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We computeNg(E) for a family of superconducting order parameters with sign changes at the Fermi
surface, and find surprising results. We considedgt) such thatA(k)=+A4, on part of the Fermi surface, and
A(k)=—A, on the rest, yielding an average @i(k))=rA,, where Gsr<1. For 0<r<1, as the impurity
concentration increases, the number of low-lying states increases, and the superconductor becomes gapless. As
the impurity concentration is further increased, the gap in the spectrum is restordd,(&)dapproaches the
pure limit BCS form, with a renormalized gaj50163-182606)04829-1

[. INTRODUCTION several analytical results. In fact our analytic results are not
limited to the Born limit, but can be derived for arbitrary
Much theoretical work has been recently devoted to suimpurity scattering potential. .
perconductors with an order parametek) that is a non- We note that in two casesta) r =1, so thatA(k)=A, for
trivial function of k.1~ Both the heavy Fermion and the all k, with any amount of impurity scatteringh) any value
high-T, superconductors may have such an order paramete?f . With no impurity scattering—the density of states is
and there is an effort to see if their experimental propertie$!mply given by the usual BCS answer:
can be understood in terms of sucth&).*
If the order parameter is unconventional, and so trans- Ny (E) E
forms according to a nonidentity representation of the crystal N(0) \/ﬁ @
point group, them (k) must indeed have a strorkgdepen- 0

dence; for example, the Fermi-surface average must vanistye aiso note that the=0 case, which covers the possibility
(Ak))=0. of an unconventional order parameter, has been extensively

However, models involving conventional order param-giscussed in a previous pap8r.
eters with an interesting dependence have also been pro-  one particularly interesting result we find, is that when
posed. In these modelgy(k) has the complete rotational o<r<1, the effects of impurity scattering can be surprisingly
symmetry of the crystal, but can change sign as a function oionmonotonic—® For example, as #/is increased, the su-
k.5 . perconductor becomes gapless at a certain critical value of

Thus(A(k)) need not vanish, but will be reduced by can- 1/7A,; as 1k is further increased, an energy gap in the spec-
cellation effects. Recent theory has shown that supercondudirum is restored at a higher value of7Af. Finally as
ors with such conventional order parameters can be quité/7Ay;—o the density of states approaches that given by Eq.
sensitive to scattering by ordinary, nonmagnetic impurities. (1) except that, is replaced by A,.

In order to focus on the effects due to a sign change on The work presented in our paper is closely related to sev-
the Fermi surface, in this paper we consider a particular fameral very recent publications? These authors all consider
ily of order parameters; for this family, we are able to com-order parameters which change sign on the Fermi surface,
pute the density of stated,(E) for an arbitrary Fermi sur- and yet have a nonzero average; in contrast to our work these
face, in the presence of impurity scattering. Our family ofpapers are mostly concerned with order parameters with
order parameters satisfies the following condition:nodes. These papers all agree in finding that an increase in
A(k)=+Aq or A(k)=—A, for all k, such thatA(k))=rA,, the impurity concentration can induce a gap in the spectrum.
with O<r=<1. Thus,A(k) is equal to+A, on part of the
Fermi surfgce, and is equal teA, on the rest of the Fermi Il. BASIC EQUATIONS
surface, with a net average valueraf,.

The virtues of our model are several. First, the order pa- To do our calculations, we use the Gor’kov equations, in
rameters we consider have no nodes, so that any interestitigeir quasiclassical for** The key quantity is then the
structure inNg(E) at low energy is due to the sign change in propagatorg(k,e), which is a 2<2 matrix in particle-hole
A(k) combined with the impurity scattering. A second ad-space. Heréd is a unit vector on the Fermi surface, aats
vantage of our model is that it permits the determination ofa Matsubara frequency. The solution fik,e) is given by
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o —afi(etiagmy—i[AK) —iay]T} N(0) f oo -
K €)= = Ng(E)=——1Im d°kn(k ie—~E—-ink). (6
e (e Fiag A0 a7 o7 {(B)= o im | Fknlgaie=E-ink). (O
+0,75. (2)  For our family of order parameters, the equations can be

analyzed in quite a bit of detail, since tkentegrals can be

The impurity self-energy(e) is given by done. First, we note thaj(k,e), for a given value ofe has

a(e)=cl(e), (3) only two different values, depending ¢&n Then we write

wherec is the density of impurities, antde) is thet matrix,
given in terms ofg by the following equation: B —mi(e+iag) .
g3+(€)_[(e+ia3)2+(Ao—ia2)2]1’2’ (7

f(e)=v+N(0)vf d2kn(k)g(k, e)i(e). (4
FS B — mi(e+ias) o
S (erTagtr (—ap-iap©

For simplicity, we have taken the impurity potential to be the
s wave of strengtlv. HereN(0) is the density of states at the
Fermi surface in the normal state, angk)d’ is the partial mi(Ag—iay)

density of states inl’%k, normalized to one: 0s. (€)= [(e+iag) 2+ (Ag—iay T2 9)
3 o a2
stdzﬁn(l%H. 5 7i(—Ag—iay)

92—(6):[(E+ia3)2+(_AO_ia2)2]1/2' (10)
Equations(2)—(4) along with the gap equation, must be

solved self-consistently. The density of states is then comUsing these definitions in Eq4) we can then derive two
puted using thér; component of: complex, coupled equations fag(E) anda,(E):

icu®N(O){[(1+r)/2]gs+ (E)+[(1-r)/2]gs-(E)}

128 = TR0 2T+ 117205+ (B) + L(1-N)/216, ()7 + {[(1+ 1)/2]g3. (E) + [(1— 117215 (E)})"
ia,(E)= ico®N(0){[(1+r)/2]gp, (E)+[(1—1)/2]g, (E)} 1
? 1-N(0)%?({[(1+1)/2]go+ (E) +[(1—1)/2]gy— (E)}?+{[(1+T1)/2]g3+ (E) +[(1—1)/2]gs_(E)}?)
I
These equations are the basis of our calculations. Ag=Ag(o,7,T). (15

Instead ofc anduv it is convenient to calibrate impurity
effects in terms of two other parameters, defined as

follows:** The gap equation which determinag will be discussed in
Sec. VI.
1 cmN(0)v?
27 1+[aN(O)v]?’ (13
Ill. DISCUSSION OF N¢(E=0)
” [7N(0)v]? (14 One particularly interesting question to study is the fol-

lowing: for what values ofr and o is Ng(E=0)+#0, so that
the superconductor is gaple$3?In this section we derive,
for our family of order parameters, an analytic answer to this
Here 7 is the normal-state collision time, amdmeasures the question.

strength ofv. Finally, we note that many of our answers are At E=0, we can rewrite Eqg11) and(12) in the follow-
expressed in terms df,, which is itself a function ofl, o,  ing way. Definez=ias/Ay, andy=ia,/A,. We then can
and 7 write

T 1+[aN(0)v]?"
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Now, at E=0, the solution forz is either purely real or
purely imaginary. Whe is real,N;(E=0)>0, while when
z is purely imaginaryN;(E=0)=0. These two solutions are
separated by the=0 solution, which occurs whea, 7, and

r [recall (A(k))=rA,] are related in a certain way. These

considerations lead to the following result.
Imagine we start increasing the value of 4ffom zero.
When 1/2A, reaches the following value:

1 1+N(0)’m%r?
27A  1+N(0)?7%?

=1-o+or?, (18
the superconductor becomes gapless so M@E=0)>0.
However, as we further increase 1/2he superconductor
remains gapless only up to a critical value, given by

1 1 19
2TAO_F. ( )

For the unitarity limit(c=1) the two curves bounding the
gapless region are given by

Lo 20
ZTAO_r’ ( )
1 1 21
ZTAO_r. ( )

For the Born limit(6=0), the curves are given by

! 1
ZTAO o

(22

(Z+(1-

Y)9)(Z*+(1+y)?)
(17)

1 1

278, T @3

In Fig. 1 we plot, in the #—r plane, the gapless region for
the Born and unitarity limits.

We should stress several points concerning these results:
(1) At r=0, as 1f is increased a gap is never restored.

This result was derived in our previous papewhich dealt
with ther =0 case.

1/(214,)

0.6 1.0

r

0.2 0.8

FIG. 1. Lines bounding the region in whid(E=0)>0. The
upper bounding curve is given by the dashed linegA§21/r; the
lower boundary curve depends on[defined in Eq.(14)], and we
show the curve for three different cases. Recall the definition of the
parameter: (A(k))=rAg.
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FIG. 2. We show plots oN¢(E), with ¢=0.6 andr=0.5, for FIG. 3. Plots forNg(E), for the same values af andr as in

several values of 1/2 In (a), the concentration of impurities is low Fig. 2. In(a), we chose 1/2 such thatNg(E=0) is a maximum; in

and an impurity band centered &g [Eq. (37)] appears. Ib), 1/27 (b), 1/27is set at the value at which a gap in the spectrum reappears.
is just below the value at which the impurity band merges with theFor (c), we chose 1/2to be very large, so that the approach to the
continuum, while in(c) 1/27 is chosen to be the value at which pure limit BCS form is apparent.

gaplessness begins.

IV. RESULTS FOR Ng(E)

(2) At r=1, there is always a gap in the spectrum, since In this section, we show n_umerical results fog(E), for
N4(E) is given by Eq.(1), regardless of the values efand  typical values ofr, o, andr. Figures 2 and 3 shows plots of
o. N¢(E) versusk, with the parameters- andr held fixed at

(3) The upper bounding curve of the gapless region, gNeﬁhe valueoc=0.6 andr =0.5. We show results for six differ-

by Eq.(19), is the same for any value of in particular, itis  €nt values of 1/2A,, chosen to illustrate the various stages
the same for the Born and unitarity limits. in the behavior ofNg(E) as the concentration of impurity

We can also derive several other exact results. AsAl/2 ncreases. _
increases from the valudl—o+or?) to the value 1, the We see that at small concentration, states at low energy
guantity Ny (E=0) attains a maximum at a certain value of appear, gaplessness sefting in atrhg2-0.55, in agreement

with Eq. (18). A gap in the spectrum is reestablished at
fléﬁgev?r?;tpm?r?tn these two limits. The maximum occurs at the1/2 A,=2.0, as predicted by Eq19). Finally, at the largest

values of 1/2A, chosen, we can see thd{(E) is approach-
ing a simple BCS form, with a renormalized gap of
1 1-or(1l-r) rAg=0.5A,. This large 1/2A, behavior will be discussed in
Trhg - (24)  the next section.
We also note that for Fig.(8), we have chosen the value
. . of 1/27A, which gives a maximum value fdi{(E=0), in
Furthermore, the maximum value bi(E=0) is given by accordance with Eq24). As predicted by25), the value of
N,(E=0)/N(0) is given +r=0.5.

Ns(E=0)
SN(O) = (29) V. Ng(E) IN THE LARGE 1/ 7A, LIMIT

As 1/7A, becomes very largeN(E) regains its 1#=0
Note that this value is independent @f form with a renormalized value of the gap’ This was evi-
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dent in the numerical results presented in the last section; pr o m s
here we discuss an analytic derivation of this result. f d<kn(k)p(k)=r. (33
As 1/7A,—, an analysis of Eq$11) and(12) shows that

1a,(E) andias(E) approach the following fimits: To determinel ., we work to leading order in\,, obtaining

. 1 rAg (Ag—iayr)
ia)(E)—— =~ 26 = =0 e
AB)=" 5, [r2A5—E?]Y? (29 Ao N(O)VOWTCE [e+ias] (34)
. Here,ia, is evaluated to first order if,, whileia, is evalu-
ia (E)_)_iL_ (27) ated in the normal state. We then arrive at the following
3 27 [r?A5—E2]Y? equation:

For a given large value of #A,, formulas(26) and(27) fall

only in a narrow region ok, near the valu&E=rA,. This

region becomes narrower and narrower ag\d+o. Using T. ) 1

(26) and(27), we obtain for the WA ,— limit of the density In T_CO =(1=r)y 2 ¢
of states the following result:

S ta

stall @9

where T, is the transition temperature with no impurities,

Ns(E) : . . : : .
=E—-rAy) —— . 28 (x) is the digamma function, and is a pair-breaking pa-
N(0) ( o) VE?—r2A% 9 rameter defined as follows:
This formula is quite interesting. It means that agA}/-oo, 1 (36)
the density of states regains the form it had for the pure limit a= Aw7T,’

(1/7=0), except that the gap parameter appearin(®28) has
been renormalized t . It seems that the impurities scatter e r =0 |imit gives the usual result for an unconventional

the electrons rapidly about the Fermi surface, so that thg,qer parameter: when=1, we see thaT, is unchanged by
electrons effectively see the Fermi-surface average of thg,q impurity scat,tering W7e also note tr?at unlesO. T. is
. Te

order parametexA(k))=rA,. _ never driven to zero by any finite value ofrl/
One point to be stressed is that the valué\gfappearing

in these equations has been reduced by the impurity scatter-
ing. Thus, if we denote the value of the order parameter in VIl. DISCUSSION
the pure limit byAgy: : .
The results presented here show that a sign change in the

order parameter, together with scattering from nonmagnetic

Ao T)=Ag(a, 7=0,T), (299  impurities, leads to a complex pattern of behavior in the
density of states. In this regard our work agrees with several
then we haved;<Aq unlessr =1 or 1/r=0. recent publications-® For our family of order parameters,
the magnitudeA(k)| is independent ok; in particular, there
VI. GAP EQUATION AND T, REDUCTION are no nodes. Then the low-energy structur®iqE) is not

due to nodes, or to any variation ja(k)|.

In the small 1# limit, insight into our results can be
ained by noting that an isolated impurity, in a superconduc-
tor with a A(k) satisfying our condition, has a bound state at
the following energy:

With our assumptions for the form o.’&(ﬁ), the self-
consistent equation for the order parameter takes the foIIowg
ing form:

A(k)=—7TN(0)>, fdzk’n(l?)V(&,&')

1+[7N(0)v]?r2\ ¥
%2— —AV1-(1-1D)0.

[A(k)—ia,] - Eb=4o
X{(e+ia3)2+[A(k/)_iaz]z}1/z- (30

(37)

The pairing interaction and the order parameter can be writyy, s for example, in Fig.(@ we can understand the loca-
ten as tion of the small band of states belaky.
V(kk") == Vo (k) (k) (3Y)
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