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The critical behavior of two-dimensional~2D! anisotropic systems with weak quenched disorder described
by the so-called generalized Ashkin-Teller model~GATM! is studied. In the critical region this model is shown
to be described by a multifermion field theory similar to the Gross-Neveu model with a few independent
quartic coupling constants. Renormalization group calculations are used to obtain the temperature dependence
near the critical point of some thermodynamic quantities and the large-distance behavior of the two-spin
correlation function. The equation of state at criticality is also obtained in this framework. We find that random
models described by the GATM belong to the same universality class as that of the two-dimensional Ising
model. The critical exponentn of the correlation length for the three- and four-state random-bond Potts models
is also calculated in a three-loop approximation. We show that this exponent is given by an apparently
convergent series ine5c2

1
2 ~with c the central charge of the Potts model! and that the numerical values of

n are very close to that of the 2D Ising model. This work therefore supports the conjecture~valid only
approximately for the three- and four-state Potts models! of a superuniversality for the 2D disordered models
with discrete symmetries.@S0163-1829~96!04826-6#

I. INTRODUCTION

The critical properties of two-dimensional random spin
systems have been extensively studied in the last few
years.1–3 Two-dimensional~2D! systems are particularly in-
teresting due to a variety of reasons. First, there are numer-
ous examples of layered crystals undergoing continuous an-
tiferromagnetic and structural phase transitions.4,5 More
recently, 2D and quasi-2D crystals have begun to be fabri-
cated and studied thanks to advances in deposition tech-
niques, with an enormous increase in the variety of physical
phenomena to be investigated.6 Perfect crystals, however, are
the exception rather than the rule, with quenched disorder
always existing in different degrees. Even weak disorder
may drastically affect the critical behavior, according to the
celebrated Harris criterion.7 Second, the conventional field-
theoretic renormalization group~RG! approach based on the
standardf4 theory in (42e) dimensions, and as applied to
study properties of disordered systems by Harris and
Lubensky8 and Khmelnitskii,9 does not work in 2D due to
the hard restrictione!1. Similar considerations apply to the
(21e) low-temperature RG approach. Third, from a theo-
retical point of view a most challenging problem is to estab-
lish the relationship between random models and the corre-
sponding conformal field theory~CFT! describing these at
criticality.

Some early exact results concerning the 2D random-bond
Ising model~IM ! with a special type of disorder~where only
the vertical bonds are allowed to acquire random values,
while the horizontal bond couplings are fixed! have been
obtained by McCoy and Wu.10 This type of 1D quenched

disorder without frustration was shown to smooth out the
logarithmic singularity of the specific heat; the frustrated
case was considered by Shankar and Murthy.11 Dotsenko and
Dotsenko1 initiated some considerable progress in the study
of 2D random bond IM’s by exploiting the remarkable
equivalence between this problem and theN50 Gross-
Neveu model. For weak dilution the new temperature depen-
dence of the specific heat was found to becomeC; lnlnt,
t5(T2Tc)/Tc being the reduced deviation from the critical
temperatureTc . However, their results concerning the two-
spin correlation function at the critical point were later re-
considered by Shalaev,12 Shankar,13 and Ludwig.14 By using
the RG approach as well as the bosonization technique these
authors showed that the large-distance behavior of this func-
tion at criticality was the very same as in the pure case. Some
convincing arguments in favor of the critical behavior of the
2D IM with impurities as governed by the pure IM fixed
point had been given earlier by Jug.15 Recently, a good num-
ber of papers devoted to Monte Carlo simulations of the
critical behavior of the random Ising model have been
published.16 Most Monte Carlo data are in good agreement
with analytical results obtained in Refs. 12–14. It should be
mentioned, however, that these analytical results have been
obtained by employing the replica method. This, on the one
hand, is known to give reliable results only in the framework
of perturbation theory. On the other hand, the mathematical
legitimacy of the replica trick has not yet been established.
Moreover, replicas~though being very useful and conve-
nient! appear not to capture the essentials of nonperturbative
effects in the close vicinity of the phase transition point
~Griffiths phase! ~see, for instance, Ref. 17!. The study of
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nonperturbative effects in the critical properties of random
systems is, however, beyond the scope of the present paper.

Here, we point out that there is some scope to extend the
previous analysis for the 2D random IM to other discrete-
symmetry systems. A very interesting problem consists in
considering minimal CFT models withc,1 as perturbed by
randomness. These models comprise the three- and four-state
Potts systems as particular cases, and these have interesting
applications to real 2D crystals.6 Because the critical expo-
nenta is positive for all these models, the critical behavior is
governed by a random fixed point in agreement with the
Harris criterion. Some years ago Ludwig18,19 and Ludwig
and Cardy20 made an attempt to calculate perturbatively the
critical exponents of the random three-state Potts model.
Their approach was essentially based on the powerful CFT
technique. More recently, Dotsenko, Pujol, and Picco21 ob-
tained the critical exponents for the dilute three-state Potts
model in a two-loop approximation by exploiting the Cou-
lomb gas representation for the correlation functions and a
special kind ofe regularization, wheree stands here for the
difference between the pure system’s central charge value
and the conformal anomaly for the pure 2D IM (1

2!. Dot-
senkoet al.22 have also found the new universality class of
the critical behavior as corresponding to the broken replica
symmetry proposed by Harriset al.23

Another interesting possibility is to study critical phenom-
ena in 2D dilute anisotropic systems with many-component
order parameters. The analysis of the critical behavior of
such systems in (42e) dimensions was developed in great
detail years ago,24 but cannot be directly applied to the 2D
case. Therefore it would be interesting and important to con-
sider studying these 2D models. This is the main goal of our
paper. The key ingredient of our treatment is a fermioniza-
tion trick first suggested by Shankar25 for the N-color
Ashkin-Teller model~see also Refs. 26,27!. This method is
quite general and may be extended to other systems. The
initial Landau Hamiltonian as written in terms of scalar fields
can be shown to map onto a multifermion field theory of the
Gross-Neveu type with a few independent quartic couplings.
This transformation can be done for Hamiltonians containing
only even powers of each order parameter component, the
fourth-order term being an invariant of the hypercubic sym-
metry group@this is the so-called generalized Ashkin-Teller
model ~GATM!#.

The work presented in this paper is organized as follows.
In Sec. II we consider in brief the critical behavior of the
weakly disordered 2D Ising model with random bonds, this
being the central theme of this research field. The tranfer
matrix formalism is set up and the corresponding equations
are written down. The computation of the two-spin correla-
tion function for pure and random models at criticality is also
reviewed. In Sec. III we give a description of the fermion-
ization trick allowing us to study the critical behavior of the
pure N-color Ashkin-Teller model. In Sec. IV the critical
properties of two interactingN- andM -color quenched dis-
ordered Ashkin-Teller models are studied. The RG method is
used to obtain the exact temperature dependence of the cor-
relation length, specific heat, susceptibility, and spontaneous
magnetization near criticality, as well as the two-point spin-
correlation function and the equation of state at the critical
point. In Sec. V, exploiting the approach of Dotsenko, Picco,

and Pujol and of Ludwig we compute the critical exponent of
the correlation length in a three-loop approximation for the
weakly disordered minimal models of CFT, in particular for
the three- and four-state Potts models with random bonds.
We find that while for the GATM the introduction of disor-
der leads to critical behavior as characterized by the random-
bond IM fixed point, for the minimal models of CFT this
Ising behavior, conjectured by a number of authors recently
for the 2D Potts models,28 is actually only approximate. The
accuracy with which the Ising values of the exponents is
observed, however, justifies the use of the term ‘‘IM supe-
runiversality’’ for all these models, when disordered. Sec. V
contains a discussion and some concluding remarks.

II. TWO-DIMENSIONAL ISING MODEL
WITH RANDOM BONDS

A. Transfer matrix, effective action, and RG
for thermodynamic functions

We begin with the classical Hamiltonian of the 2D Ising
model with random bonds defined on a square lattice with
periodic boundary conditions:

H52 (
i51,j51

N

@J1~ i , j !si j si j111J2~ i , j !si j si11 j #, ~2.1!

where i , j label sites of the square lattice,si j561 are spin
variables, andJ1( i , j ) andJ2( i , j ) are horizontal and vertical
independent random couplings having the same probability
distribution, which reads

P~x!5~12p!d~x2J!1pd~x2J8!. ~2.2!

Also, p is the concentration of impurity bonds and bothJ
and J8 are assumed to be positive so that the Hamiltonian
favors aligned spins. Notice that both antiferromagnetic cou-
plings ~creating frustration! and broken bonds (J850) lead
to ambiguities in the transfer matrix and must be excluded in
the present treatment. Let us now consider the calculation of
the partition function of the model under discussion:

Z5( expS 2
H

T D , ~2.3!

whereH is defined in Eq.~2.1! and the sum runs over all
2N

2
possible spin configurations. The partition function is

known to be represented as the trace of the product of the
row-to-row transfer matricesT̂i :

29–31

Z5Tr)
i51

N

T̂i . ~2.4!

The Hermitian 2N32N matrix T̂i rewritten in terms of spin
variables reads:29–31,2

T̂i5expS 1T(j51

N

J1~ i , j !s3~ j !s3~ j11!D
3expS 1T(l51

N

J2* ~ i ,l !s1~ l !D , ~2.5!
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where sa , a51,2,3 are Pauli spin matrices; hereJ2 and
J2* are related by the Kramers-Wannier duality relation:29–31

tanhS J2*T D 5expS 2
2J2
T D . ~2.6!

In Eq. ~2.5! we have set an irrelevant factor to unity. Since
the nonaveraged operatorT̂i in Eq. ~2.7! is random, the rep-
resentation in Eq.~2.4! is in fact inappropriate for computing
the partition function. In order to get a more convenient start-
ing point for further calculations we apply the replica trick.
We introducen identical ‘‘replicas’’ of the original model
labeled by the indexa, a51, . . . ,n and use the well-known
identity for the averaged free energy:

F̄52TlnZ52T lim
n→0

1

n
~Zn21!. ~2.7!

Substituting Eq.~2.4! into Eq. ~2.7! one obtains

F̄52T lim
n→0

H Tr)
a51

n

)
i51

N

T̂i
a21J 1n . ~2.8!

In contrast to the case of random-site disorder, for the
random-bond problem the two matricesT̂i

a and T̂j
b with dif-

ferent row indicesiÞ j depend on two different sets of ran-
dom coupling constants and commute to each other for any
a andb. This allows us to average these two operators in-
dependently. After some algebra one arrives at

Zn5TrT̂N, ~2.9!

where the tranfer matrixT̂ of the 2D random-bond IM is
given by2

T̂5 )
a51

n

T̂i
a5expH (

j51

N

lnF ~12p!expS JT(
a51

n

s3
a~ j !Ds3

a~ j11!1pexpS J8T (
a51

n

s3
a~ j !s3

a~ j11!D G J
3expH (

j51

N

lnF ~12p!expS J*T (
a51

n

s1
a~ j !D 1pexpS J* 8

T (
a51

n

s1
a~ j !D G J . ~2.10!

Settingp to zero ~or J5J8) one is indeed led to the well-
known expression for theT operator of the pure IM:29

T̂PIM5expH JT(j51

N

s3~ j !s3~ j11!J expH J*T (
j51

N

s1~ j !J .
~2.11!

TheT matrix is known to possess the Kramers-Wannier dual
symmetry. In the language of spin variables this nonlocal
mapping reads:30,31

t1~k!5s3~k!s3~k11! t2~k!5 is1~k!s3~k!

t3~k!5 )
m,k

s1~m!, ~2.12!

where the operatorsta(k) satisfy the very same algebra as
the Pauli spin matricessa(n). It is easy to see that if
p50,12,1 theT matrix given by Eq.~2.10! is invariant under
the dual transformation. The plausible assumption that there
is a single critical point yields the equation for the critical
temperatureTc :

expS 2
2J8

Tc
D5tanhS JTcD . ~2.13!

Notice that the pointp5 1
2 is not the percolation threshold,

because the coupling constantsJ andJ8 are assumed to take
nonzero values with the ferromagnetic sign. WritingT̂ in the
exponential form

T̂5exp~2Ĥ !, ~2.14!

one obtains the partition function in the following form:

Z5Tr exp~2NĤ!, ~2.15!

where by definitionĤ is just the logarithm of the transfer
matrix T̂ ~the ‘‘quantum’’ Hamiltonian!. In the thermody-
namic limitN→` the free energy is proportional to the low-
est eigenvalue of the quantum HamiltonianĤ:30,31

F52T lnTr exp~2NĤ!→NTE0 , Ĥu0&5E0u0&
~2.16!

Here u0& is the ground state ofĤ which is assumed to be
nondegenerate. Actually this means that we assumeT.Tc .
From Eqs.~2.10! and~2.14! it follows that Ĥ is not a simple
local operator. A crucial simplification occurs by taking the
y-continuum limit withay→0 ~the lattice spacing along the
y-axis!. In other words, after calculating the logarithmic de-
rivative of T̂ with respect toay and settingay to zero the
quantum Hamiltonian takes on the following simple form
~for details see Ref. 2!:

Ĥ5
dlnT̂

day
U

~ay50!

52(
j51

N HK1s3
a~ j !s3

a~ j11!

1K2(
a51

n

s1
a~ j !1K48@s3

a~ j !s3
a~ j11!#2

1K49S (
a51

n

s1
a~ j !D 2J . ~2.17!
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The higher-order terms in the spin operators are known to be
irrelevant in the critical region, so that they can be dropped
in Eq. ~2.17!. The replicated Hamiltonian, Eq.~2.17!, may be
converted into the fermionic one by means of the Jordan-
Wigner transformation:30,31

ca~m!5s2
a ~m! )

j51

m21

s1
a~ j !Qa,

ca†~m!5s1
a ~m! )

j51

m21

s1
a~ j !Qa, s65 1

2 ~s36 is2!,

Qa5 )
b51

a21

)
j51

N

s1
b~ j !, a51, . . . ,n, ~2.18!

whereca(m) and ca†(m) are the standard annihilation and
creation fermionic operators which satisfy the canonical an-
ticommutation relations:

$ca~m!,cb†~n!%5dabdmn , $ca~m!,cb~n!%50.
~2.19!

After making different species anticommute, the Klein fac-
torsQa drop out ofĤ. For each species it is convenient to
introduce a two-component Hermitean Majorana spinor
field:32,33

c1
a~n!5

1

A2ax
Fca~n!expS 2 i

p

4 D1ca†~n!expS i p

4 D G ,
c2

a~n!5
1

A2ax
Fca~n!expS i p

4 D1ca†~n!expS 2 i
p

4 D G ,
~2.20!

with standard anticommutation rules

$cc
a~n!,cb

b~m!%5
1

ax
dabdbcdmn , c,b51,2, ~2.21!

whereax is the lattice spacing along thex axis. Using Eq.
~2.21! and the relations

s1
a~n!52ca†~n!ca~n!21,

s3
a~n!s3

a~n11!5@ca†~n!2ca~n!#

3@ca†~n11!1ca~n11!#, ~2.22!

one can easily rewrite the Hamiltonian, Eq.~2.17!, in terms
of Majorana fermionic fields. Now let us notice that in the
vicinity of Tc the correlation lengthj goes to infinity and the
system ‘‘forgets’’ the discrete nature of the lattice. For that
reason we can simplify the Hamiltonian by taking the con-
tinuum limit ax→0. Perfoming simple but cumbersome cal-
culations we arrive at the O(n)-symmetric Lagrangian of the
Gross-Neveu model,1

L5E d2x@ i c̄a]̂ca1m0c̄aca1u0~ c̄aca!
2#, ~2.23!

wheregm5sm ,]̂5gm]m ,m51,2,c̄5cTg0 , and

m0;K12K2;t5
T2Tc
Tc

, u0;K31K4 . ~2.24!

Here m0 ,u0 are the bare mass of the fermions and their
quartic coupling constant, respectively. Notice that ifp!1,
u0;p. Providedp5 1

2 andT5Tc we haveu0;(J2J8)2.
The RG calculations in the one-loop approximation are

very simple. In fact, the O(n)-symmetric Gross-Neveu
model being infrared free in the replica limitn→0, the one-
loop approximation truly captures the essentials of the criti-
cal behavior of the model under consideration. The one-loop
RG equations and initial conditions are given by

du

dt
5b~u!52

~n22!u2

p
,

dlnF

dt
52gc̄c~u!5

~12n!u

p
,

u~ t50!5u0 , F~ t50!51, ~2.25!

where u is the dimensionless quartic coupling constant,
b(u) is the Gell-Mann-Low function,gc̄c(u) is the anoma-
lous dimension of the composite operatorc̄c5e(x) ~in fact,
the energy density operator!, t5 ln(L/m), L5a21 is an ul-
traviolet cutoff, anda and m are the lattice spacing and
renormalized mass, respectively. HereF is the following
Green’s function at zero external momenta:

F5
dm

dt
5E d2xd2y^c̄~x!c~y!c̄~0!c~0!&. ~2.26!

The solution of these equations gives the temperature depen-
dence of the correlation lengthj and specific heatC in the
asymptotic regiont→`,n50:1

u5
p

2t
, F;t2

1
2 , j5m21;t21F ln1t G1/2,

C;E dtF~ t !2; lnln
1

t
. ~2.27!

These results follow from the solution of the one-loop RG
equations, Eq.~2.25!, but in fact it is worth noticing that they
are a direct consequence of a renormalization statement valid
to all orders in perturbation theory. Consider a version of the
field theory, Eq.~2.23!, in which the quartic term is decou-
pled by the introduction of a scalar Hubbard-Stratonovich
field f:

L5E d2x@c̄a~ i ]̂1m0!ca1
1
2f21 1

2g0fc̄aca#,

~2.28!

with g0}Au0. As a consequence of the functional version of
the classical equation of motion,34

dL

df
5f1

1

2
g0c̄aca50, ~2.29!

the vertex parts G of the correlation functions
Gab
(2,0;1)5^ca(x)cb(y)

1
2c̄c(z)cc(z)& and Gab

(2,1)

5^ca(x)cb(y)f(z)& are linked by the relationship

G~2,1!52g0Gc̄c
~2,0;1! , ~2.30!
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where it has been indicated explicitly that the quadratic in-
sertion refers to the O15c̄aca operator. Imposing the renor-
malization conditions, Eq.~2.30! leads to34

g0 /g5Au0 /u5Zf
21/2Z11, ~2.31!

where g is the renormalized coupling constant,Zf the
f-field renormalization constant, andZi j is the quadratic-
insertion renormalization matrix for the operators
$Oi%5$c̄c,f2%. Since forn50 we haveZf51, Eq. ~2.31!
leads to the exact resultb (0)(u)522ugc̄c

(0)
(u) between the

Gell-Mann-Low and the anomalous dimension functions, im-
plying 2g1 /b2521 for the coefficients of the lowest-order
nonzero terms in the expansion of these functions inu @that
is, b(u)5b2u

21•••, gc̄c(u)5g1u1•••#. Solving, for in-
stance, the RG equation for the specific heat function leads to
the remarkable Dotsenko-Dotsenko result for the leading as-
ymptotic behavior, whent→0,

C;E tdx

x
u lnxu2g1 /b2; ln lnt, ~2.32!

by virtue of the aboven50 exact results. Similar consider-
ations lead to the announced behavior of the correlation
length,j.

The main conclusion of this section is that the critical
behavior of the 2D random bond IM is governed by the pure
Ising fixed point. It implies that all critical exponents of the
weakly disordered system are the very same as for the pure
model. Randomness gives rise to the self-interaction of the
spinor field which leads to logarithmic corrections to power
laws. In the special casep5 1

2 duality imposes strong restric-
tions; in particular it gives the exact value of the critical
temperatureTc which is believed to be unique. At the critical
point the original lattice model and its continuum version
described by the Gross-Neveu model Lagrangian become
massless, irrespective of the value ofn. We conjecture that
there are only two phases divided by the single critical point
given by the self-duality equation, Eq.~2.13!. It implies that
under this assumption the Griffiths phase shrinks to zero.

B. Two-spin correlation function at criticality

In order to complete the calculation of the temperature
dependence of other thermodynamic quantities we have to
compute the susceptibility and spontaneous magnetization

nearTc . For these calculations we need to find the large-
distance asymptotic behavior of the two-spin correlation
function at criticality. The most effective way for calculating
different correlation functions for the 2D IM is to use
bosonization. Below we shall give a brief description of this
procedure, exploiting simple physical arguments.

Before recalling the principles of the bosonization
method, however, let us show how a straight formulation of
the problem in terms of pure fermionic fields leads to some
difficulties even in the case of the calculation of the pure
Ising model correlation function exponenth (5 1

4! at critical-
ity. As shown, e.g., by Samuel,35 the two-spin correlation
function can be expressed in the lattice formulation as the
partition function of a defective lattice where along the line
T0R of bonds joining the two sites (0,0) and (0,R) the ‘‘bond
strengths’’ ly[tanh(J2 /T) must be replaced byly

21 .
Namely,

Gy~R!5^s00s0R&

5ly
RK expH 2~ly2ly

21! (
i jPT0R

yi j
† yi j11J L ,

~2.33!

where the lattice (y) Grassmann variables$yi j
† ,yi j % have

been introduced.35,36 After suitable transformations, leading
to the quadratic term of the effective Grassmann action in
Eq. ~2.23! without replicas, and in the continuum limit, the
Eq. ~2.33! reads

Gy~R,Tc!5lyc
R K expiT0E

0

R

dyc̄~0,y!c~0,y!L ,
~2.34!

with T05(lc
212lc)/2lc5A211 at criticality (lc5A221

for the isotropic model!. The two-component Grassmann~or
Majorana! field is the same as in Eq.~2.23! and is given by
c5a21(y†y). A possible strategy1 is now to evaluate the
R→` behavior of lnGy(R,Tc) through an expansion in pow-
ers ofT0 . Use must be made of the propagator (x̂5xmgm)

S0~x2x8!5^c̄~x!c~x8!&05
i

2p
@ x̂2 x̂8#21fL~x2x8!,

~2.35!

where fL is some cutoff function. The typical term in the
expansion for lnG(R) involves the multiple integral

I2n~R!5E
0

R

dy1dy2•••dy2nTr@S0~y12y2!S0~y22y3!•••S0~y2n2y1!#5anR1bnlnR1•••, ~2.36!

from which theR→` critical correlator could be evaluated through

lnG~R!52 (
n51

`
~2T0!

2n

4n
I2n~R!1Rlnlc ~2.37!

~the odd-valued power terms vanishing!. Taking the~conjectural! point of view that all terms inR must cancel exactly, the
evaluation of the lnR terms can proceed1 by taking the choice~natural, but leading to some ambiguities! fL51 and evaluating
every othery integral exactly,
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I 2n~R!5E
0

R dy1dy2•••dy2n
~y12y2!~y22y3!•••~y2n2y1!

5E
0

R

dy1dy2•••dyn
ln@~12R/y2!/~12R/y1!# ln@~12R/y3!/~12R/y2!#••• ln@~12R/y1!/~12R/yn!#

~y12y2!~y22y3!•••~yn2y1!
. ~2.38!

After a straightforward but laborious reparametrization of the integral,1 we arrive at

lnG~R!5Rlnlc2 (
n51

`
~2T0

2/p2!n

2n
I 2n~R!, I 2n~R!5E

2`

†`

dz1dz2•••dzn21

( izi /2

sinh( izi /2
)
i

zi /2

sinhzi /2
E

L21

R Rdx

x~R2x!
52unlnRL,

~2.39!

with the R dependence now neatly factorized out and the
cutoff L;a21 conveniently reinstated. The coefficientun is
evaluated through the Fourier representation

z/2

sinh~z/2!
5E

2`

†`dp

2p
F~p!e2 ipz, F~p!5

p2

cosh2pp
,

~2.40!

leading toun5(1/2p)*2`
†` dp@F(p)#n. Finally, we get~drop-

ping theR terms!

lnG~R!52 (
n51

`
un
n S T0p D 2nlnRL52h lnRL, ~2.41!

where

h5 (
n51

`
un
n S T0n D 25 1

2pE2`

†`

dp(
n51

`
1

n F T0
2

cosh2ppG
n

.

~2.42!

The last sum converges to a logarithm and thep integral can
be evaluated, provideduT0u,1. ForT051, Eq. ~2.42! leads
to h51/4;1 however, the standard prescription35 calls for
T05A211 and this leads to a divergence in the summation.
Clearly, this is associated with the use of a uniform cutoff
function fL51, but it must be stressed that to date no further
progress in evaluating the spin-spin correlator at criticality,
using solely the fermionic formalism, can be reported. The
situation is even more delicate when disorder is introduced;
thus the method of the fermionic tailT0R must be aban-
doned.

Let us now begin discussing bosonization, with the action

L5E d2x$ i c̄ ]̂c1@m01t~x!#c̄c%, ~2.43!

wherec is a Majorana spinor andt(x) is a random Gaussian
field with the following probability distribution:

P@t~x!#;expH 2
1

2u0
E d2x@t~x!#2J ,

^t~x!t~y!&5u0d~x2y!. ~2.44!

In fact, the action, Eq.~2.43!, describes free fermions mov-
ing in the random potentialt(x), which in our case is re-
sponsible for local fluctuations of the critical temperature
Tc in the dilute ferromagnet. After applying the replica trick
and averaging over ‘‘all’’ possible configurations oft(x)
one gets the very same Gross-Neveu Lagrangian as given by
Eq. ~2.23!. The representation of the square of the spin-spin
correlation function of the pure 2D IM, that is,

G~x2y!5^s~x!s~y!&, ~2.45!

in terms of the path integral over the real bosonic fieldf of
quantum sine-Gordon model was found by Zuber and
Itzykson33 ~see also Ref. 37! and reads

G~x2y!25Z21
1

2p2a2E Dfsin@A4pf~x!#

3sin@A4pf~y!#exp$2S%,

S5
1

2E d2xH ~]mf!21
2m0

pa
cos~A4pf!J ,

Z5E Dfexp$2S%. ~2.46!

At criticality, m050, the path integral being Gaussian, the
result of its evaluation is easily seen to be

G~x2y!;ux2yu2~1/4!. ~2.47!

The representation for the two-spin correlation function may
be extended to the dilute system by replacing the bare mass
m0;t with the random onem01t(x) into Eq. ~2.46!. Of
course, in the inhomogeneous case the nonaveraged
G(x,y), being sample dependent, depends onx andy sepa-
rately. The averaged correlation functionG(x2y) at the
critical point may be computed~even without using the rep-
lica trick! in two stages: ~i! First, the square root of
G(x,y)2 is formally evaluated by means of expanding it in a
power series int(x); ~ii ! second, the resulting expression is
integrated with respect tot(x) ~for technical details of the
calculations see Refs. 2,38!. The conventional RG equation
for the renormalized averaged correlation function reads
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H m
]

]m
1b~u!

]

]u
1h~u!JGR~p,u,m!50, ~2.48!

wherem is a renormalization momentum,b(u) is the beta
function, andh(u) is defined as

h~u!5b~u!
d lnZs~u!

du
. ~2.49!

The spin renormalization constantZs(u) and the renormal-
ized correlation function are defined in the standard way:

G~p,u0 ,L!5Zs~u!GR~p,u,m!. ~2.50!

The Kramers-Wannier symmetry was shown to apply in
some vanishing terms linear inu in the expansions for
h(u) andZs(u),

2 that is,

Zs~u!511O~u2!, h~u!5
7

4
1O~u2!. ~2.51!

Given b(u) and h(u) in the one-loop approximation, the
solution of the Ovsyannikov-Callan-Symanzik equation for
the correlation function is quite simple:

G~p!;p27/4, G~R!;R21/4. ~2.52!

So the Fisher critical exponent takes the very same value
h5 1

4 as in the pure model. Notice that in contrast to higher
moments of the spin correlation function, the first one does
not contain the logarithmic factor due to the above-
mentioned dual symmetry.18 From this remark it follows that
the temperature dependence of the homogeneous susceptibil-
ity and spontaneous magnetization are described by power-
law functions of the correlation lengthj ~without logarithmic
corrections like lnj):

x;j22h;t27/4F ln1t G7/8, M;jh/2;~2t!1/8F ln 1

~2t!G
1/16

.

~2.53!

The equation of state at the critical point may be obtained
from the usual scaling relation

H;M ~41h/h!;M15. ~2.54!

As we predicted, all critical exponents of the quenched dis-
ordered system are identical to those of the pure model, apart
from some logarithmic corrections.15

III. N-COLOR ASHKIN-TELLER MODEL

TheN-color Ashkin-Teller model~ATM ! was introduced
by Grest and Widom39 and consists of a system ofN 2D
Ising models coupled together like in the conventional two-
color model. The lattice Hamiltonian of the isotropic
N-color ATM reads

H5 (
a51

N

HI~s
a!1J4 (

aÞb51

N

(
^nn&

eaeb

52(
^nn&

H J(
a51

N

si
asj

a1J4F (
a51

N

si
asj

aG2J , ~3.1!

wheresa561, a51, . . . ,N, ^& indicates that the summation
is over all nearest-neighboring sites,HI(s

a) is the Hamil-
tonian of the pure 2D IM,ea5si

asj
a is the density energy

operator, andJ4 is a coupling constant between the Ising
planes.

This model was shown to be the lattice version of a model
with hypercubic anisotropy, describing a set of magnetic and
structural phase transitions in variety of solids.24,40 The cor-
responding Landau Hamiltonian reads

H5E d2xH 12 ~]mF!21
1

2
m0
2F21

1

8
u0~F2!2

1
1

8
v0(

a51

N

Fa
4J ,

F25 (
a51

N

Fa
2 ,~]mF!25 (

a51

N

~]mFa!
2, ~3.2!

where F is an N-component order parameter,m0
2;t,

u0;J4 , andv0 are some coupling constants. In particular, in
the replica limit the Hamiltonian, Eq.~3.2!, describes the
random-bond IM~for v0.0,u0,0). If v050, a phase tran-
sition in the O(N)-symmetric model with nonzero value of
the spontaneous magnetization is known to be forbidden by
the Mermin-Wagner theorem.41 If v0Þ0, the spontaneous
breakdown of the discrete hypercubic symmetry occurs at
Tc.0. Since the term withv0 is strongly relevant, the per-
turbation theory expansion with respect tov0 is actually
hopeless nearTc .

By exploiting the operator product expansion~OPE! ap-
proach, Grest and Widom obtained the one-loopb function
for the quartic coupling constantJ4 . If J4,0 andN.2, the
phase transition was shown to be continuous and the critical
behavior belonging to the 2D IM universality class.39

The exact solution of the multi color ATM in the large-
N limit was found by Fradkin,42 who developed a rather
complicated formalism based on bosonic fields and showed
that a second-order phase transition with IM critical expo-
nents occurs ifJ4,0. In fact, as was shown by Aharony,43

the model with hypercubic anisotropy, Eq.~3.2!, in the large-
N limit is equivalent to the IM with equilibrium impurities.
Moreover, for the 2D case he predicted the Ising-type critical
behavior with logarithmic corrections. Such being the case,
one expects that the critical behavior is identical to the IM
critical behavior. Sincea50, Fisher’s renormalization of the
critical exponents44 is inessential and gives rise only to loga-
rithmic factors. Notice also that in contrast to the pure case
the specific heatC is finite atTc . The exact solution of the
2D IM with equilibrium defects obtained by Lushnikov45

many years ago confirms these conclusions.
The effective method for solving the model under discus-

sion, based on a mapping of the original model, Eq.~3.1!,
onto the O(N)-symmetric Gross-Neveu model, was sug-
gested by Shankar25 ~see also Ref. 26,27!. In order to show
this equivalence let us transform the partition functionZ by
applying the Hubbard-Stratonovich identity:
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Z5E DFexp@2H~F!#

5E DFDlexpH 2E d2xF12 ~]mF!21
1

2
m0
2F2

1
1

8
v0(

a51

N

Fa
41 il~x!F21

1

2u0
@l~x!#2G J

5E DlexpS 2
1

2u0
E d2xl2D $ZI@m0

21 il~x!#%N,

~3.3!

where l(x) is an auxiliary field;ZI is the exact partition
function of the 2D IM which is known to correspond to a
path integral over Grassmann variables~Sec. II!:

ZI5E Dc̄Dc expH 2E d2x@ i c̄ ]̂c1k0c̄c#J . ~3.4!

Now let us replacek05m0
2 in Eq. ~3.4! by m0

21 il(x) and
substitute Eq.~3.4! into Eq. ~3.3!. This replacement is based
on the fact that the energy-density operator in thef4 theory
is f2 while in 2D fermionic models this is given byc̄c. We
have:25,27

Z5E DlexpS 2
1

2u0
E d2xl2D E )

a51

N

Dc̄aDca

3expH 2E d2x@ i c̄a]̂ca1~m0
21 il~x!!c̄aca#J

5E )
a51

n

Dc̄aDcaexp~2SGN!, ~3.5!

whereSGN is the Gross-Neveu action, given by Eq.~2.23!. In
going from Eq.~3.2! to Eq. ~3.5! it is assumed thatu0 has
been rescaled asu0→u085u0a

22 so as to makeu0 dimen-
sionless~the prime will be ignored hereafter!. We see that
the discrete hypercubic symmetry of theN-color ATM
evolves into the continuous O(N) symmetry, hidden when
the system approaches the critical point.

The one-loop RG equations for theN-color ATM have
been already obtained in Sec. II, these being Eq.~2.25!
where we must setn5N. Solving these equations gives the
temperature dependence of the correlation length and spe-
cific heat in the vicinity of the critical point:27

j;t21F lnS 1t D G ~N21/N22!

, C;F lnS 1t D G ~N/22N!

. ~3.6!

As for the calculation of the correlation function, one can
apply the procedure described in Sec. II. Like for the random
IM case, the term linear inu for h(u) andZs(u) vanishes
due to the Kramers-Wannier symmetry. This implies the
anomalous dimension of the spinsa to be equal to

1
4. We get

G~R!;R21/4, x;t27/4F ln1t G7~N21!/4~N22!

,

~3.7!

M;~2t!1/8F ln 1

~2t!G
~N21!/8~N22!

, H;M15.

Notice that these results are valid only forN.2, J4,0. If
J4.0, the discreteg5 symmetry c→g5c,c̄c→2c̄c is
spontaneously broken. From theg5-symmetry breaking it
follows that ^c̄c&Þ0. It means that we have a finite corre-
lation length or, in other words, a first-order phase
transition.39,25 So Eqs.~3.7! reproduce the well-known re-
sults for some particular cases:N50,1,̀ corresponding to
the random-bond IM problem, Onsager problem, and IM
with equilibrium impurities, respectively.

The symmetric eight-vertex model~or Baxter model! is
known to be isomorphic to theN52 color ATM in the vi-
cinity of the critical line. The phase diagram of the two-color
ATM contains the ferromagnetic phase transition line begin-
ning from the IM critical point and ending at the point cor-
responding to the four-state Potts model. Along this line the
model exhibits weakly universal critical behavior, with the
critical exponents continuously varying. For instance, the
critical exponenta changes continuously froma50 ~IM ! to
a5 2

3 ~four-state Potts model29!. The above results obviously
show the special nature of theN52 situation, due to the
factor 1/(N22). In this case the system under discussion is
described by the O(2)-symmetric Gross-Neveu model or,
equivalently, by the massive Thirring model with theb func-
tion being equal to zero identically and presenting nonuni-
versal critical exponents.25 Since theN53 color ATM is
equivalent to the O(3)-symmetric Gross-Neveu model which
is known to be supersymmetric,46 this model should possess
a hidden supersymmetry~see for details Refs. 25,26!.

Notice that in contrast to the 2D case, the critical behavior
of theN-color ATM in 42e dimensions (0,e<2) is gov-
erned by either the Gaussian or the cubic fixed point and
never by the IM fixed point. The type of critical behavior
crucially depends on the order parameter component number
N. If N.Nc(e), the RG flow arrives at the cubic fixed point;
in the opposite case,N,Nc(e), the Heisenberg~isotropic!
fixed point is stable. HereNc(e) is the critical dimensionality
of the order parameter, its expansion in powers ofe being:47

Nc~e!5422e2S 52 z~3!2
5

12D e21O~e3!, ~3.8!

wherez(3)51.202 052 8 is the Riemann zeta function, and
Nc(1)>2.9.48 If e→2, Nc decreases and all the cubic fixed
points approach the IM fixed point, merging ate52, irre-
spectively of the value ofN.27

IV. GENERALIZED ASHKIN-TELLER MODEL
WITH RANDOMNESS

Now we extend our study of theN-color ATM to two
interactingM - and N-color quenched disordered Ashkin-
Teller models, giving rise to a generalized Askin-Teller
model ~GATM!. The Landau Hamiltonian is given by
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H5E d2xH 12 ~]mF!21
1

2
@m0

21t1~x!#Fa
21

1

2
@m0

2

1t2~x!#Fc
21

1

8
u1~Fa

2!21
1

8
u2~Fc

2!21
1

8
w0Fa

2Fc
2

1
1

8
v1(

a51

N

Fa
41

1

8
v2 (

c5N11

N1M

Fc
4J , ~4.1!

whereFk ,k51, . . . ,M1N is an (M1N)-component order
parameter, a51, . . . ,N,c5N11, . . . ,N1M , m0

2;t,
vm ,un.0, andm,n51,2. Summation over indices in the
quadratic operators is understood. We may study two types
of impurities: ~i! uncorrelated impurities and~ii ! correlated
ones. In these cases the two-point correlators for the inde-
pendent random Gaussian fieldstm read

^tm~x!tn~y!&5zmdmnd~x2y!,

^tm~x!tn~y!&5z0d~x2y!. ~4.2!

In fact we study some multicritical point in the model under
discussion, Eq.~4.1!, since it has been assumed that
m105m205m0;t. This model in 42e dimensions~without
disorder! was initially studied by Bruce and Aharony49 and
by Lyuksyutov, Pokrovskii, and Khmelnitskii50 ~without cu-
bic anisotropy! and then in numerous other papers.24 By ap-
plying the replica trick and the ‘‘fermionization’’ method
described in Sec. III, one arrives at the following effective
fermionic action involving several types of quartic fermionic
interactions:

H5E d2x$ i C̄k
a]̂Ck

a1m0C̄k
aCk

a1u1C̄a
aCa

aC̄b
aCb

a

1u2C̄c
aCc

aC̄d
aCd

a1w0C̄a
aCa

aC̄c
aCc

a1z1C̄a
aCa

aC̄b
bCb

b

1z2C̄c
aCc

aC̄d
bCd

b1r 0C̄a
aCa

aC̄c
bCc

b%, ~4.3!

where Ck
a is a ~real! Majorana fermionic field,

a,b51, . . . ,n→0 are replica indices,a,b51, . . . ,N, and
c,d5N11, . . . ,N1M . Naively one expects the appearance
of two impurity quartic fermionic couplings in the replicated
Hamiltonian, Eq.~4.3!. Instead, we have one additional four-
fermion vertexr 0 ~absent in the bare action!. This counter-
term arises in the course of the renormalization procedure
and provides the closedness of the operator algebra. In some
sense the appearance of this term means violating the Harris
criterion. The latter is indeed essentially based on the as-
sumption of the existence of only one operator responsible
for the impurity-induced interaction of the order parameter
fluctuations.

The one-loop RG equations for the six coupling constants
um ,vn ,r , andw are given by~for n50)

du1
dt

52~N22!u1
222z1u12Mw2, ~4.4!

du2
dt

52~M22!u2
222z2u22Nw2,

dw

dt
52w@~N21!u11~M21!u21z11z2#,

dz1
dt

522z1@z11~N21!u112Mr #,

dz2
dt

522z2@z21~M21!u212Nr#,

dr

dt
52r @~N21!u11~M21!u21z11z2#2w@Nz11Mz2#.

The initial conditions for both~i! uncorrelated and~ii !
correlated impurities are as follows:

~i! z1~0!5z2~0!5z0 ,r ~0!50,

~ii ! z1~0!5z2~0!52r ~0!5z0 . ~4.5!

It is easy to see that if one setsM5N51 ~random-bond
Baxter or, equivalently, two-color ATM! one arrives at the
RG equations obtained by Dotsenko and Dotsenko.51 In this
case the coupling constantsum decouple from the others;
moreover, instead of two couplings we have only one cou-
pling constantz5z15z2 . It was shown that in almost all
cases even weak disorder would drastically change the criti-
cal behavior of the two-color ATM from a nonuniversal be-
havior to the Ising-type one, modified by some logarithmic
corrections~see also Ref. 2!. Even though the critical expo-
nenta of the pure model is negative forw0,0, for uncor-
related defects we find that the critical behavior of the model
under discussion is changed by the emergence of the new
scaling fieldr . In the case of correlated defects withw0,0
the critical behavior of the random model was shown51 to be
still nonuniversal with critical exponentsa andn depending
on bothw0 and on the concentration of impurities (r 0). This
is the only exceptional case in which we would have nonuni-
versal critical behavior for a disordered system. In all cases
the two-spin correlation function was shown to have, how-
ever, the same large distance behavior as for the 2D IM.2

Now let us consider two interactingN- andM -color ATM
without randomness (zm5r 050). There are several different
types of asymptotic behavior of the coupling constants
um(t),w(t), but there is only one stable solution exhibiting
infrared-free behavior. That is given by

u1~ t !5
1

~N22!t
, u2~ t !5

1

~M22!t
,

w~ t !5OS 1

t lnt D , t→`. ~4.6!

As a result, the original model decouples into two indepen-
dentN- andM -color models as described in Sec. III. Thus,
the hidden symmetry of the model near the critical point is
the continuous O(N)3 O~M! group. There also exists a so-
lution of the RG equations given by

u1~ t !5u2~ t !56
1

2
w~ t !5

1

~N1M22!t
, t→`,

~4.7!
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corresponding to the higher symmetry O(M1N) being ex-
plicitly broken in the original Landau Hamiltonian, Eq.~4.1!.
This is shown to be unstable. For instance, providedN52,
M51 ~or vice versa!, andu1(0)5u2(0)5

1
2w(0), wewould

obtain the supersymmetric asymptotic solution of Eq.~4.7!.
Were these conditions to be broken, i.e., were the supersym-
metry explicitly broken, this would not be restored in the
infrared limit.26 Notice that our model without cubic anisot-
ropy and randomness was shown to exhibit this enhanced
asymptotic symmetry in (42e) dimensional space, provided
M1N,4.50

One may expect that, due to the critical decoupling of two
multicolor ATM’s into two independent models, the
quenched disorder does not affect the critical behavior of the
system, Eq.~4.1!. This is because ifN,M.2 the specific
heat is finite at criticality@Eq. ~3.5!# and randomness is irrel-
evant in accordance with the Harris criterion. As was ex-
plained above this reasonable assumption should be checked
in view of the obvious breakdown of the Harris criterion due
to the appearance of the additional scaling fieldr . The an-
swer is that this is indeed the case. In fact, it is easy to check
that the solution given by Eq.~4.6! and describing pure mod-
els is stable despite the presence of three disorder couplings.

Thus, from our RG calculations it follows that, in contrast
to a 2D IM with random bonds, weak quenched disorder here
is irrelevant nearTc . Moreover, in the critical region the
decoupling of two interacting multicolor ATM’s was found
to occur even in the presence of quenched disorder. The
temperature dependence of the main thermodynamic quanti-
ties near the critical point, the two-spin correlation function
and equation of state at criticality of the model under con-
sideration are given by Eqs.~3.5! and ~3.7!.

V. WEAKLY DISORDERED MINIMAL CONFORMAL
FIELD THEORY MODELS

The critical behavior of the minimal models of conformal
field theory withc,1 and as perturbed by a small amount of
impurities is far from being solved and therefore is of con-
siderable interest. In accordance with the Harris criterion,
weak quenched disorder is expected to be strongly relevant
near criticality since the critical exponenta of these models
is always positive and given bya52(m23)/3(m21), with
m53,4, . . . . Inparticular, for the three- and four-state Potts
model we havea5 1

3 (m55) and a5 2
3 (m5`), respec-

tively.
Results in this field were obtained in some papers by

Ludwig19 and by Dotsenko, Picco, and Pujol.21 They suc-
ceeded in developing a powerful approach closely connected
with the formalism exploited in the previous sections for
describing the multicolor ATM. These authors suggested a
special kind ofe expansion for computing the critical expo-
nents, where nowe5c2 1

2. Herec is the central charge of
the minimal models without randomness and1

2 is the confor-
mal anomaly of the 2D IM. The main result of their consid-
erations is that theb(u) andgc̄c(u) functions coincide with
the corresponding functions for the O(N)-symmetric Gross-
Neveu model obtained in the framework of the minimal sub-
straction scheme combined with dimensional regularization.
The distinguishing feature of this scheme is that these func-
tions do not depend one except for the first term in theb

function. Thus, there is a clear possibility to apply the results
of multiloop RG calculations for the Gross-Neveu model in
order to compute the critical exponents of random minimal
models. At the present time we have the five-loop expres-
sions for theb(u) function and anomalous dimension func-
tions gc(u) andgc̄c(u) of the fermionic fieldc and com-
posite operatorc̄c, respectively, and as obtained in Ref. 52
Unfortunately, these expressions contain a few unknown co-
efficients in the four- and five-loop terms. As for the anoma-
lous dimension of the spin variableh(u), this function was
obtained in Ref. 21 in a three-loop approximation. Notice
that according to the conformal field theory classification, the
spin variable corresponds to the operatorFm,m21 , whilst
F1,25e(x) is the energy-density operator. Thus, one may
use the RG functions obtained only in the three-loop ap-
proximation for the calculation of the critical exponents.

Let us now compute the critical exponents of the correla-
tion length and specific heat of the random minimal models
in the three-loop approximation. The corresponding expres-
sions for theb function and temperature critical exponent
function are given by:52

b~u!52eu22~N22!u214~N22!u3

12~N22!~N27!u4,

gc̄c~u!52~N21!u22~N21!u222~N21!~2N23!u3,

e5
32m

2m
, m53,4, . . . . ~5.1!

Here N is the number of planes~colors!, coupled to each
other in the usual way like in theN-color ATM @Eq. ~3.1!#.
The critical behavior of the multicolor minimal models is
governed by the nontrivial fixed point of Eq.~5.1!. From this
equation it follows that

1

n
5

1

n0
1gc̄c~u* !5

1

n0
12~N21!F e

N22
1

e2

~N22!2

2
Ne3

~N22!3G , n05
2m

3~m21!
,

~5.2!

wheree takes on the discrete values defined in Eq.~5.1! and
n0 is the critical exponent of the correlation length of the
pure model.

To check the self-consistency of Eq.~5.1! let us consider
the limit N→`, describing the system with equilibrium im-
purities. The result is easily seen to be

n imp5
2m

m13
5

n0
12a0

. ~5.3!

From the expression for the anomalous dimension of the
order parameterh(u) obtained in Ref. 21 it follows that the
Fisher critical exponenth0 is unchanged in this limit,
h imp5h0 , where for theq-state Pottsh0 is given by53

h05
~m13!~m21!

4m~m11!
, q54cos2

p

m11
, m52,3,5,̀ .

~5.4!
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As was expected, we have obtained the duly renormalized
critical exponent of the correlation length and an unchanged
value of the order parameter anomalous dimension, in agree-
ment with the predictions of the general theory.44 As ex-
pected, in the trivial caseN51 one gets the critical expo-
nents of pure systems.

The critical exponent valuesn r for random models can be
easily obtained from Eq.~5.2! by expandingn r in powers of
e and settingN50. The results of these calculations are pre-
sented in Table I. The most striking feature of the above
expansions is that they look like rapidly convergent series,
even in the case of the four-state Potts model. As a matter of
fact, this is not so surprising, because in the Thirring model
(N52) the anomalous dimensionsgc̄c(u) and gc(u) are
known to be some geometric progressions inu. Notice also
that if we setN52 in Eq. ~5.1! we do not obtain these
progressions.52 The reasons why the O(2)-symmetric Gross-
Neveu model in the minimal substraction scheme is not com-
pletely equivalent to the Thirring model have not been com-
pletely understood as yet.52 It is also important that all values
of n r for any arbitrary integerm slightly exceed unity, so that
all values ofa r are negative in full agreement with the Harris
criterion.

As was mentioned above, the three-loop results concern-
ing the critical exponenth(u) were obtained in Ref. 21 It
turns out that the numerical values ofh are in the close
vicinity of the Ising model value,h50.25. The reasons for
that are as follows. The one-loop approximation term which
is expected to give rise to the main contribution to the de-
viation of h from h0 vanishes due to the Kramers-Wannier
dual symmetry. The two-loop correction was shown to be
proportional toeu2; therefore the deviations ofh from the
pure values are proportional toe3.21

Thus, the numerical values of critical exponents of the
weakly disordered minimal models are very close to the criti-
cal exponents of the 2D IM. This has clear implications for
the three- and four-state Potts models with random bonds, as
shown by Table I. From a numerical point of view one might
be tempted to conclude that all these models are described by
the 2D IM fixed point.28 We see here that this ‘‘superuniver-
sality’’ is only approximate, though accidentally verified to a
high degree of accuracy.

VI. CONCLUSIONS

It has been shown that the critical behavior of a good
number of 2D anisotropic systems controlled by the IM fixed

point is stable in the presence of weak quenched disorder.
This statement was found to hold quite generally for the 2D
IM, multicolor ATM, and some of its generalizations for
which randomness is marginally relevant. In the case of the
two-color ATM or Baxter model, disorder drastically
changes the nonuniversal critical behavior inherent in this
model over to the Ising-type critical behavior. Although
some of these models exhibit a breakdown of the Harris cri-
terion, this does not affect, in general, the stability of the IM
fixed point. It is commonly believed that the type of random-
ness~random bond or site disorder! does not play a role near
Tc , despite the fact that random-site disorder has not been
studied in great detail as yet.

On the numerical side, Monte Carlo~MC! simulation re-
sults are in good agreement with the analytical results based
on the RG calculations.16 For instance, the high-accuracy
MC simulation results for a 102431024 Ising lattice with
ferromagnetic impurity bonds, recently obtained by Schur
and Talapov,16 show that the exponent of the two-spin cor-
relation function at criticality is numerically very close to
that for the pure model. On the other hand, numerical results
obtained by Domany and Wiseman28 do somewhat contra-
dict the theoretical predictions. These results, for a
2563256 lattice, favor a logarithmic-type behavior of the
specific heat nearTc for the disordered two-color ATM and
four-state Potts models, and a double-logarithmic behavior
of the specific heat for the random-bond IM. As was estab-
lished by Dotsenko and Dotsenko,51 the specific heat of the
random two-color ATM should exhibit the double-
logarithmic divergence at the critical point.

The critical behavior of the random four-state Potts model
was shown to be described by a new fixed point which does
not coincide with the IM one.21,19 The conjecture made in
Ref. 2 that the perturbation theory expansion around the free
fermion theory appropriate for the Ising model is valid until
the end point of the ferromagnetic phase transition line~de-
scribing the four-state Potts model! is actually incorrect. Ex-
act results for the repulsion sector of the sine-Gordon theory
obtained by means of the Bethe ansatz in Ref. 54 show that
the perturbation theory aroundb254p ~free fermions! di-
verges atb25 16/3p ~see also Ref. 55!; i.e., it has a finite
radius of convergence, and cannot be continued to
b258p.

The critical exponents corresponding to the disordered
four-state Potts fixed point slightly differ from the IM ones.
The numerical results are believed to be sensitive to that
difference. It is interesting to compare the estimate for the
critical exponentn of the four-state Potts model based on the
three-loop approximation with known numerical results.
From Table I it follows that n51.081. Novotny and
Landau56 obtained for the Baxter-Wu model~equivalent to
the four-state Potts model! the following value:
n51.00(7). The result of Andelman and Berker57 is given
by n51.19. Finally, the recent result obtained by Schwenger
et al.58 is as follows:n51.03(8).

We end this section by giving a remark that logarithmic
corrections to the power-law dependence and corrections to
scaling may give rise to a dependence of effective critical
exponents on the concentration of defects as observed in
some numerical experiments.59

TABLE I. Critical correlation length exponentn for random
minimal models: TIM ~tricritical Ising model!, 3PM ~three-state
Potts model!, TPM ~tricritical Potts model!, and 4PM~four-state
Potts model!. m denotes the minimal model,e5(32m)/2m, n0 is
the homogeneous exponent,n r5n01n11n21n3 the random one,
andnn denotes then-loop contribution ton r .

Model m e no n1 n2 n3 n r

TIM 4 -0.125 0.889 0.099 0.017 0.003 1.008
3PM 5 -0.2 0.833 0.139 0.038 0.008 1.018
TPM 6 -0.25 0.8 0.16 0.052 0.014 1.026
4PM ` -0.5 0.667 0.222 0.13 0.062 1.081
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