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The critical behavior of two-dimension&D) anisotropic systems with weak quenched disorder described
by the so-called generalized Ashkin-Teller mo@8ATM) is studied. In the critical region this model is shown
to be described by a multifermion field theory similar to the Gross-Neveu model with a few independent
guartic coupling constants. Renormalization group calculations are used to obtain the temperature dependence
near the critical point of some thermodynamic quantities and the large-distance behavior of the two-spin
correlation function. The equation of state at criticality is also obtained in this framework. We find that random
models described by the GATM belong to the same universality class as that of the two-dimensional Ising
model. The critical exponent of the correlation length for the three- and four-state random-bond Potts models
is also calculated in a three-loop approximation. We show that this exponent is given by an apparently
convergent series i=c—% (with c the central charge of the Potts modahd that the numerical values of
v are very close to that of the 2D Ising model. This work therefore supports the conjéealic only
approximately for the three- and four-state Potts mod#is superuniversality for the 2D disordered models
with discrete symmetrie$S0163-182@6)04826-9

[. INTRODUCTION disorder without frustration was shown to smooth out the
logarithmic singularity of the specific heat; the frustrated
The critical properties of two-dimensional random spincase was considered by Shankar and Mutttiyotsenko and
systems have been extensively studied in the last fevDotsenkd initiated some considerable progress in the study
years!~ Two-dimensional2D) systems are particularly in- of 2D random bond IM’s by exploiting the remarkable
teresting due to a variety of reasons. First, there are numeequivalence between this problem and tNe=0 Gross-
ous examples of layered crystals undergoing continuous ariNeveu model. For weak dilution the new temperature depen-
tiferromagnetic and structural phase transitibAsMore  dence of the specific heat was found to becamelninr,
recently, 2D and quasi-2D crystals have begun to be fabrir=(T—T.)/T, being the reduced deviation from the critical
cated and studied thanks to advances in deposition techemperaturel .. However, their results concerning the two-
nigues, with an enormous increase in the variety of physicaspin correlation function at the critical point were later re-
phenomena to be investigatt®erfect crystals, however, are considered by Shalaéf,Shankars® and Ludwig** By using
the exception rather than the rule, with quenched disordethe RG approach as well as the bosonization technique these
always existing in different degrees. Even weak disordeauthors showed that the large-distance behavior of this func-
may drastically affect the critical behavior, according to thetion at criticality was the very same as in the pure case. Some
celebrated Harris criteriohSecond, the conventional field- convincing arguments in favor of the critical behavior of the
theoretic renormalization groufrRG) approach based on the 2D IM with impurities as governed by the pure IM fixed
standardg? theory in (4— €) dimensions, and as applied to point had been given earlier by JiRecently, a good num-
study properties of disordered systems by Harris ander of papers devoted to Monte Carlo simulations of the
Lubensky and Khmelnitski® does not work in 2D due to critical behavior of the random Ising model have been
the hard restrictiorr<1. Similar considerations apply to the published'® Most Monte Carlo data are in good agreement
(2+¢€) low-temperature RG approach. Third, from a theo-with analytical results obtained in Refs. 12—14. It should be
retical point of view a most challenging problem is to estab-mentioned, however, that these analytical results have been
lish the relationship between random models and the correabtained by employing the replica method. This, on the one
sponding conformal field theoryCFT) describing these at hand, is known to give reliable results only in the framework
criticality. of perturbation theory. On the other hand, the mathematical
Some early exact results concerning the 2D random-bonkgitimacy of the replica trick has not yet been established.
Ising model(IM) with a special type of disordéwhere only ~ Moreover, replicas(though being very useful and conve-
the vertical bonds are allowed to acquire random valuespient) appear not to capture the essentials of nonperturbative
while the horizontal bond couplings are fixedave been effects in the close vicinity of the phase transition point
obtained by McCoy and Wt This type of 1D quenched (Griffiths phasg (see, for instance, Ref. 17The study of
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nonperturbative effects in the critical properties of randomand Pujol and of Ludwig we compute the critical exponent of
systems is, however, beyond the scope of the present papdéhe correlation length in a three-loop approximation for the
Here, we point out that there is some scope to extend theeakly disordered minimal models of CFT, in particular for
previous analysis for the 2D random IM to other discrete-the three- and four-state Potts models with random bonds.
symmetry systems. A very interesting prob|em consists inve find that Whl|e for theGATM the intr(_)duction of disor-
considering minimal CFT models witt< 1 as perturbed by der leads to crmcql behavior as _characterlzed by the rand_om-
randomness. These models comprise the three- and four-stdt@nd IM fixed point, for the minimal models of CFT this
Potts systems as particular cases, and these have interest}§§'d Pehavior, conjectured by a number of authors recently
applications to real 2D crystafsBecause the critical expo- 0f the 2D Potts m'odeI%B, is actually only approximate. The
nenta is positive for all these models, the critical behavior is @Ccuracy with which the Ising values of the exponents is
governed by a random fixed point in agreement with the?PServed, h,(,)wever, justifies the use of the term “IM supe-
Harris critefion. Some years ago Lud#ig® and Ludwig runlve_rsahty_ for aI.I these models, when <_j|sordered. Sec. V
and Card§® made an attempt to calculate perturbatively thecontains a discussion and some concluding remarks.
critical exponents of the random three-state Potts model.
Their approach was essentially based on the powerful CFT [l. TWO-DIMENSIONAL ISING MODEL
technique. More recently, Dotsenko, Pujol, and Pitab- WITH RANDOM BONDS
tained the critical exponents for the dilute three-state Potts
model in a two-loop approximation by exploiting the Cou-
lomb gas representation for the correlation functions and a
special kind ofe regularization, where stands here for the =~ We begin with the classical Hamiltonian of the 2D Ising
difference between the pure system’s central charge valu@odel with random bonds defined on a square lattice with
and the conformal anomaly for the pure 2D IM)(Dot-  periodic boundary conditions:
senkoet al?? have also found the new universality class of N
the critical behavior as corresponding to the broken replica
symmetry proposed by Harri al? H=- X
Another interesting possibility is to study critical phenom-
ena in 2D dilute anisotropic systems with many-componentvherei,j label sites of the square latticg;=*1 are spin
order parameters. The analysis of the critical behavior ofariables, and;(i,j) andJ,(i,j) are horizontal and vertical
such systems in (4 €) dimensions was developed in great independent random couplings having the same probability
detail years agé? but cannot be directly applied to the 2D distribution, which reads
case. Therefore it would be interesting and important to con-
sider studying these 2D models. This is the main goal of our P(X)=(1—-p)d(x—=J)+ps(x—J"). (2.2
paper. The key ingredient of our treatment is a fermioniza- ) ) ) .
tion trick first suggested by Shanarfor the N-color ~ AlSO. p is the concentration of impurity bonds and bath
Ashkin-Teller model(see also Refs. 26,27This method is andJ’ are assumed to be positive so that the Hamiltonian
quite general and may be extended to other systems. Tﬁ@yors al|gn§d spins. Nptlce that both antiferromagnetic cou-
initial Landau Hamiltonian as written in terms of scalar fields Plings (creating frustrationand broken bondsJ(=0) lead
can be shown to map onto a multifermion field theory of theto ambiguities in the transfer matrix and' must be excludgd in
Gross-Neveu type with a few independent quartic couplingst.he present treatment. Let us now con5|der the cglculatlon of
This transformation can be done for Hamiltonians containingh® Partition function of the model under discussion:
only even powers of each order parameter component, the
fourth-order term being an invariant of the hypercubic sym- ZZE exnd — ﬂ) 2.3
metry group[this is the so-called generalized Ashkin-Teller T)
model (GATM)]. , i .
The work presented in this paper is organized as follows‘."’hzereH is defined in Eq.(2.1) and the sum runs over all
In Sec. Il we consider in brief the critical behavior of the 2\ possible spin configurations. The partition function is
weakly disordered 2D Ising model with random bonds, thisknown to be represented as the trace of the product of the
being the central theme of this research field. The tranferow-to-row transfer matrices; :2%-3!
matrix formalism is set up and the corresponding equations
are written down. The computation of the two-spin correla- N
tion function for pure and random models at criticality is also z=mr][ 7. 2.9
reviewed. In Sec. Il we give a description of the fermion- =t
ization trick aIIowir!g us to study the critical behavior Qf the The Hermitian 2'x 2N matrix -]—i rewritten in terms of spin
pure N-_color Ashkln-Tellgr model. In Sec. IV the crmpal variables read&-31:2
properties of two interactin§l- and M-color quenched dis-
ordered Ashkin-Teller models are studied. The RG method is A 1 N
used to obtain the exact temperature dependence of the cor- Ti=exp( _E J1(ij)oz(j)os(j+1)
relation length, specific heat, susceptibility, and spontaneous Ti=1
magnetization near criticality, as well as the two-point spin-
X exg(

A. Transfer matrix, effective action, and RG
for thermodynamic functions

o [J1(i,))SijSij+ 1+ d2(1,])SiSi+ 151, (2.0)

correlation function and the equation of state at the critical
point. In Sec. V, exploiting the approach of Dotsenko, Picco,

=~

N
IElJ’z*(i,l)al(I)). (2.5
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whereo,, a=1,2,3 are Pauli spin matrices; hedge and  Substituting Eq(2.4) into Eq.(2.7) one obtains
J% are related by the Kramers-Wannier duality relatfom
n N
_ ~ 1
J5 2J F=—TIm T T —1(—. 2.8
‘a“%?z :ex‘]< -7 ) 2.6 LARPIN Ve 29

In Eg. (2.5 we have set an irrelevant factor to unity. Sinceln contrast to the case of random-site disorder, for the
the nonaveraged operat®dy in Eq. (2.7) is random, the rep- random-bond problem the two matricg8 andeB with dif-
resentation in Eq.2.4) is in fact inappropriate for computing ferent row indices #j depend on two different sets of ran-
the partition function. In order to get a more convenient startdom coupling constants and commute to each other for any
ing point for further calculations we apply the replica trick. « and 3. This allows us to average these two operators in-

We introducen identical “replicas” of the original model
labeled by the indexy, «=1,... n and use the well-known
identity for the averaged free energy:

_ N 1—
F=—Tinz=-Tlm~(z"-1).

n—0

(2.7

N

n
10 :I'f‘zexp{
a=1

N
><exp[ > In
=1

J* o
(1—p>exp(72 o1(i)
1

a=

Settingp to zero(or J=J') one is indeed led to the well-
known expression for th& operator of the pure IM?

x N
T2 almJ.

ex 2
J (2.11

N

~ J
TP|M:eXp| ﬂgl o3(j)os(j+1)

The T matrix is known to possess the Kramers-Wannier dua
symmetry. In the language of spin variables this nonloca

mapping reads’3!

T (K)=03(K)oz(k+1) 7o(k)=i01(K)oz(K)

H o1(m),

m<k

where the operators, (k) satisfy the very same algebra as
the Pauli spin matricesr,(n). It is easy to see that if
p=0,3,1 theT matrix given by Eq(2.10 is invariant under

J n
]_21 In{(l—p)ex i;l o-%(j)) o3(] +1)+pex%

p(J
+ pex

dependently. After some algebra one arrives at
Z"=TrTN, (2.9

where the tranfer matrid of the 2D random-bond IM is

given by
|

;N

J
T2, 05()osi+1)

a=

i

one obtains the partition function in the following form:

xr N

> of()
1

a=

T (2.10

Z=Tr exp(—NH), (2.15
where by definitionH is just the logarithm of the transfer
matrix T (the “quantum” Hamiltonian. In the thermody-
namic limitN— o the free energy is proportional to the low-
Fst eigenvalue of the quantum Hamiltonierr%3t

F

—T InTr exg(—NH)—>NTEy, H|0)=E,|0)
(2.16

Here |0) is the ground state off which is assumed to be
nondegenerate. Actually this means that we asslimé..
From Egs.(2.10 and(2.14) it follows thatH is not a simple
local operator. A crucial simplification occurs by taking the
y-continuum limit witha,— 0 (the lattice spacing along the
y-axis). In other words, after calculating the logarithmic de-

the dual transformation. The plausible assumption that therdVative of T with respect toa, and settinga, to zero the

is a single critical point yields the equation for the critical

temperaturerl . :
) J
ex =1tan T_C .
Notice that the poinp=13 is not the percolation threshold,
because the coupling constadtandJ’ are assumed to take

nonzero values with the ferromagnetic sign. Writihgn the
exponential form

23’

T (2.13

'Al'=exp(—l:l), (2.149

quantum Hamiltonian takes on the following simple form
(for details see Ref.)2

|q_dln%
-

N
=1

. [Klgg(j)gg(j+1)
(a,=0) I
n

+K221 of()+K[o5())os(j+1)]?

a=

+K (2.17)

n 2
> ai‘(j)) ]
1

a=
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The higher-order terms in the spin operators are known to be T-T.
irrelevant in the critical region, so that they can be dropped my~K;—Ky~7= T
in Eq.(2.17). The replicated Hamiltonian, E.17), may be ¢
converted into the fermionic one by means of the JordanHere mg,uy are the bare mass of the fermions and their
Wigner transformatiori®3* quartic coupling constant, respectively. Notice thap1,
~p. Providedp=3 andT=T, we haveuy~(J—J").

Up~Ka+Ky. (2.29

o a mt @~ The RG calculations in the one-loop approximation are
ct(m)=o%(m) 11:[1 o1(1)Q% very simple. In fact, the Q()-symmetric Gross-Neveu
model being infrared free in the replica limit— 0, the one-
m-1 loop approximation truly captures the essentials of the criti-
c‘“T(m)=aiﬁ(m) H a{(j))Q% o.=3(03xioy), cal behav[or of the m_o_del und(_e_r considerqtion. The one-loop
i=1 RG equations and initial conditions are given by
a—1 N 2
_ du (n—2)u dinF - (1—n)u
Q“:;—:[l J]:[1 of(j), a=1,...n, (218 =AW= ——— =YW=,
wherec%(m) andc® T(m) are the standard annihilation and u(t=0)=uqy, F(t=0)=1, (2.25

creation fermionic operators which satisfy the canonical an-

where u is the dimensionless quartic coupling constant,
ticommutation relations: q pling

B(u) is the Gell-Mann-Low functiony,,(u) is the anoma-
{Ca(m)’cﬁf(n)}: 8985, {ce(m),ch(n)}=0. lous dimension o_f the composite operafiop= eS>l<)_ (in fact,
(2.19 the energy density operajot=In(A/m), A=a"" is an ul-
traviolet cutoff, anda and m are the lattice spacing and
After making different species anticommute, the Klein fac-renormalized mass, respectively. Hefeis the following
tors Q¢ drop out ofH. For each species it is convenient to Green'’s function at zero external momenta:
introduce a two-component Hermitean Majorana spinor
field:3%33

dm o o — _
F:E:f d=xd7y((x) (y) $(0)4(0)). (2.26

a
+c“T(n)exp( [ Z) } The solution of these equations gives the temperature depen-
dence of the correlation lengthand specific hea€ in the
asymptotic regiori—,n=0:!

oo L[, p(_.z
wl(n)—@c(n)ex 2

ys(m = — ()p('”+*<>p('”” /
2(nN)= cU(n)exp i—|+c* (nyexpg —i—||, - 1 111/2
v2ay 4 4 u=—, F~72, é&=mi~7Yin—| ,
(2.20 2t T
with standard anticommutation rules 1
c~f th(t)2~InIn;. (2.2

1
{we(n). yb(m)}= — 6P Gpc8mn,  ©,b=1.2, (2.20 .
X These results follow from the solution of the one-loop RG

(2.21) and the relations are a direct consequence of a renormalization statement valid
to all orders in perturbation theory. Consider a version of the
af(n)=20"‘f(n)c“(n)—1, field theory, Eq.(2.23),_ in which the quartic term is decou_—
pled by the introduction of a scalar Hubbard-Stratonovich
@ a af @ field ¢:
o5(mes(n+1)=[c*'(m—c(n)] ¢
: - . _
X[c* (n+1)+c(n+1)], (2.22 L=f X a0+ Mo) Yrat 3 $*+ 390 athal,
one can easily rewrite the Hamiltonian, E&.17), in terms (2.28

of Majorana fermionic fields. Now let us notice that in the
vicinity of T. the correlation lengtl§ goes to infinity and the
system “forgets” the discrete nature of the lattice. For that

with gy \uo. As a consequence of the functional version of
the classical equation of motidf,

reason we can simplify the Hamiltonian by taking the con- 5L

tinuum limit a,— 0. Perfoming simple but cumbersome cal- 53 =¢+ Zgolﬂal/fa , (2.29

culations we arrive at the @f-symmetric Lagrangian of the ¢

Gross-Neveu modél, the vertex parts I' of the correlation functions
GE=(ya(X) ¥(Y) 30c(2) ¥e(2)) and GGV

L= f O2X[ [ o dhat Mohathat Ug(atha)?], (229 =(¥a(X)¥(y) #(2)) are linked by the relationship

~ — (20— (20 1)
wherey,=0,,0=v,9,,u=12,)= T yo, and I ) F , (2.30
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where it has been indicated explicitly that the quadratic innearT.. For these calculations we need to find the large-
sertion refers to the ©= 4, operator. Imposing the renor- distance asymptotic behavior of the two-spin correlation

malization conditions, Eq2.30 leads t3* function at criticality. The most effective way for calculating
different correlation functions for the 2D IM is to use
Oo/g= \/uo/uzzgl’zzll, (2.3) bosonization. Below we shall give a brief description of this

procedure, exploiting simple physical arguments.
) o . ) Before recalling the principles of the bosonization
¢-field renormalization constant, ari; is the quadratic- method, however, let us show how a straight formulation of
Insertion_ reznormallzatlon matrix  for the —operators yo hrohlem in terms of pure fermionic fields leads to some
{Oi}={y4,¢°}. Since forn=0 we haveOZ¢=1, Eq.(2.3D  gifficulties even in the case of the calculation of the pure
leads to the exact resy®(u) = —ZUY(@),(U) between the |sing model correlation function exponent(= 1) at critical-
Gell-Mann-Low and the anomalous dimension functions, im-ity. As shown, e.g., by Samu&l,the two-spin correlation
plying 2y, /B8,=—1 for the coefficients of the lowest-order function can be expressed in the lattice formulation as the
nonzero terms in the expansion of these functions fthat  partition function of a defective lattice where along the line
is, B(u)=Bu%+ - - -, Yyu(U)=7y1u+ - --]. Solving, for in-  Tog Of bonds joining the two sites (0,0) and K),the “bond
stance, the RG equation for the specific heat function leads tstrengths” \,=tanh{,/T) must be replaced byk;l.
the remarkable Dotsenko-Dotsenko result for the leading asNamely,
ymptotic behavior, whemr—0,

Gy(R)=(Sp0Sor)

where g is the renormalized coupling constard,, the

C ffdxu 2r1lB2—n | 2.32
~ | —]Inx ~In InT, . -

€ or
by virtue of the aboven=0 exact results. Similar consider- 53
ations lead to the announced behavior of the correlation (2.33
length, &. where the lattice ) Grassmann variabk—:-{.yﬁj Yij} have

The main conclusion of this section is that the critical been introduced®*® After suitable transformations, leading
behavior of the 2D random bond IM is governed by the pureto the quadratic term of the effective Grassmann action in
Ising fixed point. It implies that all critical exponents of the Eqg. (2.23 without replicas, and in the continuum limit, the
weakly disordered system are the very same as for the puieq. (2.33 reads
model. Randomness gives rise to the self-interaction of the R
spinor field whlch leads tollogar!thmlc corrections to power Gy(R,Tc)ZMFfC eXﬁTof dyy(0y)¥(0y) ),
laws. In the special cage= 5 duality imposes strong restric- 0
tions; in particular it gives the exact value of the critical (2.39
temperaturd . which is believed to be unique. At the critical \yiih To= ()\c_l_)\c)IZ)\c: J2+1 at criticality (\o=v2—1

point the original lattice model and its continuum versionsq, the isotropic mode! The two-component Grassmarfor
described by the Gross-Neveu model Lagrangian becomﬁlajorana field is the same as in EG2.23 and is given by

massless, irrespective of the valuerofWe conjecture that y=a Y(y'y). A possible stratedyis now to evaluate the
there are only two phases divided by the single critical pointg_, .. pehavior of Ir6,(R.T) through an expansion in pow-

given by the self-duality equation, ER.13. It implies that o< ofT. Use must be made of the propagatdr(x
under this assumption the Griffiths phase shrinks to zero. 0 propag X 7u)

— i
)= N ro -1 o
B. Two-spin correlation function at criticality So(X=X") = (P (X) th(x )>°_277[X XA (X=X,

In order to complete the calculation of the temperature (239
dependence of other thermodynamic quantities we have toheref, is some cutoff function. The typical term in the
compute the susceptibility and spontaneous magnetizatioexpansion for IGB(R) involves the multiple integral

R
n(R)= fo dy dys- - - dyon T Sp(Y1—Y2)So(Y2—Y3) - - - So(Yan— Y1) I=a,R+byInR+ - - -, (2.39

from which theR— oo critical correlator could be evaluated through

%

2n
InG(R)= —ngl %IZH(R)wLRIn)\C (2.37)

(the odd-valued power terms vanishin@aking the(conjectural point of view that all terms irR must cancel exactly, the
evaluation of the IR terms can proceédy taking the choicénatural, but leading to some ambiguitids =1 and evaluating
every othery integral exactly,
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| (R)=fR dy,dy;- - -dya,
2n 0 (Y1=Y2)(Y2=Y3) - (Yon— Y1)
R In[(1—R/y,)/(1-R/y)JIN[(1-R/y3)/(1-Rly;)]---In[(1-Rly;)/(1-Rlyy)]
= | dyidy,---dy, — — — . (2.38
0 (Y1=Y2)(Y2=Y3) - (Yn—Y1)
After a straightforward but laborious reparametrization of the intégvad, arrive at
InG(R)=RIn\ § —(—TS/WZ)nl R), I, (R —de dz,---d >iz/2 al2 JR RAX g InRA
NG(R)=Rin ¢ 2n 2n(R), an(R)= _dadzn Z”‘lsinhEizi/Zi sintz;/2) A-1x(R—x) OnlnRA,
(2.39

with the R dependence now neatly factorized out and theln fact, the action, Eq(2.43), describes free fermions mov-
cutoff A~a ! conveniently reinstated. The coefficiefjtis  ing in the random potentiat(x), which in our case is re-

evaluated through the Fourier representation sponsible for local fluctuations of the critical temperature
T. in the dilute ferromagnet. After applying the replica trick
212 fedp 2 and averaging over “all” possible configurations a{x)
[ J —F(p)e P2 F(p)= , one gets the very same Gross-Neveu Lagrangian as given by
sinh(z/2) )27 costtmp Eg. (2.23. The representation of the square of the spin-spin

(240  correlation function of the pure 2D IM, that is,
leading tod,,= (1/2a) f . dp[F(p)]". Finally, we get(drop-
ping theR termg G(x—y)=(a(x)a(y)), (2.45

in terms of the path integral over the real bosonic fig¢ldf
guantum sine-Gordon model was found by Zuber and
Itzyksor?® (see also Ref. 37and reads

* gn TO 2n
ING(R)=— >, =] INRA==7InRA, (2.4

n=1

where 1

Gx-y)*=Z 5> f D psirl VA p(x)]
s AT’ L (s L Te ] .
e e By pn:lﬁ cosRap| - xsin V4w o(y)lexp[— S},
(2.42
The last sum converges to a logarithm and hiategral can S= Ef dZX{ (,9#¢)2+ %cos{ \/4w¢)] )
be evaluated, provideo|<1. ForTo=1, Eq.(2.42 leads 2 ma

to 7=1/4 however, the standard prescriptiorcalls for
To=+/2+1 and this leads to a divergence in the summation.
Clearly, this is associated with the use of a uniform cutoff Z:f D ¢exp[— S} (2.46
functionf , =1, but it must be stressed that to date no further
progress in evaluating the spin-spin correlator at criticality, At criticality, my=0, the path integral being Gaussian, the
using solely the fermionic formalism, can be reported. Theresult of its evaluation is easily seen to be
situation is even more delicate when disorder is introduced;
:jhounsectjr.]e method of the fermionic tail,g must be aban G(x—y)~|x—y|*(l’4). (2.47)
Let us now begin discussing bosonization, with the actionThe representation for the two-spin correlation function may
be extended to the dilute system by replacing the bare mass
. _ my~ 7 with the random oneny+ 7(x) into Eq. (2.46. Of
L=f d2{i o+ [mo+ 7(X) i}, (2.43  course, in the inhomogeneous case the nonaveraged
G(x,Y), being sample dependent, dependxamdy sepa-
wherey is a Majorana spinor ane(x) is a random Gaussian rately. The averaged correlation functi€@®(x—y) at the

field with the following probability distribution: critical point may be computegeven without using the rep-
lica trick) in two stages:(i) First, the square root of
G(x,y)? is formally evaluated by means of expanding it in a
p[T(x)]Nexp{ - ij dZX[T(X)]Z], power series inr(x); (i) second, the resulting expression is
2Ug integrated with respect ta(x) (for technical details of the
calculations see Refs. 2,88The conventional RG equation
(7(x)7(y))=UgS(X—Y). (2.49 for the renormalized averaged correlation function reads
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J J - wheres®=*1,a=1,... N, () indicates that the summation
M@*‘ﬁ(u)%‘F 7(u) Gr(p,u,u)=0, (248 s over all nearest-neighboring sited,(s?) is the Hamil-
tonian of the pure 2D IMe,=ss is the density energy
where u is a renormalization momentung(u) is the beta operator, andl, is a coupling constant between the Ising

function, andzn(u) is defined as planes.
This model was shown to be the lattice version of a model
(u)=B(u) d InZ,(u) (2.49 with hypercubic anisotropy, describing a set of magnetic and
K du - ' structural phase transitions in variety of solfd4° The cor-

. o responding Landau Hamiltonian reads
The spin renormalization constant(u) and the renormal-

ized correlation function are defined in the standard way:

1 1 1
G(p.Ug,A)=Z,(U)Gg(p.U, ). (2.50 H=fdzx[E(aﬂ¢)2+§m§®2+§uO(®z)2
The Kramers-Wannier symmetry was shown to apply in
some vanishing terms linear in in the expansions for 1 4
7(u) andZ,(u),2 that is, tgvo O3,
7
Z,(u)=1+0(u?), n(u)=Z+O(u2). (2.51) | |
2_ 2 2_ 2
Given B(u) and n(u) in the one-loop approximation, the ¢ _azl ®5,(9,P) _azl (0,Pa)% 3.2

solution of the Ovsyannikov-Callan-Symanzik equation for
the correlation function is quite simple:
where & is an N-component order parametem§~ T,
G(p)~p " GR)~R ™ (252 y,~J,, andv, are some coupling constants. In particular, in

So the Fisher critical exponent takes the very same valufie replica limit the Hamiltonian, Eq(3.2), describes the
n=1 as in the pure model. Notice that in contrast to higher@hdom-bond IM(for v4>0,uy<0). If vo=0, a phase tran-
moments of the spin correlation function, the first one doesition in the ON)-symmetric model with nonzero value of
not contain the logarithmic factor due to the above-the sponta_meous magnetization is known to be forbidden by
mentioned dual symmetAf.From this remark it follows that e Mermin-Wagner theorefft. If vo#0, the spontaneous
the temperature dependence of the homogeneous susceptiti[€akdown of the discrete hypercubic symmetry occurs at
ity and spontaneous magnetization are described by powef<>0- Since the term with, is strongly relevant, the per-
law functions of the correlation length(without logarithmic ~ turbation theory expansion with respect #g is actually

corrections like Ig): hopeless neaf. _
By exploiting the operator product expansi@@PE ap-

116 proach, Grest and Widom obtained the one-Igbfunction
} for the quartic coupling constady. If J,<<0 andN>2, the
phase transition was shown to be continuous and the critical
(2.53 behavior belonging to the 2D IM universality claSs.
The equation of state at the critical point may be obtained The exact solution of the multi color ATM in the large-

7/8

X~ &7~ 7-7/“[ In% . M~ (— 7)1/8[ In

(=7

from the usual scaling relation N limit was found by Fradkif? who developed a rather
complicated formalism based on bosonic fields and showed
H~M @71 \15, (254  that a second-order phase transition with IM critical expo-

. .. . nents occurs ifl;<0. In fact, as was shown by Aharofiy,
As we predicted, all critical exponents of the quenched dis: 4 y y

. : the model with hypercubic anisotropy, E§.2), in the large-
ordered system are |(_3Ient|cal to those of the pure model, apa] limit is equivalent to the IM with equilibrium impurities.
from some logarithmic correctiorts.

Moreover, for the 2D case he predicted the Ising-type critical
behavior with logarithmic corrections. Such being the case,
lll. N-COLOR ASHKIN-TELLER MODEL one expects that the critical behavior is identical to the IM

The N-color Ashkin-Teller mode[ATM) was introduced critical behavior. Sincexr=0, Fisher’s renormalization of the
by Grest and WidoR? and consists of a system &f 2D critical exponent! is inessential and gives rise only to loga-

Ising models coupled together like in the conventional two-/ithmic f"%“?“’fs- NO_“C‘? _also that in contrast to th_e pure case
color model. The lattice Hamiltonian of the isotropic the specific heaC is finite atT.. The exact solution of the

N-color ATM reads 2D IM with equilibrium defects obtained by Lushnikbv
many years ago confirms these conclusions.

N N The effective method for solving the model under discus-
H=2 H(s)+Jd, D> D eaep sion, based on a mapping of the original model, E31),
a=1 a#b=1 {nn) onto the OWN)-symmetric Gross-Neveu model, was sug-

N 2 gested by Shank& (see also Ref. 26,27In order to show
S s (3.1) this equivalence let us transform the partition functibiby
)T ' applying the Hubbard-Stratonovich identity:

N
=-> [JZ 257+,
(nn a=1 a=1

)



Z= f Ddexd —H(®d)]

=f D@D)\exp{—J d?x

N
1 1
+ 200>, PEHINX)DZH ——[N(X)]?
8 a=1 2U0

1
=f Dxexp(——f d?x\?
2ug

where A(X) is an auxiliary field;Z, is the exact partition
function of the 2D IM which is known to correspond to a
path integral over Grassmann variab{&zc. 1)):

1 1
E(aMaI>)2+§m(2)cp2

J

{Z[m3+iNOO TN,

(3.3

Z,= f DyDy exp{— f A2X[i o+ kb | . (3.4)

Now let us replacec,=m3 in Eq. (3.4 by m3+ix(x) and
substitute Eq(3.4) into Eqg.(3.3). This replacement is based
on the fact that the energy-density operator in ¢fetheory
is ¢2 while in 2D fermionic models this is given byy. We

have?>?7

1 T
z:f D)\exr{—z—uof dzx)\z) 11 pyDya
xexp[—f d2x[ifaéwa+(m§+ik(X))Ialﬂa]]

= f 1§ D /D ¢/.XH — Sen), (3.5

whereSgy is the Gross-Neveu action, given by EB.23. In
going from Eq.(3.2) to Eg. (3.5 it is assumed thati, has
been rescaled ag—ug’ =Uga 2 S0 as to makel, dimen-
sionless(the prime will be ignored hereafjerWe see that
the discrete hypercubic symmetry of thé-color ATM
evolves into the continuous ®f symmetry, hidden when
the system approaches the critical point.

The one-loop RG equations for thé-color ATM have
been already obtained in Sec. Il, these being Eg25
where we must sei=N. Solving these equations gives the
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117(N=1)/4(N-2)
G(R)~R™ ¥4 X~T7"‘[|n; ,
(3.7
1 J(N-1)/8N-2)
M~(—7)Y In— , H~MS
(—7)

Notice that these results are valid only fdr>2, J,<O0. If
J,>0, the discreteys symmetry — ysib, pib— — iy is
spontaneously broken. From thg-symmetry breaking it
follows that( ) #0. It means that we have a finite corre-
lation length or, in other words, a first-order phase
transition®®?° So Eqgs.(3.7) reproduce the well-known re-
sults for some particular case:=0,1,0 corresponding to
the random-bond IM problem, Onsager problem, and IM
with equilibrium impurities, respectively.

The symmetric eight-vertex modébr Baxter model is
known to be isomorphic to thBl=2 color ATM in the vi-
cinity of the critical line. The phase diagram of the two-color
ATM contains the ferromagnetic phase transition line begin-
ning from the IM critical point and ending at the point cor-
responding to the four-state Potts model. Along this line the
model exhibits weakly universal critical behavior, with the
critical exponents continuously varying. For instance, the
critical exponentr changes continuously from=0 (IM) to
a= 2 (four-state Potts mod®). The above results obviously
show the special nature of the¢=2 situation, due to the
factor 1/(N—2). In this case the system under discussion is
described by the (2)-symmetric Gross-Neveu model or,
equivalently, by the massive Thirring model with tBdunc-
tion being equal to zero identically and presenting nonuni-
versal critical exponents. Since theN=3 color ATM is
equivalent to the (8)-symmetric Gross-Neveu model which
is known to be supersymmet€ this model should possess
a hidden supersymmetfgee for details Refs. 25,26

Notice that in contrast to the 2D case, the critical behavior
of the N-color ATM in 4— € dimensions (&< e<2) is gov-
erned by either the Gaussian or the cubic fixed point and
never by the IM fixed point. The type of critical behavior
crucially depends on the order parameter component number
N. If N>N.(€), the RG flow arrives at the cubic fixed point;
in the opposite casdN<N,(¢), the Heisenbergisotropio
fixed point is stable. HerB.(¢) is the critical dimensionality
of the order parameter, its expansion in powers being?*’

_ > 5 3
Ni(€)=4—2€— E{(S —13)€ +0(€%), (3.8

temperature dependence of the correlation length and sp#here{(3)=1.202 052 8 is the Riemann zeta function, and

cific heat in the vicinity of the critical poirft’

1\ J(N-1N-2) 1)\ J(N;2=N)
In( In(;” . (3.9

~~YInl = ~
E~T1 - , C

As for the calculation of the correlation function, one can

N.(1)=2.981f e—2, N, decreases and all the cubic fixed
points approach the IM fixed point, merging &t 2, irre-
spectively of the value of.?’

IV. GENERALIZED ASHKIN-TELLER MODEL
WITH RANDOMNESS

apply the procedure described in Sec. Il. Like for the random Now we extend our study of thsl-color ATM to two

IM case, the term linear i for »(u) andZ,(u) vanishes

interacting M- and N-color quenched disordered Ashkin-

due to the Kramers-Wannier symmetry. This implies theTeller models, giving rise to a generalized Askin-Teller

anomalous dimension of the spBp to be equal tg;. We get

model (GATM). The Landau Hamiltonian is given by
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1 1 1 dw
H=J d2x| E(aﬂcb)% E[m§+71(x)]d>§+§[mg gt = WEN=Dus+(M=1up+2,+ 2],
2 1 20, L 22, L 242 dz;
+12() O+ UL (PP + Su( DY)+ ZwdidE 5t =~ 2alz+ (N=Duy+2Mr],
N N+M
1 1 dz
+ = D+ = ol 4.1 2 -
g1 Patgue X O (4.0 o=~ 222+ (M= 1)+ 2Nr],

where®, ,k=1,... M+N is an (M +N)-component order ¢y

parameter, a=1,...N,c=N+1,... N+M, mj~r, a=—r[(N—l)u1+(M—1)u2+zl+22]—w[Nzl+M22].
v,,u,>0, and u,v=1,2. Summation over indices in the

quadratic operators is understood. We may study two types The initial conditions for both(i) uncorrelated andii)
of impurities: (i) uncorrelated impurities angi) correlated  correlated impurities are as follows:

ones. In these cases the two-point correlators for the inde-

pendent random Gaussian fields read (i) z1(0)=2z,(0)=24,r(0)=0,
(1.(X)7,(Y))=2,6,,8(x—Y), (i) z1(0)=2,(0)=2r(0)=2,. (4.5
It is easy to see that if one sel8=N=1 (random-bond
(7.(X)T,(Y)) =2Z0(X—Y). (4.2 Baxter or, equivalently, two-color ATMone arrives at the

RG equations obtained by Dotsenko and Dotsetika. this
case the coupling constantg, decouple from the others;
moreover, instead of two couplings we have only one cou-
pling constantz=z,=z,. It was shown that in almost all
cases even weak disorder would drastically change the criti-
cal behavior of the two-color ATM from a nonuniversal be-
havior to the Ising-type one, modified by some logarithmic
corrections(see also Ref.)2 Even though the critical expo-
nent« of the pure model is negative favy<<0, for uncor-
related defects we find that the critical behavior of the model
under discussion is changed by the emergence of the new
scaling fieldr. In the case of correlated defects with<<0
H :f dzx{iqﬁg\pﬁ mo‘lTli"Pﬁ+ ul@\pg\[_,lc;q,g the critical behavior of the random model was shatto be
still nonuniversal with critical exponents and » depending
on bothwg and on the concentration of impuritiepf. This
is the only exceptional case in which we would have nonuni-
+ 2, WAV EWEW B g (W By AL (4.3  Vversal critical behavior for a disordered system. In all cases
the two-spin correlation function was shown to have, how-
where ¥¢ is a (rea) Majorana fermionic field, ever, the same large distance behavior as for the 2B IM.
a,f=1,...n—0 are replica indicesa,b=1, ... N, and Now let us consider two interacting- andM-color ATM
c,d=N+1,... N+M. Naively one expects the appearanceWithout randomnessz(,=r,=0). There are several different
of two impurity quartic fermionic couplings in the replicated types of asymptotic behavior of the coupling constants
Hamiltonian, Eq(4.3). Instead, we have one additional four- U,(t),w(t), but there is only one stable solution exhibiting
fermion vertexr, (absent in the bare actipriThis counter-  infrared-free behavior. That is given by
term arises in the course of the renormalization procedure
and provides the closedness of the operator algebra. In some _ 1 _ 1
. . . . ul(t) _ ’ UZ(t) _ '
sense the appearance of this term means violating the Harris (N=2)t (M=2)t
criterion. The latter is indeed essentially based on the as-
sumption of the existence of only one operator responsible
for the impurity-induced interaction of the order parameter
fluctuations.

The one-loop RG equations for the six coupling constant£\S & result, the original model decouples into two indepen-
u,.v,.r, andw are given by(for n=0) dentN- and M-color models as described in Sec. Ill. Thus,

the hidden symmetry of the model near the critical point is
the continuous QY) X O(M) group. There also exists a so-

In fact we study some multicritical point in the model under
discussion, Eq.(4.1), since it has been assumed that
Myg= Myo= My~ 7. This model in 4 ¢ dimensiongwithout
disordey was initially studied by Bruce and Aharotfyand

by Lyuksyutov, Pokrovskii, and Khmelnitsk% (without cu-
bic anisotropy and then in numerous other pap&t®8y ap-
plying the replica trick and the “fermionization” method
described in Sec. Ill, one arrives at the following effective
fermionic action involving several types of quartic fermionic
interactions:

+ U PO AT IP 4+ WP AW POV &+ 7, WP AP Ep

1
W(t)=0(m), t—o0. (4.6)

du
d_tl: —(N—2)u§—221u1— Mw?, (4.9 lution of the RG equations given by
(t)=u(t) - (t) S - t
du, 2 > UlU=tU==sWU=" =2 %
W——(M—Z)UZ—ZZZUZ—NW , @7
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corresponding to the higher symmetry ¢ N) being ex-  function. Thus, there is a clear possibility to apply the results
plicitly broken in the original Landau Hamiltonian, E@.1).  of multiloop RG calculations for the Gross-Neveu model in
This is shown to be unstable. For instance, provitled2,  order to compute the critical exponents of random minimal
M =1 (or vice versy andu,(0)=u,(0)=3w(0), wewould  models. At the present time we have the five-loop expres-
obtain the supersymmetric asymptotic solution of E§7).  sions for theB(u) function and anomalous dimension func-
Were these conditions to be broken, i.e., were the supersyntions y,(u) and y,,(u) of the fermionic field¢y and com-
metry explicitly broken, this would not be restored in the posite operator, respectively, and as obtained in Ref. 52
infrared limit® Notice that our model without cubic anisot- Unfortunately, these expressions contain a few unknown co-
ropy and randomness was shown to exhibit this enhancegfficients in the four- and five-loop terms. As for the anoma-
asymptotic symmetry in (4 €) dimensional space, provided lous dimension of the spin variablg(u), this function was
M+N<4> obtained in Ref. 21 in a three-loop approximation. Notice

One may expect that, due to the critical decoupling of twothat according to the conformal field theory classification, the
multicolor ATM's into two independent models, the spin variable corresponds to the operady, ,—;, whilst
quenched disorder does not affect the critical behavior of the, ,= ¢(x) is the energy-density operator. Thus, one may
system, Eq.4.1). This is because iN,M>2 the specific use the RG functions obtained only in the three-loop ap-
heat is finite at criticalitfEq. (3.5)] and randomness is irrel- proximation for the calculation of the critical exponents.
evant in accordance with the Harris criterion. As was ex- Let us now compute the critical exponents of the correla-
plained above this reasonable assumption should be checkédn length and specific heat of the random minimal models
in view of the obvious breakdown of the Harris criterion duein the three-loop approximation. The corresponding expres-
to the appearance of the additional scaling fieldThe an-  sions for theg function and temperature critical exponent
swer is that this is indeed the case. In fact, it is easy to checkunction are given by?
that the solution given by Ed4.6) and describing pure mod-
els is stable despite the presence of three disorder couplings. B(u)=2eu—2(N—2)u®+4(N-2)u®

Thus, from our RG calculations it follows that, in contrast +2(N=2)(N=7)u?
to a 2D IM with random bonds, weak quenched disorder here '
is irrelevant nearT.. Moreover, in the critical region the
decoupling of two interacting multicolor ATM’s was found
to occur even in the presence of quenched disorder. The
temperature dependence of the main thermodynamic quanti- €= ——
ties near the critical point, the two-spin correlation function 2m
and equation of state at criticality of the model under conyo.a N is the number of planegolorg, coupled to each

sideration are given by Eq3.5) and (3.7). other in the usual way like in thi-color ATM [Eq. (3.1)].
The critical behavior of the multicolor minimal models is
V. WEAKLY DISORDERED MINIMAL CONFORMAL governed by the nontrivial fixed point of E(.1). From this
FIELD THEORY MODELS equation it follows that

YW =2(N=1)u=2(N-1)u?~2(N-1)(2N-3)u?,

, m=34,.... (5.1)

The critical behavior of the minimal models of conformal 1 1 €

1 €
field theory withc<1 and as perturbed by a small amountof = 7~ +yyy(U)= P +2(N— 1)[ NEC (N—2)2
impurities is far from being solved and therefore is of con-

siderable interest. In accordance with the Harris criterion, Ne 2m

weak guenched disorder is expected to be strongly relevant T (N=2)3]" Vozm'

near criticality since the critical exponeatof these models

is always positive and given by=2(m—3)/3(m—1), with (5.2
m=34,... . Inparticular, for the three- and four-state POttSWhereE takes on the discrete values defined in @1) and
model we havea=3 (m=>5) and =5 (M=), respec- , is the critical exponent of the correlation length of the
tively. pure model.

Results in this field were obtained in some papers by To check the self-consistency of E@.1) let us consider
Ludwig™® and by Dotsenko, Picco, and PujolThey suc-  the limit N—oo, describing the system with equilibrium im-

ceeded in developing a powerful approach closely connecteglyrities. The result is easily seen to be
with the formalism exploited in the previous sections for
describing the multicolor ATM. These authors suggested a 2m Vo
special kind ofe expansion for computing the critical expo- VimpT ¥ 3T 1— g’ (5.3
nents, where now=c— 3. Herec is the central charge of
the minimal models without randomness anid the confor-  From the expression for the anomalous dimension of the
mal anomaly of the 2D IM. The main result of their consid- order parameter;(u) obtained in Ref. 21 it follows that the
erations is that thg(u) andy,,(u) functions coincide with ~ Fisher critical exponentr, is unchanged in this limit,
the corresponding functions for the )-symmetric Gross-  7imp= 770, Where for theg-state Pottsy, is given by*
Neveu model obtained in the framework of the minimal sub-
straction scheme combined with dimensional regularization. _ _ (m+3)(m—-1) T N

o R : ; No=—r—————, Qq=4c0$——, m=2,35mx.
The distinguishing feature of this scheme is that these func- Am(m+1) m+1
tions do not depend om except for the first term in th@ (5.9
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TABLE |I. Critical correlation length exponent for random  point is stable in the presence of weak quenched disorder.
minimal models: TIM (tricritical Ising mode), 3PM (three-state  This statement was found to hold quite generally for the 2D
Potts model TPM (tricritical Potts model and 4PM(four-state  |\M, multicolor ATM, and some of its generalizations for
Potts model m denotes the minimal modet=(3—m)/2m, »o IS \yhich randomness is marginally relevant. In the case of the
the homogeneous exponem,= vo vy + v, + v the random one, o color ATM or Baxter model, disorder drastically
andw, denotes tha-loop contribution tov . changes the nonuniversal critical behavior inherent in this
model over to the Ising-type critical behavior. Although

Model m € Vo vy vy V3 v, S . .
some of these models exhibit a breakdown of the Harris cri-
TIM 4 -0.125 0.889 0.099 0.017 0.003 1.008 terion, this does not affect, in general, the stability of the IM
3PM 5 -02 0833 0139 0038 0.008 1.018 fixed point. Itis commonly believed that the type of random-
TPM 6 -025 08 016 0.052 0.014 1026 ness(random bond or site disordedoes not play a role near
4PM © -05 0667 0222 013 0.062 1081 T, despite the fact that random-site disorder has not been

studied in great detail as yet.

As was expected, we have obtained the duly renormalized ©On the numerical side, Monte Car{MC) simulation re-
critical exponent of the correlation length and an unchangeg@ults are in good agreement with the analytical results based
value of the order parameter anomalous dimension, in agre@n the RG calculation¥. For instance, the high-accuracy
ment with the predictions of the general thebtyAs ex- MC simulation results for a 10241024 Ising lattice with
pected, in the trivial castl=1 one gets the critical expo- ferromagnetic impurity bonds, recently obtained by Schur
nents of pure systems. and TalapoV® show that the exponent of the two-spin cor-
The critical exponent values. for random models can be relation function at criticality is numerically very close to
easily obtained from E¢(5.2) by expandingy, in powers of  that for the pure model. On the other hand, numerical results
e and settingN=0. The results of these calculations are pre-obtained by Domany and Wisenfdrdo somewhat contra-
sented in Table I. The most striking feature of the abovedict the theoretical predictions. These results, for a
expansions is that they look like rapidly convergent seriespsex 256 lattice, favor a logarithmic-type behavior of the
even in the case of the four-state Potts model. As a matter qpeciﬁc heat nedf, for the disordered two-color ATM and
fact, this is not so surprising, because in the Thirring modetor_state Potts models, and a double-logarithmic behavior
(N=2) the anomalous dimensiong,,(u) and y,(u) are ot the specific heat for the random-bond IM. As was estab-

known to be some geometric progressionsiinNotice also  jigheq by Dotsenko and DotsenRbthe specific heat of the
that if we setN=2 in Eg. (5.1 we do not obtain these random two-color ATM should exhibit the double-

progressioné?.The reasons why the(Q')-symmetric. Gross- logarithmic divergence at the critical point.
Neveu model in the minimal substraction scheme is not com- "¢ writical hehavior of the random four-state Potts model

pletely equivalent to the Thirring model have not been COM3yas shown to be described by a new fixed point which does
pletely understood as y&tlt is also important that all values not coincide with the IM oné® The conjecture made in

of v, for any arbitrary integem slightly exceed unity, sothat oot 5 that the perturbation théory expansion around the free
all values ofe are negative in full agreement with the Harris oo theory appropriate for the Ising model is valid until
criterion. . the end point of the ferromagnetic phase transition (ohe

_ Aswas _menuoned above, the three-l_oop TES““S CONCeMKeribing the four-state Potts modlé actually incorrect. Ex-

ing the critical exponenty(u) were obtained in Ref. 21 It 5¢¢ egyits for the repulsion sector of the sine-Gordon theory

turns out that the numerical values gf are in the close ,yaineg by means of the Bethe ansatz in Ref. 54 show that
vicinity of the Ising model valuep=0.25. The reasons for o perturbation theory aroung?=4 (free fermions di-

that are as follows. The one-loop approximation term Whid\/erges atB?= 16/3 (see also Ref. 55i.e., it has a finite

is expected to give rise to the main contribution to the de'radius of convergence, and cannot be continued to

viation of » from 7, vanishes due to the Kramers-Wannier 52_ g
dual symmetry. The two-loop correction was shown t0 be" 14" critical exponents corresponding to the disordered

. 2. . .
proportional toeu®; therefore ;gvazldeV|atlons of from the (o, state Potts fixed point slightly differ from the IM ones.
pure values are proportional ©.7 The numerical results are believed to be sensitive to that
Thus, the numerical values of critical exponents of theyitrarence. It is interesting to compare the estimate for the

weakly disordered minimal models are very close to the criti-.itic4| exponent of the four-state Potts model based on the

cal exponents of the 2D IM. This has clear implications fory, e joop approximation with known numerical results.
the three- and four-state Potts models with random bonds, 8§,y Table | it follows that »=1.081 Novotny and

shown by Table I. From a numerical point of view one might Landag® obtained for the Baxter-Wu modééquivalent to
be tempted to conclude that all these models are described By, four-state  Potts model the following value:
the 2D IM fixed point® We see here that this “superuniver- '

it is onl ; houah accidental o »=1.00(7). Theresult of Andelman and Berk&ris given
sality” s only approximate, though accidentally verified to a by »=1.19. Finally, the recent result obtained by Schwenger
high degree of accuracy.

et al®is as follows:»=1.038).

We end this section by giving a remark that logarithmic
corrections to the power-law dependence and corrections to
scaling may give rise to a dependence of effective critical

It has been shown that the critical behavior of a goodexponents on the concentration of defects as observed in
number of 2D anisotropic systems controlled by the IM fixedsome numerical experimerts.

VI. CONCLUSIONS
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