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Phase diagram of a planar antiferromagnet on a stacked triangular lattice subject to a uniform orthorhombic
distortion is studied within the Landau approach. This spin system with partially released frustration exhibits
a variety of ordered phases in magnetic field parallel to the basal plane including elliptically and linearly
polarized incommensurate structures. Four magnetically ordered phases coexist at a multicritical point. The
theory is applied to explain the experimental phase diagram of RbMnBr3 and satisfactory agreement for
temperature dependences of critical fields is found.@S0163-1829~96!03526-6#

I. INTRODUCTION

Magnetic ordering phenomena in spin systems with geo-
metrical frustration are a subject of numerous studies. The
simplest model of this type is the Heisenberg antiferromag-
net on a triangular lattice, which has the noncollinear 120°
spin structure as the ground state. An interesting example of
partial lifting of frustration on triangular lattice has been
found amongABX3-type hexagonal antiferromagnets. A
number of compounds from this family undergoes structural
transitions in their stacked triangular lattice of magnetic ions
before spin ordering occurs.1 This leads to distortion of some
spin bonds and partially released frustration on an elemen-
tary triangular plaquette. One of the intriguing possibilities
addressed in this connection is the splitting of ordering tran-
sition for chiral and continuous degrees of freedom under
appropriate lattice distortion.2 Theoretical studies of such an-
tiferromagnets reveal also many new otherwise unstable spin
phases both in a zero2–5 and in a finite6 field.

Magnetic properties of RbMnBr3 are the most compli-
cated among other triangular antiferromagnets with partially
released frustration. Earlier neutron diffraction
measurements7 have found an incommensurate helical spin
structure with a turn angle different from 120° at zero field.
An additional low-field transition for magnetic fields directed
within the basal plane, not observed in the fully frustrated
compound CsMnBr3 ,

8 has been detected in RbMnBr3 by an
anomaly in the magnetization curve9 and by a surprising be-
havior of the lowest branch of resonance spectrum.10 Further
neutron scattering experiments11–13 confirmed this transition
and resolved more complicated structure of Bragg reflections
which include two triads of magnetic peaks near to~1/3,1/
3,1! at H50.12 Comparison of magnetization and neutron
data obtained on different samples provides strong support in
favor of a multicritical point in the magnetic diagram of
RbMnBr3 at which four different spin phases coexist~see
Fig. 1!.14 Two of these phases, I and II, were identified as
having the same incommensurate ordering wave vector.12

Suggestion of the multicritical point is also supported by the
measurement of all phase boundaries on a single sample.15

Incommensurate spin helix in RbMnBr3 at zero field has
been attributed by a number of authors3,4 to a small uniform
orthorhombic distortion of the underlying hexagonal lattice
which yields two nonequivalent exchange bonds in the basal

plane: inside horizontal rows and in between as shown in
Fig. 2. It was shown later that the row model also explains
the low-field transition atT50 as a lock-in transition from
the incommensurate spin helix to the commensurate 120°
structure.6

This simple assumption about the symmetry of the lattice
of RbMnBr3 at low temperatures confirmed by the birefrin-
gence measurements of Katoet al.16 was questioned in the
interpretation of neutron data.12 In addition, a model involv-
ing an exotic three-site biquadratic exchange has been re-
cently proposed as an alternative explanation of the spin
structure.17 Existence of such interactions in RbMnBr3 is,
however, quite doubtful. The conclusion of Ref. 17 that the
magnetic scattering data12 can only be explained by the
model parameters corresponding to the phase boundary be-
tween different states also reduces probability of this sce-
nario.

Recent neutron scattering measurements18 performed on a
sister compound KNiCl3 , which has an analogous sequence

FIG. 1. The phase diagram of RbMnBr3 for magnetic fields
lying in the basal plane. Open and solid squares are experimental
data from Refs. 9 and 12, respectively; solid lines are theoretical
curves. The paramagnetic phase is denoted byP.
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of structural transitions,19 show the same triad of magnetic
peaks around (1/3,1/3,1) atH50 as in the high-field phase
IV. Since additional transitions in magnetic field are absent
for KNiCl 3 , this observation proves that the details of the
magnetic order as seen from Bragg patterns12 are not crucial
for both the appearance of incommensurate spin spiral and
the unique phase diagram of RbMnBr3 .

In order to verify which type of spin bond deformation is
responsible for the experimental multiphase diagram, we
study in this paper the wholeH-T diagram of the row model
using the phenomenological Landau-type theory. This ap-
proach gives qualitatively the same phase diagram as ob-
served for RbMnBr3 . Four different ordered phases of the
row model are combined in Fig. 3. They include two linearly
polarized phases and two phases with elliptic polarization,
one phase in each pair being incommensurate and the other
commensurate. Furthermore, the correct temperature depen-
dences of critical fields in the vicinity of the Ne´el tempera-
tureTN are recovered in our treatment.

II. MODEL

The Hamiltonian of theXY spin model on a stacked tri-
angular lattice subject to a orthorhombic distortion is given
by

Ĥ5Ji(
^ i , j &

Si•Sj1J(
^k,l &

Sk•Sl1J8 (
^m,n&

Sm•Sn2(
i
H•Si ,

~1!

Ji is the interplane exchange coupling, and bonds corre-
sponding toJ and J8 are shown in Fig. 2. All exchange
constants are antiferromagnetic for RbMnBr3 . The ground
state of the system atH50 is a spin helix

Sn5Re@Sexp~ ik–rn!#5 l1cos~k–rn!1 l2sin~k–rn!. ~2!

For undistorted hexagonal lattice (J5J8) spins form the
commensurate triangular structure described by the wave
vectorQ5(4p/3,0,p) and circular polarization of the com-
plex amplitudeS5 l11 i l2: u l1u5u l2u, l1' l2 . Adjacent spins
on different planes are antiparallel in this structure, while at
the same plane they are directed at 120° to each other.

An orthorhombic deformation of the lattice shown in Fig.
2 partially lifts frustration on an elementary plaquette and
120° configuration of spins becomes unstable. Minimizing
exchange energy in~1! with respect to the wave vectork,
one finds atH50:

coskx/252J8/2J. ~3!

Thus, the ground state is an incommensurate spin helix
propagating in the direction of rows. If, however, the relative
difference of two in-plane exchange constants
d5(J8/J21) is small, the spin configuration has locally tri-
angular structure with the vector pair (l1 ,l2) rotating uni-
formly from point to point by the anglew5q•r ,
q5@(2/A3)d,0,0#. In the continuum limit this modulation of
the 120° spin structure appears due to the Lifshitz invariant
compatible with the reduced symmetry of the lattice:6

2
A3
2
JdS2

dw

dx
. ~4!

III. LANDAU THEORY

We use the Landau-type approach in our study of the
phase diagram of the model~1!. This mean-field approach is
qualitatively correct for spin systems in three dimensions. In
fact, the Monte Carlo simulations for temperature depen-
dences of critical fields of fully frustrated model (J85J)
gave a very small deviation from the square-root law ob-
tained in the Landau-type theory.20 Such phenomenological
symmetry consideration was successfully used earlier to ex-
plain magnetic phase diagrams of the easy-axis and the easy-
plane antiferromagnets CsNiCl3 and CsMnBr3 ,

21,22 which
have perfect stacked triangular lattices.

A. Free-energy functional

We begin derivation of the free-energy functional with the
case of a fully frustrated triangular antiferromagnet. The
complex Fourier amplitudeS in Eq. ~2! fulfills the role of the
order parameter for this system. Its modulus becomes non-

FIG. 2. Schematic structure of in-plane spin bonds in the row
model.

FIG. 3. Four magnetically ordered phases of the row model in
magnetic field. Arrows represent spins for the phase I and antifer-
romagnetic vectors of adjacent chains in the other cases.
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zero atT,TN , while magnetic field changes the type of
polarization. The free-energy densityF is a function ofS,
which should be invariant with respect to spin rotations, lat-
tice translations @S→Sexp(ip/3)#, and lattice rotations
(S→S* ). An expansion ofF in powers of the order param-
eter yields

F5a~T2TN!~S* •S!1b1~S* •S!21b2uS•Su2

1x1H
2~S* •S!1x2uH•Su22 1

2g@~S•S!31c.c.#. ~5!

In contrast to the previous analyses,21,22 we have excluded
from the free-energy functional uniform magnetization,
which is a noncritical mode, and write instead invariants of
the order parameter with the magnetic field. The sixth-order
term included in~5! was introduced by Zhu and Walker.21 It
serves to lift the remaining degeneracy of the order param-
eter in cases specified below. Note, that the form of this
invariant is determined by the relation 6Q5G, G being a
reciprocal lattice vector. Other possible sixth-order terms are
unimportant for our purpose, since they only renormalize
critical fields @as, e.g., (S–S* )3# or yield a zero-field anisot-
ropy in the basal plane,21 which is absent on experiment.

The type of the spin ordering at zero field is determined
by the second fourth-order term in~5!, which one should
take with a positive coefficientb2.0 to reproduce the heli-
cal polarization of the spin wave~2!.

Let us consider now modifications to the Landau func-
tional ~5! which are connected with the lower symmetry of
the crystal lattice in the row model. If the distortion of ex-
change bonds is small, the ground state corresponds to an
incommensurate spin helix with a wave vector slightly dif-
ferent fromQ. This assumption is apparently applied to Rb-
MnBr3 , as its helix angle was estimated to be about
128°.7,12 In this case the continuum approximation can be
used, which treats the difference between the real wave vec-
tor and the vectorQ as an extra slow space modulation of the
order parameterS(r ). An instability of the commensurate
triangular structure is described in this approximation by the
following Lifshitz invariant:

1
2Bi~S* •]xS2S•]xS* !,

where the phenomenological constantB is given in the clas-
sical limit by ~4!. The presence of such an invariant is ex-
plained by breaking of a small symmetry group of the order-
ing wave vector fromC3 to C1 under orthorhombic
deformation of the hexagonal lattice. To ensure stability of
the system, the Lifshitz invariant should be combined with
the usual spin rigidity term quadratic in gradients:Au]xSu2,
A.0. Finally, we obtain the following energy functional ap-
propriate to study phase transformations of the row model

F5a~T2TN!~ l 1
21 l 2

2!1b1~ l 1
21 l 2

2!21b2@~ l 1
22 l 2

2!214~ l1• l2!
2#1x1H

2~ l 1
21 l 2

2!1x2@~H• l1!
21~H• l2!

2#

1A@~]xl1!
21~]xl2!

2#1B~ l1•]xl22 l2•]xl1!2 1
2g$@~ l11 i l2!

2#31c.c.%. ~6!

Signs of different phenomenological constants,b2.0,
x1,0, x2.0, g.0, we chose the same as for fully frus-
trated triangular antiferromagnet CsMnBr3 .

22 The zero-field
phase of ~6! is a modulated triangular spin structure
S}(ê11 i ê2)exp@2iw(r )#, whereê1 and ê2 are two perpen-
dicular unit vectors in the basal plane andw(r )5(B/2A)x.
The smallness of the phase variation between two adjacent
sites (B/2A)!1 is necessary to justify a validity of the con-
tinuum approximation. Accordingly, we neglect a small shift
of the Néel temperature ondTic5B2/4aA resulting from
such long-wave modulations. Note thatTN does not split for
this type of bond deformation.

B. Linearly polarized phases

In this subsection we consider a sequence of transitions
which occurs in high magnetic fields~between phasesP and
I and phases I and IV in Fig. 1!. Basal plane magnetic field
creates anisotropy for spins described byx2uH•Su2. This
term favors linear polarization ofS with polarization vector
directed perpendicular to the field forx2.0. Choosing
ê1'H, we have at high fields the order parameter of the form
S5 l ê1exp(2iw) with the free-energy density written as

F5a~T2TN!l 21x1H
2l 21b12l

41A~]xl !
21Al2~]xw!2

2Bl2~]xw!2g l 6cos6w, ~7!

whereb125b11b2 . Energy functionals of such a form are
typical for weakly incommensurate systems.24,25 Equations
on the order parameter obtained by minimizing Eq.~7! with
respect tol andw cannot be solved analytically. In our case,
however, the anisotropy term, which favors commensurate
states, is of the sixth order inl , i.e., nearTN it has an addi-
tional smallness compared to other homogeneous terms.
Therefore, we can use a so-called constant amplitude
approximation.24,25Its simplifying assumption is that the am-
plitude l is constant in space and should be found from the
first three terms in~7!, while the space varying phasew(x) is
determined by the last three terms.

The factor beforel 2 changes sign at the critical field

HN~T!5@a~T2TN!/ux1u#1/2, ~8!

after which the amplitudel is finite:

l 25@a~TN2T!1ux1uH2#/2b12. ~9!

Here we have assumed thatx1,0 in accordance with the
experiment. In the vicinity of the critical lineHN(T), the
six-order anisotropy is small compared to gradient terms and
w(x)5(B/2A)x. The order parameter in phase I is linearly
polarized perpendicular toH, while spins form an incom-
mensurate fan structure oscillating in a finite angle around
H. As temperature decreases fromTN(H), the spatial varia-
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tion of w(x) in state I becomes more complicated due to
increasing anisotropy and is described by the elliptic
amplitude.24 Near the I-IV phase boundaryw(x) is locked to
a set of commensurate valueswn5(1/3)pn ~for g.0) in
wide regions of space separated by thin domain walls or
solitons. Interaction between walls is exponentially small
and repulsive at large distances. Therefore, the
incommensurate-commensurate transition can be studied
within a single soliton picture. For a functional of the general
form

F5X~]xw!22Y~]xw!2Zcos6w,

a single domain wall situated atx50 is given by

w0~x!5 2
3 arctan@exp~2Zx/X!#.

Its energy

EDW5 4
3A2XZ2 1

3pY

vanishes indicating an instability of the commensurate state
for the following critical relation of parameters:

XZ/Y25p2/32. ~10!

Substituting expressions forX, Y, andZ from ~7! into ~10!
we find the transition field between phases I and IV:

H I-IV ~T!5Fa~T1dT2TN!

ux1u
G1/2,

dT5
pBb12

A8Aga
. ~11!

The amplitudel is given in both phases by the same formula
~9!.

The linearly polarized commensurate phase IV withl 1
Þ0, l 250 was identified as a high-field phase of the planar
antiferromagnet CsMnBr3 .

22,23 The temperature shiftdT of
the lock-in transition fromTN(H) is much larger than the
neglected renormalization of the Ne´el temperaturedTic ,
which is quadratic inB. To avoid misunderstanding, we em-
phasize that the sixth-order term@(S–S)31c.c.# in ~5! and
the resulting anisotropy in~7! derived previously for the
commensurate spin-wave are nonvanishing in the incom-
mensurate state I, because atHÞHN(T) this state corre-
sponds to a multi-k structure with the admixed commensu-
rate harmonic.24

In the used approximation the phase transition between
incommensurate and commensurate states is continuous with
standard logarithmic singularities for various physical
quantities.24 On the other hand, experiments indicate a dis-
continuous first-order transition in RbMnBr3 .

9–12 This dis-
crepancy can be explained by going beyond the constant
amplitude approximation. If the amplitudel is allowed to
vary in space, a qualitatively new oscillatory behavior ofl
andw far from domain wall is found in a certain range of
parameters.26 As a consequence, the asymptotic interaction
of two solitons can be repulsive or attractive depending on
the distance between them. The system will then prefer a
discontinuous transition from the commensurate phase to a

soliton lattice. According to Ref. 26, the oscillatory behavior
of l andw occurs if the lock-in transition is close enough to
TN(H):

dT,dTcr5~B2/2aA!~ 3
4p11!2'23dTic . ~12!

Because of the large prefactor in~12!, one can have
dTic!dT&dTcr . This means that the transition to the com-
mensurate state is only weakly first order and the critical
temperature can still be calculated by using the single soliton
picture ~10!.

C. Elliptically polarized phases

The linear polarization of the order parameter is energeti-
cally unfavorable at low fields where the fourth-order term
uS•Su2 becomes important. The elliptic states II and III cor-
respond to the following order parameter:

S5~ l ê11 imê2!exp@2 iw~r !#, ~13!

with space varying and constant phasew, respectively. The
commensurate phase III is the low-field state of the fully
frustrated model.22,23

Following the constant amplitude approximation we sub-
stitute the order parameter~13! into the energy functional~6!
and neglect gradients ofl andm. Transition to an elliptic
phase is determined by the homogeneous second- and fourth-
order terms

F85a~T2TN!~ l 21m2!1b1~ l
21m2!21b2~ l

22m2!2

1x1H
2~ l 21m2!1x2H

2m2, ~14!

which are independent of the phasew. Therefore, phase
boundaries between two incommensurate states I and II and
two commensurate states III and IV are given in this approxi-
mation by the same formula

Hc~T!5Fa~TN2T!

x3
G1/2, x35

b12

2b2
x22ux1u. ~15!

After the second-order transition atH5Hc , the amplitudes
l andm are

l 25m21
x2H

2

4b2
, m25

x3

4b1
~Hc

22H2!. ~16!

The curveHc(T) crosses with the phase boundaryH I-IV (T)
at some point in theH-T phase diagram. We show now that
an additional line of phase transitions between the elliptic
states II and III emerges from the same point.

Neglecting spatial variations of the amplitudesl andm,
the gradient and anisotropy energies for the order parameter
~13! are expressed as

F95A~ l 21m2!~]xw!22B~ l 21m2!~]xw!

2g~ l 22m2!3cos6w. ~17!

Making use of~16!, one gets for the anisotropy of the elliptic
phase in magnetic fieldEan}2H6cos6w. The anisotropy en-
ergy of such a form derived from a microscopic consider-
ation was used previously to explain the low-field phase tran-
sition at T50.6 Applying the condition of the lock-in
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transition in the single soliton picture~10! to the functional
~17! with l andm specified by~16!, we obtain the following
equation, which defines position of the phase boundary
H II2III (T) between elliptic incommensurate and commensu-
rate phases,

H65
~pBb2!

2

2Agx2
2 HH21

2b2x3

b1x2
@Hc

2~T!2H2#J . ~18!

This equation is solved numerically below using estimates
for the phenomenological constants. Since at the phase
boundaryHc(T) the functionalF9 transforms into the corre-
sponding functional of the linear phases~7!, the solution of
Eq. ~18! under additional conditionH5Hc(T) coincides
with ~11!. Thus, we conclude that a multicritical point
formed by the two second-order transition lines and two lines
of the lock-in transitions appears on theH-T diagram of the
row model. Strong enough incommensurability can drive the
lock-in transitions into the first order, which agrees with the
experimental observations for RbMnBr3 .

For calculation of theH II-III (T) line we first fit the experi-
mental boundariesHN(T), H I-IV (T), andHc(T) by expres-
sions~8!, ~11!, and~15! and obtainTN58.52 K,dT50.75 K,
x150.04,x350.11~susceptibilities are measured in units of
a). The multicritical point is situated for this set of constants
atT*57.96 K,H*52.23 T. Then, the only unknown param-
eter in Eq.~18! is the ratiob2 /b1 . The choiceb25b1 gives
a reasonable behavior of the fourth phase boundary in the
vicinity of the multicritical point~Fig. 1!.

Since we kept only the leading terms in temperature de-
pendences of critical fields on the small parameter
(12T/TN), the presented Landau-type theory accounts well
only the region of the phase diagram nearTN . Better agree-
ment at low temperatures may be achieved introducing addi-
tional terms into the functional~5!, e.g., (S–S* )3 or
H2uH–Su2.21,22 We do not apply this procedure because it
has, in contrast to our consideration, a large number of ad-
justable parameters and relative importance of different
terms cannot be clarified by comparison to the experiment.

IV. CONCLUSIONS

The phenomenological analysis of ordered spin states of
the row model in magnetic field shows an unexpectedly rich
phase diagram. This model explains the complicated mag-
netic diagram of the triangular lattice antiferromagnet
RbMnBr3 with a multicritical point formed by an intersec-
tion of two critical lines and two lines of first-order transi-
tions. Two incommensurate phases of RbMnBr3 having the
common wave vector are identified to differ in their polar-
ization: linear at high fields and elliptic at low fields. The
commensurate phases of the row model possess the same
wave vector as spin states of the fully frustrated antiferro-
magnet CsMnBr3 .

8 Though more complicated Bragg pat-
terns are seen on the experiment11,12 ~because of the un-
known, probably, multidomain structure of the crystal lattice
in RbMnBr3), our analysis suggests that the primary effect
on the magnetic phase diagram is from an orthorhombic dis-
tortion of exchange bonds. The qualitative role of the mag-
netic field is to support linear polarization of the order pa-
rameter. Therefore, the sixth-order term, which is of the
exchange origin, becomes anisotropic in magnetic field and
favors commensurate states. However, the lock-in of the
wave vectors occurs only at intermediate field region,
whereas both low-field and high-field phases are incommen-
surate. Note that such reentrant appearance of the incommen-
surate phase should take place even atT50 near the satura-
tion field. From the discussion of Ref. 27 and the order-
parameter analysis given above, it is also evident that the
critical behaviors on the second-order transition lines are the
same as for CsMnBr3 . Namely, theHN(T) boundary is of
theXY universality class, while theHc(T) line corresponds
to the Ising-type criticality.
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