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We study the two- and four-dimensional Nishimori multicritical point via high-temperature expansions for
the6J distribution, random-bond, Ising model. In 2d we estimate the critical exponents along the Nishimori
line to be g52.3760.05 and n51.3260.08. These, and earlier 3d estimates g51.8060.15 and
n50.8560.08 are remarkably close to the critical exponents for percolation, which are known to be
g543/18 andn54/3 in d52, andg51.80560.02 andn50.87560.008 ind53. However, the estimated
4d Nishimori exponentsg51.8060.15 andn50.860.1, are quite distinct from the 4d percolation results
g51.43560.015 andn50.67860.05. @S0163-1829~96!02125-X#

In recent years there has been much interest in the study
of critical phenomena in quenched-random, two-
dimensional, thermodynamic systems. However, with the ex-
ception of percolation, for which various critical parameters
are known exactly, other random fixed points are not fully
understood. Such random critical phenomena are of interest
from a theoretical point of view, and also from an experi-
mental point of view. Among notable experimental systems
showing two-dimensional random critical phenomena are
plateau transitions in quantum Hall systems1 and Bose-glass
transitions in dirty superfluids and superconductors.2

Perhaps the simplest theoretical model with quenched
randomness is the random-bond Ising model. Ind52 a lot is
known about weak randomness.3 The case where random-
ness has the most dramatic influence on thermodynamic
properties is that of a symmetric distribution of bonds, that is
one where there are roughly equal tendencies for ferromag-
netic and antiferromagnetic ordering. In this case the system
may only have a long-ranged spin-glass phase at low tem-
peratures. There is considerable numerical evidence that in
d52 there is no finite temperature spin-glass phase.4 The
Nishimori manifold separates the region in parameter space
where ferromagnetic~or antiferromagnetic! correlations are
stronger from those where spin-glass correlations dominate.
In certain random-bond Ising models many exact results can
be obtained along this special manifold.5 A Nishimori mul-
ticritical point can exist even in the absence of a finite-
temperature spin-glass transition, and has been studied by
renormalization-group6 and various numerical methods.7 By
now the existence of the critical point and its location are
reasonably well established,7 although to our knowledge no
reliable estimates of the critical exponents exist.

Here we study this model by high-temperature expan-
sions, estimating the critical point and the various critical
exponents. Our estimates for the critical temperatures are
consistent with previous ones. Our interesting result is that
the critical exponentsg andn are remarkably close to that of
percolation. This also turns out to be the case in three dimen-
sions. To see if such a trend continues with dimensionality

we study the four-dimensional Nishimori multicritical point.
There the critical exponents are clearly distinct from perco-
lation. Towards the end of this paper we speculate on the
relevance of the percolation fixed point to the present prob-
lem.

We consider the Hamiltonian

H5(
^ i , j &

Ji , jSiSj ~1!

with theJi j independent quenched random variable with dis-
tribution

P~Ji j !5pd~Ji j2J!1~12p!d~Ji j1J!. ~2!

The Nishimori line in the parameter space of temperatureT
and ferromagnetic bond concentrationp is given by

v52p21 ~3!

with v5tanhJ/kT. It is most convenient to directly develop
the expansions along the Nishimori line.8 In this case the
expansion variable isw5v2. We define susceptibilities
xm,n by the relations

xm,n5
1

N(
i , j

@^SiSj&
m#n. ~4!

Here angular brackets represent thermal averaging, and the
square brackets an averaging with respect to the bond distri-
bution. We carry out expansions to 19th order in 2d and 15th
order in 4d for x2,1 andx2,2 using the star-graph method.9

We note that along the Nishimori line the ferromagnetic sus-
ceptibility x1,1 exactly equals the spin-glass susceptibility
x2,1. In order to study the crossover exponents we also cal-
culate the series forxv5v]x2,1/]v.The expansion coeffi-
cients are given in Tables I and II.

We shall assume that the quantitiesx[x2,1, x8[x2,2,
andxv become singular at a critical pointwc with exponents
g, g8, andg9 respectively. Assuming standard scaling, the
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exponents for the divergence of the different series can be
related to the critical exponentsn, h, andf as8

g5~22h!n, g85~42d22h!n, g95g1f.

Hered is the dimensionality of the system.
We analyze the series based on the expectation that near

the critical point the susceptibilities have the form

x}~wc2w!2g@11a~wc2w!D11b~w2wc!1•••#.

We estimate the location of the critical pointwc , the domi-
nant exponentg, and the correction-to-scaling exponent

D1 . The value ofD1 may be biased by the presence of even
higher-order correction terms, though fitting to this form
should ensure reliable evaluation of the critical point and the
dominant exponent. Our analysis is carried out with no prior
assumptions regarding exponent values, and was done by
one of us without knowing prior literature values for the
critical parameters or scaling relations between the expo-
nents. We have studied the series with two methods, com-
monly known asM1 andM2.10 They are based on suitable
transformations of the series, and Pade´ approximants for the
transformed series.

M1: In this method of analysis we study the logarithmic
derivative of

B~w!5hH~w!2~wc2w!
dH~w!

dw
.

The dominant singularity is a pole atw5wc with a residue
(h21).

We implement methodM1 as follows: for a given value
of wc we obtainD1 versus inputh for many central and high
Padéapproximants, and we choose the tripletwc , h, D1 ,
where all Pade´s yield as nearly as possible identical values of
h.

M2: In the second method we first transform the series in
w into a series in the variabley, where

y512~12w/wc!
D1,

and then take Pade´ approximants to

G~y!5D1~y21!
d

dy
ln@H~w!#,

which should converge to2h. Here we plot graphs ofh
versus the inputD1 for different values ofwc and again
choose the tripletwc , h, D1 , where all Pade´s converge to
the same point.

We found good convergence for all threed52 series,
with M2 graphs being better converged everywhere, and
M1 giving consistent results. Thex andx8 series behaved
better than thexv series. For brevity, we only show some
representative plots from which we have deduced our esti-
mates of critical parameters. In Fig. 1 we present two three-
dimensional graphs from theM2 analysis for thex series. In
Fig. 1~a! we show the three-dimensional version on a fairly
coarse temperature scale, in Fig. 1~b! we show a finer scale.
On the coarse scale we can see that at the trialwc values of
0.525 and 0.550, convergence to a region of clear intersec-
tions is much poorer than at 0.575. Similarly, although the
different approximants come together at the background
plane withwc50.625, this type of almost flat graph with the
asymptotic convergence at very high-D1 values is indicative
of behavior that does not give correct critical behavior in test
systems or exactly solved models.~It is often seen near trial
critical points that give exponent values that violate hyper-
scaling.! The fine scale shown in the enlargement in Fig. 1~b!
shows us a set of graphs which mostly satisfy the consider-
ations required of an intersection region, with the best of all
being the central plane. Thus from theM2 analysis, the best
wc estimate is 0.59660.008. This implies pc50.886
60.003, Tc /J50.97560.006, which are consistent with

TABLE I. Expansion coefficients for the susceptibilities in
d52 @see Eq.~4!#.

n x2,1 x2,2 xv

0 1 1 0
1 4 0 8
2 12 4 48
3 36 0 216
4 76 36 512
5 196 232 1640
6 316 236 1856
7 884 2464 9208
8 780 1988 25824
9 3684 25072 57 576
10 396 17 076 2109 264
11 22 740 250 432 680 376
12 222 596 164 108 215 47 376
13 188 420 2500 496 8 163 624
14 2331 108 1 604 572 221 618 432
15 1517 396 25 042 160 84 085 560
16 24 509 268 16 221 028 2311 253 632
17 15 654 148 252 336 864 1 071 437 960
18 256 714 548 170 687 620 24 263 416 944
19 183 041 524 2561 493 296 14 787 979 576

TABLE II. Expansion coefficients for the susceptibilities in
d54 @see Eq. 4!#.

n x2,1 x2,2 xv

0 1 1 0
1 8 0 16
2 56 8 224
3 392 0 2352
4 2552 200 19 840
5 16 904 2192 162 512
6 105 944 6584 1 179 840
7 679 784 212 384 8 736 880
8 4 158 200 234 824 58 846 592
9 26 120 392 2649 056 412 368 720
10 157 020 984 8 748 712 2 651 405 536
11 974 362 408 232 109 952 18 054 488 432
12 5 783 009 304 342 786 296 112 459 651 552
13 35 661 616 648 21 523 180 000 755 621 878 608
14 209 506 120 728 14 008 147 224 4 590 427 798 720
15 1 289 118 273 320 270 814 307 872 30 721 400 183 024
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previous estimates.7 In Fig. 2~a! the central slice at
wc50.596 is shown. From this we conclude an exponent
estimate ofg52.3760.05. TheM1 analysis is consistent
with these values. In theM2 analysis for thex8 series, con-
vergence was again optimal atwc50.596. The exponent
g8 is deduced to be 2.1160.07. Via scaling this gives
n51.3260.08. We analyze thexv series in two ways, first
by consideringxv /w and second by studying the series for
dxv /dw. From these analyses we concludeg1f53.0
60.3.

In four dimensions, theM2 analysis of thex series gives
best convergence atwc50.1764, withg51.9. FromM1 a
slightly lowerwc50.176 value and a correspondingly lower
g51.8 seems optimal. For thex8 series optimal convergence
is atwc50.176 with the central values of the exponentg8 of
0.41 fromM1 and 0.40 fromM2. Since three of the four

analysis support the lower value ofwc50.176 we use this
for our final estimates. We quote overall values of
wc50.17660.001 andg51.8060.15, g850.4060.03. By
scaling this gives usn50.860.1.

As stated in the Introduction, these estimated critical pa-
rameters are remarkably close to percolation11 in d52. The
numbers for percolation areg543/18 andn54/3. Further-
more, in d53 the Nishimori exponents were found to be
g51.8060.15 andn50.8560.08.8 These numbers are also
confirmed by our present analysis. Thed53 percolation ex-
ponents areg51.80560.02 andn50.87560.008.11 Thus in
d53 the Nishimori exponents are also very close to perco-
lation. However, ind54 the percolation exponents are
g51.43560.015 andn50.67860.05, which are clearly dis-
tinct from those found here.

One can conclude that ind52 and 3 the Nishimori criti-
cal behavior is consistent with the universality class for per-
colation. However, this is not so ind54. The possibility that
the closeness of the Nishimori exponents to percolation in
d52 and 3 is purely accidental cannot be ruled out. How-
ever, the following considerations suggest a possible connec-
tion. If we consider a bond distribution of the form

P~Ji j !5pd~Ji j2J!1~12p!d~Ji j1J!1cd~Ji j !,

that is, if the bonds are allowed to take values6J as well as
zero, then in the generalized parameter space ofp, c and
temperatureT, the Nishimori manifold is a two-dimensional
plane. Forp50 ~ or unity!, this plane reduces to theT50
dilution axis and thus contains the percolation fixed point.12

However, it is generally believed thatT is always an unstable
direction for percolation and, hence, finite temperature Nishi-
mori criticality should have different exponents.

Secondly, Nishimori has argued13 that the spin-glass fer-
romagnetic transition is ageometry-inducedphase transition
~as opposed to a thermal transition!, which is also true for
percolation. However, if this led to the identification of the
Nishimori fixed point with percolation it should be true in-
dependent of dimensions. However, our results ind54 con-
tradict this. Furthermore, the epsillon expansions~around

FIG. 1. Plots from theM2 analysis of thed52 x series~a! on
a coarse scale and~b! on a fine scale.

FIG. 2. The central slice for theM2 analysis in Fig. 1 with
wc50.596.
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d56) for the exponents at the Nishimori multicritical point
are different from percolation.6

Finally, a very different way in which this model is of
significant interest, is through the mapping between the 2d
Ising model and free fermions in 111 dimension, and the
connection between the latter and the pleateau transitions in
the quantum Hall effect. The Chalker model for the pleateau
transitions in the quantum Hall effect14,15 can thus be
mapped onto random-bond Ising models. However, the6J
model studied here does not have the correct symmetries for
the quantum Hall problem.16 It is well known that percola-
tion occurs in one limit of the quantum Hall systems, when
the disorder potential is slowly varying in space.17 However,
numerical studies of the Chalker models lead to exponents

clearly different from percolation.14

Thus there is no compelling theoretical reason why the
Nishimori multicritical point should be in the universality
class of percolation. One possible explanation for our find-
ings could be that in low dimensions, where the multicritical
point occurs at very low temperatures, there are crossover
effects which produce effective exponents close to percola-
tion. These issues deserve further attention.
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