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Vortex statistics in a disordered two-dimensionalXY model
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The equilibrium behavior of vortices in a classical two-dimensiof2®) XY model with uncorrelated
random phase shifts is investigated. The model describes Josephson-junction arrays with positional disorder
and has ramifications in a number of other bond-disordered 2D systems. The vortex Hamiltonian is that of a
Coulomb gas in a background of quenched random dipoles, which is capable of forming either a dielectric
insulator or a plasma. We confirm a recent suggestion by Nattermann, Scheidl, Korshunov,[dnBHyis.

(France | 5, 565(1995] and by Cha and FertigPhys. Rev. Lett74, 4867 (1995] that, when the variance

o of random phase shifts is sufficiently small, the system is in a phase with quasi-long-range order at low
temperatures, without a reentrance transition. This conclusion is reached through a nearly exact calculation of
the single-vortex free energy and a Kosterlitz-type renormalization group analysis of screening and random
polarization effects from vortex-antivortex pairs. There is a critical disorder strangtrabove which the
system is in the paramagnetic phase at any nonzero temperature. The vajuis &und not to be universal,

but generally lies in the range<Qo.< 7/8. In the ordered phase, vortex pairs undergo a series of spatial and
angular localization processes as the temperature is lowered. This behavior, which is common to many glass-
forming systems, can be quantified through approximate mappings to the random energy model and to the
directed polymer on the Cayley tree. Various critical properties at the order-disorder transition are calculated.
[S0163-182696)06329-1

. INTRODUCTION transverse magnetic fiefdl® In this case,¢; is identified
with the phase of the superconducting order parameter of
The Kosterlitz-Thouless-BerezinskiKTB) transitiot™  grain i, and Aij= (27 Pg) [ jAcx dl, whereA,, is the
plays an important role in the theory of ordering in two- vector potential of the external magnetic field and
dimensional2D) systems which have a continuous symme-®,=hc/2e is the superconducting flux quantum. The case
try specified by a phase. Examples include planar magnetsl.2) corresponds to a situation where the average magnetic
2D solids, Josephson-junction arrays, superfluid and supeflux over each elementary plaquette of the grain network is
conductor films, eté.These systems have an ordered phasen integer multiple ofb,, but random displacement of su-
at low temperatures, characterized by a power-law decay gferconducting grains from a perfect lattice structure yields
correlations with distance. Th@uasi) long-range order is quenched random phase shiffts.
destroyed through unbinding of vortex-antivortex pairs, On the theoretical side, mod€l.1) and its variants have
which takes place at the KTB transition. been studied extensively in the past—2°Result of previous
A question of both theoretical and practical interest isstudies can be summarized as follows. The spin-wave
whether and how quenched disorder alters the above picturBuctuations have essentially the same excitation spectrum as
In this paper we shall focus on the case of random frustrain the pure case. Disorder introduces distortion in the ground
tion, where disorder introduces random, uncorrelated phasstate away from a perfect ferromagnetic alignment. The com-
shifts but does not pin the phase angles themselves. Motaned effect of thermal and disorder fluctuations leads to an
precisely, we shall consider aiXY model with the algebraic decay of the two-point phase-phase correlation
Hamiltoniar? function

CsMrij)E<qui(¢5w,i_¢sw,j)]>~ri;ﬂswa (1.3

wherer;; is the distance between siteand j, and
where the sum runs over all nearest-neighbor pairs on a
square lattice. The quenched random varialigs which 4

. . . g
give a random bias to the preferred advancing angle over J
each bond, are assumed to be uncorrelated from bond to .

) . o ) I3 the correlation length exponent at temperafliredue to
bond, and each is Gaussian distributed with the mean and . V(i) Vorti hich loqical poi
variance given by spin waves on y.(n) /ortices, which are topological point

defects in theg field, interact with each other and with the
(A})=0, <Ai2j>:0-i (1.2 quenched disorder through a'Coqumb potential. The inter-
action between two vortices is of the charge-charge type,
respectively. It has been suggested that m¢tid) provides where the charge of each vortex is given by its vorticity. The
a good description of the Josephson-junction arrays in #teraction between a vortex and a particular disordered bond
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p which underlies the vortex-antivortex unbinding transition in
the presence of the quenched disorder. There are two main
Disordered extensions contained in this work as detailed below.
o.f First, we analyze quantitatively the equilibrium behavior

of a single vortex in a background of quenched random di-
poles. An analogy is made to two well-studied problems in-
volving disorder: the random energy motdfednd a directed
polymer on the Cayley tre®. It is shown that the single-
vortex problem has a glass transition at a temperature

T_ T,
Quasi-long-range Order

Ty=J(mal2)'?, (1.6

below which entropy goes to zero; i.e., the vortex becomes
0 o TH localized at the lowest-energy site. The free energy of the
(a) vortex is found to be proportional to the logarithm of system
size at all temperatures. Setting the prefactor of the logarithm
c to zero, we obtain the phase boundary shown in Fb).1
Second, the dielectric and freezing properties of a dilute
gas of vortex-antivortex pairf®r moleculesare examined in
further detail, with particular emphasis on the spatial struc-
ture of equilibrium pair configurations. The freezing line
T=T, in Fig. 1(b) is shown to be related to the loss of
entropy of a pair over an area where the pair can be consid-
ered as isolated from other pairs of comparable size. If we fix
the center position of the pair, the two vortices making up
the pair freeze aly. In the ordered phasd,, <Tg due to
the fact that the pair is allowed to explore an area much
larger than its size and hence has a lower freezing tempera-
0 Lo T4 ture. Interestingly, we find that freezing of pairs is not asso-
() ciated with a singularity in the free energy of the system as a
whole, and hence there is no real phase transitioi at

FIG. 1. Previously proposed phase diagrams of the disorderefiSOrder also generates random, zero-field polarization of the
XY model.(a) Order-disorder transition &t=T, and then again at 9as of pairs, which enhances the effective disorder seen by
a reentrance temperatufe=T_ . (b) No reentrance transition, but Vortices separated by a large distance. This effect, which has

freezing of vortex-pair excitations beloW, (dashed ling been previously overlooked, shifts the critical strength of dis-
order o, [cf. Fig. 1(b)] from 7/8 to a smaller valué?
is of the charge-dipole type, with the strength of the dipole Results on the dilute gas of vortex-antivortex pairs are
given by the phase shify;; over the bond. The equilibrium then turned into a set of RG recursion relations which cap-
statistics of vortices is essentially decoupled from that ofure theaverage, large-distanc@roperties of the system.
spin waves. Earlier renormalization-groRG) analysis of ~Apart from some minor differences, the RG flow equations
the vortex-antivortex unbinding transition yielded a phasederived in this paper are in agreement with those of Ref. 18.
diagram of the kind illustrated in Fig. (4.5 For  To the extent that such a simplifying description offers a
o<o.=ml8, a phase with bound vortex-antivortex pairs, 900d approximation, a phase diagram of the kind shown in
and hence algebraic decay of phase correlations, still exist&]g. 1(b) is produced. o .
but only in a temperature windoW_(o)<T<T_, (o). Be- A drawback of the RG description adopted here is that the
low T,(O’), a “reentrant” disordered phase was predicted_renormaliz-ed(i.?., effeCtIVQ dISOI’deI’ is aIWayS assumed tO_
The two transition temperatures coincide at a critical strengti®® Gaussian distributed, while it is clear from our analysis
of the disorders,, above which the ordered phase disap-that the tail of the distribution dominates renormalization
pears altogether. Two recent papers, by Nattermann, Scheidiffects at low temperatures. This observation puts a limit on
Korshunov, and L (NSKL) and by Cha and Fertit}, cast the extent the RG predictions can be trusted regarding the
doubt on the reentrance picture. The phase diagram they sugétailed shape of the low-temperature phase boundary, e.g.,
gested is shown in Fig. (), where the reentrance line whether it contains a part which is strictly parallel to the
T_(o) disappears. NSKI(Refs. 18,21,2pfurther suggested temperature axis as in Fig(d), or it could develop a posi-

that some sort of freezing phenomenon takes place below #&e slope to allow for reentrance of the disordered phase
certain temperature when o is sufficiently close too.. Qualitatively, though,

there can be little doubt that the ordered phase exists down to
T,(0)=20J (1. T=0 wheno is far belowo,, as the modification of the
bare interactions due to excitation of large-size pairs is weak
[see the dashed line in Fig(k)], which preempts the reen- in the entire ordered phase shown in Figb)1
trance transition al _(o)<T, (o) found previously. Another interesting question is whether the system at
The aim of the present paper is to expand the pioneering> o has a glassy phase at low temperatures. Our calcula-
ideas presented in Refs. 18 and 19 to unfold the physicgon of the dielectric susceptibility of a gas of pairs indicates
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that screening is present at all temperatures, despite localiza-

tion in the orientation of individual pairs beloW,. This ¢d¢:277mi-

supports the idea that, in the disordered phase, the vortex- ) o N )
vortex interaction at large distances is always short-rangedn @ system with periodic boundary conditions, neutrality
Consequently, long-range glassy order in the phase field i&imi=0 is satisfied. The gradient of thg field can be de-

not expected at any nonzero temperature due to the finité0mposed into a rotation-free part and a divergence-free part,
energy cost to excite an additional vortex in the system. Pre-

vious analytical and simulational studies of the gauge glass V¢:V¢sw+z mzx (r—r)/|r—ri?, 2.2
model (i.e., A;; uniformly distributed in the interval i

E:?),rfgazsiolrgovztg\‘lg dimensions have reached the same,nereqs  represents “spin-wave” fluctuations, afds the

. . unit vector in the third direction in space. The same proce-
The paper is organized as follows. In Sec. Il the Coulombdure can be repeated fé. P P

gas representation of vortices of t€Y model is briefly
reviewed. A qualitative discussion of vortex-antivortex un- A=aVgy+A,, 2.3
binding is presented to highlight the outstanding issues. The ) L
problem of a single vortex interacting with quenched randomVhere the potentia, satisfies
dipoles is analyzed in Sec. lll. A connection is made to the 2, _

. aVep,=V-A. 2.4
random energy model and to a directed polymer on the Cay- o 24

ley tree. In Sec. IV we examine the behavior of a dilute gas |nserting Eqs(2.2) and(2.3) into (2.1), we obtain(apart

of vortex-antivortex pairs of comparable size, under the infrom a constantH=Hg,+ H,, where the spin-wave part is
fluence of disorder. The calculation of the dielectric suscepgiven by

tibility and the zero-field polarization of such a gas is pre-

sented, as well as an analysis of fluctuations of pair density. J ) )

A physical interpretation of th&, line is proposed. Section HSWZEJ dr(Vepsw— Vo) 29
V contains a derivation of the RG recursion relations and _

results that follow from these equations. A discussion of theand the vortex part given by

phase diagram, the singularity of the free energy, the diver-

gence of the _correlatio_n I(_angth, and the two-ppint phase- HU=2 (mizEc+miVi)_7T‘]2 mimjlnri. (2.6)
phase correlation function is presented. The main results of i 3 a

the paper are summarized in Sec. VI. Some of the technic
aspects of the study are relegated to the four appendixes
the end.

1$ee Appendix A for more details on the derivatjoRlere
and elsewhere;; =r;—r; is the displacement vector between
sitesi andj, andr;;=|r;;| is the distance. In addition to the
usual core energ¥., a vortex interacts with a quenched
random dipole fieldy;= (a/27)A(r;) X z through the poten-

A. Vortex Hamiltonian tial

I. COULOMB GAS FORMULATION

To set the stage, let us review briefly the steps leading to
the Coulomb gas representation(@fl). The basic idea is as Vi=V(r)=2m32, g;-r Ing. 2.7
follows. Due to the topological nature of vortices, tR& )71
model in two dimensions affords many metastable configufFrom the above definition we have, in component form,
rations labeled by a set of vortex chardes}, where each
m; specifies the phase rotation around an elementary (Gi0)=0, (0 q0j5)=(al2m)?058,5. (2.9
plaquettei, in units of 27. The precise definition of the e thatV; vanishes wher is rotation free.

vortex charge configuration, derived from a given spin con- The core energ, can be extracted from the energy of a

figuration on a lattice, requires some convention, but is othy, 1o o ntivortex pair separated by a large disténdts
erwise unamk_)lguous. The energy of.each metastaple COalue is nonuniversal and also depends on the choiee of
figuration defines a vortex HamiltoniaH ,({m;}), while

small phase fluctuationgs,; around the metastable state are
described by a spin-wave Hamiltonigh,({ dsw})-
The simplest way to derivel, andHy, is to start from a At sufficiently high core energies, at least, the gas of vor-
continuum approximation of1.1),28° tices in a charge-neutral system is expected to form one of
the two phases described below. The first is a dielectric in-
I . _ ) sulator, wherex1 charges bind to form pairs of charge-
H= EJ drfVe—a "A(n)]", (2.1 neutral molecules. This structure is low in Coulomb energy,
but also low in entropy due to binding. The second is a
wherea is the lattice constant. The two componentiadire  plasma with a finite density of unpairddr free vortices.
given by the disordeA;; on adjacent horizontal and vertical This structure is high in Coulomb energy but also high in
bonds, respectively. entropy. In the absence of disorder, both the Coulomb energy
In the presence of vortices, the fieddr) is multiple val-  and entropy scale logarithmically with distance in two di-
ued. The vortex charge®; fix the phase advance along a mensions. A simple energy-entropy argumehen predicts
closed path surrounding site(or rather celli), a finite-temperature transition for the unbinding of vortex-

B. Pair-unbinding transition
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antivortex pairs. This is also the temperature where the free
energy of a single vortex goes to zero. An improved treat-

ment, which takes into account the reduction of the Coulomb

energy due to screening by other vortex-antivortex pairs,

yields an exact description of the critical properties at the

transition. In the plasma phase, there is complete screening
of the Coulomb potential, so that interactions between distant
charges become short ranged.

In the presence of quenched random dipoles, vortices may
exploit fluctuations in the disorder potential to lower their
Coulomb energy, and hence become more numerous. This
speaks for the reduced stability of the insulating phase. On
the other hand, in the process of gaining potential energy,
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Vortlces become more |ocal|zed, and thls Way |Ose entropy FIG. 2. Phase d|agram ofa S|ng|e vortex. A true gIaSS tranSI’[Ion
The first insight one needs is how much energy a vortex calfkes place afy (SO!Id line). The free energy of the vortex vanishes
gain from the disorder by positioning itself at the right place./ong the dashed line.

It turns out that this problem can be solved almost exactly,
and the result again has logarithmic scaling with distance.
The amplitude of energy gain from disorder is proportional
to o2 at low temperatures. Thus, when entropy is not a
factor, excitation of free vortices is not expected below a
certain critical strength of the disorder.

As in the pure case, a complete treatment requires analy-

sis of the screening of the Coulomb potential due to othewherex;, i=

A. Random energy approximation

In the REM one considers the partition function

N
z=21 exp—x;/T),

pairs of vortices present in the system. At high temperaturegirawn independently from a Gaussian distribution,

a pair is able to explore a large number of different disorder
environment, which minimizes the difference between

(3.9
1,... N, are a set of random energy levels
Y(x)=(27A) " Y2exp —x212A). (3.5

quenched and annealed disorder. The situation becomes difhe model has been analyzed in great detail by Defida.
ferent at low temperatures where, as in the random energgejow we quote some of his results relevant for our discus-
model, the equilibrium behavior of a pair is dominated by thesjon, and refer the reader to his original paper for further
lowest-energy configuration in the area accessible to the paifietails.(See also Appendix B.

C ) con ! In the thermodynamic limilN—oo while fixing the ratio
pair when spatial and angular localization becomes impors=A/InN, the average free energy is extensive iN,In

A crucial issue is thus to obtain the correct statistics of the

tant.
With the above general picture in mind, we are in a posi-
tion to perform the necessary calculations.

lll. SINGLE VORTEX

In this section, we examine the behavior of a single vor-
tex, confined in a box of linear dimensié&®a. In the pres-

(f)=-=T(Inz)=—c(T,s)InN+O(InInN),
where

T+s/(2T)

c(T,s)=

(25)1/2

ence of disorder, the energy of the vortex depends on itgjere

positioni,

E;=E.+ mJIn(Rla)+V;, (3.0

Ty(s)=(s/2)12

is the freezing temperature of the model. Fox Ty, the

(3.6
for T>Tgy(s),
(3.7
for T<T4(s).
(3.9

whereV; is given by(2.7) with the sum restricted to sites in entropy is no longer extensive inNn

the box. From the definition we hay®/;)=0. The variance
and spatial correlations of; are given by

The above result can be applied to the single-vortex prob-
lem by substitutingN— (R/a)?, A—2maJ?In(R/a), and

s—maJ?. From(3.6), we obtain the average free energy of

(V)=2m0FIn(Ria)+0(1), (32 the vortex,
((Vi=V)))=4mad%n(r;;/a)+O(1). (3.3 Eo+ 7
A simplifying approximation to the single-vortex problem (F)=

is obtained by setting the correlation \@f to zero. The re-
sulting problem is known as theandom energy model
(REM).2 It turns out that, for the quantities of interest to us,
correlations in the disorder potential only introduce

E.+ 7

12T IRfT>T
w1 e for =T

8o\ R
1-\/—]In— for T<Ty.
7/ a

o)

(3.9

subleading-order corrections to the REM results in the limitThe corresponding freezing temperature is given by(E®)
R>a. In the following we shall first discuss the REM and (solid line in Fig. 3. The coefficient of the logarithm

then an improved representation.

changes sign across the dashed line shown in Fig. 2, which is
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for our conclusions. For any chosen sitewe divide the
space into a set of rings of inner and outer rdgjjiL, and
Ry, respectively, such that=Ry<R;<- - - <R,=R, while
keepingR,/R,_1=b constant. The potential at sitecan be
written as a one-dimensional sum,==,V{", where each
term in the sum contains only contributions from dipoles
within a given ring, i.e.,

V=273 > k- Ti /T2 - (3.10

Rp—1=rix<Rp

We now identify thenth ring with thenth node(branching
point) along the path on the tree, whera increases from
bottom to top. The energy of the node is given W .
Repeating the above procedure for a different gjteve ob-
tain another sequence of energié}§) for nodes on the path
j. The two paths join on levet;; = In(r;; /a)/Inb.

An intriguing fact about the random dipolar interaction is
that the subsums constructed above are Gaussian random
variables with identical statistics,

(VMy=0, (VI"V("Y=2753%(Inb)8, . (3.1

FIG. 3. Cayley tree representation of correlations in the disorde
potential of a single vortex(@) Division of the disorder potential

into subsums over rings centered at vortex positiofiy) Represen- of the radius of the ring. .
tation of the potential by the energy of a path on the Cayley tree, The Cayley tree problem discussed above has been ana-

The energy of a path is the sum over the energies assigned to tth¥z€d |r129detall by Derrida and _Spo_?fn_and by Cook and

nodes.(c) Two sitesi and] pick up nearly identical contribution Derrida:™ Its properties are quite similar to the REM. In

from distant quenched disorder, but completely different contribuarticular, the extensive part of the free energy is the same as

tion from inner shellgshadowed ar@asurrounding each site. in the REM, independent of the choice bf In addition,

moments of the partition function have the same dependence

precisely the phase boundary in Figbwhen renormalized ©n N as indicated in Eq(B11), and the transition tempera-

values forJ and o are used(See discussion in Sec. )\/ tureT, of thenth moment is the same as in the REM. There
Below T, the entropy of the vortex is no longer exten- are, however, differences in the amplitude of the ratio

sive in InR/a). In fact, it can be shown that only one or a few (2")/{2)". This implies that the distribution of the free en-

lowest-energy sites contribute significantly to the partitionergy. f=—Tinz, is not exactly given by Eq¢B8) and(B9)

sum(3.4) in this regime(see Appendix B Within the region ~ for f significantly less thakif), but the difference should be

bounded by the dashed line in Fig. 2, the typical free energgmall, as otherwise the behavior (") would be signifi-

of a vortex is positive, but there are rare realizations of discantly different.

order which give rise to a negative free energy. The prob-

ability for such events is a power-law function Rfa with a C. Numerical test

negative exponent. This fact is important when we consider

pair excitations in Sec. IV.

Thus all rings contribute equally to the s, independent

The mapping to the Cayley tree problem presents a heu-
ristic illustration of the nature of the single-vortex problem,
o _ _ while yields quantitative information at the same time. It is,

B. Correlations in the disorder potential however, difficult to estimate the error involved in the map-

The REM approach to the single-vortex problem is notPing. The author of this paper conjectures that the mapping is
completely satisfactory as it ignores spatial correlations imearly exact in the sense that, when the parameters of the two
the energiesV;. This correlation has a simple origisee problems are properly identified, the distribution of the free
Fig. 3. When we move the vortex from a siteto a sitej, ~ energyf in the two cases is related by a proportionality
the change in the disorder potential is mainly due to a chang&@ctor a(f) which is bounded, i.e., Qa_<a(f)sa, <,
in the local environment up to a distance of ordgr, as  for all f and at all temperatures, in the linia—c. In the
contributions toV; and V; from quenched dipoles farther following, we report results of a numerical investigation
away are nearly identical. This type of correlation can bewhich supports the above hypothesis.
easily coded using the Cayley tree, where each site is asso- With the choicet=In(R/a) as the length of a path
ciated with a path on the tree. The potential on a site is maden the tree, the mapping scheme of Sec. IlIB yields
equal to the energy of a path on the tree. Geometrical proxP = WUJ2=2T§ and\ =2 for the parameters in E¢3.6) of
imity is translated into hierarchical proximity on the tree. Ref. 24. [A=2 follows from the fact that there are

This representation can be made explicit using the followN= (R/a)?=exp(2) sites or paths in a system of linear size
ing construction, though details of it should be unimportantR.] Equation(4.9) of Ref. 24 then predicts,
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( 2 T+T‘9’)| R+o<1) for T>T
—Z|=— T = |In or 1>1g, 4 — T T T T T T T
T4 T/ a 9 | ]
2 — —
() R 1 R S P Bl
—=¢{ —4In-+Inin-+0(1) for T=Tg, & ¥R OXT OO TR T XTI RET
Tq a 2 a 9 = Or A
< A N A ]
R 3 R t 2T A £ a s A
— —_ — A
k 4Ing+2InIna+O(1) for T<T,. ; AL 0?3” R ]
- © T-0. i
(3.12 R .
(Note that there is a crossover in the behavior of the 6| aT=15T; A |
subleading-order term whéhis close taT,, which we shall o | A2 |
not elaborate herglt is expected that, up to terms of order o 1 2 3 4 5 6 7
unity, the above expressions are insensitive to the assump- In(R/a)
tion that the random energies are Gaussian distributed, and
hence have a certain degree of universdfitythe REM FIG. 4. The average free energscaled by the glass transition

model, on the other hand, predicts a prefaciofor the temperaturdly) of a single vortex in a box of linear si&/a, with

subleading-order term i(8.12) in the entire low-temperature the expected =0 leading-order behavior subtracted out. Solid and

phase. dashed lines are fits to the predicted subleading-order behavior for

Our numerical task is to check the validity .12 upto  T<T, andT=T,, respectively.

the subleading-order term by varyifgandT. The first step

of the exercise mvplves generation of the_ raf‘dom pOterm‘"?'%xcitations which modify the Coulomb interaction at large

Vi In principle, this can be done by assigning random dI_distances This is usually done by employing a real-space

pole moments with a fixed variance to each site on aRG : Y. - Dy émploying pe
procedure, to be explained in detail in Sec. V. A crucial

(R/a) X (R/a) lattice, and then carry out the suff.7) for . ; . . .
each sita@ on the dual lattice where the vortex is supposed toSIEp in the RG scheme is the calculation of the dielectric

sit. An appropriate choice of the boundary condition is that,sustcept'b'“ty and zero-fletl)d tpoleérlzatéogfg%gishpf _pa;Ls ina
in computing the displacement vectoy in (2.7) between f:srka'lg Egiar?r'ngde’ S?Y’ the' we rt1gn - Thisis the
sitesi andj, we consider all periodic continuations jgfand 1ed outIn this section.

choose the one which is closestitoAlternatively, we can
generateV; directly with the desired statistical properties by
noting that their variance and correlations as expressed by
Egs.(3.2 and (3.3 are identical to those of a Gaussian sur- T0 treat a dilute gas of pairs of uniform si#, it is
face in two dimension¥’ Since the Fourier components of conceptually helpful to separate the “internal” degrees of
such a surface fluctuate independently, they can be obtaindteedom of a pair, given by allowed configurations of the
directly with the prescribed variance using a Gaussian ranpair confined to a box of linear siZ, from rigid translations
dom number generator. A fast Fourier transform algorithmof the pair over a distance greater tfRnOne way of imple-
can then be used to obtaWi . This method, which is far menting the idea is to impose a lattice with a lattice constant
more efficient than the former, is used in our Monte CarloR. The lattice-gas representation is extremely useful owing
calculation of the disorder-averaged free energy. to the following two properties of the systerm) The disor-

We have investigated systems of linear sizeder potential on a pair is essentially uncorrelated when the
R/a=4.,8, ... 512. The free energy is evaluated at five dif- pair is translated over a distance larger thgn(ii) interac-
ferent temperatures for each disorder realization, and the#on between pairs of similar size in the dilute limit can be
averaged over 20 000 independent realizations. The statis@pproximated by a hard-core potential extending over a dis-
cal error in(f)/T4 so obtained is less than 0.025. Figure 4tance of the pair siz&. These facts can be established fol-
shows the data on a semilogarithmic scale. To achieve ®wing a similar line of reasoning as in the original paper by
closer comparison with the analytical prediction, the ex-Kosterlitz and Thouless.
pected low-temperature leading-order term has been taken Letr™ andr™ be the coordinates of 1 and—1 charges
away from the data. ForT=0 and T=0.5T,, the in a pair, respectively. The pair energy is given by
subleading-order correction can be well fitted to the form
2 In[2+In(R/a) ]+ const(solid line), while atT= Ty, the form
sin[2+In(R/a)]+const (dashed ling fits better. For Ep=2Ec.+27JIn(R/a)+V(r")=V(r7), (41
T=1.5T4 and 2T, a residual logarithmic term is clearly
seen, indicating that the system is no longer in the frozen
phase. The slopes of these two sets of data agree well witlf
the predicted values 3 and — 1, respectively.

A. Lattice-gas representation

hereR=|r* —r~| is the size of the pair.

The rapid decay of correlations in the disorder potential
V(r*)—V(r~) of a pair beyond a distance of ord@rcomes
from an observation made in Sec. Il B. The two charges
which make up a pair interact separately with quenched ran-

As mentioned in Sec. Il B, a quantitative study of the dom dipoles within a distance of ordB from the pair cen-
pair-unbinding transition must include a discussion of pairter, but collectively as a dipole when more distant disorder is

IV. DILUTE GAS OF PAIRED VORTICES
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in question. Hence the random part Bf is dominated by The potentialV(r ) —V(r ) inside a cell has a spatial cor-
disorder within a distance of ord& from the pair center. relation of similar nature as the potential on a single vortex
(The remaining contribution from distant quenched randontdiscussed in Sec. lll. To simplify the calculation, we shall
dipoles can be treated as a perturbation when neces€ary. again make the random energy approximation where this
the other hand, barring contributions from distant quenchedorrelation is ignored. The parameters of the REM applied to
dipoles,V(r*) is quite independent from-V(r~) for two  the problem of pairs are

reasons. First, each potential is dominated by quenched di-

poles in the immediate vicinity of the site in questitsee N=2m(R/a)*(dR/R), A=4mcJ’n(R/a). (4.4

discussion on the ring structure in Sec. Il.BSecond, al- FordR=R, the freezing temperatuf, for the pair in a cell

though the two charges are in the same disorder environg e same as the freezing temperature of a single vortex,
ment, when it comes to optimizing thdiree) energies, they Eq. (1.6)

see opposite ends of the disorder energy distribution due to
the difference in sign. Therefore, to a good approximation,
we can replac&, by the sum of two single-vortex energies
of the form(3.1), each containing a random potential gener-  In equilibrium, the probability of finding a pair in a given
ated by quenched dipoles within a box of linear sein-  cell is given by

dependent from the other.

The interaction between one pair and another is of the W= YpZp 4.5
dipole-dipole form at large distances, which is small com- 1+ypz, '
pared toE, and can be treated as a perturbation. The inter- . ) o
action becomes more complex when two pairs are at a did-0" @ dilute gas, the typical value oV is given by
tanceR; <R, but it is generally repulsive, with a strength of Wp™=YpZp,yp: Wherez, , is the typical value ofz, (see
order 4mJIn(RIR,). (Note that the two pairs should be ar- diScussion in Appendix B Combining Egs.(3.6), (3.7),
ranged in such a way that it is not possible to regroup theniB®), @nd(4.2), we obtain,
to form =1 _pairs of smaller sizesFor simpli(_:ity, we shall R\ 4-2nK+270K2 4R
replace the interaction by a hard-core potential of raRgkn = = for T>T
the dilute limit, the main effect of this interaction is to pre- a R g’
vent more than one pair from taking advantage of a particu- Wiyp~ (4.6
lar favorable configuratiorfand the ones very close to),it R\ ~27K(1-\8d7m) 4R
which turns out to be a very important constraint at low R for T<Tj.
temperature®

We are now in a position to define the lattice-gas repreHereK=J/T. The exponent of the power law changes sign
sentation. We divide the plane into a square lattice of cellsacross the dashed line in Fig. 2.
each of linear dimensioR. Any given cell has at most one Like z,, W has a broad distribution. Its mean value
pair, and pairs in different cells do not interact with each(W) deviates significantly fronW,y, for T<Ty. Since the
other. The Boltzmann weight on an occupied cell can bexth moment ofz, grows much faster thagz,)" for suffi-

B. Pair density

a

written asy,z,, where ciently largen, it is not possible to calculatgV) by expand-
ing the right-hand side of4.5) as a power series of,z,.
yp=(R/a) 2™ Texp( - 2E./T) (4.2 Nevertheless, the average can be calculated by treating the

. ) . . ] ] N casesypz,<1 andy,z,>1 separately, as done in Appendix
is the pair fugacity and z, is the configurational partition C, Results of the calculation are given by E¢611) and

function of the pair attached to the cell. Since there is nC(C13) in respective temperature regimes_ msa' a power-
interaction between different cells, the partition function of jaw dependence afw) on R is found,

the system factorizes into a product of cell partition functions

1+ypz,. In addition, the average over all cells can be re-

placed by an average over the disorder, as each cell repre-

sents an independent realization.

To apply the lattice-gas description to the system of pairs (W)~ 47 (20) (4.7

in a given size range, say, betwadRmndR+ dR, we need to E d_R for T<T. .

specifyz, in more detail. For the discussion to be meaning- a R *

ful, dR should be small enough so that the pair fugasity . The exponent freezes to a temperature-independent value be-

can be regarded as a constant, but large enough so that in WT. =20

vidual charges in a pair are allowed to explore their own * ’

local disorder environment without been severely con-

strained by the specified range of pair size. Both criteria can

be met by choosingiR~R. The configurational partition The disorder environment in a given cell specifies a fa-

function of an occupied cell is given by vorable configuration for a pair in the cell. The breaking of
rotational invariance thus yields a zero-field dipole moment

4—27K+270K?2 dR
ﬁ for T>T* s

R

a

C. Zero-field polarization

V(r)=Vv(r7)
Zp: . _E ex% — f . (43) Epexq— Ep/T]
(r"+r7)/2ecell Pp=——7—"—""

, (4.8
R<|r"—r~|<R+dR 1+ypzp
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wherep=r*—r~. The sum in Eq(4.8) is restricted to the To the first order inE, we find
internal degrees of freedom of the pair, as in Eg3). _

Due to statistical rotational symmetr{p,)=0. Its vari- Pina=XE, (4.19
ance can be calculated approximately from the following,ynere
consideration. Note thad, is small when many distinct con-
figurations contribute to the cell partition sug. It becomes X=2T) L ((W)—(|po|2)/R?). (4.16
large when the lowest-energy configuratiamd nearby con-
figurations with approximately the same orientationpf Using Egs.(4.5) and(4.9) we may rewrite the above equa-
dominates. Based on the discussion of Appendix B, it idlon as
reasonable to assume that the latter occurs whengves
significantly larger than its typical value, ,,,. Replacingp _:i M
o9 4 ) P.typ X y
inside the sum in(4.8) by the dipole moment of the ground 2T (7P ay,
state, we make an error with a probability of the order of
Wy, Which is smaller thafW). This yields the estimate

+0O((W)?) . (4.17

Here we have used the identity

Yo WY ay = (W) — (W?). (4.189
(Ipol2)/RE=(W2) +O(W)2). @9 pHWOYp= (W) =W
The derivative in the above equation can be evaluated

The calculation presented at the end of Appendix C y|eldsuSing Eq.(C10) for T>T, and(C12 for T<T, . To leading

for T<T.., order, the result reads
2\ (1—
<W >_(1 T/T*)<W>' (4-1Q o (2T)71<W> for T>T* ,
For T>T, , (W?) decays faster wittR than(W). The dis- X= . (4.19
tribution of |py| is expected to be broad. In particular, for (2T, ) HW)  for T<T,.

T<Tg, where typically one or two configurations dominate

the partition sum, the distribution dfy| is similar to the {0 by the (effective power-law dependence dfV) on
distribution of W. ) . Yp. Hence(4.19 is more exact than what one might have
Let us now consider the correlation betwggnand the expected from the approximate nature of E¢S10 and

[Note that, in both cases, the coefficient in front(d¥) is

total dipole moment of disorder in the cell, (C12.]
The dielectric susceptibility is finite down t6=0. At
q= 2 q; - (4.11)  T=0, individual pairs cannot respond to a weak applied field
i ecell due to loss of entropy. The polarizability of the medium is a

consequence of a finite density of states at zero pair energy.
Pair configurations with a slightly positive energy in the ab-
sence of the field may acquire a negative energy if it is fa-
vored by the field, and hence become occupied. The opposite
0happens for the unfavored pair configurations opposing the
field direction.

Since py is mostly determined by the arrangement of the
disorder in the immediate vicinity of the two charges making
up the pair, we expect the contribution pg from g to be

small, but the effect is important for later discussions. T
estimate the contribution, let us consider a quanfity

which is the equivalent ofp, under the replacement
ai—09,=q,— (a/R)?q. From the third example of Appendix
A, we see that switching og is equivalent to switching on a
polarizing field E;= —272Jg/R% Linear response theory ~ The change in the leading order behavior of the pair den-

E. Pair-freezing temperature T,

then suggests, on average, a relation of the form sity p~(W)/R? at T, [Eq.(4.7)] has a simple interpretation.
Given the strong repulsive interaction between two pairs at a
p02ﬁ0—2w%q, (4.12 distance smaller than their sike and the absence of corre-

_ . . o lation in the disorder potential on a pair beyond a distance of
wherey is the average dielectric susceptibility of the gas ofrqerR it is reasonable to assume that clustering of pairs is

pairs, to be discussed below. rare in the dilute limit. The typical distance between neigh-
boring pairs is thus given by=p~>>R. Within an area of
D. Induced polarization linear sizeL, we have typically one pair only.

In the presence of a weak, constant external electric field L€t us first consider the equilibrium statistics of a single
E, a cell acquires an induced dipole moment due to paiP@ in a box of linear siz¢., taken to be arbitrary for the

excitation, moment. The total number of configurations available to the
pair is N=(R/a)?(L/a)?, and the variance of the random
Spexd —(E,—p-E)/T] potential,A =47 aJ?In(R/a). In the random energy approxi-
Pind= —E _n. ~Po- (4.13 mation, the mean free energy of the pair follows from Eqg.
1+Xexd —(E,—p-E)/T] 36,
The induced polarizatioR;,4 of the gas of pairs is given by
the spatial average qfi,q or, equivalently, the disorder av- Fp(L,T)=2E.+2mJIn(R/a)
erage, —2¢(T,9)[In(R/a)+In(L/a)], (4.20

Pina=R™(Pind)- (4.149  where



3358 LEI-HAN TANG 54
27ad?In(R/a) pected to be somewhat smaller than the one calculated under
S= In(R/a) +In(L/a) (4.21) the factorization ansatz or the random energy approximation.
Nevertheless, from what we understand about the correla-
For a fixedL, Fy(L,T) increases with decreasiri, and tions, the qualitative behavior of the system should be the
locks to a constant foll <T4(s). At a fixed temperature, same as predicted by the approximate calculations. In par-
F,(L,T) decreases with increasirg ticular, no change in the exponent of the power laws in Eq.
The typical interpair distancke(T) is determined by the (4.7) is expected.
condition

Fp(L T)=0 4.22 V. RECURSION RELATIONS AND RESULTS
From the properties of, mentioned above, we see that
L(T) increases a% decreases, and locks to a constaptfor The knowledge we gained about a dilute gas of vortex-
T<T, . HereT, =T(s,) is obtained self-consistently, with antivortex pairs can now be incorporated into a RG proce-
s, given by(4.21) atL=L, . The result forT, agrees with dure aimed at capturing the large-distance behavior of the
(1.5. ForT>T, , we may use the high_temperature expres-COUlomb gas with disorder. This can be done epriCitIy fol-
sion forc(T,s) in (4.20, and the conditiori4.22 yields the ~ lowing an integration scheme used previously by Kosterlitz

following estimate for the number of pairs in an area of sizefor treating the pure problerh.
R: Consider a configuratiofm;} made up of two groups of

charges. The first groupm;™}, consists of pairs of- 1 vor-
(RIL)2=(R/a)*-2m+2moK%y_2E |T), (423 tices, each of size less than a cutoff sRe The second
group,{m;’}, consists of charges which do not fall into that
category.(Note that our usage of the superscripts.™ and
(R/L*)2:(R/a)4exp(—A/2Ti), (4.24) “>"is the opposite of the one familiar in a momentum-
space RQ.The total energy of the system, E&.6), can be
in rough agreement wittC12) for the number of pairs in an rewritten as
area of sizeR below T, .

The physical meaning of the temperatiiig is now clear. H,({m}H)=H,({m ) +H,({m ) + Hin({m},{m}),

For T>T, , the entropy of a pair in a region of the size of (5.1
interpair distance is finite and varies smoothly withThis  \; hare

entropy is lost afl, . ThereforeT, is associated with the

pair freezing. The length scale, (R) is the smallest size of

an area where one typically finds a negative ground-state Hine=— 2> Pn-E7 () (5.2
energy for a pair of siz&. "

In contrast, the single-vortex glass temperafligeis as-  describes the interaction between the two groups. kdgiie
sociated with the loss of entropy for a pair when it is re-the dipole moment of pain in the first groupr,, is the center
stricted to an area of pair sizeNote that(4.21) reduces to  position of the pair, and
the expression for a single vortex when we ketR.] This
temperature does not play a special role in éugilibrium
behavior of a pair, where the relevant length scale is set by
the interpair distance. Likewise, as far as the equilibrium o )
properties of a dilute gas of pairs are concerned, the celf the electric field at due to the presently unpaired charges

representation we employed is merely a convenient devic the second group.

A. RG transformation

in agreement witH{C11). The lengthL, satisfies

r—r
E>(r)=27TJZ mfm (5.3

for performing calculations. The partition sum over the paired charges is given by
The equivalence of our results to those of Refs. 18 and 22

implies that there is a simple connection between the two E<= >, exp(—[H,({m ) +HJ/T). (5.4

approaches. In the work of NSKL and the more recent paper {m~}

by Scheidl, calculation of thermal averages were made under

the “factorization ansatz,” which assumes that pairs do notVriting Z~=ZE7exp(-sH/T), where E§

interact unless they take identical positions. From the discugunction atH;,;=0, we obtain

sion of Sec. IV A we see that the pair-pair repulsion extends -

to a distance of the order of pair sige If there is no strong SH({mM{}) = —TIn{exp(—Hiy/T))o, (5.9

reason provided by disorder for clustering of pairs, the twoWhere (-, denotes thermal average with respect to
approaches should differ only by a relative amount propor- 0

< ) i .
tional to the pair density; i.e., the difference should show up;l'f'({.m‘ }). Treating Ht‘.m afs a perturbation, we can write
only at order(W)? in the expressions foy, etc. This is In & more suggestive form

precisely what happens under the random-energy approxima-

tion. In reality, due to correlations in the disorder potential, §H= —f d2r[Py(r)+3Ping(r)]1-E~(r)+ O(|E7|3).

close to a very favorable configuration for a pair, there are (5.6)
other configurations which are nearly as favorable, though '
pair-pair repulsion would forbid simultaneous occupation ofHere Py(r)=(=,p,8(r —r,))q is the zero-field polarization
these configurations. The true density of pairs is thus exef the paired charges in the absence of the interaction term

is the partition
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Hint, and P,q=P—P, is the induced polarization of the In deriving the above expression we used the fact that the

paired charges due to the fied . [Note thatP(r) is defined difference between the variance B§ and that ofP, is of

in the same way aB(r) except that the thermal averaging is order (W)2. Using the result for(W?), we see that the

taken with respect téd,({m;=}) +Hiy.] change ino is proportional ta/W) for T<T, , but of higher
The renormalization-group idea is to take the cutoff sizeorder forT>T, .

R as a running parameter, and perform the elimination of Equations(5.9) and(5.11) can be expressed in the usual

paired charge$m~} in a step-by-step manner, so that eachdifferential form by writing R=a€'. For convenience, we

time one needs to deal with pairs in a narrow size raRge  Introduce a dimensionless quantityf(R), such that

R+dR only. The necessary calculations have already beeR7Y’dR/R=(W) gives the number of vortex-antivortex

done in Sec. IV. Substituting E¢4.15 into (5.6), we obtain  Pairs of size betweeR andR+dR, in an area of siz&” and
averaged over the whole system. FoF>T, or

—1_ -1_
5H:‘j d2r[Py-E + IxTE[?). 5.7 K T/I>K, =20, we have
dK~Ydl=473Y?, (5.123

This is nothing but the field integral version of the Coulomb
energy(2.6), and hence can be incorporated ittg({m;}) do/dl=0, (5.12b
by redefining the parametedsand o of the model. 5

The change i can be obtained with the help of the first dY/dl=(2— 7K+ 7oK)Y. (5.129
example in Appendix A. One thing to note is that the integralpor T<T. or K- 1<K>!. we have
over |[E”|? in (5.7) excludes regions of sizR around each * *

m; charge, since paired vortices should not be found in dK Ydl=27%¢" 1K 1Y?, (5.133
these areas. This leads to the identificatienR in Eq. (A8). 5 1w
The new effective parameters are given by do/dl=27%(2— 0" "K"7)Y", (5.13b
= — -
E.—E.=E.+47%JJIn(R/a) (5.9 dwd|:<2_E v (5,130
and

Note that, in writing the above equations, we only kept terms
JoJ =314 Ay, (5.9 up to orderY2. The flow equations fol follow from the
_ power-law dependence of the pair density on pair size as
equivalent to Eq(A4).3! The extra term inE, merely ac- given by Eqs(C11) and(C13). A term of order 1/ inside the
counts for the fact that screening from this group of pairs isorackets in(5.139 has been neglected.
effective only at distances larger th&n A few remarks concerning the above recursion relations
In Sec. IV C, contribution to the zero-field dipole moment are in order. Fom>T, , Eqgs.(5.12 are identical to those of
po of a cell due to disorder within the cell was calculated. previous author3? From Eq.(5.11) we see that there is a
More distant disorder contributes pg by acting as an addi- renormalization ofr even in this regime, but the effect is of
tional polarizing field. When the latter contribution is substi- higher order thary?. The change of the flow equations for
tuted into Eq.(5.7), we see that, with the help of the second T<T, was pointed out earlier by NSK18 The renormaliza-
example in Appendix A, the interaction strength betweertion of o, though not recorded previously, has also been
{m”} and quenched dipoles; is reduced by a factor obtained by Scheidl using a different approdth.
1-27%yJ. Combining the zero-field polarization In the absence of disordeY, is equal to the “rescaled”
Po=po/R? of pairs with the disorder polarization single vortex fugacity,R/a)?~ ™'Texp(~E./T), in the dilute
Q=0/R?, we obtain the effective disorder that couples lin- limit. When disorder is present, the relation betwé€emand
early to E” in the HamiltonianH,+sH for the {m~}  the core energ¥. is more complicated. The bare value of

charges, Y can be obtained from Eq&C11) and(C13) for T>T, and
_ T<T,, respectively. It has a finite limi¥, at T=0. For
Qeir=(1—47°xJ)Q+ Py, (5.10 smallo, Y3~ a2exp(—cla), wherec is a positive, model-

- o _ _ dependent number. At small values Bf the bare value of
where Py=p,/R* is independent ofQ [see discussion Y increases fronY, by an amount proportional to2.
around Eq(4.12)].

Equation (5.10 shows that pair excitations modify the
quenched disorder seen Hyn} charges in two distinct
ways. The first effect is the screening of the interaction at 1. Constants of RG flow
distances larger than the pair sRewhich can be taken into Seemingly complex at first sight, the flow equations
account by a redefinition af, Eq.(5.9). The second effectis (5.12 and (5.13 have in fact the same structure as their
the generation of additional disorder. SirRgis independent =0 counterparf. The fixed points of the flow are located
of Q, we obtain an additive contribution to the variance ofon theY=0 plane in the three-dimensioné8D) parameter
disorder, o. Writing  JQ=JQgs, and using space spanned b, o, andY. They are stable in the
(IQ|1)=0/(27°R?), we get region enclosed by the dashed line in Fig. 5, but unstable

outside the region. Points on the dashed line are hyperbolic
T=0+27(W)+O0((W)?). (6.1  fixed points which describe the pair-unbinding transition.

B. Phase diagram and thermodynamic properties
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FIG. 5. Renormalization-group flows on theK ™~ plane. Solid FIG. 6. Schematic phase diagram from present work. Solid line

lines are trajectories of the RG flow, with arrows indicating the flow jngicates the order-disorder phase boundary in terms of bare param-
direction. The flow follows a parabola up 1q. (dotted ling, and is  gters of the model. It lies inside the region enclosed by the dashed
then joined smoothly by a horizontal line at>T, . The dashed |ine which is the line of the phase transition when renormalized
line is the line of hyperbolic fixed points of the RG flow, which 5 es are plotted. At the special poiitand its counterparg’,

gives the phase boundary ¥t=0. where theT, line meets the phase boundary, a slightly different

) ) critical behavior is expected. See the text.
It turns out that the flow equations are completely inte-

grable. In the regio>T, [to the right of the dotted line in  {;re increases. Hence, for a fixéty, the bare value ofr
Fig. 5], which flows to the fixed point value-= 7/8 increases with
o= const (5.143 increasingT/_J. On t_hezother hand, i_n the origin&lY model,
the bare pair density at a fixedo is expected to increase
is obviously a constant of the flow. On tie<T, side, the  with temperature, too. The calculation presented in this paper
corresponding first integral is given by is not quantitative enough to assess the two competing ef-
fects to reach a precise conclusion on the shape of the low-

2_
K—oK®=const, (5.14D  temperature part of the phase boundary.
as can be easily verified using Eq$.133 and (5.13h. o
These “streamlines” of the flow are illustrated in Fig. 5. 3. Approach to criticality
The second constant of the flow is given by The critical behavior around the transition is controlled by

the RG flow close to the relevant hyperbolic fixed point. As
v2_ 77_3( K1 ZUK+ me) = const (5.153 an gxample, Iet. us consider rovys along a particular contour
2 2 in Fig. 5. Substituting Eq¥5.14) into Egs.(5.15, we get a
flow pattern depicted in Fig. 7. The curve consists of two
pieces, one from Eqg5.140 and (5.15h for K~ 1< K;l,
and the other from Egs.(5.148 and (5.153 for

for T>T, , and

Y2— 778

ar
K 1+o+ ZInK) =const  (5.15H

for T<T, . A unique trajectory in the 3D parameter space is
specified when one combing5.15 with (5.14), with the
constants fixed by bare values of the parameters involved.

Y2

2. Phase diagram

The original XY model has only two parameters
Kgl=T/J andog. The bare value of, Yg, is a function of
Kg andog. The phase boundary of the model is determined
by the condition that the RG flow ends on the dashed line in
Fig. 5. Since the flow takes bothandK ~* to larger values,
this phase boundary lies within the area bounded by the D
dashed line, as illustrated in Fig. 6. b9 L L

The question of the reentrance of the disordered phase is K3 K}l K
whether the upper-left part of the phase boundary illustrated
in Fig. 6 contains a piece with a positive slope. Although  fiG. 7. The RG flow trajectory on th&2-K % plane. (This
earlier calculations which led to the prediction of a reen-example corresponds to the lowest of the four flow lines illustrated
trance transition are not to be trusted, it is actually difficult tojn Fig. 5) At the transition, the bottom of the curve touches the
rule out such a possibility from the new RG flow equationshorizontal axis D=0). Generically, the curve is quadratic around
(5.13. From Eq.(5.130 we see that, at a giveN?, the  the minimum atk =K;!. However, forK;'=K', a cubic
increase in the effective disorder becomes slower as tempersingularity is found instead.
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K~1>K_'. Since Eqs(5.14 do not involveY?, any verti- 4. Free energy

ant of the RG flow. This family of curves can be param-yicinity of the transition. Following the discussion of Sec.
etrized by the minimum value of on each curveD. IV A, we may write the contribution to the free energy per

In the ordered phase and at the transition, the scaled pajjhit area from pairs in the size rangeto R+ dR as
density Y? eventually reaches zero on large length scales.

The corresponding RG flow follows a curve with<0, with dF,= —T(In(1+ypzp))/R2. (5.22
the marginal cas® =0 reserved for the transition. On the ) ) _ _
disordered side but close to the transition, the RG flow fol-COmparing the above equation with.5), we obtain

lows a curve with a small positiv®. Along such a curve, a(dF,)
the value ofY? first decreases as the running paraméter Yo v —T(W}/RZ. (5.23
increases, becomes almost stationary around the minimum of p

the curve, and then grows rapidly to large values beyonctsy making analogy to Eq€4.17) and(4.19, and using the
I=1,. The length{, =aexp(,) sets the scale where the yafinition of Y, we find

correlation functior(see Sec. V C beloyturns from a power

law to an exponential decay. —24TYYR2 for T>T
The dependence @f, on D can be obtained by examin- ﬂz ! (5.24
ing the flow in the vicinity of the minimum of the curve at dnR | _onT.YYR2 for T<T.. '
K~ 1=K;?! (see Fig. 7. Let X=K 1=K ! be the distance * *
from the minimum. Generically, for smaX, we have The total vortex contributiofr, to the free energy density
of the XY model is obtained by integratind~, overR. Let
Y2=\X2+D, (5.16  F, . be the vortex free energy density at the transition. Equa-
. . . ._tion (5.24) then yields
where\ is proportional to the curvature at the minimum. It is
easy to check that, in this case, the coefficientroén the %
right-hand side of either Eq5.129 or (5.139, whichever F”_F”’CN_I R™3d R(YZ—Yg), (5.295
applies, is linearly proportional t¥. Using (5.16), we can é
write the flow equation fol as where Y (R) is the value ofY(R) at the transition. A full
o2 1 analysis of the integral is quite involved, but the following
dy/dli=y *(Y*=D)™, (5.17) consideration should yield a correct estimate of the expected

singular behavior.

where y is a nonuniversal number which depends on the Approaching the transition from the ordered pha¥e
location of the fixed point. The parametddsand y can be flows 0 0 atR=o. The differenceYZ(R)—Yg(R) is ex-

scaled away using the substitutioy—DY2Y and )
|— D~ This yields a correlation length pected to remain constant, say, equal Do<0, up to
R=¢_, and then goes to 0. Truncating the integral at

¢, =aexp(l,)=aexp y/D¥?). (5.19 R=§&-, we obtain
The dependence db on the shift of the bare parameters F,-—F,c~—Da 2+D&% (5.29
gg;n( 5thle‘rl))r critical values can be obtained by solvifigl4) The crossover lengt_ has the same behavior s, ex-

pt that one should replad® by —D in Egs. (5.18 and

.21), as the case may be. From the disordered side, the
story is the same up tB= ¢, , but beyond tha¥? becomes
of order 1. Hence we expect

There is, however, a special case where the curvature
the curve at the minimum vanishes, invalidating the abov
analysis. This happens at the polt(and correspondingly
S’) in Fig. 6, where theT, line meets the phase boundary.
The minimum of the curve shown in Fig. 7 is now at the F .—F, ~—Da 2—¢2 (5.27)
meeting point of the high- and low-temperature segments. vt e o |
This is also the inflection point of each of the two curves.The singularity ofF, . is thus related to the singular behav-
The flow trajectory around the minimum now takes the formjor of £, . In both cases, it is an essential singularity.

_ Finally, it is interesting to see if the pair-freezing line
Y2=\|X|3+D, (5.19 T, inthe ordered phase corresponds to another singularity of
~ the vortex free energy. The analysis presented in Appendix
where\ is another constant. The flow rate ¥fis now pro- D Suggests that this is not the case. We Shou'd’ however'

portional toX?Y. Consequently, we have note that the absence of a true glass transition in our model is
~ 1us o3 a result of the very special type of functional dependence of
dY/dl=y "~ (Y*=D)~"Y, (5.20  relevant quantities on temperature and pair size, and hence

— . L ._might be susceptible to various types of perturbations.
wherey is yet another number. The proper scaling in this g P yp P

case isY — DY andl—75D %3, A new dependence of the ot _ ation functi
correlation length orD follows, - Two-point correlation function
Consider now the two-point phase-phase correlation func-

£, =aexp(7/D?3). (5.21)  tion
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C(rij)=(exdi(¢i— 1), (5.28 but significant deviation of the thermally averaged correla-

tion function at two fixed sites and]j,
where the average is taken over thermal and then disorder :

fluctuations. When only spin-wave contributions ¢o are ~ _ .
taken into account, one obtains a power-law decag fith Co(riorj)=(exi(¢u,i= bu.j) Dinemar  (5:39
‘q|stanc?rij, as shown in Eq(1.3). Vortex-pair excitations 4y its average valueC,(r;;). Such a fluctuation comes
soften” the spin waves, and lead to a faster decay of the;hqt when we are looking at large-size pairs which have
correlation function. On grour}ds of the renormalizability of strong density fluctuationgfter thermal averagingon the
the model, one expects that, in the ordered phase, scaler;;, and that the presence or absence of such a pair in
C(r)~r=7 (5.29 the region surroundingandj will make a significant change
to the phase difference, ;— ¢, ;. Below T, , the typical
at large distances, but the exponendiffers from »g, inthat  density of these pairs is significantly smaller than the average
the renormalized values_* and o, should be used, density. Consequently, the typical value of the exponent,
Myp, Can be somewhat smaller than its average vajue

1
7= Z(Kml+ Os). (5.30
VI. SUMMARY

The above conjecture for the average behavioCof) The main conclusions of the present work can be summa-
can be verified by a direct calculation. Since the spin-wavgized as follows. When the varianee of the random phase
and vortex fluctuations decouple, and the disorder which engpifis is sufficiently small, the quasi-long-range order of the
tersHy, is orthogonal to the disorder i, (see Sec. IlA  2p XY model survives at sufficiently low temperatures. The
we may write two-point phase-phase correlation decays algebraically with
distance in the entire ordered phase up to the transition. At

C=Canlr)C,(r), (539 the transition, the exponent of the power-law decay lies in
where C,(r) is the correlation of phase#, generated by the range between 1/16 and 1/4. Approaching the transition
vortex excitations, from the disordered side, the correlation length diverges ex-

) ponentially with a— 3 or — 2 power of the distance from the
Co(rij)=(exfi(¢y,i~ ¢y)])- (5.32  transition point. The free energy exhibits an essential singu-

larity on the phase boundary. Fet> o, the system is in the
paramagnetic phase at afy-0, without a finite-temperature
lass transition. The value af; is nonuniversal but should
e smaller thanr/8.
The behavior of vortex-antivortex pairs inside the ordered
phase is quite interesting. In contrast to the pure case, there is
byi— by j=(27I) " Hpx2)-E(r), (5.33  a finite density of such pairs at zero temperature. As the
) ) temperaturel increases, the pair density increases, initially
wherep is the dipole moment of the paiassumed to have a slowly up to T=T, , and then grows rapidly as entropy
r_nagnitudeR much smaller tham) and E(r ) |s the electric  sgmes into play. Following an opposite sequenceT as
field atry due to a+1 charge placed at siteand a—1  |owered from the transition temperature, large-size pairs un-
charge placed at site The variance of the phase difference gergo various degrees of localization both in space and in its
generated byll pairs in the size rang® to R+dR can now  angular distribution. However, in the Coulomb gas language,
be easily calculated with the help of the equivalence of Edsz finite susceptibility for the gas of pairs is found at all tem-
(AQ6) and (A8), peratures. Localization also introduces a zero-field random
2 olarization of the gas of pairs, which has the effect of en-
((fy,i= by )))ar=2m(W)In(r;; /R). (5.39 Eancing disorder sgen by ?arge-size pairs.
Going fromR to R+dR, C,(r) is reduced by a factor Much of the qualitative aspects of our results agree with
those of NSKL(Ref. 18 and of Cha and Fertitj, though
exd — 5((¢,.i— ¢, )Darl=(1/R) 47 (535  there are minor but important differences on a quantitative
Comparing the coefficient of the logarithm i%.34) with level. Technically, the analogy introduced here to the ran-
Egs.(4.9), (4.16, and(5.11), we obtain dom energy model offgrs a heuristic under§tand|ng of some
of the subtle features introduced by the disorder potential,

Following Kosterlitz> we calculate the right-hand side of
(5.32 by successive elimination of vortex-antivortex pairs,
starting from the smallest pair size. The formula below give%
the difference in the phase at two siteandj, generated by
a single vortex-antivortex pair af,

1 responsible for the failure of previous calculations based on a
dnzﬁ(d K 1+do), (5.36 small-fugacity expansion. In fact, we have shown that an
expansion with respect to the pair fugacity fails for any
which is nothing but the differential form @fL.4). This con- ¢>0. A somewhat surprising result is that no singularity in
firms the intuitive idea that the asymptotic value gfis  the free energy is found &t, . The whole analytic structure
given by (5.30. On the transition liney; decreases mono- of the free energy as a function @f and o remains to be
tonically from the value 1/4 for the pure case to 1/16 at theexplored.
zero-temperature transition poffit. The question of a possible reentrance transition at a dis-
Inspecting Eq(5.33, we see that spatial and angular lo- order strengtho sufficiently close to the critical value
calization of the vortex-antivortex pairs may lead to a rarecannot be satisfactorily addressed within the level of accu-
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racy of the RG method adopted here. In fact, due to the 1
renormalization ofo we obtained, there is room for the re- &= mf d’r[E|*. (AB)
entrance scenario, though it is clear that reentrance does not
occur at weak disorder. In this connection, it would be veryWriting
interesting to consolidate our work and that of Ozeki and )
Nishimori*® on a model which admits gauge symmetigee |E|*=VV-E-V-(VE), (A7)
also Ref. 20. _ o _ _and using the Gauss’s theorem and E&R), we obtain

A new quantity which appeared in this paper is the single-
vortex glass temperaturg,. This temperature also signals )
localization in the angular distribution of a pair when trans- 5=§i: miEc— WJ; mimiIn([r;—r;|/b).  (A8)
lation of the pair over a distance larger than its size is for- J
bidden. As we have seefly plays no special role in the Here
thermodynamics of th&XY model. Nevertheless, one might
contemplate possible changes of dynamical behavidiyat

an issue to be studied further.

J
Ecz—f d?r|r| 2 (A9)
2 Jir|<b

is the “core energy” of a unit chargdThe divergence of
(A9) at small distances is cut off by the existence of a lat-

During the course of this work, | have benefited greatlytice.] Note that, in the continuunty is an arbitrary parameter
from discussions with Bernard Derrida, Sergei KorshunovWhich does not influence the res(i8).
Thomas Nattermann, and Stephan Scheidl. Part of the work As the second example we consider an expression for the
was done at the Weizmann Institute during a very pleasarifiteraction energy between a set of chargesat r; and
workshop organized by Professor David Mukamel and Proguenched dipoles; at R;. Let E(r) be the electric field
fessor Eytan Domany. Research is supported in part by thgenerated by all the charges, @&g(r) be the field due to the

German Science Foundation through Project No. SFB-341.dipoles but excluding those within a distariRdrom r. Con-
sider now the integral
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In this appendix we collect some useful formula from 4772Jf drE-Ey. (AL0)

electrostatics in two dimensions. We adopt the convention

that the unit of charge is 1. The electric potential due to a/V€ NOW WriteEq as a sum over the field due to individual
+1 charge at origin is given by dipoles. Using againA7) and the Gauss’s theorem sepa-

rately for eachj, we obtain
V(r)=—¢e tn(|r|/a), (A1)

wheree=(27J) ! is the bare dielectric constant. The elec- & Z MiVa(ri) 2 Yi (AL1)

tric field E= — VV satisfies i ) ] . .
HereV4(r) is the potential due to dipoles outside a circle of

V.-E=2me 1p(r), (A2)  radiusR centered at, and

wherep(r) is the charge density at 1 (2 Qj-

In a dielectric medium, the induced polarizatiBs yE, UJ_Z 0 d¢R-E(R;+R) RZ (A12)
where y is known as the dielectric susceptibility. The dis-
placement vectob= eE+ 27P satisfies where R=R(cosp,sing). Elementary calculation vyields

U= %qj -E(R;). Itfollows that the second sum on the right-
V-D=2mp¢(r), (A3)  hand side ofAll) is — £ times the first sum. Hence

where p¢(r) is the density of free charges at Writing 1
D=7 E, we obtain 51=§2i m,Vy(r)). (A13)

e=et2my. (A4) Our final example concerns the fielg, inside a circle of

radiusR generated by a medium with a permanent polariza-

I__et us now cor_15|der three examples_encountergd In thﬁon Q which fills the circle. To bypass an explicit calcula-
main text. In the first example we establish the equwalenc?ion we use the result that, in a uniform external fiell

of two expressions for the energy of a charge-neutral systeny, » |4 inside such a circle filled withgolarizablemedium
The electric field generated by a set of point charggs of dielectric constant; is given by

located aftr; is given by

2€
r—r; E,=
E(r)zszZ mim. (A5) et e
I

Eo, (A14)

wheree is the dielectric constant of the medium outside the
Consider now the integral circle. The polarization inside the circle is
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Q=(e;—€)E,/(2m), and the field it produces is of Xy, denoted byy,i(X). For the minimum of theN
Eqo=E;—Ep. Using the above results, we obtain energies to be greater than a certain numbell N energies
must be greater thaxn. Hence we have
Eq=—(m/€)Q=—272Q, (A15)

which is uniform inside the circle. fwdywmm(y):
X

© N
| w<y)dy} . ®7)

APPENDIX B: FREEZING AND LONG TAILS

IN THE RANDOM ENERGY MODEL For x<— A, the integral on the right-hand side is very

close to 1, in which case one can write
As shown by Derrid&? the freezing transition in the ran-
dom energy model can be understood as a switching of terms
which contribute most to the partition surt8.4). For
T<Ty, the lowest of theN energiesx; dominatesz, while o
for T>T,, typically a finite fraction of theN energies con- For X<Xo, the argument of the exponential is less than 1,
tribute significantly toz. (The word “typical” refers to ~ and hence
events which occur with a large probability, and “rare” re-

d X
‘pmin(x):_&eXF{_NJm‘/’(y)dy}- (B8)

fers to events with a very small probabilityThis can be _ 1 X2

seen more explicitly as follows. Pmin(X) =N(x) = \/mex 1_x_(2) InN‘J. (BY)
In a given realization of the disorder, the random energies

fall into a bandXyin<X;<Xmax, Where Xp,=min{x} and The distribution ofx,,, gives us an idea about the high

Xmax=Max{x}. Introducing the integrated density of state, end of the distribution of the partition functian where we
M(x), which gives the number of levels with<x, one can  ¢an write z=exp(—%min/T). On a log-log plot, the local

rewrite Eq.(3.4) as slope of the distribution is essentially given by
z=exp( — Xpin/T) + f exp—x/T)dN. (Bl (2)= dingmin _ T Tinz (B10)
Xmin dinz Ty Xo '

The contribution from the lowest-energy level has been iso-, , . . . y : : R
lated from the rest. When the total number of levels is IargeWhICh Is a slow-varying function ot. This implies that the

th tpicall levels | int T that distribution of z has a long tail. High moments of are
ere are typically many levels in an intendk~T, so that oo qiive 1o the tail of the distribution. Usirg9), we find
one may replace\ by its mean,

dA=Ng(x)dx. (B2) @y | for T=Ta, o1

Equation (B2) fails when M(x)~1. This happens for (2)" N(M—DIT/M2-11  for T<T,,
X<Xg, Wherex, is determined by the conditia(xy)=1.
From Egs.(B2) and (3.5 we get where

Xo=— (25)Y2nN+O(InInN). (B3) To=n"2T,. (B12)
Substituting(B2) into (B1), and restricting the integral to The result agrees with an exact calculation by Derrida start-
X>Xq, We obtain ing from (3.4).

Z=EXPl — Xmin/ T) + Zuyp (B4) APPENDIX C: MEAN PAIR DENSITY

where AND FLUCTUATIONS

® The disorder average of the cell occupation numbér

Zyyp= Nf dxyg(x)exp(—x/T). (B5) can be calculated by expanding E4.5) as a power series of
Xo Ypzp for y,z,<1, and a power series 01‘ylgzp)‘1 for

YpZp>1. Denoting byP(z) the probability distribution of

It is easy to show that the typical valuexy;, is given by 2 e obtain
p 1

Xg, While the typical value of the partition function is given
by % .

W)= —1)" Ny (n)+ —1)",(n), (CL
2= exp— (F)/T). (86) (W)= 2, (=1)"Ha(m+ 2 (=1)%g(n),  (CD

Thus the contribution from the lowest-energy levelztbe-  \here
comes significant in &pical realization of the disorder only
whenT=<T,. 1y
On the %ther hand, fluctuations affar away fromz,, '1(”)ZYBJO z'P(z)dz, (C2
(say,z>2z,,) are dominated by fluctuations ofy, at all
temperatures. This is especially so fox<Ty, where the "
fluctuations ofz are typically of ordeiz,,. To characterize |2(n):y;”f z "P(z2)dz (C3)
this behavior more precisely, let us consider the distribution yp
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In principle, evaluation of the integrals andl, requires 2F
full knowledge ofP(z), which we do not have at hand. On <W>22wexp( - Tc R (C1y
the other hand, as we discussed in Appendix B, the large-

tail of P(2) is due to fluctuations of the minimum energy For T<T, , 1,(n) andI,(n) all contribute. Using the as-

R 4- 27K +27aK?2 drR

a

u, we obtain
P(z)dz— min(X)dx=Ny(x)dx, (C9
. . L . T NT
with z=exp(—x/T), yields a good approximation. The inte- W :A(—) —— X exp(—A/2T?) (C12
gral I, is now readily calculated. The result reads W) T, ) (2mA)*~ *
I N n2A ) {( — \/K) or, more explicitly,
2(”)—53/,3 eXp o7z )|+ $+i 2/ T 20 \Y2(R\4-7(20) 4R
C9) W=Al7 | nry) |a ® (©13
where erf()=27""?[{exp(-x)dx is the error function. gre
Here
Z(=1" u
T, =—Al(Tinyy), (o) Aw=uy "D T 14

e n+u  sin(wu)’

which coincides with(1.5) in the limit R— o, _
The integrall;(n) can be written as The crossover froniC10) to (C12) is not sharp, but occurs

over a temperature range of order
11(n)=yp(z") —12(—n). (C7)

To obtain its leading-order behavior, we need to examin
which part of the distributiorP(z) contributes most to the
average(z"). For T>T,=n"?Ty, the main contribution
comes from the central part &(z) aroundz, ;,,, so that

5T~T,[o/In(R/a)]¥2 (C15

e[The apparent divergence #8fT/T,) at T=T, can be re-
moved by separating out the contribution frdp{1). This
procedure vyields a full description of the crossover, which
we shall not elaborate heteNote also that, sincé&(0)=1,
- n W) has a finite value af =0, proportional to the density of

(M= (yp(Zp))" €8 f:ell>s with a negative ground-state pair energy. For siall
For T<T, andT<nT, , the main contribution comes from the excess density increasesT&s
the tail of P(2) atz>y,*. In this case, the two terms on the _ (i) Correction to the leading-order behavior. For
right-hand side ofC7) almost cancel each other. The main T>T, , the right-hand side of EqC12) appears as a cor-

contribution tol, thus comes fromP(z) around Zzy;{ rection to the leading-order behavior, HG10). The diver-
where again the approximate expression for the tail ogence ofA(T/T,) atT=nT, signals switching of behavior
P(z) can be used. This yields for Il(n_), anq the .correspondlng crossover can bg analyzed
in detail by isolating out the contribution from this term.
N n2A n 1 A When the temperature windowl2 <T<T, exists, there is
l4(n)= EyBex;{ ﬁ) l—er (T_ T_) \/; } another correction term to(C10 from I1(2)zy§<22>
* (C9) = Ny%exp(?A/Tz). All terms other than these two are shown

to be of order{W)?2 or smaller. Since our treatment of the
WhenT,<nT, , the leading-order behavior switches from pair-pair interactions is not accurate enough to produce the
(C8) to (CY) at T,, though(C9) appears as a subleading- coefficient of the(W)? term, these high-order corrections
order term in the temperature rangg<T<nT, . (This is  will not be considered.
due to the fact that, arounti=T,, (z") picks up significant The above analysis shows explicitly that a perturbative
contributions frone=z, ,, , and from the tail az>y;1,) On calculation of(W) in y, is dangerous at all temperatures.
the other hand, whe,>nT, , there is an intermediate- Even forT>T, , one encounters difficulties when the calcu-
temperature rangaT, <T<T, wherel, is dominated by lation is carried out to sufficiently high orders, though low-
contributions fromz betweenz, ., and yr;l' In this case, order terms are well behaved. Such behavior is typical for a

I1(n)=y7(z"), which essentially coincides with the expres- function which has an essential singularityygt=0. _
sion (C9). Forn=1, (C9) is valid at all temperatures. The calculation of W*) can be reduced to the calculation

A careful analysis of the above expressions is quite cum®f (W) with the help of the identity
bersome, but the following observations are useful and suf-

fice for our purpose. (W2)=— y2 I(Yp 1<W>) (C16)
(i) Leading-order behavior. FOF>T,, (W) is domi- Py,
nated byl (1), _ _ _
The right-hand side of the above equation can be evaluated
(W}zNypexp(A/ZTz). (C10 using Egs.(C10 and (C12 in respective regimes. For

T<T,, the leading-order result is given bi#.10. For
In terms of parameters of the model, we have T>T, , the leading-order expression @) is proportional
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toy, and hence does not contribute(d/?). Going back to
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The discussion of Appendix C indicates that a possible

Eqg. (C1), and keeping the lowest nonvanishing terms, wesource of singularity comes from the termig(n) at

obtain
NT, A

(W =1,(2)+B T

C17

where B(u)=(1—u)A(u)+u/(u—2). It is seen that, for
T>T,, (W?) is smaller than{W) by a factor which de-
creases as a power law Bf Equation(C17) also accounts
for the crossover regime arounB=T, , and reduces to
(4.10 for T<T, .

APPENDIX D: VORTEX FREE ENERGY
IN THE ORDERED PHASE

Following the same idea as in the calculation(®f) in
Appendix C, we may rewrit€5.22) as

T Zo(—nt
dF,=- = I3+§1%[ll<n>+lz<n>] . (Y
where
I3=f:; (Inyp,+Inz)P(z2)dz. (D2)
p

T=T,, where the argument of the error function in EG9)
undergoes relatively rapid change. A true singularity, how-
ever, appears only in the limR—o. Since the statistical
weight of large pairs vanishes rapidly witR, the rapid
change ofi(n) at largeR may not produce a singularity in
F,. The following calculation supports this idea.

In terms ofl =In(R/a), Eq. (C9) can be expressed as

11(n)=mypexp(— 6,)[1—erf(5,1")]dl,  (D3)

where
0,=2mnK—4—27on?K?2, (D4)
Sn=2nTy/T—2T4IT, . (D5)

Substituting(D3) into (D1), and integrating ovdr, we obtain
the contribution to~, from 1(n),

7T\ [@l(20)—2]"?
na2) s +[ml(20)—2]"?

na’
In deriving the above equation, we have neglected a weak
dependence of the parameterandK=J/T on R, which is
justified asymptotically in the ordered phase. It is clear from
(D6) that the free energy has no singularity@t=0 or any
other point in the ordered phase for amy

Foa(m=(=1)"y (D6)
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