while
the two states of the physical spin play the role of the chan-
nel indexes.3 The 2CK model shows non-Fermi-liquid be-
havior and was proposed for the explanation of the thermo-
dynamic properties and resistivity of some heavy fermion
compounds.4 Non-Fermi-liquid effects of this model take
place because channels are unable to lift completely the de-
generacy of the impurities energy level, which tend to over-
screen the impurity. A renormalization group study5 reveals
that the effective exchange flows towards an intermediate
coupling fixed point. Using simple Abelian bosonization
Emery and Kivelson6 mapped a 2CK system on a resonance
level model and recovered information on the dynamic prop-
erties as well as exact results known from a Bethe ansatz
solution of the thermodynamic properties.7

A conformal-field-theory approach which was developed
in Ref. 8 for the overscreened multichannel Kondo problem
happened to be very fruitful for obtaining the single-particle
Green’s functions~GF’s! and dynamic characteristics of this
system in the region of low temperatures. In our calculations
of the tunneling current we will use these results. The uni-
versal zero-temperature resistivity and the temperature-
dependent correction to the resistivity which originates from
a leading irrelevant ‘‘dangerous’’ operator was found.8 Un-
like the case of a simple Kondo impurity,9,10 the dip in the
conductance aroundT50 that appears in Cu point junctions
was explained1 by theory8 using the 2CK model. An alterna-
tive explanation of this effect based on the dip in the density
of states in disordered metals has been recently suggested by
Wingreen, Altshuler, and Meir.11 Therefore it seems useful
to study other tunneling systems like a short constriction
between two superconductors or between the superconductor
and normal metal that consists of a 2CK-type weak link.

In this paper we calculate the tunneling current in
superconductor-2CK-metal-superconductor (SKS) junctions.
We also consider the limits when one (NKS) or both
(NKN) banks are normal metals. The method we used,12–14

generally, can be applied to the nonequilibrium as well as to
the equilibrium~for example, to obtain the Josephson cur-
rent! problem. The method deals with two types of GF’s: an
exact one which describes the entire junction and GF’s of
every separate component of the junction. Below we denote
the separate layer functions by small lettersg: gL,R describes
the banks andgb stands for a weak link. The first derivatives
of g on the coordinates normal to the junction’s plane vanish
at the interfaces. The theory12,13 is a convenient tool to in-
vestigate nonequilibrium and nonstationary effects in super-
conducting tunnel structures. However, there is a limitation
which comes from neglect of the renormalization of the ex-
act quasiparticle self-energy. For two cases this approxima-
tion is justified: for insulating barriers and for the restricted
short junctions~point contacts!. For such a type of junction
the entire voltage drop occurs across the weak link.

We investigate the tunneling current in point junctions
which are the objects of experimental interest.1,2 Some re-
sults of the conformal field theory for the 2CK model will be
used. The scattering matrix of electrons interacting with 2CK
centers is of the main interest. Although this matrix was
obtained for the bulk system,8 we, nevertheless, can use it for
the point contacts if the size of the weak link is of the order
of Kondo coherence lengthjK>vF /TK (TK is the Kondo
temperature!. However, the tunneling characteristics are
qualitatively correct even for smaller junctions.1 Let us con-
sider low-temperature superconductors with a critical tem-
perature for the superconducting transition,Tc,TK . In this
case for short junctions which have the length of the weak
link 2d that satisfy inequalityjK,2d,jc the theory

8 can be
applied.

The tunneling current is given by the second derivative of
the nonequilibrium Green’s functionG, of the three-layer
SKS system. This derivative is taken at the interfaces be-
tween the weak link and superconductors. The method re-
lates the exact GF’s of the entire system to the GF’s for three
isolated layers. Moreover, as usual for the nonequilibrium
case, the less than functionsG, are expressed in terms of
retarded and advanced GF’s and distribution function. Let
M, represent this second derivative ofG, at the left inter-
faceL,

M,52~\2/~2m!!t3~ x̂¹ rW!~ x̂8¹ r 8W !G,~rW,r 8W !rW5r 8W5Lt3 ;
~1!
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then the current density in thex̂ direction normal to the
planes of the junction’s interfaces assumes the form

j ~ t !5e/~\2m!(
pW
„pW tuTrP1~M,gL

a2gL
r M,

1MrgL
,2gL

,Ma!upW t…, ~2!

whereP150.5(11t3); t3 denotes the Pauli matrix which
acts in Nambu space created by two channels. The super-
scriptsa andr stand for advanced and retarded GF’s, respec-
tively. HeregL5gL(L,L) is the layer GF of the left electrode
at the points of leftSK interface;pW is the component of total
momentum parallel to theSK interfaces and Dirac notation
for the matrix elements has been used.

Unlike Refs. 13,14, we consider the metallic weak link
with the Hamiltonian that includes some constant diagonal
potentialU.15 Such a potential can be produced for example
by the mismatches in Fermi velocities of superconductors
and normal metal.16 If U.mF (mF is the Fermi level!, then
we have the tunnel junction; whenU,mF or U50, then the
weak link is the normal metal. At the points ofSK bound-
aries the functionM, in the same way asG, is related to
Mr andMa ~Refs. 12–14! as follows:

2
2m

\2 M
,5Mr~gL

,1gbL
, !Ma2MrgbLR

, Ma~RL!

2Mr~LR!gbRL
, Ma1Mr~LR!

3~gbR
, 1gR

,!Ma~RL! ~3!

Here the GF’s of the weak link are involved:
gbL[gb(LL), gbLR[gb(LR), gbLR[gb(LR), gbRL
[gb(RL), and gR5gR(RR) describes the right supercon-
ductor.

The functionsMa andMr obey the matrix equation which
directly follows from the boundary conditions on exact (G)
and layer (g) GF’s,

S M M ~LR!

M ~RL! M ~RR!
D 5

2m

\2 S gL1gbL 2gbLR

2gbRL gR1gbR
D 21

. ~4!

Equations~3! and ~4! are a complete set that permits one to
determine the nonequilibrium functionsM, . What we need
now are GF’s for every separate layerg which have vanish-
ing derivatives atSK interfaces. In the barrier region these
GF’s can be obtained using the solutions found by Affleck
and Ludwig8 and which are based on conformal field theory
arguments. To simplify the expression for the current and at
the same time not damage the physical results we consider
an approximation that takes the positions of two-channel
Kondo centers in the middle plane of the weak link; i.e., their
x coordinates are equal to zero. In this case we have

gbRL5gbLR52~2m/kx!at3dpW ,p8W1b~pW !b~pW 8!t3T̂~E!, ~5!

wherekx5ApF22p2, k5 iA2m(mF2U)/\22p2, pF stands
for Fermi momentum, a5kx@ksinh(2kd)#21, and
b(p)5m@ksinh(kd)#21. In this equation and also below we
drop the indexr for the retarded functions. The correspond-
ing advanced forms are obtained by taking Hermitian conju-
gations of the retarded ones. The interaction of 2CK centers

with electrons is given by the scattering matrixT̂(E).8 In
Nambu space it assumes the form

t3T̂~E!5~2ipn!21F11
24l

A2p
@12 i e~E!#AuEuG

[~2ipn!21z21; ~6!

heree(E) is the step function,n is the electronic density of
states, per spin and per channel, andl stands for the cou-
pling constant with 2CK center.l is negative at low
temperature8 and ulu5a/ATK. In Ref. 8 the value ofa was
assumed to be unity. However, here we consider it as a free
parameter which can be determined from experiment.

The two additional GF’s that are involved in Eq.~4!,
gbL5gbR , can be obtained from Eq.~5! by simply replacing
a in w52acosh(2kd). An SKScontact under constant bias
voltage shows a time-dependent current. We calculate the
zero-frequency component of this current (I ) that reflects the
I -V characteristic of the junction. Next, we insert expressions
~5! and ~6! into the basic equations~3! and ~4! to get the
advanced, retarded, and less functionsMa, Mr , andM,. At
this stage, the analysis of the different terms in formula~2! is
completed. Next, we calculate the current directly. The en-
ergy representation is the most useful for this purpose.
Therefore we write Eq.~3! in E representation and after
some algebra~see Ref. 14! arrive at our principal result
I5I dir1I K , where

I dir5
2e

p
ReK E

2`

`

dEDTrP1@G r~gL
,1DgR

,!

3GagR
a2G rgR

,#L , ~7!

I K5
e

p\
NiE

2`

`

dETr@~WrA1H.c.!2WrFWaB#. ~8!

Here ^ & denote a two-dimensional sum overp, Ni stands
for the number of two-channel Kondo centers in the weak
link with constriction areaS, D is the variable parameter that
characterizes the transparency of the barrier,
D5a2(11w2)21, and the abbreviation H.c. stands for Her-
mitian conjugation of the first term.I dir describes the direct
tunneling contribution to the total current, and coincides with
the result obtained by Arnold.13 G is the resolvent matrix for
direct tunneling and has the form

G215gL1DgR1w~12D !t3 . ~9!

The Kondo componentI K of the current depends on the com-
plete resolvent propagatorW. This propagator incorporates
the interaction of electrons with 2CK levels. For its retarded
form we can write (Wr)215(t3T

r)212g r whereg r is given
by

g r5~2m!21^kxb
2@~g1R

r !211Qrt3G
rt3Q

r #&, ~10!
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where Q5t31ag1R
21 , g1R5gR1wt3 , and b[b(pW ). The

valuesA and F are related to the nonequilibrium Green’s
function G, and therefore they depend on the distribution
function

2mA5^kxb
2@Q̂rgL

,Ga
„P1~G r !211D~gR

aP12P1gR
r !…

2D~t3 /a1Q̂r !gR
,Ga~gL

aP12P1gL
r !#Q̂r&, ~11!

2mF5^kxb
2@Q̂rgL

,Q̂a2~11aQ̂rt3!~gR
21!,~11at3Q̂

a!#&

12mFK , ~12!

where FK5 f (t3T
a)212(t3T

r)21f , Q̂a5Gat3Q
a,

Q̂r5(Q̂a)1, and gR,L
, 5 f gR,L

a 2gR,L
r f ; in the E representa-

tion f is the Fermi distribution function.
In Eq. ~8! the matrixB is a combination of retarded and

advanced Green’s functions and thus does not depend onf ,

2mB5^kxb
2@Q̂r~gL

aP12P1gL
r !Q̂a#&. ~13!

So far, we have considered the general case. Equation~4!
represents a complicated operator equation in energy space.
For the nonequilibrium state, it contains nondiagonal matrix
elements. Therefore, the entire problem requires numerical
calculations. Below, we concentrate on the cases when an
analytical solution is possible. The approximation which will
be used corresponds to the metallic barrier with no elastic
reflection at the boundaries (U50, D51). ForNKS junc-
tions we have gL

r 5 i , (EugL
,uE8)522i @ f (E1eV)P1

1 f (E2eV)P2]dE,E8, andgR
r 5 i (e11ht1) with

e15
uEuu~ uEu2D!

AE22D2
1
Eu~D2uEu!

iAD22E2
, h5

e1D

E
. ~14!

Hereu(x)51 if x.0, andu(x)50 for x,0.
If the right electrode is also normal metal (NKN junc-

tion!, thengR
r 5 i . This case was discussed in Refs. 1,2. In-

serting these expressions for GF’s into formulas~10!–~13!
we get A52 i f (E)P1pn, F52 ipn$ f (E1eV)1 f (E)@1
12(zr1za)] %, B52 iP1pn, g52 ipn, and

~Wr !215 ipn@112zr #. ~15!

Equations~7! and ~8! are simplified and we arrive at the
conductancesnn which has a dip as the function of tempera-
ture aroundT50 and theAT dependence,

snn5RS
21S 12

2e2NiRS

9h
1
16ae2NiRS

9h
ApT/TKD . ~16!

The zero-temperature contact resistanceR0 is related to the
Sharvin resistanceRS asR05RS(112e2NiRS/9h). Sharvin
conductanceRS

215SpF
2/(4p2) defines the total number of

tunneling channelsNt ; thusRS
215e2Nt /h. In experiments

1,2

the number of 2CK centersNi!Nt . Therefore for the small
number of 2CK channelsR05RS@112Ni /(9Nt)# and we
can rewrite Eq.~16! in the form

snn5R0
21S 11

16aNi

9Nt
ApT/TKD . ~17!

TheNKS junction contains one electrode which is a su-
perconductor. Therefore Andreev reflection takes place, an
effect which is especially pronounced at low temperatures
T!D. With the help of Eq.~14! we can calculate all the
valuesA, B, F, andW and find the conductancessn of
NKS junctions. Let us first consider the case which has di-
rect contact with Blonder-Tinkham-Klapwijik17 ~BTK! and
Beenakker18 theories. In the limit of a pure ballistic junction
(z→`) at zero temperature,ssn52snn , the well-known
BTK result. This relation also holds if we have a resonant
level18 in the junction (Rez→0). The full resolvet of this
level includes only tunneling rates@seeW21 for NKN in Eq.
~15! (z50)#. A similar situation takes place in the insulating
or disordered semiconducting barriers with resonant levels
~see Refs. 14, 18, 19 and recent work20!. The resonant tun-
neling through these levels defines the current. Here the con-
ductance for the single channel is determined by the tunnel-
ing widths which deviate from unity. Therefore, Andreev
reflection does not exactly double thesnn conductance in
NKS junctions.18 This conclusion is valid for a fixed energy
and position of the resonant level. After averaging over the
position and the energy of resonance impurity is
performed14,19,20 the real conductance deviates from
theory.17,18The scattering from a 2CK center or from a one-
channel Kondo impurity strongly interferes with the tunnel-
ing, which is a cause for more complicated relations follow-
ing from Eq.~8! and Eq.~6!.

Two models~2CK and one-channel Kondo! differ in the
unitary limit (l50) where we have @see Eq. ~6!#
T̂Kondo52T̂2CK . For our purpose the difference between the
energy dependent terms in Eq.~6! is more important, be-
cause they contribute to the temperature dependence of con-
ductance. For the one-channel Kondo case we haveE2

behavior8 which results in a smallT2 correction to the zero-
temperature resistivity. In the case of the 2CK system the
difference between the zero-voltage conductance ofNKS
junctions and the zero-bias anomaly in conductance of
NKN point contacts as the function of temperature becomes

@sns~T!2snn~T50!#V→05R1
21S 11

2aNi

Nt
YA D

TK
D ,
~18!

whereR15RS(111.54Ni /Nt). The functionY is plotted in
Fig. 1 and shows nearAT dependence as in the normal

FIG. 1. The temperature dependence of the 2CK part of the
conductance. PlotY @see Eq.~3!# as a function oft5AT/D. The
region of low temperaturesT!Tc has been considered.
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NKN structures. The unity in brackets of Eq.~18! is the
consequence of Andreev reflection at theNS boundary.15

A nonzero constant voltage bias applied to aSKSJoseph-
son junction causes the strong time dependence of the left-
hand GF via its phase difference: gL(t,t8)
5exp@2f(t)t3/2#g(t2t8)exp@f(t8)t3/2#, where the Fourier
transform ofg(t2t8) is given by Eq.~14!. WhenV50, only
the constant Josephson phasef remains andgL takes the
form gL5 i @e11ht1exp(ift3)#. Substituting this definition
for gr and a similar expression for the advanced GF in Eqs.
~7! and ~8!, we obtain the Josephson current. However, the
best way to perform the calculation of Josephson critical cur-
rent is to start directly from the thermodynamic~Matsubura!
representation of Eqs.~7! and ~8! and GF’s. The dc Joseph-
son effect in clean point contacts corresponds to the ballistic
motion of carriers and was studied by Kulik and
Omel’ynchuk~KO!.21 At low temperaturesT!Tc the current
phase relation deviates from sinf, resulting in a higher Jo-
sephson critical current than that of tunnel junctions. Inter-
action with 2CK levels brings an additional contribution to
the current. Thus the total Josephson current can be ex-
pressed as the sum of two termsI5pD(JKO1JNi /Nt)/
(eR̃S) whereR̃S5RS(11Ni /Nt),

JKO5TDsinf (
n52`

`

@vn
21D2cos2~f/2!#21

5sin~f/2!tanhS Dcos~f/2!

2T D , ufu,p, ~19!

J54TDsinf (
n52`

`

$Vn
2S214@vn

21D2cos2~f/2!#

14vnSVn%
21. ~20!

HereVn5Avn
21D2 wherevn5p(2n11) are odd Matsub-

ara frequencies;S51124lA(uvnu)/(2p) is related to the
scattering matrix@see Eq.~6!#.

For the particular values of the phase difference
f5p/2, the ratioD/TK50.1, anda50.07, we plot~see
Fig. 2! J as a function of the reduced temperaturet5T/D.
This figure shows that the Kondo component of the critical
current increases withT, while theJKO term decreases as a

function of temperature. However, the number of Kondo
centersNi has to be not too small to make this effect observ-
able.

To compare this effect with related effects, we note that
the critical Josephson current also has been calculated in the
case of resonant tunneling in disordered tunnel
junctions14,22,23and for a one-channel Kondo impurity in a
tunnel barrier.24 ~There is a difference for the Josephson cur-
rent atT!Tc in Refs. 14 and 23. This deviation, probably,
occurred because a phase-dependent contribution to the spec-
trum in Ref. 23 was missed.! Aslamazov and Fistil’22 con-
sidered the resonant tunneling in superconductor-
semiconductor-superconductor junctions through period-
ically arranged impurity atoms, where the important param-
eter is the width of the impurity band. For a not too thick
weak link only one impurity tunneling is relevant. Let us put
this impurity in the middle of the barrier and fix the energy
of the resonant level at resonance. Then the Josephson cur-
rent from a such level is proportional to the~KO! contribu-
tion @Eq. ~19!# per one channel@see the equation after Eq.
~58! in Ref. 14#. The same is valid for the Kondo impurity
@Eq. ~5! of Ref. 24 with equal tunneling rates#. In this case at
T50 the impurity spin is screened and the situation is simi-
lar to the fixed resonance level problem. In the ballistic junc-
tions (2d.jK) which we consider here, the 2CK centers
depress the Josephson current (R̃S grows! in the unitary limit
for the Kondo scattering (l50). They decrease the conduc-
tanceR0

21 @Eq. ~17!# in theNKN junction. However, at low
temperaturesT!TK the 2CK model contains an interaction
which vanishes at zero temperature; i.e., it is irrelevant in the
renormalization group sense. This interaction, represented by
the term which is proportional tol in Eq. ~6!, causes an
inelastic transport which can provide additionalJKO super-
current with strong temperature dependence. This effect is
like the formation of a dip in the conductance ofNKN and
NKS junctions.

An alternative explanation for experimentally observed
dip in the conductance ofNKN junctions11 is related to the
disordered point contacts. This explanation is based on the
known dip in the density of states caused by the interactions
between electrons. For the Josephson junction we can use the
expression for the critical Josephson current in a dirty point
contact25,26 to estimate the effect of an electron-electron in-
teraction. IfT!Tc , then we have26

I d5
pD

e
Gcos~f/2!arctanh@sin~f/2!#. ~21!

Here G is the average conductance which has a dip as a
function of temperature,G5G(T50)@11Gd(T)#. For a
three-dimensional~3D! system,27

Gd~T!5
AT

n~\D0!
3/2. ~22!

Here D0 denotes the diffusion coefficient. Thus there is a
noticeable difference between the Josephson current of dirty
point contacts@Eq. ~21!# and that of a ballistic junction@Eqs.
~19! and 20!#. The current-phase relationship at (T!Tc) of a
ballistic point contact in the regime of the direct tunneling

FIG. 2. The 2CK component of the Josephson currentJ as a
function of reduced temperaturet*5T/D for particular values of
the Josephson phase,f5p/2 anda50.07.
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@the KO part, Eq.~19!# and a disordered point junction
shows large deviation in the vicinity ofufu'p/2 ~see Fig. 2
of Ref. 26!. In the disordered limit also the coefficient of the
temperature-dependent term;AT is a strong function of the
electron mean path. We suggest that these characteristic fea-
tures, the current phase relation, make the investigation of
the Josephson junctions promising for fixing the real mecha-
nism of current transport in the considered systems.

In conclusion, we have calculated the conductance of

NKS junctions and the Josephson current inSKSpoint junc-
tions. In both cases, a new temperature-dependent contribu-
tion appears—an effect which reflects the importance of the
interaction between the carriers and the 2CK centers. Future
experimental investigation of these junctions will be helpful
for an analysis of effects which are related to the existence of
2CK centers.

I wish to thank Professor B. Horovitz for interesting dis-
cussions.
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