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Flux penetration into flat superconductors of arbitrary shape: Patterns of magnetic
and electric fields and current
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The penetration of magnetic flux into flat type-Il superconductors of various shapes in a perpendicular
magnetic field is investigated in detail. The magnetic field distribution at the sample surface is observed by the
magneto-optical Faraday effect and calculated from first principles. The investigations are performed on
DyBa,Cu30;_s and YB&Cu;0,_ s samples which were shaped into a cross or an indented rectangle by a
laser-cutting technique. Magnetic and electric field and current distributions are calculated from Maxwell's
equations treating the superconductor as a conductor with a highly nonlinear current-voltage law and zero
reversible magnetization. A large concentration of magnetic flux and electric field and a high flux-line velocity
occur at concave sample corners. This results from the fact that the flux lines can penetrate into regions of the
sample which are bounded by the extensions of the sample edges only at these points. This large electric field
and related energy dissipation are particularly relevant for superconducting tapes, in which “sausaging”
effects(variations of the filament cross sectjoeduce their performance as an ideal conductor. Huge jumps of
the electric field occur where the current flow changes from a straight to a circular path. This jump diverges as
one over the distance to the corner at sharp indents or concave c¢8&t63-18206)04930-2

[. INTRODUCTION conductors if appropriate evaluation methods are used. The
magneto-optical technique provides a powerful tool to test
One of the most important features for applications andhese inversion methods and to verify theoretical models.
theoretical understanding of both conventional and high- Flux penetration into type-Il superconductors with flux-
temperature type-Il superconductors is the pinning of vortiliné pinning is well described by the Bean mdtfeand its
ces at sample inhomogeneitles.0ne of the parameters extension$ ~“when the specimen is an almost infinitely
which characterize the pinning behavior is the critical currenXtended cylinder or slab with constgptin a parallel mag-
density j, at which the vortices depin and start to move netic f|elq, where demagneyz'lng effects are negligible. The
under the influence of the Lorentz force. This vortex drift”?m_)duCtlon of a o_lemagr_letlz_lng facto_r can acco_unt for de-
induces an electric fielt which causes a voltage drop along viations from_ this 'de?" situation only in th_e special case of
the specimen. Consequently, at current densities, en- ellipsoids without pinning. However,. S|_ngle crystalline
AR L . . HTSC samples are available only as thin films or monocrys-
ergy 1s d!ssma_lted_and the resistivigy=E/j becomes finite. talline platelets, which are usually investigated in perpen-
The vortices in high-temperature superconductdi$SC)

2 N S dicular magnetic field to obtain larger signals. In this geom-
may also depin af<j. by thermal activation which is char- ety one has to account for large stray-field effects, and the

acterized by an activation energy. original Bean model can be applied only to ttritical state
The temperature, field, and time dependences of the magghen the sample is completely penetrated by magnetic flux
netic moment is typically determined fromtegral measure-  and the shielding current has reached the critical valtia
ments using SQUIOsuperconducting quantum interference the entire superconductot.Forkl and Kronmiler**2 suc-
device, VSM (vibrating sample magnetomeleor torque cessfully used the Bean model to describe magneto-optically
magnetometry. Values fgg andU which are averaged over observed flux-density profiles at the flat surface of samples
the sample volume can be derived from such experiments.with finite thickness in the critical state. For tpartly pen-
However, local investigations of flux distributions in etratedstate the description of flux and current distributions
type-Il superconductors by, e.g., Hall-probe measurements much more complicated. A numerical inversion method
or magneto-optics have shown that the normal component afias applied to calculate the current distribution in thin cir-
the magnetic inductiof, and in many cases aljoandU  cular disks® and squar€s® from measured flux density pro-
strongly vary with the position. The spatial distribution of files.
B, is influenced by the sample shape? sample Analytic expressions for the static magnetization and for
thickness;"*?  macrodefectd®®° surface and edge flux and current profiles during flux penetration and exit are
barriers? =%’ by spatial variation of . ,*°~?%instabilities?® a  available for the one-dimensionélD) perpendicular Bean
finite lower critical fieldH;, or the anisotropy of . which  model of long strip¥~>®and circular disk¥ >°and for thin
may be caused by the Cu-O plariés® in-plane magnetic  strips with a geometric edge barrfér®® These 1D theories
fields 337 twin boundaries®~**or columnar defects that are of thin long strips and circular disks have recently been ex-
inclined with respect to the crystal axis*>*® The space- tended to the two-dimension&D) problems of thin super-
resolved methods mentioned in principle allow the determi-conductors with square, rectangular or arbitrary shape in a
nation ofj.(B,r) andE(j,r) even in inhomogeneous super- perpendicular fiel§%3
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Recent magneto-optical studt®€®2"®*demonstrated that in the absence of current sources, one may define a scalar
the flux penetration and exit and flux creep are well de-‘local magnetization” or ‘“density of current loops”
scribed by model calculations using a current-voltage law ofj(x,y) by writing
the form Eo(j/j.)", which conveniently interpolates be- R R
tween the ohmic regime of thermally activated flux flow J(X,y)=—zxXVg(x,y)=VXzg(X,y), (1)

(n = 1) and the classical Bean modei* 1). HereE is the . _ ;

electric field and the exponentis determined by the activa- ?;s(,julifnqgu:::?(ggrtgf gq_ugtigg ]E?ge edge of the specimen. The
tion energy U. Namely, the often observed dependence '
U(j)=Ucn(jc/j) vields E(j)=Ecexp(-UKT)=E(j/j)" ' - VRN :

with n=U_/kT. Using this model in Refs. 10 and 61 the 9(x,y,0)=Hg(x",y’,1),Ba(t)}, 2
current distribution was calculated for rectangular specimenwas time-integrated for homogeneous superconductors of
and nice agreement with the observed cushionlike flux pensquare and rectangular cross sections in Refs. 10, 61, and 62.
etration was obtained. The electric fidldwas found to be In the present paper we apply this solution method to thin
maximum along the boundaries whegechanges abruptly in  samples of more complicated shape, which in addition may
samples with inhomogeneous critical-current dengity). exhibit inhomogeneous critical current densjiyx,y). As

In this paper we show that very high electric fields insidestated above, we assurBe- u,H andE= pj with nonlinear
the superconductor may be caused also by abrupt reductidsotropic(scalaj resistivity p(j) =pc(j/jo)" "1, equivalent to
or enlargement of the sample width. The presented magnet@{(J) =pc(I13)" 1 with J.=j.d.
optical investigation of the flux distributions in samples
shaped as a cross and an indented strip in combination with B. Nonrectangular superconductors

the presented theory allows one to deduce the underlying Our numerical program, originally developed for rectan-

current distribution and its topology. lar films. mav b lied to films of arbitrarv sh
This paper is organized as follows. A brief outline of the ?ullgws S, may be applied 1o S ot arbitrary shape as

theoretical background and the main equations used for the . .
9 9 One may simulate, e.g., a cross-shagedcircular, star,

calculations of magnetic and electric field and current distri- . haped, etg . b ideri .
butions is given in Sec. Il. Our magneto-optical method and'Ng-shaped, €etf.specimen Dy considering a square spect-
en which has].=1 inside the cross-shaped region and

sample preparation are described in Sec. lll. We compar%S

results obtained on cross-shaped samples and indented str <1 in the fr.ee space Qut§|de the cross but St.'” .|n_3|de
with theory in Sec. IV. Section V summarizes our results. € square. Th|s square with inhomogeneous resistivity be-
haves almost like a cut-out cross except that a weak current

can flow in the cut-out region. This current cannot be made
arbitrarily small since the required high resistivity
A. Computational methods p=pc(J13)"" ! requires very small time steps during time-
gﬂtegration of our integral equatiof®).

Alternatively, one may use a different method which is
c51'1uch faster and avoids the unphysical current outside the
nonrectangular specimen. Namely, we multiply at each time

all these quantities from first principles for thin supercon- . : A .
ductors of similar shapes. The details of similar such calcu:Ste.p the functlorg(x,y) by a func’uonC(x,y) which IS unity :
nside the specimen and zero outside the specimen. This

lations may be found in Refs. 10, 61, and 62. The main ideé‘ tting function” es th ent outside the speci
is to derive an integral equation for a quantity which is de- cutting function” SUppresses the current outside speci-

fined only inside the superconductor, not in the entire spac%en' The method is mathematically correct since it modifies

Il. THEORETICAL BACKGROUND

In order to understand our magneto-optical observation
of the magnetic field componet, and to obtain the profile

and then time integrate this integral equation to obtain thi e integral kemelQ(r,r’) which relates the local field
guantity as a function of time. All other desired quantities in (r) to the functiong(r) by
all space then follow from the Maxwell equations.

This integral equation implicitly contains the Maxwell H(r)=f d?r'Q(r,r")g(r')+H,, 3)
equationg = curlH, E= —curlB (the dot denoteg/Jt), and
divB=0, the material equatiorB=B(H) andE=E(J), but  such that the integration is over the physical specimen only
also boundary conditions and the time-dependent applieghther than over the total square. This allows us to use the
field B,(t), which acts as the driving force. A formulation in kernelQ(r,r’) calculated for the rectangular specimen by a
terms of differential equations is less elegant since then thEourier method® Ther,, g(r;), andH(r;) are vectors and
homogeneous applied field drops out from the equations be&y(r;,r;) is a large matrix of up to 900900 elements in our
cause one has d4=0 and cuB,=0 and the boundary computation if the discrete, are chosen on a 3030 grid

conditions have to be considered separately. covering one quarter of the rectangular specimen, or one
In such computations of the flux penetration into thin su-eighth of the square, due to symmetry.
perconducting strips or circular disR%;%’the directly calcu- This second computational method is fast and stable.

lated quantity was the sheet currentd(y,z) However, it produces unphysical spatial oscillations of
=f'i’§,2j(x,y,z)dz, which in these simplest geometries hasJ(x,y) andE(x,y) if the cut-out of the cross is sharp and the
only one component and depends on only one variableaumber of grid points inside the cross is not large. These
namely,J=yJ(x) or J=@J(r). oscillations were partly suppressed by choosing a smooth
For all other flat geometried(x,y) hasx andy compo-  cutting function which continuously goes from 1 to O over a
nents and depends arandy. However, since di#=0 holds  few grid spacings. This smoothing simulates the finite thick-
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current stream lines have to bend sharply in the critical state
in order to satisfy the condition of continuous current flow at
such boundaries. The* lines run along the bisection lines
starting from the sample corners and on a section of the
central line parallel to the longer side as shown in the lower
plot in Fig. 1, when the superconductor is isotropic in the
X-y plane.

Characteristic features of thé* and d~ lines are the
following.

(1) Whereas thal™ lines occur at internal and external
boundaries of the samplgocal sample geometyythe d*
lines form in homogeneous regions and are determined by
the shape of the sample.

(2) Flux lines cannot cross the" lines since during in-
crease or decrease of the applied magnetic field the flux mo-
tion is directed towards or away from thE lines, respec-
tively. In contrast, thed™ lines can be crossed by moving
flux lines, e.g., when flux lines penetrate from the surface.
When the current does not flow parallel to tde line, a
strong flux motion is directed along thie line.

(3) The electric fieldE is largest at thel ~ lines, whereas
10,62

) . . . we haveE=0 at thed™ lines:
FIG. 1. Top: stream lines of the current in a thin type-ll super- (4) Thed" and thed~ lines do not change their ition
conductor of rectangular shape in the critical state. Bottom: normal € a €s do not change their positio

component of the magnetic field as a contour plot. during lowering or reversa_l of the externa_l magnetic field,
although the magneto-optically detected intensities of the
fh . d broad the infinit Ki thd+ andd™ lines are reversed in the remanent state.
ness ot the specimen and broadens the Infinite peak In e the 4+ andd- lines are clearly seen in thin type-Il su-

electric fieldE(x,y) which occurs at the four concave cor- %erconductorﬂhicknesK lateral extensionbecause of the

ners of the cross as discussed in Sec. IV. However, care h S
to be taken in this second method that the obtained curren garithmic infinity of B at the sample surface.
density or functiong(x,y) is sufficiently accurate to yield
exactly H(r)=0 in the nonpenetrated regions; cf. ).
This conditionH=0 is a very sensitive criterion for the nu- ) ) S o
merical accuracy in the Bean-like casex1). If the (linear or nonlinear resistivity is isotropic in the
To facilitate the understanding of the complicated curren¥-Y Plane, then the current stream lines coincide with the
and field patterns in the investigated samples we will give inﬂeld_ lines of thg elec_trlc field |n5|d§ the superconductor. In
the following a brief summary of the topology of current and Particular, the field lines oE(x,y) like those ofJ(x,y) are
field distributions of rectangular samples in the fully pen-€quidistant lines in the Bean model with constanbamely,
etrated critical state. A detailed discussion of the critical statétraight parallel lines or concentric circles. The penetrating

in thin superconductors is published in Ref. 52. fronts of H(x,y) and E(X,y) coincide in the partly pen-
etrated state and are composed of straight lines and circles

surrounding the flux-free region in which both=0 and
C. Critical state in rectangular superconductors E=0. One has alsd=0 in this region in the longitudinal
Our computation reproduces the results of the Bean modd&eometry, butJ(x,y) is finite over the entire area of the
for the particular choiced,(H)= const anch>1. The cur-  Specimen in perpendicular geometfy” However, since
rent density takes its maximum possible valjle=j. in the  J(X,y)<J. in the flux-free region, one hd(x,y) =0 in this
entire specimen if the sample is in the critical state, i.e., fullyregion because of the factad/J)" with n>1 in E(J). The
penetrated by magnetic flux. In addition, the current densityrientation ofE(x,y) is thus fixed by the shape of the super-
has to satisfy the continuity condition §liwO and has to conductor and of the penetrating flux front.
flow parallel to the surfaces. It follows from these conditions We give now a very general estimate of the electric field
that the current stream lines have sharp bends in supercotitduced during field increase in superconductors of arbitrary
ductors with rectangular cross section; this is a characteristief0ss section in longitudinal and perpendicular geome-
feature of vector fields with constant modufiisTlhese sharp tries.  First we note that the local derivative
bends form discontinuity linesd( lines) which divide the — 9B(X,y,t)/dt=—2(VXE) is not too much different from
superconductor into domains with uniform parallel currentthe ramp rate of the applied fieldB,/dt=B,. This as-
flow as discussed in the review by Campbell and Evlesise  sumption is even exact in longitudinal geometry in the ap-
the upper plot in Fig. 1. One distinguishes two typesdof proximationB= uoH (or B;;=0). It is a good approxima-
lines®? At d* lines the orientation of . changes discontinu- tion in perpendicular geometry, where it is violated most at
ously but the magnitude gf remains the same. At™ lines  the penetrating flux frontB(x,y)=B, applies exactly for
the magnitude of . changes, e.g., at the specimen surface oarbitrary specimen shape and field orientation in the fully
at inner boundaries where regions of differ¢ptmeet. The penetrated Bean critical state.

D. Electric field during flux penetration
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The electric fieldE(x,y) in the critical state is known in reflected from flux-free regions without rotation of the polar-
principle if the specimen shape is known. It has to satisfy thezation plane; this light thus cannot pass an analyzer which is
induction lawV X E(x,y) = —ZB, and its orientation is pre- Set in a crossed position with respect to the polarizer. Thus
dicted by topology. In regions with straight parallel streamthe Shubnikov phas@wvith a flux-line lattice will be imaged
lines the general solution of this equation s {, andz are  as bright areas, whereas the flux-free Meissner phase remains
unit vectors dark. We used ferrimagnetic iron-garnet films with an in-

) plane anisotropy as magneto-optical indicators for the ex-

E(x,y)=[(By+c)y+f(x)]x+[cx+a(y)]y, (4)  periments presented in this paper.

. : ) The iron garnet film was grown by liquid phase epitaxy

wherec is an arbitrary constant a_r_ft(x) andg(y) are _ar_b|- onto a gallium-gadolinium substrate with a thickness of
trary functions. One easily verifies that E(4) satisfies about 3.5um (commercial firm Gamma Scientific Produc-
IEyI9x—dEy/dy=—B,. ) tion, Russia®® This kind of indicator allows the flux pen-

In particular, in regions wherg flows alongx one has  etration into HTSC samples to be observed directly in the

. . whole temperature regime of superconductivity with a mag-

E=EX, E(Xy)=Bay+f(x). (3  netic sensitivity of about 1 mT and a spatial resolution of

Electric field pattern$E(x,y)| of this type are depicted in @bout 4 um. The indicator was glued directly onto the

Ref. 62 for rectangular superconductors, where they looi@mple surface with a conductive carbon cement. The finite

like an inverted roof or like a folded cardboard. thickness and a possible spacing between indicator and
In general the surfaceE(x,y)| may also be curved, sgmple. Ieags to a smearing of the observed flux

namely, wherf (x) is a nonlinear function; this occurs when distributions” o

not all discontinuity lines are straight lines, e.g., a parabola The external magnetic field is generated by a copper so-

which separates regions of straight and circular current flowtenoid coil, which is cooled with liquid nitrogen and pro-
In regions where the stream lines form concentric circlesduces @ maximum field of 0.55 T. The observations were

the general solution foE(r,¢) is performed in the optical cryostat described in Refs. 70 and
71. The field can be changed at different constant ramp rates.
Since the sample is subject to flux creep during the experi-

(6)  ment, different ramp rates lead to different flux penetration
depths at the same value of the applied fiéldhe basic

Herer and ¢ are polar coordinates centered at the center ofonsideration of flux, current and electric field distributions

the circles,p=(—yXx+xy)/r is the unit vector along, and  in thin superconductors are not affected by this phenomenon.

ro(¢) is an arbitrary function which has the meaning of a

penetration radius. Equatid6) applies forr<r,(¢) where B. Sample preparation

the brackets in Eq(6) are =0. For r=r (¢) one has ,

E=0 if the liner =r () is the flux front; elseE takes one of We use DyBaCuzO;_s (DBCO) single crystals pre-

the forms(4) or (6) but with different center of the circles. Paréd as described in Ref. 73 and Y8ai;07_; (YBCO)

The midpoint of the circles coincides with the center or pointSingle crystals which were prepared at the Univetsita

of a defect in the otherwise homogeneous superconductofi@risruhe, Germany, by the method described n Ref. 74.

e.g., a circular hole or a round or sharp notch in the specime?li’he crystal dimensions are about 16QD00<15 wm* and

edge. The sharper such a defect is the higher is thedak | c~88 K (DBCO) and T,~92 K (YBCO) as measured by

of E in Eq. (6). the Melsgngr effeqt using SQUID_magnetometry. All crystals

The expression$4) and (6) are exact forE in the fully _have a dlstl_nct twin structure which was revealed by polar-

penetrated critical state in both longitudinal and perpendicul?€d light microscopy. »

lar geometries, and in longitudinal geometry also for partial "€ samples were patterned at the Institut Strahl-

penetration, and they should be a good approximation also i¥€rkzeuge, UniversitaStuttgart, using the laser microma-

the partly penetrated state of films of arbitrary shape. Thighining technique described in Ref. 75. As shown in Ref. 75

expectation is confirmed by our computations of flux pen_the laser cutting does not influence the superconducting pa-

etration into cross-shaped or indented superconducting plats@meters of the sample.
lets.

1.
E(ri(P):EBa

2
rp(@)_Ir
r

IV. RESULTS AND DISCUSSION

IIl. EXPERIMENT
S A. Cross

A. Faraday effect To point out the excellent qualitative agreement between
We visualize the magnetic field distribution of a super-theory and experiment we compare calculated distributions
conductor by magneto-optics. Since the HTSC themselvesf the normal field componert, with magneto-optically
have no significant magneto-optical effect, the sample surdetermined flux patterns for various sample shapes.
faces have to be covered by a magneto-optically active ma- The left column in Fig. 2 shows the calculated current
terial. For our investigations we use the magneto-optical Farpattern in a cross for different flux-penetration depths. The
aday effect. The flux penetration is imaged by detecting thelensity of the stream lines gives the magnitude of the current
rotation of the polarization plane when linearly polarizeddensity. The current stream line outside the cross in the up-
light passes a magneto-optically active layer exposed to thper left plot is caused by the finite critical current density
magnetic field of the underlying superconductor. The light isthere; cf. Sec. Il B. The contour plots of the corresponding
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FIG. 2. Calculated current pattefiteft col-
umn) and perpendicular fieldl, (middle column
of a cross-shaped sample at three different times
during flux penetration in increasing,. Right
column: magneto-optically observed flux distri-
butions in cross-shaped DBCO crystallat 20 K
and poH,=41 mT (top), 82 mT (middle), and
123 mT (bottom), detected using a ferrimagnetic
iron-garnet indicator. The black spot is a defect in
the indicator film. The crystal thickness ds=15
um. In the calculations the unit of the magnetic
field (one fit parametgris chosen such that best
agreement is found with the observed flux distri-
butions.

field distributions are plotted in the middle column. The rightfrom the above discussed changes in the direction and mag-
column shows magneto-optically detected flux distributionsnitude of the currents. Tha" lines are plotted as bold lines,

in a thin DBCO single crystal for the three different perpen-the arrows indicate the direction of the current flow. In the
dicular external magnetic fielgg,H,=41 mT (top row), 82 first possibility shown in the upper plot, the current stream-
mT (middle row, and 123 mT(bottom row; the sameH, lines are extended beyond t_he concave corner and meet at an
values were used in the theory. The experiments were carried'dle of 90° such that d” line must be formed along the
out at T=20 K using a ferrimagnetic iron-garnet indicator. Pisection line. In the second possibility the streamlines run
The white areas correspond to the Shubnikov-Phase, intg" concentric C|rclfs_arqund the corner as shown in the lower
which the flux lines have already penetrated, whereas thBlOt in Fig. 3. Nod " line is formed in this latter case and the
flux-free Meissner phase remains dark. The observed fluglectric field, Eq.(6), and vortex velocity have a rljpeak.
distributions are slightly disturbed due to the influence of theo Ul Magneto-optical experiments in Fig. 2 clearly reveal that

twin boundaries. The black spot on the right arm of the cros he flux front rurls smoothly around the concave corners.
: : . . onsequently a™ line is not visible. We conclude from
is a defect in the iron-garnet indicator.

The shielding currents flow in thahole sample in our these observations that the latter possibility is realized. The

dicul —0 in the Mei calculations in Fig. 2 show also that the current and the flux
perpendicular geometry to ensuBy=0 in the Meissner front run on smooth curves around the concave corner and

area, in contrast to the longitudinal geometry, where then g nicely agree with the experiment and the above consid-
shielding currents flow only in the penetrated regions. Comgration.

paring the current distributions depicted for the three mag- \what consequences does this behavior imply? The circu-
netic fields one finds that during magnetization the Shie'dingar current stream lines induce a h|gh magnetic field peak in
currents change their magnitude and their direction until thehe center of the circles, i.e., at the concave corners. This is
critical valuej, is reached. The current flows parallel to the also visible in the magneto-optic images and in the calcu-
sample edges at places where the shielding current hdsated contour plots of the magnetic field in Fig. 2. The flux
reached .. But a direction parallel to the sample edges is nolines which penetrate the region bounded by the cewultal
longer defined at theoncavecorners of the cross. lines and the dashed lines in Fig. 4 have to pass through the

Next we address the question of the current flow in theconcave corner of the cross since the flux line motion is
region that is bounded by the extrapolation of the samplalirected always perpendicular to the current flow as indicated
edges. Two alternatives are conceivable at first thought asy the dashed arrows. “Flux jets” occur at the concave cor-
depicted in Fig. 3 for a cross-shaped sample. We assume timers, i.e., the flux-line velocity and therefore the electric field
cross to be in the critical state to avoid the problems arisingre very largé?
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FIG. 3. Sketch of the current streamlines in a cross-shaped FIG. 5. Stream lines of the curreftbp) and contour plots of the

sample in the critical state. Upper plot: the streamlines meet artnagnetlc field(bottom in the fully penetrated critical state of a

90° at the concave corner andid line is formed. Lower plot: the cross with arms half as wide as long.

streamlines run on concentric circles around the concave corner. . . .
for convenience(see Fig. 4 and definer=(x?+y?)%?,

The stream lines of the current and contour plots of the? = (~YX+Xy)/r=2xr. When the flux front has penetrated
magnetic field in the fully penetrated critical state are de0 @ depttry, the electric field caused by the ramp ratgis
picted in Fig. 5 with particularly high resolution for a cross obtained from Eqgs.(4) and (6) and from the condition
with arms half as wide as long, using a grid of680 points E=0 at this front. Explicitly one has
and prescribing the current distribution with the highest at-

tainable accuracy using our computation of flux penetration. j=+icy, E=Ba(R—X)y, x>0, y<0, (73
We give here the explicit expression for the electric field )

E(x,y) inside the superconductor near the lower left concave . A Ba rf, -

corner of the cross, if flux-creep effects are neglected and 1=*lecp, E= ?(T_r ¢, x>0,y>0, (7b

E depends only on the ramp rate of the applied magnetic

field. We shift the origin of thex andy axes into this corner j=—jX, E=B,y—R)X, x<0, y>0. (70

The streamlines gf andE flow around this corner smoothly

as depicted in Fig. 4. However, while the current density is a
continuous vector field with constant magnitugle=j. and

with no jumps in its components andj,, the electric field
exhibits pronouncediscontinuitieson thex andy axes, i.e.,

on the extension of the corner sides into the superconductor.

(@ Namely, on the liney=0, x>0 one hasE,=0, E,

=(x—rp)B, aty<0, andE,=0, E,=(x/2)(1-r}/r)B, at
y>0, and corresponding behavior on the lxe0, y>0.

- This means that at the positions where the straight stream
""""" > X lines start to curve into circles, the magnitudeFoperforms
A A A 2 A a jump. For examplek, jumps by
vacuum I A eepe
. (rp_x)2
B R i OE,= BaT (8)

E
! aty=0. This jump height diverges at the corner as ahd
FIG. 4. Current flow and flux-line motion at one concave cornercorresponds to an electric surface charge of densiy
of a cross-shaped sample. The direction of the current is indicategaused by the motion of the flux lines.
by the arrows along the streamlines; the direction of flux-line mo- We have thus the remarkable result that during flux pen-
tion is indicated by the arrows perpendicular to the current streangtration into the corner a surface charge, and a corresponding
lines. abrupt jump in the electric field, appeasidethe supercon-
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ductor along the linegr plane$ which extrapolate the edges
into the specimen. Note that this discontinuity occurs at po-
sitions where the material is homogeneous and where the
current flow is smooth.

This interesting phenomenon is described by Edsand
(8) in the Bean limit in longitudinal geometry. However, as
discussed in Sec. Il D, that description approximately applies
also to perpendicular geometry with partial or full penetra-
tion of flux. The expressions foE(x,y) are identical for
longitudinal and perpendicular geometries in the fully pen-
etrated critical state. A slight modification is then required in
Eq. (7), which is still valid in the quarter with circular flow if
the constant penetration depthis replaced by a penetration
radiusr,(¢) which depends on the angie Namely, if the
width of the arms of the cross isrg, one hasr,=rq
in the sectors of straight parallel flow, and,
=ry/max(cog,sing) since the flux front now coincides with
the two central linegplanes of the cross.

As noted by Indenbofi a jump inE(x,y) may occur in
even simpler geometries, e.g., wheneveroavexcorner is
rounded. The simplest cd8ds the rectangle with rounded
ends(“football stadium”), where regions with straight par-
allel and circular stream lines border on each other, creating
a jump of E, by a factor of 2. This can be seen from the
explicit expression&€ = +B,yX andE=(1/2)B,r ¢ in these
two regions; cf. Eqs(4) to (6) with f(x)=0 andr(¢)=0
and appropriate definitions af and ¢. While this jump is
finite and increases linearly with the jump ofE nearcon-
cavecorners diverges asrlAnd thus becomesfinite when
the corner is ideally sharp.

When flux creep is taken into account, i.e., whenoo is
chosen in our modeE=E_(j/j.)"sgn, then these consider-
ations still apply ifn>1. The current density in the fully
penetrated regions now is no longer exactly constant, since
we havej =] .(E/E;)* sgrE. The jumps inE thus lead to
small jumps inj of relative heightsj/j.~(1/n) 6E/(B,r ),
or with Eq.(8),

(r,—x)2 FIG. 6. Calculated magnitud&(x,y)| of the electric field dur-
Sj~] Czp—, (9 ing flux penetration into a thin superconductor cross at applied field
nrpx values(from top to bottom 0.1, 0.3, 1.2 in units of the field of full

penetration. A total of 6860 grid points and a current-voltage law

wherex is the distance from the corner. These jump<£in A
rh:_oc.l were used.

andj are, however, smeared out due to the finite expone
n. This means an abrupt jump jnnever occurs.

These considerations are confirmed by our numerical cal- The 1f dependence of the electric field in the region of
culations. Three-dimensional plots of the electric field areCircular flow is nicely confirmed by our computations. Figure
shown in Fig. 6 for the same applied magnetic fields as iy shows profiles oE(x,y) taken along a straight diagonal
Fig. 2. TheE-field distributions were calculated numerically line starting at a concave corner of the cross wieré® by
using the “cutting function” as described in Sec. Il B. The definition. Figure 7 was extracted from the same computer
sharp peaks due to the large flux-line velocity and the contun as Fig. 6. The solid curve in Fig. 7 should be given by
centration of the magnetic field at the concave corners ar&d. (7b), which in the fully saturated Bean state contains no
clearly visible. The electric field is maximum at the lines  fit parameter. However, since the position of the dihgu-
along the sample edges, whereas we haved at the flux larity (the concave corngiis not known exactly due to our
front, along thed " lines, and in the Meissner phase. In the artificial smearing of the boundaries of the cross, we had to
computations of Fig. 6 the number of independent griduser, as a fit parameter. The resulting cutir), Eq. (7b),
points (points in one quarter sectipwas n,x n,= 30X 30, closely fits all 13 points obtained from our computation.
and the arms of the cross werex23=26 grid points wide.  Similar good fits to theE:(Ba/Z)(r—rf;/r) behavior are
This relatively small number of grid points in these armsobtained for the partly penetrated state. Fewer grid points
together with the artificial smearing of the boundaries of thewith E>0 are available in this case, but still only one fit
cross required to suppress oscillations, caused a smearing phrameter , is required to obtain good agreement. If the
the abrupt jump ok predicted by Eq(9). amplitudes of both terms i& (ecr and«<1/r) are fitted, the
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platelet by laser machining. From the above arguments we

rye | expect that the magnetic and electric fields should exhibit a
large overshoot at the indents. Figure 8 shows the calculated
current(left) and magnetic fieldmiddle) pattern which cor-
respond to the magneto-optically observed flux distributions

5 L i atT = 20 KandugH, = 27 mT, 82 mT, and 123 mTfrom

top to bottom depicted in the right column. The current and
] field patterns were computed using a cutting function which
) I ] suppresses the current flow outside the specimen; see Sec.
I Il B. The magneto-optic images show the expected large en-
hancement of the magnetic field at the indents. The critical
current flows parallel to the sample edges in the fully pen-
etrated critical state. Then, additionally to thé-line struc-
ture in a rectangular sample discussed in Sec. Il C, new para-
bolic d* lines occur where the straight current flow turns
. . . . sharply into the circular path around the indetitsThe
o 0.2 0.4 0.6 0.8 1 poorer visibility of the parabolid™ lines compared to the
/T, others is due to the decrease of their intensity withat®s
when « is the angle by which the stream lines bend. This
FIG. 7. Calculated profiles of the electric field along the diago-angle increases along tie™ lines such that their visibility
nal from the concave corner to the sample center in the fully pendecreases. The current in the sample center is undercritical in
etrated state. The boxes mark the calculated values at the grithe partly penetrated state and does not exhibit sharp bends
points; the solid curve is computed from E@b). such that ad-line structure is less visible. Note the nice
) agreement between the calculated and the experimental flux
prefactor of ther term turns out to be close ®,/2, which  patterns.
indicates that Eqg7) are a good approximation even for the ' computed electric field profilefE(x,y)| are depicted in
partly penetrated state in perpendicular geometry. Fig. 9. They are cut off at a height Gn units aBa) since
plotting the full peak(of height ~300) would have made
B. Indented rectangle invisible the rooflike profiles of height 1 near the specimen
The 1f peak of the electric field is cut off when the edges. The sharp front of the penetrating electric field and
concave corner is rounded. To demonstrate this we cut twthe nearly circular cross section of the peak are clearly vis-
semicircular indents into a rectangulds/a=1.07) YBCO ible.

FIG. 8. Calculated current pattefiteft col-
umn) and perpendicular fielll, (middle column
distribution of an indented rectangular sample for
three different steps of flux penetration. Right
column: magneto-optically detected flux distribu-
tions in a rectangular YBCO crystal with two
semi-circular indents af =20 K and uoH,=27
mT (top), 62 mT (middle), and 123 mT(bottom).
The flux distributions were detected using a fer-
rimagnetic iron-garnet indicator. The black spots
are defects in the indicator film. The crystal
thickness isd=20 um. In the calculations the
unit of the magnetic fieldone fit parameteris
chosen such that best agreement is found with the
observed flux distributions.
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FIG. 10. Calculated profiles of the electric field along the nar-
rowest cross section of the indented rectangle for four different
magnetic fields. The symbols mark the calculated values at the grid
points; the solid curves are computed from Egb). (OI) fully
penetrated state. The inset shows the profiles for the same field
values as Fig. 8.

V. CONCLUSION

In this paper we have presented patterns of electric and
magnetic fields and current during penetration of flux into
flat type-Il superconductors which were shaped as a cross or
an indented rectangle by a laser-cutting method. The
magneto-optically observed flux distributions show that the
magnetic field is peaked at the concave sample corners. This
finding coincides with our numerical calculations of mag-
netic field patterns. The current flows along circular paths
around the concave corners and causes large peaks of the

FIG. 9. Calculated magnitud&(x,y)| of the electric field dur- magnetic field there. With the knowledge of tHdine for-
ing flux penetration into the same superconductors with two semimation at convex corners and the behavior of the current
circular indents as in Fig. 8. The profiles correspond to applied fieldflow and the resulting electric and magnetic fields at concave
values 0.15, 0.3, 0.6, and 1.05 in units of the field of full penetra-corners the current and electric and magnetic field patterns
tion; the first three field values coincide with those in Fig. 8. Tocan be derived for any arbitrary planar geometry.
make visible the entire structure we have cut the peaks of the de- Analytical solutions of the electric fiel# were found for
picted 3D plots at a height of 5 in unitsB,, wherea is the half  long samples with cross section of arbitrary shape in a lon-
width of the rectangle. The full peak height is approximately 300. gitudinal applied magnetic field. These solutions are also

valid for thin samples in perpendicular magnetic field in the
fully penetrated state and they are good approximations in

Figure 10 shows cross sections Bfx,0) along the line the partly penetrated state of thin superconductors.
connecting the two indentéhe y axig. The fitted solid The electric field pattern at convex and concave corners
curves were chosen in the form of E@b), with r=x,—x differ qualitatively: Discontinuity I|r_1es are _formed at the
wherex, is the (fitted) center of the indent. Full penetration convex corners where the ;tra|ght field lineg deE t_Jend
corresponds tx=0, or r =x,. The specimen half widtia sharply and wherfE| goes linearly to zero. The field lines of

(alongx) was chosen as unit length in this figure. DepictedJ andE are circular around concave comers, &ndiverges

n . - ~ ~at the corner tip as one over the radius of the circle.
are the casess, = 0.1, 0.3, 0.6, and 1.05 in units of the field When the current flow changes from a straight to a circu-

of full penetration. The functiorE=(B/2)(r —r/r) is a |4 path the electric field performs abrupt jumps. Note that
good fit for full penetration, where only the peak position thjs jump now occurs at positions where there is no inhomo-
Xo was adjusted since,=a—Xq is known in this case. For geneity in the sample. Similar jumps &f occur also in in-
partial penetration also the penetration radiyand the pref- homogeneous superconductors at positions where the critical
actor=B,/2 had to be adjusted to get good fits. current density changes, as observed and discussed in Ref.
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10. The jump height diverges ag Jdt concave corners and
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current at the inner edge of a perforated thin superconductor.

is infinite when the corner is sharp. Our numerical calcula-Work on these topics is in progress.

tions of the electric field distribution nicely agree with our
analytical expressions.
These results are particularly important for the perfor-
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