
Flux penetration into flat superconductors of arbitrary shape: Patterns of magnetic
and electric fields and current

Th. Schuster, H. Kuhn, and E. H. Brandt
Max-Planck-Institut fu¨r Metallforschung, Institut fu¨r Physik, Postfach 800665, D-70506 Stuttgart, Germany

~Received 14 February 1996; revised manuscript received 29 March 1996!

The penetration of magnetic flux into flat type-II superconductors of various shapes in a perpendicular
magnetic field is investigated in detail. The magnetic field distribution at the sample surface is observed by the
magneto-optical Faraday effect and calculated from first principles. The investigations are performed on
DyBa2Cu3O72d and YBa2Cu3O72d samples which were shaped into a cross or an indented rectangle by a
laser-cutting technique. Magnetic and electric field and current distributions are calculated from Maxwell’s
equations treating the superconductor as a conductor with a highly nonlinear current-voltage law and zero
reversible magnetization. A large concentration of magnetic flux and electric field and a high flux-line velocity
occur at concave sample corners. This results from the fact that the flux lines can penetrate into regions of the
sample which are bounded by the extensions of the sample edges only at these points. This large electric field
and related energy dissipation are particularly relevant for superconducting tapes, in which ‘‘sausaging’’
effects~variations of the filament cross section! reduce their performance as an ideal conductor. Huge jumps of
the electric field occur where the current flow changes from a straight to a circular path. This jump diverges as
one over the distance to the corner at sharp indents or concave corners.@S0163-1829~96!04930-2#

I. INTRODUCTION

One of the most important features for applications and
theoretical understanding of both conventional and high-
temperature type-II superconductors is the pinning of vorti-
ces at sample inhomogeneities.1,2 One of the parameters
which characterize the pinning behavior is the critical current
density j c at which the vortices depin and start to move
under the influence of the Lorentz force. This vortex drift
induces an electric fieldE which causes a voltage drop along
the specimen. Consequently, at current densitiesj. j c en-
ergy is dissipated and the resistivityr5E/ j becomes finite.
The vortices in high-temperature superconductors~HTSC!
may also depin atj! j c by thermal activation which is char-
acterized by an activation energyU.

The temperature, field, and time dependences of the mag-
netic moment is typically determined fromintegralmeasure-
ments using SQUID~superconducting quantum interference
device!, VSM ~vibrating sample magnetometer!, or torque
magnetometry. Values forj c andU which are averaged over
the sample volume can be derived from such experiments.

However, local investigations of flux distributions in
type-II superconductors by, e.g., Hall-probe measurements
or magneto-optics have shown that the normal component of
the magnetic inductionBz and in many cases alsoj andU
strongly vary with the position. The spatial distribution of
Bz is influenced by the sample shape,3–10 sample
thickness,11,12 macrodefects,13–20 surface and edge
barriers,21–27by spatial variation ofj c ,

26–28 instabilities,29 a
finite lower critical fieldHc1,

30 or the anisotropy ofj c which
may be caused by the Cu-O planes,31–35 in-plane magnetic
fields,36,37 twin boundaries,38–44or columnar defects that are
inclined with respect to the crystalc axis.45,46 The space-
resolved methods mentioned in principle allow the determi-
nation of j c(B,r ) andE( j ,r ) even in inhomogeneous super-

conductors if appropriate evaluation methods are used. The
magneto-optical technique provides a powerful tool to test
these inversion methods and to verify theoretical models.

Flux penetration into type-II superconductors with flux-
line pinning is well described by the Bean model47 and its
extensions1,48–51 when the specimen is an almost infinitely
extended cylinder or slab with constantj c in a parallel mag-
netic field, where demagnetizing effects are negligible. The
introduction of a demagnetizing factor can account for de-
viations from this ideal situation only in the special case of
ellipsoids without pinning. However, single crystalline
HTSC samples are available only as thin films or monocrys-
talline platelets, which are usually investigated in perpen-
dicular magnetic field to obtain larger signals. In this geom-
etry one has to account for large stray-field effects, and the
original Bean model can be applied only to thecritical state
when the sample is completely penetrated by magnetic flux
and the shielding current has reached the critical valuej c in
the entire superconductor.52 Forkl and Kronmu¨ller11,12 suc-
cessfully used the Bean model to describe magneto-optically
observed flux-density profiles at the flat surface of samples
with finite thickness in the critical state. For thepartly pen-
etratedstate the description of flux and current distributions
is much more complicated. A numerical inversion method
was applied to calculate the current distribution in thin cir-
cular disks53 and squares7–9 from measured flux density pro-
files.

Analytic expressions for the static magnetization and for
flux and current profiles during flux penetration and exit are
available for the one-dimensional~1D! perpendicular Bean
model of long strips54–56and circular disks57–59and for thin
strips with a geometric edge barrier.23,60 These 1D theories
of thin long strips and circular disks have recently been ex-
tended to the two-dimensional~2D! problems of thin super-
conductors with square, rectangular or arbitrary shape in a
perpendicular field.61–63
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Recent magneto-optical studies10,26,27,64demonstrated that
the flux penetration and exit and flux creep are well de-
scribed by model calculations using a current-voltage law of
the form E}( j / j c)

n, which conveniently interpolates be-
tween the ohmic regime of thermally activated flux flow
(n 5 1! and the classical Bean model (n@1). HereE is the
electric field and the exponentn is determined by the activa-
tion energyU. Namely, the often observed dependence
U( j )5Ucln(jc /j) yields E( j )5Ecexp(2U/kT)5Ec(j/jc)

n

with n5Uc /kT. Using this model in Refs. 10 and 61 the
current distribution was calculated for rectangular specimens
and nice agreement with the observed cushionlike flux pen-
etration was obtained. The electric fieldE was found to be
maximum along the boundaries wherej c changes abruptly in
samples with inhomogeneous critical-current densityj c(r ).

In this paper we show that very high electric fields inside
the superconductor may be caused also by abrupt reduction
or enlargement of the sample width. The presented magneto-
optical investigation of the flux distributions in samples
shaped as a cross and an indented strip in combination with
the presented theory allows one to deduce the underlying
current distribution and its topology.

This paper is organized as follows. A brief outline of the
theoretical background and the main equations used for the
calculations of magnetic and electric field and current distri-
butions is given in Sec. II. Our magneto-optical method and
sample preparation are described in Sec. III. We compare
results obtained on cross-shaped samples and indented strips
with theory in Sec. IV. Section V summarizes our results.

II. THEORETICAL BACKGROUND

A. Computational methods

In order to understand our magneto-optical observations
of the magnetic field componentBz and to obtain the profile
of the current density and electric field, we have computed
all these quantities from first principles for thin supercon-
ductors of similar shapes. The details of similar such calcu-
lations may be found in Refs. 10, 61, and 62. The main idea
is to derive an integral equation for a quantity which is de-
fined only inside the superconductor, not in the entire space,
and then time integrate this integral equation to obtain this
quantity as a function of time. All other desired quantities in
all space then follow from the Maxwell equations.

This integral equation implicitly contains the Maxwell
equationsj5curlH, Ė52curlB ~the dot denotes]/]t), and
divB50, the material equationsB5B(H) andE5E(J), but
also boundary conditions and the time-dependent applied
field Ba(t), which acts as the driving force. A formulation in
terms of differential equations is less elegant since then the
homogeneous applied field drops out from the equations be-
cause one has divBa50 and curlBa50 and the boundary
conditions have to be considered separately.

In such computations of the flux penetration into thin su-
perconducting strips or circular disks,65–67the directly calcu-
lated quantity was the sheet currentJ(y,z)
5*2d/2

d/2 j (x,y,z)dz, which in these simplest geometries has
only one component and depends on only one variable,
namely,J5 ŷJ(x) or J5ŵJ(r ).

For all other flat geometriesJ(x,y) hasx and y compo-
nents and depends onx andy. However, since divJ50 holds

in the absence of current sources, one may define a scalar
‘‘local magnetization’’ or ‘‘density of current loops’’
g(x,y) by writing

J~x,y!52 ẑ3¹g~x,y!5¹3 ẑg~x,y!, ~1!

and requiring thatg50 on the edge of the specimen. The
resulting integral equation forg,

ġ~x,y,t !5F$g~x8,y8,t !,Ḃa~ t !%, ~2!

was time-integrated for homogeneous superconductors of
square and rectangular cross sections in Refs. 10, 61, and 62.
In the present paper we apply this solution method to thin
samples of more complicated shape, which in addition may
exhibit inhomogeneous critical current densityj c(x,y). As
stated above, we assumeB5m0H andE5r j with nonlinear
isotropic~scalar! resistivityr( j )5rc( j / j c)

n21, equivalent to
r(J)5rc(J/Jc)

n21 with Jc5 j cd.

B. Nonrectangular superconductors

Our numerical program, originally developed for rectan-
gular films, may be applied to films of arbitrary shape as
follows.

One may simulate, e.g., a cross-shaped~or circular, star,
ring-shaped, etc.! specimen by considering a square speci-
men which hasJc51 inside the cross-shaped region and
Jc!1 in the ‘‘free space’’ outside the cross but still inside
the square. This square with inhomogeneous resistivity be-
haves almost like a cut-out cross except that a weak current
can flow in the cut-out region. This current cannot be made
arbitrarily small since the required high resistivity
r5rc(J/Jc)

n21 requires very small time steps during time-
integration of our integral equation~2!.

Alternatively, one may use a different method which is
much faster and avoids the unphysical current outside the
nonrectangular specimen. Namely, we multiply at each time
step the functiong(x,y) by a functionC(x,y) which is unity
inside the specimen and zero outside the specimen. This
‘‘cutting function’’ suppresses the current outside the speci-
men. The method is mathematically correct since it modifies
the integral kernelQ(r ,r 8) which relates the local field
H(r ) to the functiong(r ) by

H~r !5E d2r 8Q~r ,r 8!g~r 8!1Ha , ~3!

such that the integration is over the physical specimen only
rather than over the total square. This allows us to use the
kernelQ(r ,r 8) calculated for the rectangular specimen by a
Fourier method.61 The r i , g(r i), andH(r i) are vectors and
Q(r i ,r j ) is a large matrix of up to 9003900 elements in our
computation if the discreter i are chosen on a 30330 grid
covering one quarter of the rectangular specimen, or one
eighth of the square, due to symmetry.

This second computational method is fast and stable.
However, it produces unphysical spatial oscillations of
J(x,y) andE(x,y) if the cut-out of the cross is sharp and the
number of grid points inside the cross is not large. These
oscillations were partly suppressed by choosing a smooth
cutting function which continuously goes from 1 to 0 over a
few grid spacings. This smoothing simulates the finite thick-
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ness of the specimen and broadens the infinite peak in the
electric fieldE(x,y) which occurs at the four concave cor-
ners of the cross as discussed in Sec. IV. However, care has
to be taken in this second method that the obtained current
density or functiong(x,y) is sufficiently accurate to yield
exactlyH(r )50 in the nonpenetrated regions; cf. Eq.~3!.
This conditionH50 is a very sensitive criterion for the nu-
merical accuracy in the Bean-like case (n@1).

To facilitate the understanding of the complicated current
and field patterns in the investigated samples we will give in
the following a brief summary of the topology of current and
field distributions of rectangular samples in the fully pen-
etrated critical state. A detailed discussion of the critical state
in thin superconductors is published in Ref. 52.

C. Critical state in rectangular superconductors

Our computation reproduces the results of the Bean model
for the particular choicesJc(H)5 const andn@1. The cur-
rent density takes its maximum possible valueu j u5 j c in the
entire specimen if the sample is in the critical state, i.e., fully
penetrated by magnetic flux. In addition, the current density
has to satisfy the continuity condition divj50 and has to
flow parallel to the surfaces. It follows from these conditions
that the current stream lines have sharp bends in supercon-
ductors with rectangular cross section; this is a characteristic
feature of vector fields with constant modulus.68 These sharp
bends form discontinuity lines (d lines! which divide the
superconductor into domains with uniform parallel current
flow as discussed in the review by Campbell and Evetts;1 see
the upper plot in Fig. 1. One distinguishes two types ofd
lines:52 At d1 lines the orientation ofj c changes discontinu-
ously but the magnitude ofj c remains the same. Atd

2 lines
the magnitude ofj c changes, e.g., at the specimen surface or
at inner boundaries where regions of differentj c meet. The

current stream lines have to bend sharply in the critical state
in order to satisfy the condition of continuous current flow at
such boundaries. Thed1 lines run along the bisection lines
starting from the sample corners and on a section of the
central line parallel to the longer side as shown in the lower
plot in Fig. 1, when the superconductor is isotropic in the
x-y plane.

Characteristic features of thed1 and d2 lines are the
following.

~1! Whereas thed2 lines occur at internal and external
boundaries of the sample~local sample geometry!, the d1

lines form in homogeneous regions and are determined by
the shape of the sample.

~2! Flux lines cannot cross thed1 lines since during in-
crease or decrease of the applied magnetic field the flux mo-
tion is directed towards or away from thed1 lines, respec-
tively. In contrast, thed2 lines can be crossed by moving
flux lines, e.g., when flux lines penetrate from the surface.
When the current does not flow parallel to thed2 line, a
strong flux motion is directed along thed2 line.

~3! The electric fieldE is largest at thed2 lines, whereas
we haveE50 at thed1 lines.10,62

~4! Thed1 and thed2 lines do not change their position
during lowering or reversal of the external magnetic field,
although the magneto-optically detected intensities of the
d1 andd2 lines are reversed in the remanent state.

The d1 andd2 lines are clearly seen in thin type-II su-
perconductors~thickness! lateral extension! because of the
logarithmic infinity ofBz at the sample surface.52

D. Electric field during flux penetration

If the ~linear or nonlinear! resistivity is isotropic in the
x-y plane, then the current stream lines coincide with the
field lines of the electric fieldE inside the superconductor. In
particular, the field lines ofE(x,y) like those ofJ(x,y) are
equidistant lines in the Bean model with constantj c namely,
straight parallel lines or concentric circles. The penetrating
fronts of H(x,y) and E(x,y) coincide in the partly pen-
etrated state and are composed of straight lines and circles
surrounding the flux-free region in which bothH50 and
E50. One has alsoJ50 in this region in the longitudinal
geometry, butJ(x,y) is finite over the entire area of the
specimen in perpendicular geometry.55,57 However, since
J(x,y),Jc in the flux-free region, one hasE(x,y)50 in this
region because of the factor (J/Jc)

n with n@1 in E(J). The
orientation ofE(x,y) is thus fixed by the shape of the super-
conductor and of the penetrating flux front.

We give now a very general estimate of the electric field
induced during field increase in superconductors of arbitrary
cross section in longitudinal and perpendicular geome-
tries. First we note that the local derivative
]Bz(x,y,t)/]t52 ẑ(¹3E) is not too much different from
the ramp rate of the applied field,]Ba /]t5Ḃa . This as-
sumption is even exact in longitudinal geometry in the ap-
proximationB5m0H ~or Bc150). It is a good approxima-
tion in perpendicular geometry, where it is violated most at
the penetrating flux front.Ḃ(x,y)5Ḃa applies exactly for
arbitrary specimen shape and field orientation in the fully
penetrated Bean critical state.

FIG. 1. Top: stream lines of the current in a thin type-II super-
conductor of rectangular shape in the critical state. Bottom: normal
component of the magnetic field as a contour plot.
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The electric fieldE(x,y) in the critical state is known in
principle if the specimen shape is known. It has to satisfy the
induction law¹3E(x,y)52 ẑḂa and its orientation is pre-
dicted by topology. In regions with straight parallel stream
lines the general solution of this equation is (x̂, ŷ, andẑ are
unit vectors!

E~x,y!5@~Ḃa1c!y1 f ~x!# x̂1@cx1g~y!# ŷ, ~4!

wherec is an arbitrary constant andf (x) andg(y) are arbi-
trary functions. One easily verifies that Eq.~4! satisfies
]Ey /]x2]Ex /]y52Ḃa .

In particular, in regions whereJ flows alongx̂ one has

E5Ex̂, E~x,y!5Ḃay1 f ~x!. ~5!

Electric field patternsuE(x,y)u of this type are depicted in
Ref. 62 for rectangular superconductors, where they look
like an inverted roof or like a folded cardboard.

In general the surfacesuE(x,y)u may also be curved,
namely, whenf (x) is a nonlinear function; this occurs when
not all discontinuity lines are straight lines, e.g., a parabola
which separates regions of straight and circular current flow.

In regions where the stream lines form concentric circles,
the general solution forE(r ,w) is

E~r ,w!5
1

2
ḂaF r p2~w!

r
2r G ŵ. ~6!

Herer andw are polar coordinates centered at the center of
the circles,ŵ5(2yx̂1xŷ)/r is the unit vector alongw, and
r p(w) is an arbitrary function which has the meaning of a
penetration radius. Equation~6! applies forr<r p(w) where
the brackets in Eq.~6! are >0. For r>r p(w) one has
E50 if the liner5r (w) is the flux front; elseE takes one of
the forms~4! or ~6! but with different center of the circles.
The midpoint of the circles coincides with the center or point
of a defect in the otherwise homogeneous superconductor,
e.g., a circular hole or a round or sharp notch in the specimen
edge. The sharper such a defect is the higher is the 1/r peak
of E in Eq. ~6!.

The expressions~4! and ~6! are exact forE in the fully
penetrated critical state in both longitudinal and perpendicu-
lar geometries, and in longitudinal geometry also for partial
penetration, and they should be a good approximation also in
the partly penetrated state of films of arbitrary shape. This
expectation is confirmed by our computations of flux pen-
etration into cross-shaped or indented superconducting plate-
lets.

III. EXPERIMENTS

A. Faraday effect

We visualize the magnetic field distribution of a super-
conductor by magneto-optics. Since the HTSC themselves
have no significant magneto-optical effect, the sample sur-
faces have to be covered by a magneto-optically active ma-
terial. For our investigations we use the magneto-optical Far-
aday effect. The flux penetration is imaged by detecting the
rotation of the polarization plane when linearly polarized
light passes a magneto-optically active layer exposed to the
magnetic field of the underlying superconductor. The light is

reflected from flux-free regions without rotation of the polar-
ization plane; this light thus cannot pass an analyzer which is
set in a crossed position with respect to the polarizer. Thus
the Shubnikov phase~with a flux-line lattice! will be imaged
as bright areas, whereas the flux-free Meissner phase remains
dark. We used ferrimagnetic iron-garnet films with an in-
plane anisotropy as magneto-optical indicators for the ex-
periments presented in this paper.

The iron garnet film was grown by liquid phase epitaxy
onto a gallium-gadolinium substrate with a thickness of
about 3.5mm ~commercial firm Gamma Scientific Produc-
tion, Russia!.69 This kind of indicator allows the flux pen-
etration into HTSC samples to be observed directly in the
whole temperature regime of superconductivity with a mag-
netic sensitivity of about 1 mT and a spatial resolution of
about 4 mm. The indicator was glued directly onto the
sample surface with a conductive carbon cement. The finite
thickness and a possible spacing between indicator and
sample leads to a smearing of the observed flux
distributions.27

The external magnetic field is generated by a copper so-
lenoid coil, which is cooled with liquid nitrogen and pro-
duces a maximum field of 0.55 T. The observations were
performed in the optical cryostat described in Refs. 70 and
71. The field can be changed at different constant ramp rates.
Since the sample is subject to flux creep during the experi-
ment, different ramp rates lead to different flux penetration
depths at the same value of the applied field.72 The basic
consideration of flux, current and electric field distributions
in thin superconductors are not affected by this phenomenon.

B. Sample preparation

We use DyBa2Cu3O72d ~DBCO! single crystals pre-
pared as described in Ref. 73 and YBa2Cu3O72d ~YBCO!
single crystals which were prepared at the Universita¨t
Karlsruhe, Germany, by the method described in Ref. 74.
The crystal dimensions are about 100031000315 mm3 and
Tc'88 K ~DBCO! andTc'92 K ~YBCO! as measured by
the Meissner effect using SQUID magnetometry. All crystals
have a distinct twin structure which was revealed by polar-
ized light microscopy.

The samples were patterned at the Institut fu¨r Strahl-
werkzeuge, Universita¨t Stuttgart, using the laser microma-
chining technique described in Ref. 75. As shown in Ref. 75
the laser cutting does not influence the superconducting pa-
rameters of the sample.

IV. RESULTS AND DISCUSSION

A. Cross

To point out the excellent qualitative agreement between
theory and experiment we compare calculated distributions
of the normal field componentHz with magneto-optically
determined flux patterns for various sample shapes.

The left column in Fig. 2 shows the calculated current
pattern in a cross for different flux-penetration depths. The
density of the stream lines gives the magnitude of the current
density. The current stream line outside the cross in the up-
per left plot is caused by the finite critical current density
there; cf. Sec. II B. The contour plots of the corresponding
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field distributions are plotted in the middle column. The right
column shows magneto-optically detected flux distributions
in a thin DBCO single crystal for the three different perpen-
dicular external magnetic fieldsm0Ha541 mT ~top row!, 82
mT ~middle row!, and 123 mT~bottom row!; the sameHa
values were used in the theory. The experiments were carried
out atT520 K using a ferrimagnetic iron-garnet indicator.
The white areas correspond to the Shubnikov-Phase, into
which the flux lines have already penetrated, whereas the
flux-free Meissner phase remains dark. The observed flux
distributions are slightly disturbed due to the influence of the
twin boundaries. The black spot on the right arm of the cross
is a defect in the iron-garnet indicator.

The shielding currents flow in thewhole sample in our
perpendicular geometry to ensureBz50 in the Meissner
area, in contrast to the longitudinal geometry, where the
shielding currents flow only in the penetrated regions. Com-
paring the current distributions depicted for the three mag-
netic fields one finds that during magnetization the shielding
currents change their magnitude and their direction until the
critical value j c is reached. The current flows parallel to the
sample edges at places where the shielding current has
reachedj c . But a direction parallel to the sample edges is no
longer defined at theconcavecorners of the cross.

Next we address the question of the current flow in the
region that is bounded by the extrapolation of the sample
edges. Two alternatives are conceivable at first thought as
depicted in Fig. 3 for a cross-shaped sample. We assume the
cross to be in the critical state to avoid the problems arising

from the above discussed changes in the direction and mag-
nitude of the currents. Thed1 lines are plotted as bold lines,
the arrows indicate the direction of the current flow. In the
first possibility shown in the upper plot, the current stream-
lines are extended beyond the concave corner and meet at an
angle of 90° such that ad1 line must be formed along the
bisection line. In the second possibility the streamlines run
on concentric circles around the corner as shown in the lower
plot in Fig. 3. Nod1 line is formed in this latter case and the
electric field, Eq.~6!, and vortex velocity have a 1/r peak.
Our magneto-optical experiments in Fig. 2 clearly reveal that
the flux front runs smoothly around the concave corners.
Consequently ad1 line is not visible. We conclude from
these observations that the latter possibility is realized. The
calculations in Fig. 2 show also that the current and the flux
front run on smooth curves around the concave corner and
thus nicely agree with the experiment and the above consid-
eration.

What consequences does this behavior imply? The circu-
lar current stream lines induce a high magnetic field peak in
the center of the circles, i.e., at the concave corners. This is
also visible in the magneto-optic images and in the calcu-
lated contour plots of the magnetic field in Fig. 2. The flux
lines which penetrate the region bounded by the centrald1

lines and the dashed lines in Fig. 4 have to pass through the
concave corner of the cross since the flux line motion is
directed always perpendicular to the current flow as indicated
by the dashed arrows. ‘‘Flux jets’’ occur at the concave cor-
ners, i.e., the flux-line velocity and therefore the electric field
are very large.52

FIG. 2. Calculated current pattern~left col-
umn! and perpendicular fieldHz ~middle column!
of a cross-shaped sample at three different times
during flux penetration in increasingHa . Right
column: magneto-optically observed flux distri-
butions in cross-shaped DBCO crystal atT520 K
and m0Ha541 mT ~top!, 82 mT ~middle!, and
123 mT ~bottom!, detected using a ferrimagnetic
iron-garnet indicator. The black spot is a defect in
the indicator film. The crystal thickness isd515
mm. In the calculations the unit of the magnetic
field ~one fit parameter! is chosen such that best
agreement is found with the observed flux distri-
butions.
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The stream lines of the current and contour plots of the
magnetic field in the fully penetrated critical state are de-
picted in Fig. 5 with particularly high resolution for a cross
with arms half as wide as long, using a grid of 60360 points
and prescribing the current distribution with the highest at-
tainable accuracy using our computation of flux penetration.

We give here the explicit expression for the electric field
E(x,y) inside the superconductor near the lower left concave
corner of the cross, if flux-creep effects are neglected and
E depends only on the ramp rate of the applied magnetic
field. We shift the origin of thex andy axes into this corner

for convenience~see Fig. 4! and define r5(x21y2)1/2,
ŵ5(2yx̂1xŷ)/r5 ẑ3 r̂ . When the flux front has penetrated
to a depthr p , the electric field caused by the ramp rateḂa is
obtained from Eqs.~4! and ~6! and from the condition
E50 at this front. Explicitly one has

j51 j cŷ, E5Ḃa~R2x!ŷ, x.0, y,0, ~7a!

j51 j cŵ, E5
Ḃa

2 S r p2r 2r D ŵ, x.0, y.0, ~7b!

j52 j cx̂, E5Ḃa~y2R!x̂, x,0, y.0. ~7c!

The streamlines ofj andE flow around this corner smoothly
as depicted in Fig. 4. However, while the current density is a
continuous vector field with constant magnitudeu j u5 j c and
with no jumps in its componentsj x and j y , the electric field
exhibits pronounceddiscontinuitieson thex andy axes, i.e.,
on the extension of the corner sides into the superconductor.
Namely, on the line y50, x.0 one hasEx50, Ey

5(x2r p)Ḃa at y,0, andEx50, Ey5(x/2)(12r p
2/r )Ḃa at

y.0, and corresponding behavior on the linex50, y.0.
This means that at the positions where the straight stream
lines start to curve into circles, the magnitude ofE performs
a jump. For example,Ey jumps by

dEy5Ḃa

~r p2x!2

2x
~8!

at y50. This jump height diverges at the corner as 1/x and
corresponds to an electric surface charge of densitydEy
caused by the motion of the flux lines.

We have thus the remarkable result that during flux pen-
etration into the corner a surface charge, and a corresponding
abrupt jump in the electric field, appearinside the supercon-

FIG. 3. Sketch of the current streamlines in a cross-shaped
sample in the critical state. Upper plot: the streamlines meet at
90° at the concave corner and ad1 line is formed. Lower plot: the
streamlines run on concentric circles around the concave corner.

FIG. 4. Current flow and flux-line motion at one concave corner
of a cross-shaped sample. The direction of the current is indicated
by the arrows along the streamlines; the direction of flux-line mo-
tion is indicated by the arrows perpendicular to the current stream
lines.

FIG. 5. Stream lines of the current~top! and contour plots of the
magnetic field~bottom! in the fully penetrated critical state of a
cross with arms half as wide as long.
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ductor along the lines~or planes! which extrapolate the edges
into the specimen. Note that this discontinuity occurs at po-
sitions where the material is homogeneous and where the
current flow is smooth.

This interesting phenomenon is described by Eqs.~7! and
~8! in the Bean limit in longitudinal geometry. However, as
discussed in Sec. II D, that description approximately applies
also to perpendicular geometry with partial or full penetra-
tion of flux. The expressions forE(x,y) are identical for
longitudinal and perpendicular geometries in the fully pen-
etrated critical state. A slight modification is then required in
Eq. ~7!, which is still valid in the quarter with circular flow if
the constant penetration depthr p is replaced by a penetration
radiusr p(w) which depends on the anglew. Namely, if the
width of the arms of the cross is 2r 0, one hasr p5r 0
in the sectors of straight parallel flow, andr p
5r 0 /max(cosw,sinw) since the flux front now coincides with
the two central lines~planes! of the cross.

As noted by Indenbom76 a jump inE(x,y) may occur in
even simpler geometries, e.g., whenever aconvexcorner is
rounded. The simplest case76 is the rectangle with rounded
ends~‘‘football stadium’’!, where regions with straight par-
allel and circular stream lines border on each other, creating
a jump ofEx by a factor of 2. This can be seen from the
explicit expressionsE56Ḃayx̂ andE5(1/2)Ḃar ŵ in these
two regions; cf. Eqs.~4! to ~6! with f (x)50 andr p(w)50
and appropriate definitions ofr and w. While this jump is
finite and increases linearly withr , the jump ofE nearcon-
cavecorners diverges as 1/r and thus becomesinfinitewhen
the corner is ideally sharp.

When flux creep is taken into account, i.e., whenn,` is
chosen in our modelE5Ec( j / j c)

nsgnj , then these consider-
ations still apply ifn@1. The current density in the fully
penetrated regions now is no longer exactly constant, since
we havej5 j c(E/Ec)

1/n sgnE. The jumps inE thus lead to
small jumps inj of relative heightd j / j c'(1/n)dE/(Ḃar p),
or with Eq. ~8!,

d j' j c
~r p2x!2

2nrpx
, ~9!

wherex is the distance from the corner. These jumps inE
and j are, however, smeared out due to the finite exponent
n. This means an abrupt jump inj never occurs.

These considerations are confirmed by our numerical cal-
culations. Three-dimensional plots of the electric field are
shown in Fig. 6 for the same applied magnetic fields as in
Fig. 2. TheE-field distributions were calculated numerically
using the ‘‘cutting function’’ as described in Sec. II B. The
sharp peaks due to the large flux-line velocity and the con-
centration of the magnetic field at the concave corners are
clearly visible. The electric field is maximum at thed2 lines
along the sample edges, whereas we haveE50 at the flux
front, along thed1 lines, and in the Meissner phase. In the
computations of Fig. 6 the number of independent grid
points ~points in one quarter section! wasnx3ny530330,
and the arms of the cross were 2313526 grid points wide.
This relatively small number of grid points in these arms
together with the artificial smearing of the boundaries of the
cross required to suppress oscillations, caused a smearing of
the abrupt jump ofE predicted by Eq.~9!.

The 1/r dependence of the electric field in the region of
circular flow is nicely confirmed by our computations. Figure
7 shows profiles ofE(x,y) taken along a straight diagonal
line starting at a concave corner of the cross wherer50 by
definition. Figure 7 was extracted from the same computer
run as Fig. 6. The solid curve in Fig. 7 should be given by
Eq. ~7b!, which in the fully saturated Bean state contains no
fit parameter. However, since the position of the 1/r singu-
larity ~the concave corner! is not known exactly due to our
artificial smearing of the boundaries of the cross, we had to
user p as a fit parameter. The resulting curveE(r ), Eq. ~7b!,
closely fits all 13 points obtained from our computation.
Similar good fits to theE5(Ḃa/2)(r2r p

2/r ) behavior are
obtained for the partly penetrated state. Fewer grid points
with E.0 are available in this case, but still only one fit
parameterr p is required to obtain good agreement. If the
amplitudes of both terms inE (}r and}1/r ) are fitted, the

FIG. 6. Calculated magnitudeuE(x,y)u of the electric field dur-
ing flux penetration into a thin superconductor cross at applied field
values~from top to bottom! 0.1, 0.3, 1.2 in units of the field of full
penetration. A total of 60360 grid points and a current-voltage law
E}J9 were used.
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prefactor of ther term turns out to be close toḂa/2, which
indicates that Eqs.~7! are a good approximation even for the
partly penetrated state in perpendicular geometry.

B. Indented rectangle

The 1/r peak of the electric field is cut off when the
concave corner is rounded. To demonstrate this we cut two
semicircular indents into a rectangular (b/a51.07) YBCO

platelet by laser machining. From the above arguments we
expect that the magnetic and electric fields should exhibit a
large overshoot at the indents. Figure 8 shows the calculated
current~left! and magnetic field~middle! pattern which cor-
respond to the magneto-optically observed flux distributions
atT 5 20 K andm0Ha 5 27 mT, 82 mT, and 123 mT~from
top to bottom! depicted in the right column. The current and
field patterns were computed using a cutting function which
suppresses the current flow outside the specimen; see Sec.
II B. The magneto-optic images show the expected large en-
hancement of the magnetic field at the indents. The critical
current flows parallel to the sample edges in the fully pen-
etrated critical state. Then, additionally to thed1-line struc-
ture in a rectangular sample discussed in Sec. II C, new para-
bolic d1 lines occur where the straight current flow turns
sharply into the circular path around the indents.52 The
poorer visibility of the parabolicd1 lines compared to the
others is due to the decrease of their intensity with cosa/2,
when a is the angle by which the stream lines bend. This
angle increases along thed1 lines such that their visibility
decreases. The current in the sample center is undercritical in
the partly penetrated state and does not exhibit sharp bends
such that ad-line structure is less visible. Note the nice
agreement between the calculated and the experimental flux
patterns.

Computed electric field profilesuE(x,y)u are depicted in
Fig. 9. They are cut off at a height 5~in units aḂa) since
plotting the full peak~of height'300) would have made
invisible the rooflike profiles of height<1 near the specimen
edges. The sharp front of the penetrating electric field and
the nearly circular cross section of the peak are clearly vis-
ible.

FIG. 7. Calculated profiles of the electric field along the diago-
nal from the concave corner to the sample center in the fully pen-
etrated state. The boxes mark the calculated values at the grid
points; the solid curve is computed from Eq.~7b!.

FIG. 8. Calculated current pattern~left col-
umn! and perpendicular fieldHz ~middle column!
distribution of an indented rectangular sample for
three different steps of flux penetration. Right
column: magneto-optically detected flux distribu-
tions in a rectangular YBCO crystal with two
semi-circular indents atT520 K andm0Ha527
mT ~top!, 62 mT~middle!, and 123 mT~bottom!.
The flux distributions were detected using a fer-
rimagnetic iron-garnet indicator. The black spots
are defects in the indicator film. The crystal
thickness isd520 mm. In the calculations the
unit of the magnetic field~one fit parameter! is
chosen such that best agreement is found with the
observed flux distributions.
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Figure 10 shows cross sections ofE(x,0) along the line
connecting the two indents~the y axis!. The fitted solid
curves were chosen in the form of Eq.~7b!, with r5x02x
wherex0 is the ~fitted! center of the indent. Full penetration
corresponds tox50, or r5x0. The specimen half widtha
~alongx) was chosen as unit length in this figure. Depicted
are the casesha 5 0.1, 0.3, 0.6, and 1.05 in units of the field
of full penetration. The functionE5(Ḃa/2)(r2r p

2/r ) is a
good fit for full penetration, where only the peak position
x0 was adjusted sincer p5a2x0 is known in this case. For
partial penetration also the penetration radiusr p and the pref-
actor<Ḃa/2 had to be adjusted to get good fits.

V. CONCLUSION

In this paper we have presented patterns of electric and
magnetic fields and current during penetration of flux into
flat type-II superconductors which were shaped as a cross or
an indented rectangle by a laser-cutting method. The
magneto-optically observed flux distributions show that the
magnetic field is peaked at the concave sample corners. This
finding coincides with our numerical calculations of mag-
netic field patterns. The current flows along circular paths
around the concave corners and causes large peaks of the
magnetic field there. With the knowledge of thed-line for-
mation at convex corners and the behavior of the current
flow and the resulting electric and magnetic fields at concave
corners the current and electric and magnetic field patterns
can be derived for any arbitrary planar geometry.

Analytical solutions of the electric fieldE were found for
long samples with cross section of arbitrary shape in a lon-
gitudinal applied magnetic field. These solutions are also
valid for thin samples in perpendicular magnetic field in the
fully penetrated state and they are good approximations in
the partly penetrated state of thin superconductors.

The electric field pattern at convex and concave corners
differ qualitatively: Discontinuity lines are formed at the
convex corners where the straight field lines ofj andE bend
sharply and whereuEu goes linearly to zero. The field lines of
j andE are circular around concave corners, andE diverges
at the corner tip as one over the radius of the circle.

When the current flow changes from a straight to a circu-
lar path the electric field performs abrupt jumps. Note that
this jump now occurs at positions where there is no inhomo-
geneity in the sample. Similar jumps ofE occur also in in-
homogeneous superconductors at positions where the critical
current density changes, as observed and discussed in Ref.

FIG. 9. Calculated magnitudeuE(x,y)u of the electric field dur-
ing flux penetration into the same superconductors with two semi-
circular indents as in Fig. 8. The profiles correspond to applied field
values 0.15, 0.3, 0.6, and 1.05 in units of the field of full penetra-
tion; the first three field values coincide with those in Fig. 8. To
make visible the entire structure we have cut the peaks of the de-
picted 3D plots at a height of 5 in unitsaḂa , wherea is the half
width of the rectangle. The full peak height is approximately 300.

FIG. 10. Calculated profiles of the electric field along the nar-
rowest cross section of the indented rectangle for four different
magnetic fields. The symbols mark the calculated values at the grid
points; the solid curves are computed from Eq.~7b!. (h) fully
penetrated state. The inset shows the profiles for the same field
values as Fig. 8.
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10. The jump height diverges as 1/r at concave corners and
is infinite when the corner is sharp. Our numerical calcula-
tions of the electric field distribution nicely agree with our
analytical expressions.

These results are particularly important for the perfor-
mance of superconductors in high-current and high-field ap-
plications because the large electric fields at concave corners
or indents along the conductors may trigger flux jumps and
thus lead to thermal instabilities.

In this paper we have avoided any statements about the
electric field outside the specimen, and we have not consid-
ered multiply connected superconductors, e.g., plates with a
rectangular hole. These are two separate and nontrivial prob-
lems, which require more specifications, e.g., the knowledge
of the shape of the coil generating the applied magnetic field,
or the pinning strength of the flux lines parallel to the flat
surface which may limit the peak of the Meissner screening

current at the inner edge of a perforated thin superconductor.
Work on these topics is in progress.
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