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We computeNs(E) for a family of superconducting order parameters with sign changes at the Fermi
surface, and find surprising results. We consider allD~k̂! such thatD~k̂!51D0 on part of the Fermi surface, and
D~k̂!52D0 on the rest, yielding an average of^D~k̂!&5rD0, where 0<r<1. For 0,r,1, as the impurity
concentration increases, the number of low-lying states increases, and the superconductor becomes gapless. As
the impurity concentration is further increased, the gap in the spectrum is restored, andNs(E) approaches the
pure limit BCS form, with a renormalized gap.@S0163-1829~96!04829-1#

I. INTRODUCTION

Much theoretical work has been recently devoted to su-
perconductors with an order parameterD~k̂! that is a non-
trivial function of k̂.1–3 Both the heavy Fermion and the
high-Tc superconductors may have such an order parameter,
and there is an effort to see if their experimental properties
can be understood in terms of such aD~k̂!.4

If the order parameter is unconventional, and so trans-
forms according to a nonidentity representation of the crystal
point group, thenD~k̂! must indeed have a strongk̂ depen-
dence; for example, the Fermi-surface average must vanish:
^D~k̂!&50.

However, models involving conventional order param-
eters with an interestingk̂ dependence have also been pro-
posed. In these models,D~k̂! has the complete rotational
symmetry of the crystal, but can change sign as a function of
k̂.5–9

Thus^D~k̂!& need not vanish, but will be reduced by can-
cellation effects. Recent theory has shown that superconduct-
ors with such conventional order parameters can be quite
sensitive to scattering by ordinary, nonmagnetic impurities.

In order to focus on the effects due to a sign change on
the Fermi surface, in this paper we consider a particular fam-
ily of order parameters; for this family, we are able to com-
pute the density of statesNs(E) for an arbitrary Fermi sur-
face, in the presence of impurity scattering. Our family of
order parameters satisfies the following condition:
D~k̂!51D0 or D~k̂!52D0 for all k̂, such that̂ D~k̂!&5rD0,
with 0<r<1. Thus,D~k̂! is equal to1D0 on part of the
Fermi surface, and is equal to2D0 on the rest of the Fermi
surface, with a net average value ofrD0.

The virtues of our model are several. First, the order pa-
rameters we consider have no nodes, so that any interesting
structure inNs(E) at low energy is due to the sign change in
D~k̂! combined with the impurity scattering. A second ad-
vantage of our model is that it permits the determination of

several analytical results. In fact our analytic results are not
limited to the Born limit, but can be derived for arbitrary
impurity scattering potentialv.

We note that in two cases—~a! r51, so thatD~k̂!5D0 for
all k̂, with any amount of impurity scattering;~b! any value
of r , with no impurity scattering—the density of states is
simply given by the usual BCS answer:

Ns~E!

N~0!
5u~E2D0!

E

AE22D0
2
. ~1!

We also note that ther50 case, which covers the possibility
of an unconventional order parameter, has been extensively
discussed in a previous paper.10

One particularly interesting result we find, is that when
0,r,1, the effects of impurity scattering can be surprisingly
nonmonotonic.5–9 For example, as 1/t is increased, the su-
perconductor becomes gapless at a certain critical value of
1/tD0; as 1/t is further increased, an energy gap in the spec-
trum is restored at a higher value of 1/tD0. Finally as
1/tD0→` the density of states approaches that given by Eq.
~1! except thatD0 is replaced byrD0.

The work presented in our paper is closely related to sev-
eral very recent publications.5–9 These authors all consider
order parameters which change sign on the Fermi surface,
and yet have a nonzero average; in contrast to our work these
papers are mostly concerned with order parameters with
nodes. These papers all agree in finding that an increase in
the impurity concentration can induce a gap in the spectrum.

II. BASIC EQUATIONS

To do our calculations, we use the Gor’kov equations, in
their quasiclassical form.3,11 The key quantity is then the
propagatorĝ~k̂,e!, which is a 232 matrix in particle-hole
space. Herek̂ is a unit vector on the Fermi surface, ande is
a Matsubara frequency. The solution forĝ~k̂,e! is given by
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ĝ~ k̂,e!5
2p$ i ~e1 ia3!t̂32 i @D~ k̂!2 ia2#t̂2%

$~e1 ia3!
21@D~ k̂!2 ia2#

2%1/2
5g3t̂3

1g2t̂2 . ~2!

The impurity self-energyâ~e! is given by

â~e!5ct̂~e!, ~3!

wherec is the density of impurities, andt̂~e! is the t matrix,
given in terms ofĝ by the following equation:

t̂~e!5v1N~0!vE
FS
d2k̂n~ k̂!ĝ~ k̂,e! t̂~e!. ~4!

For simplicity, we have taken the impurity potential to be the
s wave of strengthv. HereN~0! is the density of states at the
Fermi surface in the normal state, andn~k̂!d2k̂ is the partial
density of states ind2k̂, normalized to one:

E
FS
d2k̂n~ k̂!51. ~5!

Equations ~2!–~4! along with the gap equation, must be
solved self-consistently. The density of states is then com-
puted using thet̂3 component ofĝ:

Ns~E!5
N~0!

p
Im E

FS
d2k̂n~ k̂!g3~ i e→E2 ih,k̂!. ~6!

For our family of order parameters, the equations can be
analyzed in quite a bit of detail, since thek̂ integrals can be
done. First, we note thatĝ~k̂,e!, for a given value ofe has
only two different values, depending onk̂. Then we write

g31~e!5
2p i ~e1 ia3!

@~e1 ia3!
21~D02 ia2!

2#1/2
, ~7!

g32~e!5
2p i ~e1 ia3!

@~e1 ia3!
21~2D02 ia2!

2#1/2
, ~8!

g21~e!5
p i ~D02 ia2!

@~e1 ia3!
21~D02 ia2!

2#1/2
, ~9!

g22~e!5
p i ~2D02 ia2!

@~e1 ia3!
21~2D02 ia2!

2#1/2
. ~10!

Using these definitions in Eq.~4! we can then derive two
complex, coupled equations fora3(E) anda2(E):

ia3~E!5
icv2N~0!$@~11r !/2#g31~E!1@~12r !/2#g32~E!%

12N~0!2v2„$@~11r !/2#g21~E!1@~12r !/2#g22~E!%21$@~11r !/2#g31~E!1@~12r !/2#g32~E!%2…
,

~11!

ia2~E!5
icv2N~0!$@~11r !/2#g21~E!1@~12r !/2#g22~E!%

12N~0!2v2„$@~11r !/2#g21~E!1@~12r !/2#g22~E!%21$@~11r !/2#g31~E!1@~12r !/2#g32~E!%2…
. ~12!

These equations are the basis of our calculations.
Instead ofc and v it is convenient to calibrate impurity

effects in terms of two other parameters, defined as
follows:12

1

2t
5

cpN~0!v2

11@pN~0!v#2
, ~13!

s5
@pN~0!v#2

11@pN~0!v#2
. ~14!

Heret is the normal-state collision time, ands measures the
strength ofv. Finally, we note that many of our answers are
expressed in terms ofD0, which is itself a function ofT, s,
andt:

D05D0~s,t,T!. ~15!

The gap equation which determinesD0 will be discussed in
Sec. VI.

III. DISCUSSION OF Ns„E50…

One particularly interesting question to study is the fol-
lowing: for what values oft ands is Ns(E50)Þ0, so that
the superconductor is gapless?5–9 In this section we derive,
for our family of order parameters, an analytic answer to this
question.

At E50, we can rewrite Eqs.~11! and~12! in the follow-
ing way. Definez5 ia3/D0 , and y5 ia2/D0 . We then can
write
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z5
1

2tD0

3

1

12s
z

11r

2
Az21~11y!21

12r

2
Az21~12y!2

Az21~12y!2Az21~11y!2

11
s

12s

z2S 11r

2
Az21~11y!21

12r

2
Az21~12y!2D 21S 11r

2
~12y!Az21~11y!22

12r

2
~11y!Az21~12y!2D 2

„z21~12y!2…„z21~11y!2…

,

~16!

y52
1

2tD0

3

1

12s

11r

2
~12y!Az21~11y!22

12r

2
~11y!Az21~12y!2

Az21~12y!2Az21~11y!2

11
s

12s

z2S 11r

2
Az21~11y!21

12r

2
Az21~12y!2D 21S 11r

2
~12y!Az21~11y!22

12r

2
~11y!Az21~12y!2D 2

„z21~12y!2…„z21~11y!2…

.

~17!

Now, at E50, the solution forz is either purely real or
purely imaginary. Whenz is real,Ns(E50).0, while when
z is purely imaginary,Ns(E50)50. These two solutions are
separated by thez50 solution, which occurs whens, t, and
r @recall ^D~k̂!&5rD0# are related in a certain way. These
considerations lead to the following result.

Imagine we start increasing the value of 1/2t from zero.
When 1/2tD0 reaches the following value:

1

2tD0
5
11N~0!2p2v2r 2

11N~0!2p2v2
512s1sr 2, ~18!

the superconductor becomes gapless so thatNs(E50).0.
However, as we further increase 1/2t, the superconductor
remains gapless only up to a critical value, given by

1

2tD0
5
1

r
. ~19!

For the unitarity limit ~s51! the two curves bounding the
gapless region are given by

1

2tD0
5r 2, ~20!

1

2tD0
5
1

r
. ~21!

For the Born limit~s50!, the curves are given by

1

2tD0
51, ~22!

1

2tD0
5
1

r
. ~23!

In Fig. 1 we plot, in the 1/t2r plane, the gapless region for
the Born and unitarity limits.

We should stress several points concerning these results:
~1! At r50, as 1/t is increased a gap is never restored.

This result was derived in our previous paper,10 which dealt
with the r50 case.

FIG. 1. Lines bounding the region in whichNs(E50).0. The
upper bounding curve is given by the dashed line, 1/2tD051/r ; the
lower boundary curve depends ons @defined in Eq.~14!#, and we
show the curve for three different cases. Recall the definition of the
parameterr : ^D~k̂!&5rD0.
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~2! At r51, there is always a gap in the spectrum, since
Ns(E) is given by Eq.~1!, regardless of the values oft and
s.

~3! The upper bounding curve of the gapless region, given
by Eq.~19!, is the same for any value ofs; in particular, it is
the same for the Born and unitarity limits.

We can also derive several other exact results. As 1/2tD0
increases from the value~12s1sr 2! to the value 1/r , the
quantityNs(E50) attains a maximum at a certain value of
1/2tD0 between these two limits. The maximum occurs at the
following point:

1

2tD0
5
12sr ~12r !

r 1/2
. ~24!

Furthermore, the maximum value ofNs(E50) is given by

Ns~E50!

N~0!
512r . ~25!

Note that this value is independent ofs.

IV. RESULTS FOR Ns„E…

In this section, we show numerical results forNs(E), for
typical values oft, s, andr . Figures 2 and 3 shows plots of
Ns(E) versusE, with the parameterss and r held fixed at
the values50.6 andr50.5. We show results for six differ-
ent values of 1/2tD0, chosen to illustrate the various stages
in the behavior ofNs(E) as the concentration of impurity
increases.

We see that at small concentration, states at low energy
appear, gaplessness setting in at 1/2tD050.55, in agreement
with Eq. ~18!. A gap in the spectrum is reestablished at
1/2tD052.0, as predicted by Eq.~19!. Finally, at the largest
values of 1/2tD0 chosen, we can see thatNs(E) is approach-
ing a simple BCS form, with a renormalized gap of
rD050.5D0. This large 1/2tD0 behavior will be discussed in
the next section.

We also note that for Fig. 3~a!, we have chosen the value
of 1/2tD0 which gives a maximum value forNs(E50), in
accordance with Eq.~24!. As predicted by~25!, the value of
Ns(E50)/N(0) is given 12r50.5.

V. Ns„E… IN THE LARGE 1/ tD0 LIMIT

As 1/tD0 becomes very large,Ns(E) regains its 1/t50
form with a renormalized value of the gap.5–9 This was evi-

FIG. 2. We show plots ofNs(E), with s50.6 andr50.5, for
several values of 1/2t. In ~a!, the concentration of impurities is low
and an impurity band centered onEb @Eq. ~37!# appears. In~b!, 1/2t
is just below the value at which the impurity band merges with the
continuum, while in~c! 1/2t is chosen to be the value at which
gaplessness begins.

FIG. 3. Plots forNs(E), for the same values ofs and r as in
Fig. 2. In ~a!, we chose 1/2t such thatNs(E50) is a maximum; in
~b!, 1/2t is set at the value at which a gap in the spectrum reappears.
For ~c!, we chose 1/2t to be very large, so that the approach to the
pure limit BCS form is apparent.
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dent in the numerical results presented in the last section;
here we discuss an analytic derivation of this result.

As 1/tD0→`, an analysis of Eqs.~11! and~12! shows that
ia2(E) and ia3(E) approach the following limits:

ia2~E!→2
1

2t

rD0

@r 2D0
22E2#1/2

, ~26!

ia3~E!→2
1

2t

iE

@r 2D0
22E2#1/2

. ~27!

For a given large value of 1/tD0, formulas~26! and~27! fail
only in a narrow region ofE, near the valueE5rD0 . This
region becomes narrower and narrower as 1/tD0→`. Using
~26! and~27!, we obtain for the 1/tD0→` limit of the density
of states the following result:

Ns~E!

N~0!
5u~E2rD0!

E

AE22r 2D0
2
. ~28!

This formula is quite interesting. It means that as 1/tD0→`,
the density of states regains the form it had for the pure limit
~1/t50!, except that the gap parameter appearing in~28! has
been renormalized torD0. It seems that the impurities scatter
the electrons rapidly about the Fermi surface, so that the
electrons effectively see the Fermi-surface average of the
order parameter,̂D~k̂!&5rD0.

One point to be stressed is that the value ofD0 appearing
in these equations has been reduced by the impurity scatter-
ing. Thus, if we denote the value of the order parameter in
the pure limit byD00:

D00~T!5D0~s,t5`,T!, ~29!

then we haveD0,D00 unlessr51 or 1/t50.

VI. GAP EQUATION AND Tc REDUCTION

With our assumptions for the form ofD( k̂), the self-
consistent equation for the order parameter takes the follow-
ing form:

D~ k̂!52pTN~0!(
e
E d2k̂8n~ k̂8!V~ k̂,k̂8!

3
@D~ k̂8!2 ia2#

$~e1 ia3!
21@D~ k̂8!2 ia2#

2%1/2
. ~30!

The pairing interaction and the order parameter can be writ-
ten as

V~ k̂,k̂8!52V0f~ k̂!f~ k̂8!, ~31!

D~ k̂!5D0f~ k̂!, ~32!

wheref~k̂!561 on the Fermi surface, and has an average of
r :

E d2k̂n~ k̂!f~ k̂!5r . ~33!

To determineTc , we work to leading order inD0, obtaining

D05N~0!V0pTc(
e

~D02 ia2r !

ue1 ia3u
. ~34!

Here,ia2 is evaluated to first order inD0, while ia3 is evalu-
ated in the normal state. We then arrive at the following
equation:

lnS TcTc0
D5~12r 2!FcS 12D2cS 121a D G , ~35!

whereTc0 is the transition temperature with no impurities,
c(x) is the digamma function, anda is a pair-breaking pa-
rameter defined as follows:

a5
1

4ptTc
. ~36!

The r50 limit gives the usual result for an unconventional
order parameter; whenr51, we see thatTc is unchanged by
the impurity scattering. We also note that unlessr50, Tc is
never driven to zero by any finite value of 1/t.

VII. DISCUSSION

The results presented here show that a sign change in the
order parameter, together with scattering from nonmagnetic
impurities, leads to a complex pattern of behavior in the
density of states. In this regard our work agrees with several
recent publications.5–9 For our family of order parameters,
the magnitudeuD~k̂!u is independent ofk̂; in particular, there
are no nodes. Then the low-energy structure inNs(E) is not
due to nodes, or to any variation inuD~k̂!u.

In the small 1/t limit, insight into our results can be
gained by noting that an isolated impurity, in a superconduc-
tor with aD~k̂! satisfying our condition, has a bound state at
the following energy:

Eb5D0S 11@pN~0!v#2r 2

11@pN~0!v#2 D 1/25D0A12~12r 2!s.

~37!

Thus, for example, in Fig. 2~a! we can understand the loca-
tion of the small band of states belowD0.
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