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Charge-transfer model of s- and d-wave pairing in the cuprates
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Local carrier pairs in Cu@planes are coupled to neutralizing displacement charges described by doubly
charged local bosons which are identified with a feature seen in optical experiments while square symmetry
determines the pair wave function to be a superpositiors ahd d waves. Within this model transition
temperatureS . and T4 are determined in weak coupling and a general form of the Ginzburg-Landau free
energy is derived. Finally a strong-coupling formalism is set up which sheds new light on the gap equations
and determines the properties of the local bo$80163-18206)01830-9

I. INTRODUCTION width from Ref. 6, transition temperaturdsg and T4 are
then calculatedSec. Ill). This local approach has similarities
The pairing symmetry in the cuprate superconductors is 0 the work of Seensen and co-workef$.
controversial issue of present day research. Indeed, while In a further step the effective attraction is eliminated by a
many experiments are in accord with conventiosatave  Hubbard-Stratonovich transformatiort*in order to obtain
pairing there is an important body of data which seems to b&n effective action as function of the two order parameters
compatible only withd-wave symmetry:? Because of this with s andd symmetry. Evaluation of this action to fourth
situation the idea of the simultaneous presence of kmth, order in the order parameters then yields a time-dependent
and d-Wave Order parameters but a unique transition temGianUrg'Landau functional. And restricting this functional
perature seems quite natufaThis situation renders the al- to equilibrium and imposing square symmetry we obtain an
ready considerable complexity of the cuprates and of theifxpression for the Ginzburg-Landau free energy which has
properties even more serious so that the hope of an explantle same generality as the phenomenological form derived
tion by one single model seems rather unrealistic. Instead, B Sigrist and co-workefs(Sec. IV). Thus our results may
phenomenological description in terms of a Ginzburg-directly be used for the interpretation of experimental data
Landau free-energy functional generalized so as to incorpdhereby yielding information about the parameters of the
rate boths- andd-wave order parametérbut supplemented Model.
by minimal models defining the physicai parameters seems In a final Step the Self-energies of the carriers and of the
to be most appropriate_ In this Splrlt and also in order tolocal Charged boson are CaICUIated, the former being used in
render the theoretical steps more transparent we here ra-strong-coupling derivation of the gap equatiohehile the
nounce numerical computations in favor of approximate analatter serves to determine the properties of the bdS®t.
lytical calculations. V). Finally, it is argued(Sec. V) that the simple model
The short coherence lengths and the proximity of a Motteresented in this paper exhibits many of the essential features
transition but also optical experiments suggest that a tight& theory of superconductivity in the cuprates must possess
b|nd|ng approximation is an appropriate description of theand that generalizations by inclusion of the third dimension
superconductivity in the cuprates. In particular, the couplingn the spirit of Anderson and co-workePs? and of more
between carriers seems to be well described by a charg&han nearest-neighbor pairifgsare fairly straightforward.
transfer mechanish® Here we apply this point of view to Since charge couplings involve much higher energies than
the picture of hole pairs in real spa¢€uQ, plane$ de-  SPin couplings it is argued that the present theory may be
scribed by a pair wave function of the size of the coherencé&onsidered a serious alternative to models in which pairing is
length, as introduced in the earlier discussion of the crossnediated by antiferromagnetic spin fluctuatidfis.
over problem between weak and strong couplifigRetain-
ing only nearest-neighbor pairings and imposing square sym- Il. CHARGE-TRANSFER HAMILTONIAN
metry, an explicit form of the pair wave function is obtained ) )
which automatically incorporates also short-range antiferro- 1he most general singlet pair operator has the forth
magnetic spin correlations as evidenced in nuclear magnetic
resonancé These local carrier pairs are then coupled to neu-
tralizing polarization charges described by a doubly charged,
local boson field Sec. I). It turns out that this coupling is a
generalization to the case of combingdandd-wave sym- where @(r)=V Y23, ¢,e'*'" is the pair wave function,
metry of an earlier model by the authtr'! Elimination of ~ V=La? is the(two-dimensionalcrystal volume, and is the
the charged local boson field gives rise to an effective carriefattice constant of théquadrati¢ CuQ, lattice. (We do not
attractiort* which, in weak-coupling approximation, leads to consider orthorhombic distortiohsén this papen. The cou-
gap equations fos- andd-symmetry and their combination. pling between the carrier pairs and the doubly charged local
Using as a cutoff the experimental value for the boson lineboson field then may be written as

B;:; Ph— 281 8qk| (2.9
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which is described by the H.c. term in E@®.4). However,
H'=y> Bgbg+H.c. (2.2 this transfer is unphysical since the left-hand side of Eq.
d (2.7) corresponds to the equilibrium configuration of the un-
In a local description(Wannier representatiorthe corre- doped cuprates, and hence E2.7) cannot describe the op-
sponding operators are tical measurements. Therefore, the interpretation of the opti-
cal experiments in the framework of our model seems to
require farther-than-nearest-neighbor pairings, as alluded to
in the Introduction.
Fourier transforming Eq. (2.5 according to ¢y
whereR; is a vector of the Cu@lattice and the interaction = (a/,\[)3,5(R;)e * R yields
(2.2) becomes

ch=L"12Y af e R d=L 12> peltR (2.3
K q

k= as@skt AgPak s (2.8
H’:a’yizl E(Ri_Rj)5R|,(Ri+Rj)/2Ci+TCj+ld|+H'C' (24) where
o . . 1
From thed function in this expression one sees that there is (ps'; =T [cogk,a) =cogkya)] (2.9

no (statig dipol moment between the centers of charge of the ¢
carrier pair and of the local boson. This fact also allows us tgyre real functions satisfying the orthonormality relations
make an estimate of the coupling constgntndeed, assum-
ing point charges the Coulomb energy between the three
bodies is— 7e?/sa where the dielectric constagtcorrects ; PukPurk= Oup’ (2.10
for the assumption of point charges. With-30 anda~ 3.3
A this leads toy~1 eV. This estimate shows the dominancewhich are a  consequence of the identity
of a charge-transfer mechanism over a spin-couplingsk Coska)coskya)=0. The orthogonality expresses the
scenario® More explicitly, the ratio between magnetic and fact thateg and¢qy are different irreducible representations
electric energies is of the order gg/ea)’=(\./ of the square symmetry of the Brillouin zoreotations by
2ma)?~10"% where ug is the Bohr magneton an, the ~ 7/2 and reflections Normalization,S,|¢,[>=1, then implies
Compton wavelength.

The assumption of local pairs now is expressed by the | *+ [ aq|*= 1. (2.13)
following form of the pair wave function: Note that in the absence of a pair current the phasg(ofis

not a function ofr and hence may be chosen to be zero so

~ JL - that o(r) is real. From the symmetry, = it then
R = i w9 (5) n—k = Puk
¢(Ri—R) 2a z,;‘ #zg‘zm au® 5Ri*Rj 8 (2.9 follows that ¢, and hencex, and @y may also be chosen to
. . be real. However, since tunneling experiments are of crucial
whered is one of the four nearest-neighbor vectorsa,0),  importance for the determination of the pairing symmaétry,

(0,£a) in the (x,y) plane,d(é) is the angle betweed and  this choice is only good in equilibrium.
the x axis (a multiple of 7/2) and u represents the angular Limitation of the kinetic energy
momentum perpendicular to the Cuflane. Singlet pairing
requires invariance of the CyQattice with respect to reflec-
tions 6—— 6. But this excludes odd valugs=1,3,... so that,
because of the periodicity modulo 4 jn only x=0 and 2, ) _
i.e.,s- andd-symmetric pairings, remain in E¢.5). While {0 nearest-neighbor hoppinggR;)=—tdg 5. leads to the
s-wave pairs belong to a trivial representation of the rotationusual band structure

symmetry of the Cu@lattice (rotations by multiples ofr/2),

Ho:kz 8kalzr(rakrr:; t(R—R))ci,c, (2.12

the representation of ttiewave pairs “breaks” this symme- ei=—2t[cogk,a)+cogkya)]. (213
try. , i . ) We assume that due to a repulsive Hubbard term the band is
Th_e interpretation of the exphmt{y written term of Eq. gefined by— 4t<&,<0 and that the Fermi energy is close to
(2.4) is the nominal charge transtér half-filling, i.e., 0< — e<t. This means that the densities of
C& OPCi? —C 0F . (2. SesDOSS
<P§k_ ‘Pék

Physically, the created holes, instead of being localized OMN(PI(\)= iz 2 sk T
the coppers will rather be distributed on the four surrounding La® % 4
oxygens:’ while the doubly charged boson describing the (2.14
neutralizing polarization charge may even be distributed out; o 1iopy by definition outside the intervakd.<2.
side of the Cu@planes(e.g., on the apex oxygenbut cen-
tered at Q. Equation(2.6) corresponds to d°—d® charge
transfer. On the other hand, the evidence from optical experi-
ments seems to be®—d*°>® An interpretation of such a In weak-coupling approximation one proceeds by elimi-
transfer, analogous to E.6), would be nating the boson field from the interacti¢®.2) in the usual
oo O+ way? which results in an effective carrier attractiéin Ref.
Cy"ofcu —cyrolcy’, (2.7) 11 a factor of 1/2 is missing

L

P
) o(Lek—N); p=0,1.2

Ill. WEAK-COUPLING THEORY
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Haw="5— X @k-qrPpr_ :
atr— 5 o 4/2¥k’ —ql2 8qu+8k_Qq_|€
1
+ o+
— ra,a_ a_yr gLk
8kr,q+8kr_9q+|€ kT k+qL k +al k"1
(3.9
where(), is the frequency of the local boson. We now iden-
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tify this mode with a feature seen in optical experiments at

0~1.6 eV having a width oAQ~0.1 eV® Since(), is an
order of magnitude larger than both() and the band ener-
giesg, involved, Eq.(3.1) may be expressed in terms of the
pair operator Eq(2.1) as

Ham:—ng By By, (3.2

whereg=|vy|%Q,~0.6 eV. With this expression one imme-
diately obtains the gap equatfbn

BE/
2

g Ay
Akzi > (oxep + @k oxr) 2E. tanh
k/ !

XO(AQ=[&]), 3.3

where 871 is the temperature in energy uni§= £+ A2
and §=¢,—¢eg, and where arad hoccutoff by the boson

line width AQ) has been introduced in analogy to the Debye
frequency used in BCS theory. It turns out that this cutoff is
a necessary approximation and also a device to control the

van Hove singularities aak=(=+,0), (0,=m) by choosing
AQ<|eg|. It may be justified by assuming the off-shell en-
ergy Qq—ex_q—&x in Eq. (3.1) to be approximately inde-
pendent ofg. Indeed, by subtracting its value fge=0 one
obtains e, _q—ex~Qq— Qg or, with gg~ep, [§|<AQ. In
equilibrium we may takep, to be real so that, with,=¢, A,
Eq. (3.3 becomes

, tan(BE,/2)

1=92 ¢i —5g — 0(A0-]a) G4

and the transition temperatufg, is obtained in the limit
A—0.

According to Eq.(2.8), Eg. (3.4 contains boths- and
d-wave pairing contributiorté*8and, fora,=0 and without

cutoff, reduces to the gap equation of Ref. 19. Now it fol-

lows from square symmetry that, for any functidn,
Ekcpsk¢dkF(§k)=0. Mak|ng use of Eq5(28) and(211) one
then sees that the linearized -0) gap equatior{3.4) de-

3591
4t +Aw 0+ op [ 0+ o) ? tanhw
_ (0)
a%g f,AwdwN ( Bt Bt P
(3.6
and
iszrAwdw N(© o+ o otoe 2
a’g  J-aw Bt Bt
o+t op|| tanhw
—4NW Bt ] , 3.7
w

wherewg=(8/2)|eg| and Aw=(B/2)A1}.

Although the DOS's N®®(\) are given by elliptic
integrald® an approximate evaluation is possible in the limit
A<<1 by dividing the energy contours into sections domi-
nated by the van Hove singularities and straight sections
dominated by nesting. Inserting the results Eg&4) and
(A5) derived in the Appendix into Eq$3.6) and (3.7) one
finds, neglectingw in the arguments + wg,

87t3
gleel?[In(7?t/4|eg]) + 7/2]

Tes=1.13A0Q exp{ -
(3.8

and

7t
2g[In(7°t/4|eg|) — (wl4)%+ 73/96]

Teq=1.1300

X expl’
(3.9

With t~0.5 eV, |eg|~AQ~0.1 eV, g~0.6 eV one finds
Tes~10 172K and T.4~205 K. In the same approximation
the solution of Eq(3.4) in the limit A—0 may be written

1
©0.002482+0.54007

T.=1310 K><exp[ } (3.10

which shows that, for any real values ®f and a4 satisfying
Eqg. (2.12),

Tee<T=T¢q-

(3.11)

More generally, there may be crossings between the three
transition temperatures as functions of the chemical potential
eg (see the third Ref. 12 The contributions to Eq93.4)

from the regionAQ<—& <4t—|e¢| outside the cutoff may

composedas it should for different irreducible representa- be estimated by using Eg&8). One finds thall . is raised

tions) into the sum of the gap equations

tanh( BE ,/2)

oE,  OM0-la;

n=sd,
(3.5

linearized_according ta\,—0, whereEZ, = ¢ +A%, and
A k=4, . Equations(3.5 determine thes- andd-wave
order parameterd g, and Ay and, in the limitA ,—0, the
corresponding transition temperaturéss and T.4. Using
the DOS's(2.149 in Egs. (3.5 these transition temperatures
are determined, respectively, by

1:g§k: (Pik

by 71 orders whileT.4 increases by a factor of16 to a
totally unphysical value. This shows that, at least in the
above approximation, the cutoff is necessary.

It is interesting that the physically relevant transition tem-
peratureT .4 is a simple function ofe|; from Eq.(3.9) one

finds
In(
lee| 29

On the other hand, using EA4), the hole density is given
by

-2

(3.12

|8F|

2t)\d)
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lepl/2t egl T w2t ~ . (P 0T
nh=2tf0 d)\N ()\) ;%z 1+§+In M . Aﬂ(q,lqO)Zﬂ OdTAMq(T)e o7, (44)
(3.13 . .
To fourth order the result may be cast into the following
Hence form:
dan, 1 7T+I w2t )} (3.14
—_——— n . ~ ~
dles| %2 |2 4e| S= 2 2 ( u AW(q))AM(q)AZ,(q)

and, combining with Eg.(3.12, one concludes that !

dT.4/dn,<0. Thus our approximation seems to be appropri- n " "
ate in the region where doping leads to a decrease. aind E E B (0,99 )A#(Q)A (a")A,(q")
at the same time where the Uemura lifg(ng) bends
downward?® XA¥,(q—q'+q"). (4.5

a,9".9" pp' vy’

IV. THE GINZBURG-LANDAU FREE ENERGY In terms of the unperturbed carrier propagator

Leaving the discussion of the gap equation to Sec. V
where a strong-coupling form will be given, we first wish to G(k) = dT<T[ak(—|T)ak (0)])e'ko7=
derive a Ginzburg-Landau functional for the combingd
and d-wave pairing described above. But rather than usmg:bvh K=(K ik find
the Gor'kov methotf® we propose to proceed by the calcu- erek=(k.iko) one finds
lation of an effective action, eliminating the carrier operators
via a Hubbard-Stratonovich transformation. It turns out, in _ _
fact, that the form(3.2) of the effective attraction is the most A (D=2 @uk—aqo®uk-qaGKIG(g—k)  (4.7)
general form of an interaction that may be subject to such a
transformatiort* Leaving out the detait§ we may express and
the transformed partition functiah=Tr exp[— B(Hy+H')]
as functional integral over the auxiliary variables which here g (9,9",9")
are the time-dependent order parameteg,(7) and !
Ag4q(7) and their complex conjugates,

! (4.6
iko— &’ '

= sz Puk—al2Pu'k—q'12Pvk—q’' +q"12Pv' k—(q+q’ —q")/2

=f f D?A¢D?Aq X G(K)G(k—q'+q")G(q—k)G(q' —kK). (4.9

B 1 ) Retaining inA,,,. terms up to second order mpand up to
xXexp — jo dT% 5 |8 uq(7)|* W[AS, Ag], first order inq, and dropping any dependence iB,,,,',,
the effective action Eq(4.5 becomes the time-dependent
(4. Ginzburg-Landau functiondf (The results of Refs. 13 are
calculated for a single order parameter and witl+1.)
Summing first overk, and then shifting the summation
variable fromk to k+q/2, Eq.(4.7) takes the form

whereZ,=Tr exp(— BHy), 7 is the imaginary time and

B
g 1—fo( s ) — FolEk_q2)

A/.L;L’(q) = BE PukPu’k

+H.c.](—ir)]>. (4.2 . Sz fiogz 1o 4.9
In the last expressiori 7 is the argument of the interaction which is manifestly even iqg. In this paper we are interested
representatiom(—i7) =e"o7Ae Mo, only in the equilibrium version of the effective action which
Defining the effective actionS by the relation is g times the Ginzburg-Landau free energy. For time-
Z/1Zy=J[D?AD?A 4exp(~S) one has independent order parametexs it follows from Eq. (4.4)

5 1 thatA,(g,ige) =4, 5%,0 so that we may sefp,=0 in Eq.
S[As,Ad]Zf dr>, Z|A(D2=InwW, (4.3 (4.9. To second order i one then finds
0 wq 9

where InW now is given by the same expressioh2) but Aup (0.0 =BT ,(T) 8,0 +0- K. (4.10

restricted to connected diagrams. It is easy to see that, due f_?

the form (2.1 of the operatorB+ the only connected dia-

grams are closed loops with an even number of alternatmg

tv\v/\;]oe:(;g verticed' labeled byv=F ¢, q2A,(q) andv* r,(T)= g S %
q=(q,igo) and

tanhw

Wy

(4.11
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and theK , ,, are 2<2 matrices given by )
<‘PMkE q| > @Mk(cx+cy)(qx+qy),

1
costfwy . (4.19
< @stdezi qi20i> =3 PP Cx—Cy) (Az— 0,

q- K,u;/,’q 322 PukPu’k - ‘[(q ak) wk]

tanhw, _, i1
[(a- G i COSH . (412
wherew,=B&/2. In the case where ajl=0 expressiori4.9 5 2\ 1 5 2 o o o
becomes after summation oviey Pk Z G4iSi| )= 5 Pur(STS) A+ ay),
B (4.15
B v (0)= 7= D0 @k @k k@i 2y 1
1% nKY
16 % <<Psk<Pdk( Z qisi) > =35 PsPak(Sx— ) (a3 — ),
1 [tanhw 1 i1
w2| o  cosi wy 413 ang
For fu'rther'evaluation of Eq€4.12 and (4.13 we first . <(‘P;Lk(P,u.’k)2>=((P#k‘P,u.’k)2; <€0,31k<ka>=0? UED.
symmetrize with respect to the square symmetry of the Bril- (4.16

louin zone. Indicating this operation by brackets and intro-

ducing the abbreviationg (k)=cos(;a) ands;(k)=sin(k;a) Using these expressions in Eg&l.10—(4.13 the action
(i=x,y) so that (q-d)°w,=Bta’2;q7c; and [(q-d)w]> (4.5 may be written in the form of Eq(1) of Sigristet al.
=(pBtaz;q;s;)? one finds (second Ref. ¥

_ Y2
F[As,Aq]= % M:Es | {Bu(TIA gl + Dl A g+ K08 g 3+ 7l Mgl Aggl*+ 5 (AX2A3,+c.c)

K
+ E {(qusq)*qudq_(QyAsq)*qudq+C-C-}’ . (4-17)

Here 15 (T)=l/g—I‘M(T),1 b,=B "Bu.(0), n wo| @ ,
228 Bpal0): 7:=261Buusd0). K L=KGD, and =la’y, 6.2
K=2K (', where
and P.=(r*i7,)/2, Qu=(1=7)/2, 7, (i=1,2,3) being
K = ,82ta 3 1 1 tanhwy the Pauli matrices. The carrier self-eneljfk) then consists
pu' = = Puk®uk | cosRor  wx of a normal Hartree-type contribution
X (Gt Cy) — Bt ok <s2+s2)] (418 lvl2
P cosey Y] ' Zu(k)="5~ 2 D(@{ef-25(a-KIQ-
Note that herey;=1y, and that our result is essentially the ~ @G+ @)Q_} (5.3

same as Eq16) of Ref. 18.a,(T)=0 (u=s,d) are the gap
equationg3.5) (without cutoﬁ) in the limit A ,— 0 determin-

ing the transition temperaturdg,, . and an anomalous exchange-type part

2
V. STRONG-COUPLING THEORY Se(k)= |:y3| D(O)@kE e {F(K )P +F*(k")P_},
For the calculation of the self-energies we follow Ref. 11 (5.4
by first writing the carrier-boson interaction E@®.2) in the
Nambu representation, whereD(q) is the boson propagator art(k) the Gor’kov

function as defined by the renormalized carrier Green'’s func-

, N . N tion in the Nambu representation,
H :qu Pk-aq2V i {YP1bg+ y* P_b* } W\, (5.0

G(K)=F(K)P, +F*(K)P_+G,(K)Q,+G (KQ_.
where (5.9
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Writing its reciprocal as
G (k) =Gy (k) —2(k)
=A, (KNP +A (KNP_+Z,(k)Q
+Z_(k)Q_, (5.9

where Gy(k) =G(k)Q . —G(—k)Q_ and inserting expres-
sions(5.3) and(5.4) one obtains the four equatidns

B |7|2 A-(q)
A:(k)=="2-DOWZ ¢4 5 (67
and
. vl Z:(q+k)
Z. =ik 7; Q)¢k+q/zm (5.8
whereK=A, A_—~-Z,7_

The solutlon of Eqs(5 7) has the same form as in the
weak-coupling approximationA . (k)= ¢, A=A,, but the
gap equation now is

L
= 5 <m§ K(Q):

(5.9

Inserting here the zeroth approximatiat®(k)=ik,¥ &
andD(q)=1/(iqo— Q). Eq. (3.4 is recovered but with-

out the cutoff. Such a cutoff is most probably implicit in a

Inserting here the zeroth approximatiah® and setting
A =0 one finds, after performing first the, sum and then
shifting the summation variable frok to k+q/2, the first
iteration

fol&krar) —folék—gn)
Ergz— €k—q— 100

(5.12

Here both, numerator and denominator are manifestly odd
functions of q so that expansion to ordey® yields, after
analytic continuatioriqy— w and settingw=(), in the de-
nominator,

Dm*mhmrﬂwWEgd

|y [(a-d) @]
(H-1 — e O e 2
DT @) =0t 4p02 % costfo,
(5.13

Therefore, using Eqg4.15 to symmetrize with respect to
square symmetry, the renormalized boson frequency is found
from D~1=0 to be

Q"= 0o+ Mg?+M(g2—q2), (5.14
whereM =3 ,M (72, M=M {3} and, withg=||%/Q,,

2, 2
(+)_,39 =

M, .= (ta)ZE ® kP 'k (5.15

XY
costfwy

Inserting the DOS’¢2.14) into Eq. (5.15 one finds

simultaneous solution of the nonlinear system of equations

(5.7 and(5.8) which we do not attemgdit does not show in
a first iteration of Eqs(5.9)].

Even in the strong-coupling form E¢b.7) the order pa-
rameters are independent kf and hence do not contain

M ﬁg dx
20, )2fo cosH[ Bt(N —\g)]

—8(1—)\2)N(1)()\)—8N(2)()\)} (5.16

{2 2(2—A?)NO(\)

retardation effects. This could be interpreted as an indication

that Migdal’s theorem is not valitt Indeed, retardation may

and

be included by adding vertex corrections in the carrier self-

energy. To lowest order this is achieved by combining the M B9 fZ A2d\

diagrams representing the self-energies E§S8) and(5.4).

{=N°N©()

2~ 0, ™), CosRIBt—rp)]

There is, however, a different interpretation. Indeed, Egs.

(3.9 and(3.13 indicate that the relevant transition tempera-

ture T4 is a unique function of the hole density, as de-
scribed by the empirical Uemura relatiéhBut, as argued in

+4ND(\)Y, (5.17

where\g=|eg|/2t<1. Since only the region aroun is

the first Ref. 12, this seems to be incompatible with aimportant, application of EqgA4)—(A6) leads to
frequency-dependent order parameter and hence with retar-

dation effects. M gt T
Turning now to the properties of the local boson they are 2= Q, 1+ )~0'29 ev (5.18
contained in the renormalized propagai»(q). From the
boson self-enerdy and
|y|? M 2g|eg|? it P a
H(q)———z ¢t-2G1(KG(a—k) (.10 2= o | Mgt 7 | 17500034 eV.

one obtains, substituting the propagators with the help o

Egs.(5.5 and(5.6),

PP |¥|? , Z-(KZ.(q—kK)
D 1(q)_,q0_90+7; P02 KOK(q—K)

(5.11

(5.19

f\/l may be used to estimate the boson mass from
M=#2/2m*. One findsm* ~1.5m, wherem, is the free-
electron mass. This means that the response of the neutraliz-
ing polarization charge is extremely fast. Finally one may
estimate the extensiog* of this mode ink space from
Mg*2=AQ; the result isqg* ~0.19(rr/a).
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VI. CONCLUSION where

In this paper we have attempted to describe the complex

physics of the superconducting cuprates by a simple but

plausible model involving a charge-exchange rather than a B = (—cosi cow)P
spin-exchange mechanism. The arguments in favor of such a

mechanism are multiple. First of all, electric energies were X 8(cosv —cosu—N\) (A2)

shown to be much larger than magnetic ones. Second, the

cuprates are known to be highly polarizable; SrIi® al- and
most ferroelectric. And third, recent optical experiments see 1
a high-energy mode which seems to be involved in the pair- Ng‘;)()\)= 5 du’'dv’(sinu’ sinv’)P
H H mea —xl4
ing mechanisnf.
The model is based on the idea that carrier pairs in the X 8(sinu’ +sinv’ —\). (A3)

cuprates must be strongly localized which is supported by
the short coherence lengths as well as by the proximity of d he approximation now consists of retaining the sin and cos
Mott transition. In the case of a nearest-neighbor singlet paifunctions only to first and second order in their arguments,
wave function, Symmetry arguments unique|y lead to a Su[GSpGCtiVEly. A Stl’aightforward calculation then yieIdS, to
perposition of specifis andd waves with antiferromagnetic lowest order in\,
correlation. The gap equations resulting from this construc-
tion yielded transition temperatur@s,~0 andT 4~ 205 K. 1
However, this relatively reasonable value Bfy was ob- NO(N)=—— s In
tained only by introducing a@d hoc cutoff which clearly
shows the shortcomings of the approximation. On the other
hand, the strong-coupling formalism developed subsequently 1
suggests that such a cutoff may be inherent in the derived NfllH)()\)=— 0 Inl —
nonlinear system of equations.

A rather gratifying result of the model is the expression
obtained for the Ginzburg-Landau free energy which has thand
same general form as the phenomenological formula ob-
tained from symmetry arguments alch@verall the results

2
&) Nie M) =5—3. (A4)

w
(A5)

’772 .
an/ " 16a2’

2

derived in this paper by simple, easily verifiable order-of- N(2>()\)~ ;L 5 In (77 ) iz N(2>()\) 0. (AB)
magnitude calculations can be considered as encouraging. 8\ 8a”’
Note that, in Eq.(A4), N®(\)>0 for A<5.9 so that the
ACKNOWLEDGMENTS approximation is consistent.

For 0<\'=2—-\<1 the energy contours are almost circu-
lar so that it is advantageous to write EQ.14) in polar
coordinates. Retaining the cos functions again only to second
order in their arguments one has
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For O0<\<1 the energy contours have almost square r2 P (2
shape so that the DOS’s, E@®.14 may be written as four x| 1— — Sinz(p) 5(__)\'>_ (A7)
times the sum of the respective contributions from the corner 2 2

(van Hove singularity region atak=(m,0) and from the  To low order in\’ this yields
straight(nesting region atak=(u/2,7/2),

2
P(2—\")=~= ) _
N(p)()\):NW()\)‘FNE\%}()\); p=0,1,2, (A1) N'P/(2—N\") s (1—-p\'); p=0,1,2. (A8)
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