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Magnetic phase diagram of a partially frustrated triangular antiferromagnet: The row model
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Phase diagram of a planar antiferromagnet on a stacked triangular lattice subject to a uniform orthorhombic
distortion is studied within the Landau approach. This spin system with partially released frustration exhibits
a variety of ordered phases in magnetic field parallel to the basal plane including elliptically and linearly
polarized incommensurate structures. Four magnetically ordered phases coexist at a multicritical point. The
theory is applied to explain the experimental phase diagram of RbM@aBd satisfactory agreement for
temperature dependences of critical fields is foyS@163-18206)03526-9

I. INTRODUCTION plane: inside horizontal rows and in between as shown in
Fig. 2. It was shown later that the row model also explains
Magnetic ordering phenomena in spin systems with geothe low-field transition alf=0 as a lock-in transition from
metrical frustration are a subject of numerous studies. Théhe incommensurate spin helix to the commensurate 120°
simplest model of this type is the Heisenberg antiferromagStrUC'EureE§
net on a triangular lattice, which has the noncollinear 120° This simple assumption about the symmetry of the lattice
spin structure as the ground state. An interesting example ¢ff RoMnBr; at low temperatures confirmed by the birefrin-
partial lifting of frustration on triangular lattice has been gence measurements of Kagbal!® was questioned in the
found among ABX:-type hexagonal antiferromagnets. A interpretation of neutron dafd.In addition, a model involv-
number of compounds from this family undergoes structuraing an exotic three-site biquadratic exchange has been re-
transitions in their stacked triangular lattice of magnetic ionscently proposed as an alternative explanation of the spin
before spin ordering occulsThis leads to distortion of some Structure:’ Existence of such interactions in RbMnis,
spin bonds and partially released frustration on an elemerffowever, quite doubtful. The conclusion of Ref. 17 that the
tary triangular plaquette. One of the intriguing possibilitiesmagnetic scattering dafacan only be explained by the
addressed in this connection is the splitting of ordering tranimodel parameters corresponding to the phase boundary be-
sition for chiral and continuous degrees of freedom undefween different states also reduces probability of this sce-
appropriate lattice distortiohTheoretical studies of such an- hario.
tiferromagnets reveal also many new otherwise unstable spin Recent neutron scattering measureméntsrformed on a
phases both in a z&f®@ and in a finité field. sister compound KNiG, which has an analogous sequence
Magnetic properties of RbMnBrare the most compli-
cated among other triangular antiferromagnets with partially
released  frustration.  Earlier  neutron  diffraction
measuremenfshave found an incommensurate helical spin
structure with a turn angle different from 120° at zero field.
An additional low-field transition for magnetic fields directed
within the basal plane, not observed in the fully frustrated
compound CsMnBy2 has been detected in RbMngy an
anomaly in the magnetization cuivand by a surprising be-
havior of the lowest branch of resonance specttliFurther
neutron scattering experimehtst® confirmed this transition
and resolved more complicated structure of Bragg reflections
which include two triads of magnetic peaks near(163,1/
3,1) at H=0.12 Comparison of magnetization and neutron
data obtained on different samples provides strong support in
favor of a multicritical point in the magnetic diagram of
RbMnBr; at which four different spin phases coexisee
Fig. 1).2* Two of these phases, | and Il, were identified as
having the same incommensurate ordering wave végtor.
Suggestion of the multicritical point is also supported by the
measurement of all phase boundaries on a single sample.
Incommensurate spin helix in RbMnBat zero field has FIG. 1. The phase diagram of RbMnBfor magnetic fields
been attributed by a number of authtt$o a small uniform  lying in the basal plane. Open and solid squares are experimental
orthorhombic distortion of the underlying hexagonal latticedata from Refs. 9 and 12, respectively; solid lines are theoretical
which yields two nonequivalent exchange bonds in the basalurves. The paramagnetic phase is denote® by
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Il. MODEL
J —7 The Hamiltonian of theXY spin model on a stacked tri-
angular lattice subject to a orthorhombic distortion is given

by

H=32 § S+ ScS§+) 2 Sy -2 H-S,
(i.j) (k1) (m,n) i
D
Jj is the interplane exchange coupling, and bonds corre-
sponding toJ and J’ are shown in Fig. 2. All exchange

FIG. 2. Schematic structure of in-plane spin bonds in the rowconstants are antiferromagnetic for RobMBrThe ground
model. state of the system &1 =0 is a spin helix

of structural transitions? show the same triad of magnetic Si=ReSexp(ik 1) ]=lhcogk-ro) +lsin(k-rp). (2
peaks around (1/3,1/3,1) &t=0 as in the high-field phase For undistorted hexagonal lattice)€J") spins form the

IV. Since additional transitions in magnetic field are absen€ommensurate triangular structure described by the wave
for KNiCl 5, this observation proves that the details of thevectorQ=(4/3,0,7) and circular polarization of the com-

magnetic order as seen from Bragg patt&rase not crucial  Plex amplitudeS= 1, +ily: I3[ =I5, 11L1,. Adjacent spins

for both the appearance of incommensurate spin spiral an@" different planes are antiparallel in this structure, while at
the unique phase diagram of RbMnBr the same plane they are directed at 120° to each other.

In order to verify which type of spin bond deformation is An orthorhombic deformation of the lattice shown in Fig.

responsible for the experimental multiphase diagram, wg partially lifts frustration on an elementary plaquette and

study in this paper the whold-T diagram of the row model 120 conflguratlon. of spins becomes unstable. Minimizing

. . : exchange energy ifil) with respect to the wave vectd,
using the phenomenological Landau-type theory. This ap- : =

. L . one finds aH =0:
proach gives qualitatively the same phase diagram as ob-
served for RbMnBg. Four different ordered phases of the cok,/2=—J'/2J. 3
row model are combined in Fig. 3. They include two Iinea_rly_rhus the ground state is an incommensurate spin helix
polarized phases and two phases with elliptic polarization, (0] 6,\ ating in the direction of rows. If, however, the relative
one phase in each pair being incommensurate and the oth fopagating : o ’
ifference  of two in-plane exchange constants

commensurate. Furthermore, the correct temperature depeg-: (3'13—1) is small, the spin configuration has locally tri-

dences of critical fields in the vicinity of the etempera- angular structure with the vector pai, (1,) rotating uni-

ture Ty are recovered in our treatment. formly from point to point by the anglee=gq.-r,
q=[(2/y/3)8,0,0]. In the continuum limit this modulation of
the 120° spin structure appears due to the Lifshitz invariant
compatible with the reduced symmetry of the latfice:

3 d
_\/__‘]582_(‘0_
2 dx

4

Ill. LANDAU THEORY

K

We use the Landau-type approach in our study of the
phase diagram of the modédl). This mean-field approach is
qualitatively correct for spin systems in three dimensions. In
H fact, the Monte Carlo simulations for temperature depen-
dences of critical fields of fully frustrated model’'E=J)
gave a very small deviation from the square-root law ob-
tained in the Landau-type theofy Such phenomenological
symmetry consideration was successfully used earlier to ex-
-_— — plain magnetic phase diagrams of the easy-axis and the easy-
plane antiferromagnets CsNigClknd CsMnBg,??? which
have perfect stacked triangular lattices.

III v A. Free-energy functional

We begin derivation of the free-energy functional with the
FIG. 3. Four magnetically ordered phases of the row model incase of a fully frustrated triangular antiferromagnet. The

magnetic field. Arrows represent spins for the phase | and antifercomplex Fourier amplitud8in Eq. (2) fulfills the role of the
romagnetic vectors of adjacent chains in the other cases. order parameter for this system. Its modulus becomes non-
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zero atT<Ty, while magnetic field changes the type of Let us consider now modifications to the Landau func-
polarization. The free-energy densify is a function ofS, tional (5) which are connected with the lower symmetry of
which should be invariant with respect to spin rotations, lat-the crystal lattice in the row model. If the distortion of ex-
tice translations[S— Sexp(w/3)], and lattice rotations change bonds is small, the ground state corresponds to an
(S—S*). An expansion of in powers of the order param- incommensurate spin helix with a wave vector slightly dif-

eter yields ferent fromQ. This assumption is apparently applied to Rb-
5 5 MnBr3, as its helix angle was estimated to be about
F=a(T-T\)(S*-9)+B1(S* -9+ B,|S 9 128° 712 |n this case the continuum approximation can be

2 2_1 3 used, which treats the difference between the real wave vec-
+x1H*(S" - S)+ x2|H-S*=27((S-S)°+c.c]. (5 tor and the vecto as an extra slow space modulation of the
In contrast to the previous analysés?we have excluded order parameteS(r). An instability of the commensurate
from the free-energy functional uniform magnetization, triangular structure is described in this approximation by the
which is a noncritical mode, and write instead invariants offollowing Lifshitz invariant:
the order parameter with the magnetic field. The sixth-order
term included in(5) was introduced by Zhu and Walk&rlt
serves to lift the remaining degeneracy of the order param-
eter in cases specified below. Note, that the form of this
invariant is determined by the relatiolQ6=G, G being a  where the phenomenological const&nis given in the clas-
reciprocal lattice vector. Other possible sixth-order terms arsical limit by (4). The presence of such an invariant is ex-
unimportant for our purpose, since they only renormalizeplained by breaking of a small symmetry group of the order-
critical fields[as, e.g., §-S*)3] or yield a zero-field anisot- ing wave vector fromC; to C; under orthorhombic
ropy in the basal plan®,which is absent on experiment.  deformation of the hexagonal lattice. To ensure stability of
The type of the spin ordering at zero field is determinedthe system, the Lifshitz invariant should be combined with
by the second fourth-order term %), which one should the usual spin rigidity term quadratic in gradientgs,S/?,
take with a positive coefficiens,>0 to reproduce the heli- A>0. Finally, we obtain the following energy functional ap-
cal polarization of the spin wav). propriate to study phase transformations of the row model

IBi(S* - 0,S—S- 0,S%),

F=a(T-Ty)(12+13)+ B1(13+13)%+ B[ (12=13)2+ 4(11- 1) 21+ x1H2(12+12) + xo[ (H- 1) %+ (H-1,)?]
+AL(Oed1) 2+ (0 2) 21+ B(ly- dyla— 13- d,1) — 39 (1, +i12) 2+ c.c. (6)

Signs of different phenomenological constani8,>0, whereB;,= 81+ B>. Energy functionals of such a form are
x1<0, x>0, y>0, we chose the same as for fully frus- typical for weakly incommensurate systef<® Equations
trated triangular antiferromagnet CsMnB?? The zero-field  on the order parameter obtained by minimizing Eg).with
phase of (6) is a modulated triangular spin structure respect td and¢ cannot be solved analytically. In our case,
Sx (e, +i6))exd —ie(r)], whereg, ande, are two perpen- however, the anisotropy term, which favors commensurate
dicular unit vectors in the basal plane apdr) = (B/2A)X. states, is of the sixth order in i.e., nearTy it has an addi-
The smallness of the phase variation between two adjacetibnal smallness compared to other homogeneous terms.
sites B/2A)<1 is necessary to justify a validity of the con- Therefore, we can use a so-called constant amplitude
tinuum approximation. Accordingly, we neglect a small shift approximatiort*?°Its simplifying assumption is that the am-
of the Neel temperature orsT,.=B?/4aA resulting from plitude! is constant in space and should be found from the
such long-wave modulations. Note thg§ does not split for  first three terms irf7), while the space varying phagg€x) is
this type of bond deformation. determined by the last three terms.

The factor beford? changes sign at the critical field

B. Linearly polarized phases

: . . L HN(T)=[a(T=Ty)/|x2l1"2 8
In this subsection we consider a sequence of transitions

which occurs in high magnetic fieldbetween phaseR and  after which the amplitudé is finite:
| and phases | and IV in Fig.)1Basal plane magnetic field
creates anisotropy for spins described fyH-S|2. This 12=[a(Tn—T) +|x1|H?1/2B1,. ©)
term favors linear polarization & with polarization vector
directed perpendicular to the field foy,>0. Choosing
e,L H, we have at high fields the order parameter of the for
S=1leexp(—ie) with the free-energy density written as

Here we have assumed thpi<O in accordance with the
experiment. In the vicinity of the critical linély(T), the
Msix-order anisotropy is small compared to gradient terms and
¢(X)=(B/2A)x. The order parameter in phase | is linearly
_ _ 2 212 4 2 2 2 polarized perpendicular tél, while spins form an incom-
F=a(T=TolH xaHAT BT+ A7+ Al%(dxe) mensurate fan structure oscillating in a finite angle around
—BI%(d9,¢) — vl®cos6ep, (7) H. As temperature decreases frdg(H), the spatial varia-
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tion of ¢(x) in state | becomes more complicated due tosoliton lattice. According to Ref. 26, the oscillatory behavior
increasing anisotropy and is described by the ellipticof | and ¢ occurs if the lock-in transition is close enough to
amplitude®® Near the I-IV phase boundagy(x) is locked to  Ty(H):
a set of commensurate values=(1/3)7n (for y>0) in
wide regions of space separated by thin domain walls or ST< 6T =(B%2aA)(3m+1)2~23 6T}. 12
solitons. Interaction between walls is exponentially small )
and repulsive at large distances. Therefore, thé>ecause of the large prefactor ifl2), one can have
incommensurate-commensurate transition can be studiedlic<#T=0dT¢. This means that the transition to the com-
within a single soliton picture. For a functional of the generalMensurate state is only weakly first order and the critical
form temperature can still be calculated by using the single soliton
picture (10).
F=X((9X<p)2—Y(0xgo)—Zcos&p,
C. Elliptically polarized phases

a single domain wall situated at=0 is given b
g g y The linear polarization of the order parameter is energeti-

@o(X) = 2arctafiexp(2Zx/X)]. cally unfavorable at low fields where the fourth-order term
|S- S|? becomes important. The elliptic states Il and Ill cor-
Its energy respond to the following order parameter:
Epw=2\2XZ- 17y S=(le;+imey)exd —ie(r)], (13
vanishes indicating an instability of the commensurate stat®ith space varying and constant phaserespectively. The
frustrated modet?%3
XZ/Y2= 72/32. (10) Following the constant amplitude approximation we sub-

o _ _ stitute the order parametét3) into the energy functiondb)
Substituting expressions fof, Y, andZ from (7) into (10)  and neglect gradients df and m. Transition to an elliptic
we find the transition field between phases | and IV: phase is determined by the homogeneous second- and fourth-
order terms

a(T+8T-Ty)|¥2
Hiv(D=|— 1| ° F' = a(T—Tp) (124 m2) + B1(12+ m?)2+ By(12— m?)?
+ x1H2(12+m?) + x,H?m?, (14
7B
5T=ﬂ (1)  which are independent of the phage Therefore, phase

VBAya boundaries between two incommensurate states | and Il and

The amplitudd is given in both phases by the same formulatwo commensurate states Ill and IV are given in this approxi-

) mation by the same formula

The linearly polarized commensurate phase IV wlith a(Ty=T) ¥ B
#0,1,=0 was identified as a high-field phase of the planar HoTD=|—— | xa===2xo—lxal. (15
antiferromagnet CsMnBr.?>2 The temperature shif6T of X3 2p2

the lock-in transition fromTy(H) is much larger than the After the second-order transition bt=H_, the amplitudes
neglected renormalization of the BletemperaturesT,, | andm are

which is quadratic irB. To avoid misungierstanding, we em-

phasize that the sixth-order terfjS-S)°+c.c] in (5) and H?

the resulting anisotropy ir{7) derived previously for the 12=m’+ );2/3 , m2=4X7B(H§_H2)- (16)

commensurate spin-wave are nonvanishing in the incom- 2 !

mensurate state |, because Hitt Hy(T) this state corre- The curveH(T) crosses with the phase boundaty,, (T)

sponds to a multi structure with the admixed commensu- at some point in thé1-T phase diagram. We show now that

rate harmonié? an additional line of phase transitions between the elliptic
In the used approximation the phase transition betweegtates Il and Ill emerges from the same point.

incommensurate and commensurate states is continuous with Neglecting spatial variations of the amplitudeand m,

standard logarithmic singularities for various physicalthe gradient and anisotropy energies for the order parameter

quantities? On the other hand, experiments indicate a dis-(13) are expressed as

continuous first-order transition in RbMnBr~? This dis-

crepancy can be explained by going beyond the constant F"=A(12+m?) (9x¢)* = B(12+m?) (dx¢)

ampli_tude approximat_ion_. If the amplit_udeis alloweq to — (12— m?)3cos6p. (17)

vary in space, a qualitatively new oscillatory behaviorl of

and ¢ far from domain wall is found in a certain range of Making use of(16), one gets for the anisotropy of the elliptic

parameteré® As a consequence, the asymptotic interactionphase in magnetic fiele,.» — H®cos6p. The anisotropy en-

of two solitons can be repulsive or attractive depending orergy of such a form derived from a microscopic consider-

the distance between them. The system will then prefer ation was used previously to explain the low-field phase tran-

discontinuous transition from the commensurate phase to sition at T=0° Applying the condition of the lock-in
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transition in the single soliton pictur@0) to the functional IV. CONCLUSIONS
(17) with | andm specified by(16), we obtain the following
equation, which defines position of the phase boundar)(h

Hy,—m(T) between elliptic incommensurate and commensu
rate phases,

The phenomenological analysis of ordered spin states of
e row model in magnetic field shows an unexpectedly rich
phase diagram. This model explains the complicated mag-
netic diagram of the triangular lattice antiferromagnet

(7B B,)2 2B,x RbMnBr; with a multicritical point formed by an intersec-
6=—22 H24+ 202 3[H§(T)—H2] . (18  tion of two critical lines and two lines of first-order transi-
2Ayx; Bix2 tions. Two incommensurate phases of RbMgBaving the

This equation is solved numerically below using estimate§ommon wave vector are identified to differ in their polar-
for the phenomenological constants. Since at the phagéation: linear at high fields and elliptic at low fields. The
boundaryH(T) the functionalF” transforms into the corre- commensurate phases of the row model possess the same
sponding functional of the linear phas@®, the solution of ~Wave vector as sspln states of the fully _frustrated antiferro-
Eq. (18 under additional conditiorH=H(T) coincides Magnet CsMnBy." Though more complicated Bragg pat-
with (11). Thus, we conclude that a multicritical point terns are seen on the experimierif (because of the un-
formed by the two second-order transition lines and two lineknown, probably, multidomain structure of the crystal lattice
of the lock-in transitions appears on theT diagram of the N RbMnBrs), our analysis suggests that the primary effect
row model. Strong enough incommensurability can drive the?n the magnetic phase diagram is from an orthorhombic dis-
lock-in transitions into the first order, which agrees with thetortion of exchange bonds. The qualitative role of the mag-
experimental observations for RboMnBr netic field is to support linear polarization of the order pa-
For calculation of thed ., (T) line we first fit the experi- fameter. Therefore, the sixth-order term, which is of the
mental boundariei\(T), H,(T), andH(T) by expres- exchange origin, becomes anisotropic in magnetic field and
sions(8), (11), and(15) and obtairTy=8.52 K, sT=0.75 K, favors commensurate states. However, the lock-in of the

¥1=0.04, y;=0.11(susceptibilities are measured in units of Waveé Vvectors occurs only at intermediate field region,
«). The multicritical point is situated for this set of constants Whereas both low-field and high-field phases are incommen-
atT* =7.96 K,H* =2.23 T. Then, the only unknown param- surate. Note that such reentrant appearance of the incommen-

eter in Eq.(18) is the ratioB,/B,. The choices,= 3, gives surate phase should take place evemal near the satura-

a reasonable behavior of the fourth phase boundary in thilon field. From the Qiscussion Of. Ref. 27 an_d the order-
vicinity of the multicritical point(Fig. 1). parameter analysis given above, it is also evident that the

Since we kept only the leading terms in temperature deg:ritical behaviors on the second-order transition lines are the

pendences of critical fields on the small parameteS@Me as for CsMnByr. Namely, theHy(T) boundary is of
(1—T/T,), the presented Landau-type theory accounts welihe XY u.nlversahty'c'las's, while thel(T) line corresponds
only the region of the phase diagram nday. Better agree- (© the Ising-type criticality.

ment at low temperatures may be achieved introducing addi-
tional terms into the functional5), e.g., 6-S*)% or
H?|H-S|2.2122 We do not apply this procedure because it The author thanks O. A. Petrenko for fruitful discussions.
has, in contrast to our consideration, a large number of adHe is grateful to B. Lthi and to the Physikalisches Institut,
justable parameters and relative importance of differentUniversita Frankfurt am Main, where this work was done,
terms cannot be clarified by comparison to the experiment.for their kind hospitality.
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