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Local carrier pairs in CuO2 planes are coupled to neutralizing displacement charges described by doubly
charged local bosons which are identified with a feature seen in optical experiments while square symmetry
determines the pair wave function to be a superposition ofs and d waves. Within this model transition
temperaturesTcs andTcd are determined in weak coupling and a general form of the Ginzburg-Landau free
energy is derived. Finally a strong-coupling formalism is set up which sheds new light on the gap equations
and determines the properties of the local boson.@S0163-1829~96!01830-9#

I. INTRODUCTION

The pairing symmetry in the cuprate superconductors is a
controversial issue of present day research. Indeed, while
many experiments are in accord with conventionals-wave
pairing there is an important body of data which seems to be
compatible only withd-wave symmetry.1,2 Because of this
situation the idea of the simultaneous presence of both,s-
and d-wave order parameters but a unique transition tem-
perature seems quite natural.3 This situation renders the al-
ready considerable complexity of the cuprates and of their
properties even more serious so that the hope of an explana-
tion by one single model seems rather unrealistic. Instead, a
phenomenological description in terms of a Ginzburg-
Landau free-energy functional generalized so as to incorpo-
rate both,s- andd-wave order parameters4 but supplemented
by minimal models defining the physical parameters seems
to be most appropriate. In this spirit and also in order to
render the theoretical steps more transparent we here re-
nounce numerical computations in favor of approximate ana-
lytical calculations.

The short coherence lengths and the proximity of a Mott
transition but also optical experiments suggest that a tight-
binding approximation is an appropriate description of the
superconductivity in the cuprates. In particular, the coupling
between carriers seems to be well described by a charge-
transfer mechanism.5,6 Here we apply this point of view to
the picture of hole pairs in real space~CuO2 planes! de-
scribed by a pair wave function of the size of the coherence
length, as introduced in the earlier discussion of the cross-
over problem between weak and strong coupling.7,8 Retain-
ing only nearest-neighbor pairings and imposing square sym-
metry, an explicit form of the pair wave function is obtained
which automatically incorporates also short-range antiferro-
magnetic spin correlations as evidenced in nuclear magnetic
resonance.9 These local carrier pairs are then coupled to neu-
tralizing polarization charges described by a doubly charged,
local boson field~Sec. II!. It turns out that this coupling is a
generalization to the case of combineds- andd-wave sym-
metry of an earlier model by the author.10,11 Elimination of
the charged local boson field gives rise to an effective carrier
attraction11 which, in weak-coupling approximation, leads to
gap equations fors- andd-symmetry and their combination.
Using as a cutoff the experimental value for the boson line-

width from Ref. 6, transition temperaturesTcs andTcd are
then calculated~Sec. III!. This local approach has similarities
to the work of So¨rensen and co-workers.12

In a further step the effective attraction is eliminated by a
Hubbard-Stratonovich transformation13,14 in order to obtain
an effective action as function of the two order parameters
with s andd symmetry. Evaluation of this action to fourth
order in the order parameters then yields a time-dependent
Ginzburg-Landau functional. And restricting this functional
to equilibrium and imposing square symmetry we obtain an
expression for the Ginzburg-Landau free energy which has
the same generality as the phenomenological form derived
by Sigrist and co-workers4 ~Sec. IV!. Thus our results may
directly be used for the interpretation of experimental data
thereby yielding information about the parameters of the
model.

In a final step the self-energies of the carriers and of the
local charged boson are calculated, the former being used in
a strong-coupling derivation of the gap equations,11 while the
latter serves to determine the properties of the boson~Sec.
V!. Finally, it is argued~Sec. VI! that the simple model
presented in this paper exhibits many of the essential features
a theory of superconductivity in the cuprates must possess
and that generalizations by inclusion of the third dimension
in the spirit of Anderson and co-workers15,12 and of more
than nearest-neighbor pairings12 are fairly straightforward.
Since charge couplings involve much higher energies than
spin couplings it is argued that the present theory may be
considered a serious alternative to models in which pairing is
mediated by antiferromagnetic spin fluctuations.16

II. CHARGE-TRANSFER HAMILTONIAN

The most general singlet pair operator has the form7,8,14

Bq
15(

k
wk2q/2ak↑

1 aq2k↓
1 , ~2.1!

where w̃(r )5V21/2(kwke
ik•r is the pair wave function,

V5La2 is the~two-dimensional! crystal volume, anda is the
lattice constant of the~quadratic! CuO2 lattice. ~We do not
consider orthorhombic distortions4 in this paper.! The cou-
pling between the carrier pairs and the doubly charged local
boson field then may be written as
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H85g(
q
Bq

1bq1H.c. ~2.2!

In a local description~Wannier representation! the corre-
sponding operators are

cis
1 5L21/2(

k
aks

1 e2 ik•Ri; dl5L21/2(
q
bqe

iq•Rl, ~2.3!

whereRi is a vector of the CuO2 lattice and the interaction
~2.2! becomes

H85ag(
i , j ,l

w̃~Ri2Rj !dRl ,~Ri1Rj !/2
ci↑

1cj↓
1dl1H.c. ~2.4!

From thed function in this expression one sees that there is
no ~static! dipol moment between the centers of charge of the
carrier pair and of the local boson. This fact also allows us to
make an estimate of the coupling constantg. Indeed, assum-
ing point charges the Coulomb energy between the three
bodies is27e2/«a where the dielectric constant« corrects
for the assumption of point charges. With«;30 anda;3.3
Å this leads tog;1 eV. This estimate shows the dominance
of a charge-transfer mechanism over a spin-coupling
scenario.16 More explicitly, the ratio between magnetic and
electric energies is of the order (2mB/ea)

25(lc/
2pa)2;1026 wheremB is the Bohr magneton andlc the
Compton wavelength.

The assumption of local pairs now is expressed by the
following form of the pair wave function:

w̃~Ri2Rj !5
AL
2a (

d
(

m50,1,2,...
ame

imq~d!dRi2Rj ,d
~2.5!

whered is one of the four nearest-neighbor vectors (6a,0),
(0,6a) in the (x,y) plane,q~d! is the angle betweend and
the x axis ~a multiple ofp/2! andm represents the angular
momentum perpendicular to the CuO2 plane. Singlet pairing
requires invariance of the CuO2 lattice with respect to reflec-
tionsd→2d. But this excludes odd valuesm51,3,... so that,
because of the periodicity modulo 4 inm, only m50 and 2,
i.e., s- andd-symmetric pairings, remain in Eq.~2.5!. While
s-wave pairs belong to a trivial representation of the rotation
symmetry of the CuO2 lattice ~rotations by multiples ofp/2!,
the representation of thed-wave pairs ‘‘breaks’’ this symme-
try.

The interpretation of the explicitly written term of Eq.
~2.4! is the nominal charge transfer10,11

Cui↑
21Ol

0Cuj↓
21→Cui↑↓

31Ol
22Cuj↑↓

31 . ~2.6!

Physically, the created holes, instead of being localized on
the coppers will rather be distributed on the four surrounding
oxygens,17 while the doubly charged boson describing the
neutralizing polarization charge may even be distributed out-
side of the CuO2 planes~e.g., on the apex oxygens! but cen-
tered at Ol . Equation~2.6! corresponds to ad9→d8 charge
transfer. On the other hand, the evidence from optical experi-
ments seems to bed9→d10.5,6 An interpretation of such a
transfer, analogous to Eq.~2.6!, would be

Cui↑
21Ol

22Cuj↓
21→Cui

1Ol
0Cuj

1 , ~2.7!

which is described by the H.c. term in Eq.~2.4!. However,
this transfer is unphysical since the left-hand side of Eq.
~2.7! corresponds to the equilibrium configuration of the un-
doped cuprates, and hence Eq.~2.7! cannot describe the op-
tical measurements. Therefore, the interpretation of the opti-
cal experiments in the framework of our model seems to
require farther-than-nearest-neighbor pairings, as alluded to
in the Introduction.

Fourier transforming Eq. ~2.5! according to wk

5(a/AL)( i w̃(Ri)e
2 ik•Ri yields

wk5aswsk1adwdk , ~2.8!

where

wsk

wdk
J 5

1

L
@cos~kxa!6cos~kya!# ~2.9!

are real functions satisfying the orthonormality relations

(
k

wmkwm8k5dmm8 , ~2.10!

which are a consequence of the identity
(k cos(kxa)cos(kya)50. The orthogonality expresses the
fact thatwsk andwdk are different irreducible representations
of the square symmetry of the Brillouin zone~rotations by
p/2 and reflections!. Normalization,(kuwku

251, then implies

uasu21uadu251. ~2.11!

Note that in the absence of a pair current the phase ofw̃~r ! is
not a function ofr and hence may be chosen to be zero so
that w̃~r ! is real. From the symmetrywm2k5wmk it then
follows thatwk and henceas andad may also be chosen to
be real. However, since tunneling experiments are of crucial
importance for the determination of the pairing symmetry,4

this choice is only good in equilibrium.
Limitation of the kinetic energy

H05(
ks

«kaks
1 aks5(

i j s
t~Ri2Rj !cis

1 cjs ~2.12!

to nearest-neighbor hoppings,t(Ri)52tdRi ,d , leads to the
usual band structure

«k522t@cos~kxa!1cos~kya!#. ~2.13!

We assume that due to a repulsive Hubbard term the band is
defined by24t,«k,0 and that the Fermi energy is close to
half-filling, i.e., 0,2«F!t. This means that the densities of
states~DOS’s!

N~p!~l!5
1

La2 (
k

S L wsk
2 2wdk

2

4 D pd~Lwsk2l!; p50,1,2

~2.14!

vanish by definition outside the interval 0,l,2.

III. WEAK-COUPLING THEORY

In weak-coupling approximation one proceeds by elimi-
nating the boson field from the interaction~2.2! in the usual
way8 which results in an effective carrier attraction~in Ref.
11 a factor of 1/2 is missing!
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Hattr5
ugu2

2 (
kk8q

wk2q/2wk82q/2
* H 1

«k2q1«k2Vq2 i e

1
1

«k82q1«k82Vq1 i e J ak↑1 a2k1q↓
1 a2k81q↓ak8↑ ,

~3.1!

whereVq is the frequency of the local boson. We now iden-
tify this mode with a feature seen in optical experiments at
V0;1.6 eV having a width ofDV;0.1 eV.6 SinceV0 is an
order of magnitude larger than both,DV and the band ener-
gies«k involved, Eq.~3.1! may be expressed in terms of the
pair operator Eq.~2.1! as

Hattr52g(
q
Bq

1Bq , ~3.2!

whereg5ugu2/V0;0.6 eV. With this expression one imme-
diately obtains the gap equation8

Dk5
g

2 (
k8

~wkwk8
* 1wk*wk8!

Dk8
2Ek8

tanh
bEk8
2

3Q~DV2ujk8u!, ~3.3!

whereb21 is the temperature in energy units,Ek
25jk

21Dk
2

and jk5«k2«F , and where anad hoccutoff by the boson
line width DV has been introduced in analogy to the Debye
frequency used in BCS theory. It turns out that this cutoff is
a necessary approximation and also a device to control the
van Hove singularities atak5~6p,0!, ~0,6p! by choosing
DV,u«Fu. It may be justified by assuming the off-shell en-
ergy Vq2«k2q2«k in Eq. ~3.1! to be approximately inde-
pendent ofq. Indeed, by subtracting its value forq50 one
obtains«k2q2«k;Vq2V0 or, with «k;«F , ujku,DV. In
equilibrium we may takewk to be real so that, withDk5wkD̄,
Eq. ~3.3! becomes

15g(
k

wk
2 tanh~bEk/2!

2Ek
Q~DV2ujku! ~3.4!

and the transition temperatureTc is obtained in the limit
D̄→0.

According to Eq.~2.8!, Eq. ~3.4! contains both,s- and
d-wave pairing contributions12,18and, foras50 and without
cutoff, reduces to the gap equation of Ref. 19. Now it fol-
lows from square symmetry that, for any functionF,
(kwskwdkF(jk)50. Making use of Eqs.~2.8! and~2.11! one
then sees that the linearized (D̄→0) gap equation~3.4! de-
composes~as it should for different irreducible representa-
tions! into the sum of the gap equations

15g(
k

wmk
2 tanh~bEmk/2!

2Emk
Q~DV2ujku!; m5s,d,

~3.5!

linearized according toD̄m→0, whereEmk
2 5jk

21Dmk
2 and

Dmk5wmkD̄m . Equations~3.5! determine thes- andd-wave
order parametersDsk andDdk and, in the limitD̄m→0, the
corresponding transition temperaturesTcs and Tcd . Using
the DOS’s~2.14! in Eqs.~3.5! these transition temperatures
are determined, respectively, by

4t

a2g
5E

2Dv

1Dv

dv N~0!S v1vF

bt D S v1vF

bt D 2 tanhvv
~3.6!

and

4t

a2g
5E

2Dv

1Dv

dvHN~0!S v1vF

bt D S v1vF

bt D 2

24N~1!S v1vF

bt D J tanhv

v
, ~3.7!

wherevF[(b/2)u«Fu andDv[~b/2!DV.
Although the DOS’s N(p)(l) are given by elliptic

integrals19 an approximate evaluation is possible in the limit
l!1 by dividing the energy contours into sections domi-
nated by the van Hove singularities and straight sections
dominated by nesting. Inserting the results Eqs.~A4! and
~A5! derived in the Appendix into Eqs.~3.6! and ~3.7! one
finds, neglectingv in the argumentsv1vF ,

Tcs.1.13DV expH 2
8p2t3

gu«Fu2@ ln~p2t/4u«Fu!1p/2# J
~3.8!

and

Tcd.1.13DV

3expH 2
p2t

2g@ ln~p2t/4u«Fu!2~p/4!21p3/96# J .
~3.9!

With t;0.5 eV, u«Fu;DV;0.1 eV, g;0.6 eV one finds
Tcs;102172 K andTcd;205 K. In the same approximation
the solution of Eq.~3.4! in the limit D̄→0 may be written

Tc.1310 K3expH 2
1

0.00248as
210.540ad

2 J , ~3.10!

which shows that, for any real values ofas andad satisfying
Eq. ~2.11!,

Tcs<Tc<Tcd . ~3.11!

More generally, there may be crossings between the three
transition temperatures as functions of the chemical potential
«F ~see the third Ref. 12!. The contributions to Eqs.~3.4!
from the regionDV,2jk,4t2u«Fu outside the cutoff may
be estimated by using Eqs.~A8!. One finds thatTcs is raised
by 71 orders whileTcd increases by a factor of;16 to a
totally unphysical value. This shows that, at least in the
above approximation, the cutoff is necessary.

It is interesting that the physically relevant transition tem-
peratureTcd is a simple function ofu«Fu; from Eq. ~3.9! one
finds

dTcd
du«Fu

.2
Tcd
u«Fu

p2t

2g F lnS 2tld

u«Fu D G
22

. ~3.12!

On the other hand, using Eq.~A4!, the hole density is given
by
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nh52tE
0

u«Fu/2t
dl N~0!~l!.

u«Fu
p2a2 H 11

p

2
1 lnS p2t

4u«Fu D J .
~3.13!

Hence

dnh
du«Fu

.
1

p2a2 H p

2
1 lnS p2t

4u«Fu D J ~3.14!

and, combining with Eq. ~3.12!, one concludes that
dTcd/dnh,0. Thus our approximation seems to be appropri-
ate in the region where doping leads to a decrease ofTc and
at the same time where the Uemura lineTc(ns) bends
downward.20

IV. THE GINZBURG-LANDAU FREE ENERGY

Leaving the discussion of the gap equation to Sec. V
where a strong-coupling form will be given, we first wish to
derive a Ginzburg-Landau functional for the combineds-
and d-wave pairing described above. But rather than using
the Gor’kov method18,8 we propose to proceed by the calcu-
lation of an effective action, eliminating the carrier operators
via a Hubbard-Stratonovich transformation. It turns out, in
fact, that the form~3.2! of the effective attraction is the most
general form of an interaction that may be subject to such a
transformation.14 Leaving out the details14 we may express
the transformed partition functionZ5Tr exp[2b(H01H8)]
as functional integral over the auxiliary variables which here
are the time-dependent order parametersDsq(t) and
Ddq(t) and their complex conjugates,

Z

Z0
5E E D2DsD

2Dd

3expH 2E
0

b

dt(
mq

1

g
uDmq~t!u2JW@Ds ,Dd#,

~4.1!

whereZ05Tr exp(2bH0), t is the imaginary time and

W[K T expH E
0

b

dt(
mkq

@wmk2q/2Dmq~t!ak↑
1 aq2k↓

1

1H.c.#~2 i t!J L . ~4.2!

In the last expression2 i t is the argument of the interaction
representationA(2 i t)5eH0tAe2H0t.

Defining the effective actionS by the relation
Z/Z05**D2DsD

2Ddexp(2S) one has

S@Ds ,Dd#5E
0

b

dt(
mq

1

g
uDmq~t!u22 ln W, ~4.3!

where lnW now is given by the same expression~4.2! but
restricted to connected diagrams. It is easy to see that, due to
the form ~2.1! of the operatorBq

1 the only connected dia-
grams are closed loops with an even number of alternating
two-leg vertices14 labeled byv[(mwmk2q/2D̃m(q) and v*
whereq[~q,iq0! and

D̃m~q,iq0!5b21E
0

b

dt Dmq~t!eiq0t. ~4.4!

To fourth order the result may be cast into the following
form:

S5(
q

(
mm8

H b

g
dmm82Amm8~q!J D̃m~q!D̃m8

* ~q!

1 (
q,q8,q9

(
mm8nn8

Bmm8nn8~q,q8,q9!D̃m~q!D̃m8
* ~q8!D̃n~q9!

3D̃n8
* ~q2q81q9!. ~4.5!

In terms of the unperturbed carrier propagator

G~k!5E
0

b

dt^T@ak~2 i t!ak
1~0!#&eik0t5

1

ik02jk
, ~4.6!

wherek[~k,ik0! one finds

Amm8~q!5(
k

wmk2q/2wm8k2q/2G~k!G~q2k! ~4.7!

and

Bmm8nn8~q,q8,q9!

52(
k

wmk2q/2wm8k2q8/2wnk2q81q9/2wn8k2~q1q82q9!/2

3G~k!G~k2q81q9!G~q2k!G~q82k!. ~4.8!

Retaining inAmm8 terms up to second order inq and up to
first order inq0 and dropping anyq dependence inBmm8nn8
the effective action Eq.~4.5! becomes the time-dependent
Ginzburg-Landau functional.13 ~The results of Refs. 13 are
calculated for a single order parameter and withwk51.!

Summing first overk0 and then shifting the summation
variable fromk to k1q/2, Eq. ~4.7! takes the form

Amm8~q!5b(
k

wmkwm8k
12 f 0~jk1q/2!2 f 0~jk2q/2!

jk1q/21jk2q/22 iq0
,

~4.9!

which is manifestly even inq. In this paper we are interested
only in the equilibrium version of the effective action which
is b times the Ginzburg-Landau free energy. For time-
independent order parametersDmk it follows from Eq. ~4.4!
that D̃m(q,iq0)5Dmqdq0,0 so that we may setq050 in Eq.
~4.9!. To second order inq one then finds

Amm8~q,0!5bGm~T!dmm81q•Kmm8q. ~4.10!

Here

Gm~T!5
b

4 (
k

wmk
2 tanhvk

vk
~4.11!
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and theKmm8 are 232 matrices given by

q•Kmm8q5
b2

32 (
k

wmkwm8k
1

vk
H @~q•]k!

2vk#F 1

cosh2vk

2
tanhvk

vk
G22@~q•]k!vk#

2
tanhvk

cosh2vk
J , ~4.12!

wherevk[bjk/2. In the case where allq50 expression~4.8!
becomes after summation overk0

Bmm8nn8~0!5
b4

16 (
k

wmkwm8kwnkwn8k

3
1

vk
2 F tanhvk

vk
2

1

cosh2 vk
G . ~4.13!

For further evaluation of Eqs.~4.12! and ~4.13! we first
symmetrize with respect to the square symmetry of the Bril-
louin zone. Indicating this operation by brackets and intro-
ducing the abbreviationsci~k![cos(kia) andsi~k![sin(kia)
( i5x,y) so that ~q•]k!

2vk5bta2( iq i
2ci and @~q•]k!vk#

2

5(bta( iqisi)
2 one finds

K wmk
2 (

i
qi
2ci L 5

1

2
wmk
2 ~cx1cy!~qx

21qy
2!,

~4.14!

K wskwdk(
i
qi
2ci L 5

1

2
wskwdk~cx2cy!~qx

22qy
2!,

K wmk
2 S (

i
qisi D 2L 5

1

2
wmk
2 ~sx

21sy
2!~qx

21qy
2!,

~4.15!

K wskwdkS (
i
qisi D 2L 5

1

2
wskwdk~sx

22sy
2!~qx

22qy
2!,

and

^~wmkwm8k!
2&5~wmkwm8k!

2; ^wmk
3 wnk&50; mÞn.

~4.16!

Using these expressions in Eqs.~4.10!–~4.13! the action
~4.5! may be written in the form of Eq.~1! of Sigrist et al.
~second Ref. 4!,

F@Ds ,Dd#5(
q

F (
m5s,d

$ãm~T!uDmqu21bmuDmqu41KmuqDmqu2%1g1uDsqu2uDdqu21
g2

2
~Dsq*

2Ddq
2 1c.c.!

1
K̃

2
$~qxDsq!* qxDdq2~qyDsq!* qyDdq1c.c.%G . ~4.17!

Here ãm(T)51/g2Gm(T), bm5b21Bmmmm(0), g1

52b21Bssdd(0), g252b21Bsdsd(0), Km5K mm
(1), and

K̃52K sd
(2), where

Kmm8
~6 ! [2

b2ta2

64 (
k

wmkwm8k
1

vk
H F 1

cosh2vk
2
tanhvk

vk
G

3~cx6cy!2bt
tanhvk

cosh2vk
~sx

26sy
2!J . ~4.18!

Note that hereg15g2 and that our result is essentially the
same as Eq.~16! of Ref. 18.ãm(T)50 (m5s,d) are the gap
equations~3.5! ~without cutoff! in the limit D̄m→0 determin-
ing the transition temperaturesTcm .

V. STRONG-COUPLING THEORY

For the calculation of the self-energies we follow Ref. 11
by first writing the carrier-boson interaction Eq.~2.2! in the
Nambu representation,

H85(
kq

wk2q/2Ck
1$gP1bq1g*P2b2q

1 %Ck2q , ~5.1!

where

Ck5 H ak↑
a2k↓

1 J ~5.2!

and P6[(t16 i t2)/2, Q6[(16t3)/2, t i ( i51,2,3) being
the Pauli matrices. The carrier self-energyS(k) then consists
of a normal Hartree-type contribution

SH~k!5
ugu2

b (
q

D~q!$wk2q/2
2 G~q2k!Q1

2wk1q/2
2 G~k1q!Q2% ~5.3!

and an anomalous exchange-type part

SE~k!5
ugu2

b
D~0!wk(

k8
wk8$F~k8!P11F* ~k8!P2%,

~5.4!

whereD(q) is the boson propagator andF(k) the Gor’kov
function as defined by the renormalized carrier Green’s func-
tion in the Nambu representation,

G~k!5F~k!P11F* ~k!P21G↑~k!Q11G↓~k!Q2 .
~5.5!
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Writing its reciprocal as

G21~k!5G0
21~k!2S~k!

5D1~k!P11D2~k!P21Z1~k!Q1

1Z2~k!Q2 , ~5.6!

whereG0(k)5G(k)Q12G(2k)Q2 and inserting expres-
sions~5.3! and ~5.4! one obtains the four equations11

D6~k!52
ugu2

b
D~0!wk(

q
wq

D6~q!

K~q!
~5.7!

and

Z65 ik07jk6
ugu2

b (
q

D~q!wk7q/2
2 Z7~q7k!

K~q7k!
, ~5.8!

whereK[D1D22Z1Z2 .
The solution of Eqs.~5.7! has the same form as in the

weak-coupling approximation,D6(k)5wkD̄[Dk , but the
gap equation now is

152
ugu2

b
D~0!(

q

wq
2

K~q!
. ~5.9!

Inserting here the zeroth approximationZ6
(0)(k)5 ik07jk

andD (0)(q)51/(iq02Vq!, Eq. ~3.4! is recovered but with-
out the cutoff. Such a cutoff is most probably implicit in a
simultaneous solution of the nonlinear system of equations
~5.7! and~5.8! which we do not attempt@it does not show in
a first iteration of Eqs.~5.8!#.

Even in the strong-coupling form Eq.~5.7! the order pa-
rameters are independent ofk0 and hence do not contain
retardation effects. This could be interpreted as an indication
that Migdal’s theorem is not valid.21 Indeed, retardation may
be included by adding vertex corrections in the carrier self-
energy. To lowest order this is achieved by combining the
diagrams representing the self-energies Eqs.~5.3! and ~5.4!.
There is, however, a different interpretation. Indeed, Eqs.
~3.9! and~3.13! indicate that the relevant transition tempera-
ture Tcd is a unique function of the hole densitynh as de-
scribed by the empirical Uemura relation.20 But, as argued in
the first Ref. 12, this seems to be incompatible with a
frequency-dependent order parameter and hence with retar-
dation effects.

Turning now to the properties of the local boson they are
contained in the renormalized propagatorD(q). From the
boson self-energy11

P~q!52
ugu2

b (
k

wk2q/2
2 G↑~k!G↓~q2k! ~5.10!

one obtains, substituting the propagators with the help of
Eqs.~5.5! and ~5.6!,

D21~q!5 iq02V01
ugu2

b (
k

wk2q/2
2 Z2~k!Z1~q2k!

K~k!K~q2k!
.

~5.11!

Inserting here the zeroth approximationZ6
(0) and setting

D̄50 one finds, after performing first thek0 sum and then
shifting the summation variable fromk to k1q/2, the first
iteration

D ~1!21~q!5 iq02V01ugu2(
k

wk
2 f 0~jk1q/2!2 f 0~jk2q/2!

jk1q/22jk2q/22 iq0
.

~5.12!

Here both, numerator and denominator are manifestly odd
functions of q so that expansion to orderq2 yields, after
analytic continuationiq0→v and settingv5V0 in the de-
nominator,

D ~1!21~q,v!5v2V02
ugu2

4bV0
2 (

k
wk
2 @~q•]k!vk#

2

cosh2vk
.

~5.13!

Therefore, using Eqs.~4.15! to symmetrize with respect to
square symmetry, the renormalized boson frequency is found
from D (1)2150 to be

Vq
ren5V01Mq21M̃ ~qx

22qy
2!, ~5.14!

whereM5(mM mm
(1)/2, M̃5M sd

(2) and, withg5ugu2/V0 ,

Mmm8
~6 ! [

bg

V0
~ ta!2(

k
wmkwm8k

sx
26sy

2

cosh2vk
. ~5.15!

Inserting the DOS’s~2.14! into Eq. ~5.15! one finds

M

a2
5

bg

V0
~ ta!2E

0

2 dl

cosh2@bt~l2lF!#
$2l2~22l2!N~0!~l!

28~12l2!N~1!~l!28N~2!~l!% ~5.16!

and

M̃

a2
5

bg

V0
~ ta!2E

0

2 l2dl

cosh2@bt~l2lF!#
$2l2N~0!~l!

14N~1!~l!%, ~5.17!

wherelF[u«Fu/2t!1. Since only the region aroundlF is
important, application of Eqs.~A4!–~A6! leads to

M

a2
.

gt

V0
S 11

p

6 D.0.29 eV ~5.18!

and

M̃

a2
.
2gu«Fu2

pV0t
H 2 lnS p2t

4u«Fu D1
p2

4 S 12
p

6 D J .0.0034 eV.

~5.19!

M may be used to estimate the boson massm* from
M5\2/2m* . One findsm*;1.5me whereme is the free-
electron mass. This means that the response of the neutraliz-
ing polarization charge is extremely fast. Finally one may
estimate the extensionq* of this mode ink space from
Mq* 25DV; the result isq*;0.19(p/a).
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VI. CONCLUSION

In this paper we have attempted to describe the complex
physics of the superconducting cuprates by a simple but
plausible model involving a charge-exchange rather than a
spin-exchange mechanism. The arguments in favor of such a
mechanism are multiple. First of all, electric energies were
shown to be much larger than magnetic ones. Second, the
cuprates are known to be highly polarizable; SrTiO3 is al-
most ferroelectric. And third, recent optical experiments see
a high-energy mode which seems to be involved in the pair-
ing mechanism.6

The model is based on the idea that carrier pairs in the
cuprates must be strongly localized which is supported by
the short coherence lengths as well as by the proximity of a
Mott transition. In the case of a nearest-neighbor singlet pair
wave function, symmetry arguments uniquely lead to a su-
perposition of specifics andd waves with antiferromagnetic
correlation. The gap equations resulting from this construc-
tion yielded transition temperaturesTcs;0 andTcd;205 K.
However, this relatively reasonable value ofTcd was ob-
tained only by introducing anad hoccutoff which clearly
shows the shortcomings of the approximation. On the other
hand, the strong-coupling formalism developed subsequently
suggests that such a cutoff may be inherent in the derived
nonlinear system of equations.

A rather gratifying result of the model is the expression
obtained for the Ginzburg-Landau free energy which has the
same general form as the phenomenological formula ob-
tained from symmetry arguments alone.4 Overall the results
derived in this paper by simple, easily verifiable order-of-
magnitude calculations can be considered as encouraging.
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APPENDIX

For 0,l!1 the energy contours have almost square
shape so that the DOS’s, Eq.~2.14! may be written as four
times the sum of the respective contributions from the corner
~van Hove singularity! region at ak5~p,0! and from the
straight~nesting! region atak5~p/2,p/2!,

N~p!~l!5NvH
~p!~l!1Nne

~p!~l!; p50,1,2, ~A1!

where

NvH
~p!~l!5

2

p2a2 E E
0

p/4

du dv~2cosu cosv !p

3d~cosv2cosu2l! ~A2!

and

Nne
~p!~l!5

1

p2a2 E E
2p/4

p/4

du8dv8~sinu8 sinv8!p

3d~sinu81sinv82l!. ~A3!

The approximation now consists of retaining the sin and cos
functions only to first and second order in their arguments,
respectively. A straightforward calculation then yields, to
lowest order inl,

NvH
~0!~l!.

1

p2a2
lnS p2

8l D ; Nne
~0!~l!.

1

2pa2
, ~A4!

NvH
~1!~l!.2

1

p2a2
lnS p2

8l D1
1

16a2
; Nne

~1!~l!.2
p

96a2
,

~A5!

and

NvH
~2!~l!.

1

p2a2
lnS p2

8l D2
1

8a2
; Nne

~2!~l!.0. ~A6!

Note that, in Eq.~A4!, N(0)(l).0 for l,5.9 so that the
approximation is consistent.

For 0,l8[22l!1 the energy contours are almost circu-
lar so that it is advantageous to write Eq.~2.14! in polar
coordinates. Retaining the cos functions again only to second
order in their arguments one has

N~p!~22l8!.
1

p2a2 E0
2p

dwE
0

p

r dr S 12
r 2

2
cos2w D p

3S 12
r 2

2
sin2w D pdS r 222l8D . ~A7!

To low order inl8 this yields

N~p!~22l8!.
2

pa2
~12pl8!; p50,1,2. ~A8!
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