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The equilibrium behavior of vortices in a classical two-dimensional~2D! XY model with uncorrelated
random phase shifts is investigated. The model describes Josephson-junction arrays with positional disorder
and has ramifications in a number of other bond-disordered 2D systems. The vortex Hamiltonian is that of a
Coulomb gas in a background of quenched random dipoles, which is capable of forming either a dielectric
insulator or a plasma. We confirm a recent suggestion by Nattermann, Scheidl, Korshunov, and Li@J. Phys.
~France! I 5, 565 ~1995!# and by Cha and Fertig@Phys. Rev. Lett.74, 4867 ~1995!# that, when the variance
s of random phase shifts is sufficiently small, the system is in a phase with quasi-long-range order at low
temperatures, without a reentrance transition. This conclusion is reached through a nearly exact calculation of
the single-vortex free energy and a Kosterlitz-type renormalization group analysis of screening and random
polarization effects from vortex-antivortex pairs. There is a critical disorder strengthsc , above which the
system is in the paramagnetic phase at any nonzero temperature. The value ofsc is found not to be universal,
but generally lies in the range 0,sc,p/8. In the ordered phase, vortex pairs undergo a series of spatial and
angular localization processes as the temperature is lowered. This behavior, which is common to many glass-
forming systems, can be quantified through approximate mappings to the random energy model and to the
directed polymer on the Cayley tree. Various critical properties at the order-disorder transition are calculated.
@S0163-1829~96!06329-1#

I. INTRODUCTION

The Kosterlitz-Thouless-Berezinskii~KTB! transition1–3

plays an important role in the theory of ordering in two-
dimensional~2D! systems which have a continuous symme-
try specified by a phase. Examples include planar magnets,
2D solids, Josephson-junction arrays, superfluid and super-
conductor films, etc.4 These systems have an ordered phase
at low temperatures, characterized by a power-law decay of
correlations with distance. The~quasi-! long-range order is
destroyed through unbinding of vortex-antivortex pairs,
which takes place at the KTB transition.

A question of both theoretical and practical interest is
whether and how quenched disorder alters the above picture.
In this paper we shall focus on the case of random frustra-
tion, where disorder introduces random, uncorrelated phase
shifts but does not pin the phase angles themselves. More
precisely, we shall consider anXY model with the
Hamiltonian5

H~$f i%!52J(̂
i j &

cos~f i2f j2Ai j !, ~1.1!

where the sum runs over all nearest-neighbor pairs on a
square lattice. The quenched random variablesAi j , which
give a random bias to the preferred advancing angle over
each bond, are assumed to be uncorrelated from bond to
bond, and each is Gaussian distributed with the mean and
variance given by

^Ai j &50, ^Ai j
2 &5s, ~1.2!

respectively. It has been suggested that model~1.1! provides
a good description of the Josephson-junction arrays in a

transverse magnetic field.6–10 In this case,f i is identified
with the phase of the superconducting order parameter of
grain i , and Ai j5(2p/F0)* i→ jAext•dl, whereAext is the
vector potential of the external magnetic field and
F05hc/2e is the superconducting flux quantum. The case
~1.2! corresponds to a situation where the average magnetic
flux over each elementary plaquette of the grain network is
an integer multiple ofF0 , but random displacement of su-
perconducting grains from a perfect lattice structure yields
quenched random phase shifts.7,11

On the theoretical side, model~1.1! and its variants have
been studied extensively in the past.5,12–20Result of previous
studies can be summarized as follows.~i! The spin-wave
fluctuations have essentially the same excitation spectrum as
in the pure case. Disorder introduces distortion in the ground
state away from a perfect ferromagnetic alignment. The com-
bined effect of thermal and disorder fluctuations leads to an
algebraic decay of the two-point phase-phase correlation
function

Csw~r i j ![^exp@ i ~fsw,i2f sw,j !#&;r i j
2hsw, ~1.3!

wherer i j is the distance between sitei and j , and

hsw5
1

2p S TJ 1s D ~1.4!

is the correlation length exponent at temperatureT, due to
spin waves only.~ii ! Vortices, which are topological point
defects in thef field, interact with each other and with the
quenched disorder through a Coulomb potential. The inter-
action between two vortices is of the charge-charge type,
where the charge of each vortex is given by its vorticity. The
interaction between a vortex and a particular disordered bond
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is of the charge-dipole type, with the strength of the dipole
given by the phase shiftAi j over the bond. The equilibrium
statistics of vortices is essentially decoupled from that of
spin waves. Earlier renormalization-group~RG! analysis of
the vortex-antivortex unbinding transition yielded a phase
diagram of the kind illustrated in Fig. 1~a!.5,12 For
s,sc.p/8, a phase with bound vortex-antivortex pairs,
and hence algebraic decay of phase correlations, still exists,
but only in a temperature windowT2(s),T,T1(s). Be-
low T2(s), a ‘‘reentrant’’ disordered phase was predicted.
The two transition temperatures coincide at a critical strength
of the disordersc , above which the ordered phase disap-
pears altogether. Two recent papers, by Nattermann, Scheidl,
Korshunov, and Li18 ~NSKL! and by Cha and Fertig,19 cast
doubt on the reentrance picture. The phase diagram they sug-
gested is shown in Fig. 1~b!, where the reentrance line
T2(s) disappears. NSKL~Refs. 18,21,22! further suggested
that some sort of freezing phenomenon takes place below a
certain temperature

T* ~s!52sJ ~1.5!

@see the dashed line in Fig. 1~b!#, which preempts the reen-
trance transition atT2(s),T* (s) found previously.

The aim of the present paper is to expand the pioneering
ideas presented in Refs. 18 and 19 to unfold the physics

which underlies the vortex-antivortex unbinding transition in
the presence of the quenched disorder. There are two main
extensions contained in this work as detailed below.

First, we analyze quantitatively the equilibrium behavior
of a single vortex in a background of quenched random di-
poles. An analogy is made to two well-studied problems in-
volving disorder: the random energy model23 and a directed
polymer on the Cayley tree.24 It is shown that the single-
vortex problem has a glass transition at a temperature

Tg5J~ps/2!1/2, ~1.6!

below which entropy goes to zero; i.e., the vortex becomes
localized at the lowest-energy site. The free energy of the
vortex is found to be proportional to the logarithm of system
size at all temperatures. Setting the prefactor of the logarithm
to zero, we obtain the phase boundary shown in Fig. 1~b!.

Second, the dielectric and freezing properties of a dilute
gas of vortex-antivortex pairs~or molecules! are examined in
further detail, with particular emphasis on the spatial struc-
ture of equilibrium pair configurations. The freezing line
T5T* in Fig. 1~b! is shown to be related to the loss of
entropy of a pair over an area where the pair can be consid-
ered as isolated from other pairs of comparable size. If we fix
the center position of the pair, the two vortices making up
the pair freeze atTg . In the ordered phase,T*,Tg due to
the fact that the pair is allowed to explore an area much
larger than its size and hence has a lower freezing tempera-
ture. Interestingly, we find that freezing of pairs is not asso-
ciated with a singularity in the free energy of the system as a
whole, and hence there is no real phase transition atT* .
Disorder also generates random, zero-field polarization of the
gas of pairs, which enhances the effective disorder seen by
vortices separated by a large distance. This effect, which has
been previously overlooked, shifts the critical strength of dis-
ordersc @cf. Fig. 1~b!# from p/8 to a smaller value.22

Results on the dilute gas of vortex-antivortex pairs are
then turned into a set of RG recursion relations which cap-
ture theaverage, large-distanceproperties of the system.
Apart from some minor differences, the RG flow equations
derived in this paper are in agreement with those of Ref. 18.
To the extent that such a simplifying description offers a
good approximation, a phase diagram of the kind shown in
Fig. 1~b! is produced.

A drawback of the RG description adopted here is that the
renormalized~i.e., effective! disorder is always assumed to
be Gaussian distributed, while it is clear from our analysis
that the tail of the distribution dominates renormalization
effects at low temperatures. This observation puts a limit on
the extent the RG predictions can be trusted regarding the
detailed shape of the low-temperature phase boundary, e.g.,
whether it contains a part which is strictly parallel to the
temperature axis as in Fig. 1~b!, or it could develop a posi-
tive slope to allow for reentrance of the disordered phase
when s is sufficiently close tosc . Qualitatively, though,
there can be little doubt that the ordered phase exists down to
T50 whens is far belowsc , as the modification of the
bare interactions due to excitation of large-size pairs is weak
in the entire ordered phase shown in Fig. 1~b!.

Another interesting question is whether the system at
s.sc has a glassy phase at low temperatures. Our calcula-
tion of the dielectric susceptibility of a gas of pairs indicates

FIG. 1. Previously proposed phase diagrams of the disordered
XYmodel.~a! Order-disorder transition atT5T1 and then again at
a reentrance temperatureT5T2 . ~b! No reentrance transition, but
freezing of vortex-pair excitations belowT* ~dashed line!.
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that screening is present at all temperatures, despite localiza-
tion in the orientation of individual pairs belowTg . This
supports the idea that, in the disordered phase, the vortex-
vortex interaction at large distances is always short-ranged.
Consequently, long-range glassy order in the phase field is
not expected at any nonzero temperature due to the finite
energy cost to excite an additional vortex in the system. Pre-
vious analytical and simulational studies of the gauge glass
model ~i.e., Ai j uniformly distributed in the interval
@0,2p#) in two dimensions have reached the same
conclusion.20,25–27

The paper is organized as follows. In Sec. II the Coulomb
gas representation of vortices of theXY model is briefly
reviewed. A qualitative discussion of vortex-antivortex un-
binding is presented to highlight the outstanding issues. The
problem of a single vortex interacting with quenched random
dipoles is analyzed in Sec. III. A connection is made to the
random energy model and to a directed polymer on the Cay-
ley tree. In Sec. IV we examine the behavior of a dilute gas
of vortex-antivortex pairs of comparable size, under the in-
fluence of disorder. The calculation of the dielectric suscep-
tibility and the zero-field polarization of such a gas is pre-
sented, as well as an analysis of fluctuations of pair density.
A physical interpretation of theT* line is proposed. Section
V contains a derivation of the RG recursion relations and
results that follow from these equations. A discussion of the
phase diagram, the singularity of the free energy, the diver-
gence of the correlation length, and the two-point phase-
phase correlation function is presented. The main results of
the paper are summarized in Sec. VI. Some of the technical
aspects of the study are relegated to the four appendixes at
the end.

II. COULOMB GAS FORMULATION

A. Vortex Hamiltonian

To set the stage, let us review briefly the steps leading to
the Coulomb gas representation of~1.1!. The basic idea is as
follows. Due to the topological nature of vortices, theXY
model in two dimensions affords many metastable configu-
rations labeled by a set of vortex charges$mi%, where each
mi specifies the phase rotation around an elementary
plaquettei , in units of 2p. The precise definition of the
vortex charge configuration, derived from a given spin con-
figuration on a lattice, requires some convention, but is oth-
erwise unambiguous. The energy of each metastable con-
figuration defines a vortex HamiltonianHv($mi%), while
small phase fluctuationsfsw,i around the metastable state are
described by a spin-wave HamiltonianHsw($fsw%).

The simplest way to deriveHv andHsw is to start from a
continuum approximation of~1.1!,28,5

H5
J

2E d2r @¹f2a21A~r !#2, ~2.1!

wherea is the lattice constant. The two components ofA are
given by the disorderAi j on adjacent horizontal and vertical
bonds, respectively.

In the presence of vortices, the fieldf(r ) is multiple val-
ued. The vortex chargesmi fix the phase advance along a
closed path surrounding sitei ~or rather celli ),

R df52pmi .

In a system with periodic boundary conditions, neutrality
( imi50 is satisfied. The gradient of thef field can be de-
composed into a rotation-free part and a divergence-free part,

¹f5¹fsw1(
i
mi ẑ3~r2r i !/ur2r i u2, ~2.2!

wherefsw represents ‘‘spin-wave’’ fluctuations, andẑ is the
unit vector in the third direction in space. The same proce-
dure can be repeated forA,

A5a¹f01Ar , ~2.3!

where the potentialf0 satisfies

a¹2f05¹•A. ~2.4!

Inserting Eqs.~2.2! and ~2.3! into ~2.1!, we obtain~apart
from a constant! H5Hsw1Hv , where the spin-wave part is
given by

Hsw5
J

2E d2r ~¹fsw2¹f0!
2 ~2.5!

and the vortex part given by

Hv5(
i

~mi
2Ec1miVi !2pJ(

iÞ j
mimj ln

r i j
a
. ~2.6!

~See Appendix A for more details on the derivation.! Here
and elsewherer i j5r i2r j is the displacement vector between
sitesi and j , andr i j5ur i j u is the distance. In addition to the
usual core energyEc , a vortex interacts with a quenched
random dipole fieldqi5(a/2p)A(r i)3 ẑ through the poten-
tial

Vi[V~r i !52pJ(
jÞ i

qj•r i j /r i j
2 . ~2.7!

From the above definition we have, in component form,

^qi ,a&50, ^qi ,aqj ,b&5~a/2p!2sd i jdab . ~2.8!

Note thatVi vanishes whenA is rotation free.
The core energyEc can be extracted from the energy of a

vortex-antivortex pair separated by a large distance.2 Its
value is nonuniversal and also depends on the choice ofa.

B. Pair-unbinding transition

At sufficiently high core energies, at least, the gas of vor-
tices in a charge-neutral system is expected to form one of
the two phases described below. The first is a dielectric in-
sulator, where61 charges bind to form pairs of charge-
neutral molecules. This structure is low in Coulomb energy,
but also low in entropy due to binding. The second is a
plasma with a finite density of unpaired~or free! vortices.
This structure is high in Coulomb energy but also high in
entropy. In the absence of disorder, both the Coulomb energy
and entropy scale logarithmically with distance in two di-
mensions. A simple energy-entropy argument1 then predicts
a finite-temperature transition for the unbinding of vortex-

3352 54LEI-HAN TANG



antivortex pairs. This is also the temperature where the free
energy of a single vortex goes to zero. An improved treat-
ment, which takes into account the reduction of the Coulomb
energy due to screening by other vortex-antivortex pairs,
yields an exact description of the critical properties at the
transition. In the plasma phase, there is complete screening
of the Coulomb potential, so that interactions between distant
charges become short ranged.

In the presence of quenched random dipoles, vortices may
exploit fluctuations in the disorder potential to lower their
Coulomb energy, and hence become more numerous. This
speaks for the reduced stability of the insulating phase. On
the other hand, in the process of gaining potential energy,
vortices become more localized, and this way lose entropy.
The first insight one needs is how much energy a vortex can
gain from the disorder by positioning itself at the right place.
It turns out that this problem can be solved almost exactly,
and the result again has logarithmic scaling with distance.
The amplitude of energy gain from disorder is proportional
to s1/2 at low temperatures. Thus, when entropy is not a
factor, excitation of free vortices is not expected below a
certain critical strength of the disorder.

As in the pure case, a complete treatment requires analy-
sis of the screening of the Coulomb potential due to other
pairs of vortices present in the system. At high temperatures,
a pair is able to explore a large number of different disorder
environment, which minimizes the difference between
quenched and annealed disorder. The situation becomes dif-
ferent at low temperatures where, as in the random energy
model, the equilibrium behavior of a pair is dominated by the
lowest-energy configuration in the area accessible to the pair.
A crucial issue is thus to obtain the correct statistics of the
pair when spatial and angular localization becomes impor-
tant.

With the above general picture in mind, we are in a posi-
tion to perform the necessary calculations.

III. SINGLE VORTEX

In this section, we examine the behavior of a single vor-
tex, confined in a box of linear dimensionR@a. In the pres-
ence of disorder, the energy of the vortex depends on its
position i ,

Ei5Ec1pJln~R/a!1Vi , ~3.1!

whereVi is given by~2.7! with the sum restricted to sites in
the box. From the definition we have^Vi&50. The variance
and spatial correlations ofVi are given by

^Vi
2&52psJ2ln~R/a!1O~1!, ~3.2!

^~Vi2Vj !
2&54psJ2ln~r i j /a!1O~1!. ~3.3!

A simplifying approximation to the single-vortex problem
is obtained by setting the correlation ofVi to zero. The re-
sulting problem is known as therandom energy model
~REM!.23 It turns out that, for the quantities of interest to us,
correlations in the disorder potential only introduce
subleading-order corrections to the REM results in the limit
R@a. In the following we shall first discuss the REM and
then an improved representation.

A. Random energy approximation

In the REM one considers the partition function

z5(
i51

N

exp~2xi /T!, ~3.4!

where xi , i51, . . . ,N, are a set of random energy levels
drawn independently from a Gaussian distribution,

c~x!5~2pD!21/2exp~2x2/2D!. ~3.5!

The model has been analyzed in great detail by Derrida.23

Below we quote some of his results relevant for our discus-
sion, and refer the reader to his original paper for further
details.~See also Appendix B.!

In the thermodynamic limitN→` while fixing the ratio
s[D/ lnN, the average free energy is extensive in lnN,

^ f &[2T^ lnz&52c~T,s!lnN1O~ lnlnN!, ~3.6!

where

c~T,s!5H T1s/~2T! for T.Tg~s!,

~2s!1/2 for T,Tg~s!.
~3.7!

Here

Tg~s!5~s/2!1/2 ~3.8!

is the freezing temperature of the model. ForT,Tg , the
entropy is no longer extensive in lnN.

The above result can be applied to the single-vortex prob-
lem by substitutingN→(R/a)2, D→2psJ2ln(R/a), and
s→psJ2. From ~3.6!, we obtain the average free energy of
the vortex,

^F&.5 Ec1pJS 12
2T

pJ
2

sJ

T D lnRa for T.Tg ,

Ec1pJS 12A8s

p D lnRa for T,Tg .

~3.9!

The corresponding freezing temperature is given by Eq.~1.6!
~solid line in Fig. 2!. The coefficient of the logarithm
changes sign across the dashed line shown in Fig. 2, which is

FIG. 2. Phase diagram of a single vortex. A true glass transition
takes place atTg ~solid line!. The free energy of the vortex vanishes
along the dashed line.
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precisely the phase boundary in Fig. 1~b! when renormalized
values forJ ands are used.~See discussion in Sec. V.!

Below Tg , the entropy of the vortex is no longer exten-
sive in ln(R/a). In fact, it can be shown that only one or a few
lowest-energy sites contribute significantly to the partition
sum~3.4! in this regime~see Appendix B!. Within the region
bounded by the dashed line in Fig. 2, the typical free energy
of a vortex is positive, but there are rare realizations of dis-
order which give rise to a negative free energy. The prob-
ability for such events is a power-law function ofR/a with a
negative exponent. This fact is important when we consider
pair excitations in Sec. IV.

B. Correlations in the disorder potential

The REM approach to the single-vortex problem is not
completely satisfactory as it ignores spatial correlations in
the energiesVi . This correlation has a simple origin~see
Fig. 3!. When we move the vortex from a sitei to a site j ,
the change in the disorder potential is mainly due to a change
in the local environment up to a distance of orderr i j , as
contributions toVi and Vj from quenched dipoles farther
away are nearly identical. This type of correlation can be
easily coded using the Cayley tree, where each site is asso-
ciated with a path on the tree. The potential on a site is made
equal to the energy of a path on the tree. Geometrical prox-
imity is translated into hierarchical proximity on the tree.

This representation can be made explicit using the follow-
ing construction, though details of it should be unimportant

for our conclusions. For any chosen sitei , we divide the
space into a set of rings of inner and outer radiiRn21 and
Rn , respectively, such thata5R0,R1,•••,Rm.R, while
keepingRn /Rn215b constant. The potential at sitei can be
written as a one-dimensional sum,Vi5(nVi

(n) , where each
term in the sum contains only contributions from dipoles
within a given ring, i.e.,

Vi
~n!52pJ (

Rn21<r ik,Rn
qk•r ik /r ik

2 . ~3.10!

We now identify thenth ring with thenth node~branching
point! along the pathi on the tree, wheren increases from
bottom to top. The energy of the node is given byVi

(n) .
Repeating the above procedure for a different sitej , we ob-
tain another sequence of energiesVj

(n) for nodes on the path
j . The two paths join on levelni j5 ln(rij /a)/lnb.
An intriguing fact about the random dipolar interaction is

that the subsums constructed above are Gaussian random
variables with identical statistics,

^Vi
~n!&50, ^Vi

~n!Vi
~n8!&52psJ2~ lnb!dn,n8. ~3.11!

Thus all rings contribute equally to the sumVi , independent
of the radius of the ring.

The Cayley tree problem discussed above has been ana-
lyzed in detail by Derrida and Spohn24 and by Cook and
Derrida.29 Its properties are quite similar to the REM. In
particular, the extensive part of the free energy is the same as
in the REM, independent of the choice ofb. In addition,
moments of the partition function have the same dependence
on N as indicated in Eq.~B11!, and the transition tempera-
tureTn of thenth moment is the same as in the REM. There
are, however, differences in the amplitude of the ratio
^zn&/^z&n. This implies that the distribution of the free en-
ergy, f52Tlnz, is not exactly given by Eqs.~B8! and ~B9!
for f significantly less than̂f &, but the difference should be
small, as otherwise the behavior of^zn& would be signifi-
cantly different.

C. Numerical test

The mapping to the Cayley tree problem presents a heu-
ristic illustration of the nature of the single-vortex problem,
while yields quantitative information at the same time. It is,
however, difficult to estimate the error involved in the map-
ping. The author of this paper conjectures that the mapping is
nearly exact in the sense that, when the parameters of the two
problems are properly identified, the distribution of the free
energy f in the two cases is related by a proportionality
factora( f ) which is bounded, i.e., 0,a2<a( f )<a1,`,
for all f and at all temperatures, in the limitR/a→`. In the
following, we report results of a numerical investigation
which supports the above hypothesis.

With the choice t5 ln(R/a) as the length of a path
on the tree, the mapping scheme of Sec. III B yields
D5psJ252Tg

2 andl52 for the parameters in Eq.~3.6! of
Ref. 24. @l52 follows from the fact that there are
N5(R/a)25exp(2t) sites or paths in a system of linear size
R.# Equation~4.9! of Ref. 24 then predicts,

FIG. 3. Cayley tree representation of correlations in the disorder
potential of a single vortex.~a! Division of the disorder potential
into subsums over rings centered at vortex positioni . ~b! Represen-
tation of the potential by the energy of a path on the Cayley tree.
The energy of a path is the sum over the energies assigned to the
nodes.~c! Two sitesi and j pick up nearly identical contribution
from distant quenched disorder, but completely different contribu-
tion from inner shells~shadowed area! surrounding each site.
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^ f &
Tg

55
22S TTg 1

Tg
T D lnRa 1O~1! for T.Tg ,

24ln
R

a
1
1

2
lnln

R

a
1O~1! for T5Tg ,

24ln
R

a
1
3

2
lnln

R

a
1O~1! for T,Tg .

~3.12!

~Note that there is a crossover in the behavior of the
subleading-order term whenT is close toTg , which we shall
not elaborate here.! It is expected that, up to terms of order
unity, the above expressions are insensitive to the assump-
tion that the random energies are Gaussian distributed, and
hence have a certain degree of universality.29 The REM
model, on the other hand, predicts a prefactor1

2 for the
subleading-order term in~3.12! in the entire low-temperature
phase.

Our numerical task is to check the validity of~3.12! up to
the subleading-order term by varyingR andT. The first step
of the exercise involves generation of the random potentials
Vi . In principle, this can be done by assigning random di-
pole moments with a fixed variance to each site on a
(R/a)3(R/a) lattice, and then carry out the sum~2.7! for
each sitei on the dual lattice where the vortex is supposed to
sit. An appropriate choice of the boundary condition is that,
in computing the displacement vectorr i j in ~2.7! between
sitesi and j , we consider all periodic continuations ofj , and
choose the one which is closest toi . Alternatively, we can
generateVi directly with the desired statistical properties by
noting that their variance and correlations as expressed by
Eqs.~3.2! and~3.3! are identical to those of a Gaussian sur-
face in two dimensions.30 Since the Fourier components of
such a surface fluctuate independently, they can be obtained
directly with the prescribed variance using a Gaussian ran-
dom number generator. A fast Fourier transform algorithm
can then be used to obtainVi . This method, which is far
more efficient than the former, is used in our Monte Carlo
calculation of the disorder-averaged free energy.

We have investigated systems of linear size
R/a54,8, . . . ,512. The free energy is evaluated at five dif-
ferent temperatures for each disorder realization, and then
averaged over 20 000 independent realizations. The statisti-
cal error in^ f &/Tg so obtained is less than 0.025. Figure 4
shows the data on a semilogarithmic scale. To achieve a
closer comparison with the analytical prediction, the ex-
pected low-temperature leading-order term has been taken
away from the data. ForT50 and T50.5Tg , the
subleading-order correction can be well fitted to the form
3
2 ln@21ln(R/a)#1const~solid line!, while atT5Tg , the form
1
2ln@21ln(R/a)#1const ~dashed line! fits better. For
T51.5Tg and 2Tg , a residual logarithmic term is clearly
seen, indicating that the system is no longer in the frozen
phase. The slopes of these two sets of data agree well with
the predicted values2 1

3 and21, respectively.

IV. DILUTE GAS OF PAIRED VORTICES

As mentioned in Sec. II B, a quantitative study of the
pair-unbinding transition must include a discussion of pair

excitations which modify the Coulomb interaction at large
distances. This is usually done by employing a real-space
RG procedure, to be explained in detail in Sec. V. A crucial
step in the RG scheme is the calculation of the dielectric
susceptibility and zero-field polarization of a gas of pairs in a
certain size range, say, betweenR andR1dR. This is the
task to be carried out in this section.

A. Lattice-gas representation

To treat a dilute gas of pairs of uniform sizeR, it is
conceptually helpful to separate the ‘‘internal’’ degrees of
freedom of a pair, given by allowed configurations of the
pair confined to a box of linear sizeR, from rigid translations
of the pair over a distance greater thanR. One way of imple-
menting the idea is to impose a lattice with a lattice constant
R. The lattice-gas representation is extremely useful owing
to the following two properties of the system:~i! The disor-
der potential on a pair is essentially uncorrelated when the
pair is translated over a distance larger thanR; ~ii ! interac-
tion between pairs of similar size in the dilute limit can be
approximated by a hard-core potential extending over a dis-
tance of the pair sizeR. These facts can be established fol-
lowing a similar line of reasoning as in the original paper by
Kosterlitz and Thouless.1

Let r1 andr2 be the coordinates of11 and21 charges
in a pair, respectively. The pair energy is given by

Ep52Ec12pJln~R/a!1V~r1!2V~r2!, ~4.1!

whereR5ur12r2u is the size of the pair.
The rapid decay of correlations in the disorder potential

V(r1)2V(r2) of a pair beyond a distance of orderR comes
from an observation made in Sec. III B. The two charges
which make up a pair interact separately with quenched ran-
dom dipoles within a distance of orderR from the pair cen-
ter, but collectively as a dipole when more distant disorder is

FIG. 4. The average free energy~scaled by the glass transition
temperatureTg) of a single vortex in a box of linear sizeR/a, with
the expectedT50 leading-order behavior subtracted out. Solid and
dashed lines are fits to the predicted subleading-order behavior for
T,Tg andT5Tg , respectively.
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in question. Hence the random part ofEp is dominated by
disorder within a distance of orderR from the pair center.
~The remaining contribution from distant quenched random
dipoles can be treated as a perturbation when necessary.! On
the other hand, barring contributions from distant quenched
dipoles,V(r1) is quite independent from2V(r2) for two
reasons. First, each potential is dominated by quenched di-
poles in the immediate vicinity of the site in question~see
discussion on the ring structure in Sec. III B!. Second, al-
though the two charges are in the same disorder environ-
ment, when it comes to optimizing their~free! energies, they
see opposite ends of the disorder energy distribution due to
the difference in sign. Therefore, to a good approximation,
we can replaceEp by the sum of two single-vortex energies
of the form~3.1!, each containing a random potential gener-
ated by quenched dipoles within a box of linear sizeR, in-
dependent from the other.

The interaction between one pair and another is of the
dipole-dipole form at large distances, which is small com-
pared toEp and can be treated as a perturbation. The inter-
action becomes more complex when two pairs are at a dis-
tanceR1,R, but it is generally repulsive, with a strength of
order 4pJln(R/R1). ~Note that the two pairs should be ar-
ranged in such a way that it is not possible to regroup them
to form 61 pairs of smaller sizes.! For simplicity, we shall
replace the interaction by a hard-core potential of rangeR. In
the dilute limit, the main effect of this interaction is to pre-
vent more than one pair from taking advantage of a particu-
lar favorable configuration~and the ones very close to it!,
which turns out to be a very important constraint at low
temperatures.18

We are now in a position to define the lattice-gas repre-
sentation. We divide the plane into a square lattice of cells,
each of linear dimensionR. Any given cell has at most one
pair, and pairs in different cells do not interact with each
other. The Boltzmann weight on an occupied cell can be
written asypzp , where

yp[~R/a!22pJ/Texp~22Ec /T! ~4.2!

is the pair fugacity and zp is the configurational partition
function of the pair attached to the cell. Since there is no
interaction between different cells, the partition function of
the system factorizes into a product of cell partition functions
11ypzp . In addition, the average over all cells can be re-
placed by an average over the disorder, as each cell repre-
sents an independent realization.

To apply the lattice-gas description to the system of pairs
in a given size range, say, betweenR andR1dR, we need to
specifyzp in more detail. For the discussion to be meaning-
ful, dR should be small enough so that the pair fugacityyp
can be regarded as a constant, but large enough so that indi-
vidual charges in a pair are allowed to explore their own
local disorder environment without been severely con-
strained by the specified range of pair size. Both criteria can
be met by choosingdR;R. The configurational partition
function of an occupied cell is given by

zp5 (
~r11r2!/2Pcell

R<ur12r2u,R1dR

expF2
V~r1!2V~r2!

T G . ~4.3!

The potentialV(r1)2V(r2) inside a cell has a spatial cor-
relation of similar nature as the potential on a single vortex
discussed in Sec. III. To simplify the calculation, we shall
again make the random energy approximation where this
correlation is ignored. The parameters of the REM applied to
the problem of pairs are

N52p~R/a!4~dR/R!, D54psJ2ln~R/a!. ~4.4!

For dR.R, the freezing temperatureTg for the pair in a cell
is the same as the freezing temperature of a single vortex,
Eq. ~1.6!.

B. Pair density

In equilibrium, the probability of finding a pair in a given
cell is given by

W5
ypzp

11ypzp
. ~4.5!

For a dilute gas, the typical value ofW is given by
Wtyp.ypzp,typ, wherezp,typ is the typical value ofzp ~see
discussion in Appendix B!. Combining Eqs.~3.6!, ~3.7!,
~B6!, and~4.2!, we obtain,

Wtyp;5 SRa D 422pK12psK2dR

R
for T.Tg ,

SRa D 22pK~12A8s/p! dR

R
for T,Tg .

~4.6!

HereK[J/T. The exponent of the power law changes sign
across the dashed line in Fig. 2.

Like zp , W has a broad distribution. Its mean value
^W& deviates significantly fromWtyp for T,Tg . Since the
nth moment ofzp grows much faster than̂zp&

n for suffi-
ciently largen, it is not possible to calculatêW& by expand-
ing the right-hand side of~4.5! as a power series ofypzp .
Nevertheless, the average can be calculated by treating the
casesypzp,1 andypzp.1 separately, as done in Appendix
C. Results of the calculation are given by Eqs.~C11! and
~C13! in respective temperature regimes. ForR@a, a power-
law dependence of̂W& on R is found,

^W&;5 SRa D 422pK12psK2dR

R
for T.T* ,

SRa D 42p/~2s! dR

R
for T,T* .

~4.7!

The exponent freezes to a temperature-independent value be-
low T*52sJ.

C. Zero-field polarization

The disorder environment in a given cell specifies a fa-
vorable configuration for a pair in the cell. The breaking of
rotational invariance thus yields a zero-field dipole moment

p0[
(pexp@2Ep /T#

11ypzp
, ~4.8!
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wherep5r12r2. The sum in Eq.~4.8! is restricted to the
internal degrees of freedom of the pair, as in Eq.~4.3!.

Due to statistical rotational symmetry,^p0&50. Its vari-
ance can be calculated approximately from the following
consideration. Note thatp0 is small when many distinct con-
figurations contribute to the cell partition sumzp . It becomes
large when the lowest-energy configuration~and nearby con-
figurations with approximately the same orientation ofp!
dominates. Based on the discussion of Appendix B, it is
reasonable to assume that the latter occurs wheneverzp is
significantly larger than its typical value,zp,typ. Replacingp
inside the sum in~4.8! by the dipole moment of the ground
state, we make an error with a probability of the order of
Wtyp , which is smaller than̂W&. This yields the estimate

^up0u2&/R25^W2&1O~^W&2!. ~4.9!

The calculation presented at the end of Appendix C yields,
for T,T* ,

^W2&.~12T/T* !^W&. ~4.10!

For T.T* , ^W2& decays faster withR than ^W&. The dis-
tribution of up0u is expected to be broad. In particular, for
T,Tg , where typically one or two configurations dominate
the partition sum, the distribution ofup0u is similar to the
distribution ofW.

Let us now consider the correlation betweenp0 and the
total dipole moment of disorder in the cell,

q5 (
iPcell

qi . ~4.11!

Since p0 is mostly determined by the arrangement of the
disorder in the immediate vicinity of the two charges making
up the pair, we expect the contribution top0 from q to be
small, but the effect is important for later discussions. To
estimate the contribution, let us consider a quantityp̃0 ,
which is the equivalent ofp0 under the replacement
qi→q̃i5qi2(a/R)2q. From the third example of Appendix
A, we see that switching onq is equivalent to switching on a
polarizing field Eq522p2Jq/R2. Linear response theory
then suggests, on average, a relation of the form

p0.p̃022p2x̄Jq, ~4.12!

wherex̄ is the average dielectric susceptibility of the gas of
pairs, to be discussed below.

D. Induced polarization

In the presence of a weak, constant external electric field
E, a cell acquires an induced dipole moment due to pair
excitation,

pind5
(pexp@2~Ep2p•E!/T#

11(exp@2~Ep2p•E!/T#
2p0 . ~4.13!

The induced polarizationPind of the gas of pairs is given by
the spatial average ofpind or, equivalently, the disorder av-
erage,

Pind5R22^pind&. ~4.14!

To the first order inE, we find

Pind5x̄E, ~4.15!

where

x̄ 5~2T!21~^W&2^up0u2&/R2!. ~4.16!

Using Eqs.~4.5! and ~4.9! we may rewrite the above equa-
tion as

x̄ 5
1

2T Fyp ]^W&
]yp

1O~^W&2!G . ~4.17!

Here we have used the identity

yp]^W&/]yp5^W&2^W2&. ~4.18!

The derivative in the above equation can be evaluated
using Eq.~C10! for T.T* and~C12! for T,T* . To leading
order, the result reads

x̄ .H ~2T!21^W& for T.T* ,

~2T* !21^W& for T,T* .
~4.19!

@Note that, in both cases, the coefficient in front of^W& is
fixed by the ~effective! power-law dependence of^W& on
yp . Hence~4.19! is more exact than what one might have
expected from the approximate nature of Eqs.~C10! and
~C12!.#

The dielectric susceptibility is finite down toT50. At
T50, individual pairs cannot respond to a weak applied field
due to loss of entropy. The polarizability of the medium is a
consequence of a finite density of states at zero pair energy.
Pair configurations with a slightly positive energy in the ab-
sence of the field may acquire a negative energy if it is fa-
vored by the field, and hence become occupied. The opposite
happens for the unfavored pair configurations opposing the
field direction.

E. Pair-freezing temperature T*
The change in the leading order behavior of the pair den-

sity r;^W&/R2 atT* @Eq. ~4.7!# has a simple interpretation.
Given the strong repulsive interaction between two pairs at a
distance smaller than their sizeR, and the absence of corre-
lation in the disorder potential on a pair beyond a distance of
orderR, it is reasonable to assume that clustering of pairs is
rare in the dilute limit. The typical distance between neigh-
boring pairs is thus given byL5r21/2.R. Within an area of
linear sizeL, we have typically one pair only.

Let us first consider the equilibrium statistics of a single
pair in a box of linear sizeL, taken to be arbitrary for the
moment. The total number of configurations available to the
pair is N5(R/a)2(L/a)2, and the variance of the random
potential,D54psJ2ln(R/a). In the random energy approxi-
mation, the mean free energy of the pair follows from Eq.
~3.6!,

Fp~L,T!.2Ec12pJln~R/a!

22c~T,s!@ ln~R/a!1 ln~L/a!#, ~4.20!

where
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s5
2psJ2ln~R/a!

ln~R/a!1 ln~L/a!
. ~4.21!

For a fixedL, Fp(L,T) increases with decreasingT, and
locks to a constant forT,Tg(s). At a fixed temperature,
Fp(L,T) decreases with increasingL.

The typical interpair distanceL(T) is determined by the
condition

Fp~L,T!50. ~4.22!

From the properties ofFp mentioned above, we see that
L(T) increases asT decreases, and locks to a constantL* for
T,T* . HereT*5Tg(s* ) is obtained self-consistently, with
s* given by~4.21! at L5L* . The result forT* agrees with
~1.5!. ForT.T* , we may use the high-temperature expres-
sion forc(T,s) in ~4.20!, and the condition~4.22! yields the
following estimate for the number of pairs in an area of size
R:

~R/L !2.~R/a!422pK12psK2exp~22Ec /T!, ~4.23!

in agreement with~C11!. The lengthL* satisfies

~R/L* !2.~R/a!4exp~2D/2T
*
2 !, ~4.24!

in rough agreement with~C12! for the number of pairs in an
area of sizeR belowT* .

The physical meaning of the temperatureT* is now clear.
For T.T* , the entropy of a pair in a region of the size of
interpair distance is finite and varies smoothly withT. This
entropy is lost atT* . ThereforeT* is associated with the
pair freezing. The length scaleL* (R) is the smallest size of
an area where one typically finds a negative ground-state
energy for a pair of sizeR.

In contrast, the single-vortex glass temperatureTg is as-
sociated with the loss of entropy for a pair when it is re-
stricted to an area of pair size.@Note that~4.21! reduces to
the expression for a single vortex when we setL5R.# This
temperature does not play a special role in theequilibrium
behavior of a pair, where the relevant length scale is set by
the interpair distance. Likewise, as far as the equilibrium
properties of a dilute gas of pairs are concerned, the cell
representation we employed is merely a convenient device
for performing calculations.

The equivalence of our results to those of Refs. 18 and 22
implies that there is a simple connection between the two
approaches. In the work of NSKL and the more recent paper
by Scheidl, calculation of thermal averages were made under
the ‘‘factorization ansatz,’’ which assumes that pairs do not
interact unless they take identical positions. From the discus-
sion of Sec. IV A we see that the pair-pair repulsion extends
to a distance of the order of pair sizeR. If there is no strong
reason provided by disorder for clustering of pairs, the two
approaches should differ only by a relative amount propor-
tional to the pair density; i.e., the difference should show up
only at order^W&2 in the expressions forx̄, etc. This is
precisely what happens under the random-energy approxima-
tion. In reality, due to correlations in the disorder potential,
close to a very favorable configuration for a pair, there are
other configurations which are nearly as favorable, though
pair-pair repulsion would forbid simultaneous occupation of
these configurations. The true density of pairs is thus ex-

pected to be somewhat smaller than the one calculated under
the factorization ansatz or the random energy approximation.
Nevertheless, from what we understand about the correla-
tions, the qualitative behavior of the system should be the
same as predicted by the approximate calculations. In par-
ticular, no change in the exponent of the power laws in Eq.
~4.7! is expected.

V. RECURSION RELATIONS AND RESULTS

A. RG transformation

The knowledge we gained about a dilute gas of vortex-
antivortex pairs can now be incorporated into a RG proce-
dure aimed at capturing the large-distance behavior of the
Coulomb gas with disorder. This can be done explicitly fol-
lowing an integration scheme used previously by Kosterlitz
for treating the pure problem.2

Consider a configuration$mi% made up of two groups of
charges. The first group,$mi

,%, consists of pairs of61 vor-
tices, each of size less than a cutoff sizeR. The second
group,$mi

.%, consists of charges which do not fall into that
category.~Note that our usage of the superscripts ‘‘, ’’ and
‘‘ . ’’ is the opposite of the one familiar in a momentum-
space RG.! The total energy of the system, Eq.~2.6!, can be
rewritten as

Hv~$mi%!5Hv~$mi
,%!1Hv~$mi

.%!1H int~$mi
,%,$mi

.%!,
~5.1!

where

H int.2(
n

pn•E
.~rn! ~5.2!

describes the interaction between the two groups. Herepn is
the dipole moment of pairn in the first group,rn is the center
position of the pair, and

E.~r !52pJ(
i
mi

.
r2r i

ur2r i u2
~5.3!

is the electric field atr due to the presently unpaired charges
in the second group.

The partition sum over the paired charges is given by

J,5 (
$mi

,%

exp„2@Hv~$mi
,%!1H int#/T…. ~5.4!

Writing J,[J0
,exp(2dH/T), whereJ0

, is the partition
function atH int50, we obtain

dH~$mi
.%!52Tln^exp~2H int /T!&0 , ~5.5!

where ^•&0 denotes thermal average with respect to
Hv($mi

,%). TreatingH int as a perturbation, we can write
dH in a more suggestive form

dH52E d2r @P0~r !1 1
2P ind~r !#•E

.~r !1O~ uE.u3!.

~5.6!

HereP0(r )5^(npnd(r2rn)&0 is the zero-field polarization
of the paired charges in the absence of the interaction term
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H int , and Pind5P2P0 is the induced polarization of the
paired charges due to the fieldE.. @Note thatP(r ) is defined
in the same way asP0(r ) except that the thermal averaging is
taken with respect toHv($mi

,%)1H int .#
The renormalization-group idea is to take the cutoff size

R as a running parameter, and perform the elimination of
paired charges$mi

,% in a step-by-step manner, so that each
time one needs to deal with pairs in a narrow size rangeR to
R1dR only. The necessary calculations have already been
done in Sec. IV. Substituting Eq.~4.15! into ~5.6!, we obtain

dH.2E d2r @P0•E
.1 1

2 x̄uE.u2#. ~5.7!

This is nothing but the field integral version of the Coulomb
energy~2.6!, and hence can be incorporated intoHv($mi

.%)
by redefining the parametersJ ands of the model.

The change inJ can be obtained with the help of the first
example in Appendix A. One thing to note is that the integral
over uE.u2 in ~5.7! excludes regions of sizeR around each
mi

. charge, since paired vortices should not be found in
these areas. This leads to the identificationb5R in Eq. ~A8!.
The new effective parameters are given by

Ec→Ẽc5Ec14p3x̄JJ̃ln~R/a! ~5.8!

and

J→ J̃215J2114p2x̄, ~5.9!

equivalent to Eq.~A4!.31 The extra term inẼc merely ac-
counts for the fact that screening from this group of pairs is
effective only at distances larger thanR.

In Sec. IV C, contribution to the zero-field dipole moment
p0 of a cell due to disorder within the cell was calculated.
More distant disorder contributes top0 by acting as an addi-
tional polarizing field. When the latter contribution is substi-
tuted into Eq.~5.7!, we see that, with the help of the second
example in Appendix A, the interaction strength between
$mi

.% and quenched dipolesqj is reduced by a factor
122p2x̄J. Combining the zero-field polarization
P05p0 /R

2 of pairs with the disorder polarization
Q5q/R2, we obtain the effective disorder that couples lin-
early to E. in the HamiltonianHv1dH for the $mi

.%
charges,

Qeff5~124p2x̄J!Q1P̃0 , ~5.10!

where P̃05p̃0 /R
2 is independent ofQ @see discussion

around Eq.~4.12!#.
Equation ~5.10! shows that pair excitations modify the

quenched disorder seen by$mi
.% charges in two distinct

ways. The first effect is the screening of the interaction at
distances larger than the pair sizeR, which can be taken into
account by a redefinition ofJ, Eq. ~5.9!. The second effect is
the generation of additional disorder. SinceP̃0 is independent
of Q, we obtain an additive contribution to the variance of
disorder, s. Writing J̃Q̃5JQeff , and using
^uQu2&[s/(2p2R2), we get

s̃5s12p2^W2&1O~^W&2!. ~5.11!

In deriving the above expression we used the fact that the
difference between the variance ofP0 and that ofP̃0 is of
order ^W&2. Using the result for̂ W2&, we see that the
change ins is proportional tôW& for T,T* , but of higher
order forT.T* .

Equations~5.9! and ~5.11! can be expressed in the usual
differential form by writingR5ael . For convenience, we
introduce a dimensionless quantityY(R), such that
2pY2dR/R[^W& gives the number of vortex-antivortex
pairs of size betweenR andR1dR, in an area of sizeR2 and
averaged over the whole system. ForT.T* or
K21[T/J.K

*
2152s, we have

dK21/dl54p3Y2, ~5.12a!

ds/dl50, ~5.12b!

dY/dl5~22pK1psK2!Y. ~5.12c!

For T,T* or K21,K
*
21 , we have

dK21/dl52p3s21K21Y2, ~5.13a!

ds/dl52p3~22s21K21!Y2, ~5.13b!

dY/dl5S 22
p

4s DY. ~5.13c!

Note that, in writing the above equations, we only kept terms
up to orderY2. The flow equations forY follow from the
power-law dependence of the pair density on pair size as
given by Eqs.~C11! and~C13!. A term of order 1/l inside the
brackets in~5.13c! has been neglected.

A few remarks concerning the above recursion relations
are in order. ForT.T* , Eqs.~5.12! are identical to those of
previous authors.5,12 From Eq.~5.11! we see that there is a
renormalization ofs even in this regime, but the effect is of
higher order thanY2. The change of the flow equations for
T,T* was pointed out earlier by NSKL.

18 The renormaliza-
tion of s, though not recorded previously, has also been
obtained by Scheidl using a different approach.22

In the absence of disorder,Y is equal to the ‘‘rescaled’’
single vortex fugacity, (R/a)22pJ/Texp(2Ec /T), in the dilute
limit. When disorder is present, the relation betweenY and
the core energyEc is more complicated. The bare value of
Y can be obtained from Eqs.~C11! and~C13! for T.T* and
T,T* , respectively. It has a finite limitY0 at T50. For
small s, Y0

2;s1/2exp(2c/s), wherec is a positive, model-
dependent number. At small values ofT, the bare value of
Y increases fromY0 by an amount proportional toT2.

B. Phase diagram and thermodynamic properties

1. Constants of RG flow

Seemingly complex at first sight, the flow equations
~5.12! and ~5.13! have in fact the same structure as their
s50 counterpart.2 The fixed points of the flow are located
on theY50 plane in the three-dimensional~3D! parameter
space spanned byK21, s, andY. They are stable in the
region enclosed by the dashed line in Fig. 5, but unstable
outside the region. Points on the dashed line are hyperbolic
fixed points which describe the pair-unbinding transition.
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It turns out that the flow equations are completely inte-
grable. In the regionT.T* @to the right of the dotted line in
Fig. 5#,

s5const ~5.14a!

is obviously a constant of the flow. On theT,T* side, the
corresponding first integral is given by

K2sK25const, ~5.14b!

as can be easily verified using Eqs.~5.13a! and ~5.13b!.
These ‘‘streamlines’’ of the flow are illustrated in Fig. 5.

The second constant of the flow is given by

Y22p23SK212
p

2
sK1

p

2
lnK D5 const ~5.15a!

for T.T* , and

Y22p23SK211s1
p

4
lnK D5const ~5.15b!

for T,T* . A unique trajectory in the 3D parameter space is
specified when one combines~5.15! with ~5.14!, with the
constants fixed by bare values of the parameters involved.

2. Phase diagram

The original XY model has only two parameters
KB

215T/J andsB . The bare value ofY, YB , is a function of
KB andsB . The phase boundary of the model is determined
by the condition that the RG flow ends on the dashed line in
Fig. 5. Since the flow takes boths andK21 to larger values,
this phase boundary lies within the area bounded by the
dashed line, as illustrated in Fig. 6.

The question of the reentrance of the disordered phase is
whether the upper-left part of the phase boundary illustrated
in Fig. 6 contains a piece with a positive slope. Although
earlier calculations which led to the prediction of a reen-
trance transition are not to be trusted, it is actually difficult to
rule out such a possibility from the new RG flow equations
~5.13!. From Eq. ~5.13b! we see that, at a givenY2, the
increase in the effective disorder becomes slower as tempera-

ture increases. Hence, for a fixedYB , the bare value ofs
which flows to the fixed point values5p/8 increases with
increasingT/J. On the other hand, in the originalXYmodel,
the bare pair densityYB

2 at a fixeds is expected to increase
with temperature, too. The calculation presented in this paper
is not quantitative enough to assess the two competing ef-
fects to reach a precise conclusion on the shape of the low-
temperature part of the phase boundary.

3. Approach to criticality

The critical behavior around the transition is controlled by
the RG flow close to the relevant hyperbolic fixed point. As
an example, let us consider flows along a particular contour
in Fig. 5. Substituting Eqs.~5.14! into Eqs.~5.15!, we get a
flow pattern depicted in Fig. 7. The curve consists of two
pieces, one from Eqs.~5.14b! and ~5.15b! for K21,K

*
21 ,

and the other from Eqs.~5.14a! and ~5.15a! for

FIG. 5. Renormalization-group flows on thes-K21 plane. Solid
lines are trajectories of the RG flow, with arrows indicating the flow
direction. The flow follows a parabola up toT* ~dotted line!, and is
then joined smoothly by a horizontal line atT.T* . The dashed
line is the line of hyperbolic fixed points of the RG flow, which
gives the phase boundary atY50.

FIG. 6. Schematic phase diagram from present work. Solid line
indicates the order-disorder phase boundary in terms of bare param-
eters of the model. It lies inside the region enclosed by the dashed
line, which is the line of the phase transition when renormalized
values are plotted. At the special pointS and its counterpartS8,
where theT* line meets the phase boundary, a slightly different
critical behavior is expected. See the text.

FIG. 7. The RG flow trajectory on theY2-K21 plane. ~This
example corresponds to the lowest of the four flow lines illustrated
in Fig. 5.! At the transition, the bottom of the curve touches the
horizontal axis (D50). Generically, the curve is quadratic around
the minimum atK215Kf

21 . However, forKf
215K

*
21 , a cubic

singularity is found instead.
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K21.K
*
21 . Since Eqs.~5.14! do not involveY2, any verti-

cal translation of the curve shown in Fig. 7 is also an invari-
ant of the RG flow. This family of curves can be param-
etrized by the minimum value ofY2 on each curve,D.

In the ordered phase and at the transition, the scaled pair
densityY2 eventually reaches zero on large length scales.
The corresponding RG flow follows a curve withD<0, with
the marginal caseD50 reserved for the transition. On the
disordered side but close to the transition, the RG flow fol-
lows a curve with a small positiveD. Along such a curve,
the value ofY2 first decreases as the running parameterl
increases, becomes almost stationary around the minimum of
the curve, and then grows rapidly to large values beyond
l5 l1 . The lengthj15aexp(l1) sets the scale where the
correlation function~see Sec. V C below! turns from a power
law to an exponential decay.

The dependence ofj1 onD can be obtained by examin-
ing the flow in the vicinity of the minimum of the curve at
K215Kf

21 ~see Fig. 7!. Let X5K212Kf
21 be the distance

from the minimum. Generically, for smallX, we have

Y25lX21D, ~5.16!

wherel is proportional to the curvature at the minimum. It is
easy to check that, in this case, the coefficient ofY on the
right-hand side of either Eq.~5.12c! or ~5.13c!, whichever
applies, is linearly proportional toX. Using ~5.16!, we can
write the flow equation forY as

dY/dl5g21~Y22D !1/2Y, ~5.17!

where g is a nonuniversal number which depends on the
location of the fixed point. The parametersD andg can be
scaled away using the substitutionY→D1/2Y and
l→gD21/2l . This yields a correlation length

j15aexp~ l1!.aexp~g/D1/2!. ~5.18!

The dependence ofD on the shift of the bare parameters
from their critical values can be obtained by solving~5.14!
and ~5.15!.

There is, however, a special case where the curvature of
the curve at the minimum vanishes, invalidating the above
analysis. This happens at the pointS ~and correspondingly
S8) in Fig. 6, where theT* line meets the phase boundary.
The minimum of the curve shown in Fig. 7 is now at the
meeting point of the high- and low-temperature segments.
This is also the inflection point of each of the two curves.
The flow trajectory around the minimum now takes the form

Y25l̃uXu31D, ~5.19!

wherel̃ is another constant. The flow rate ofY is now pro-
portional toX2Y. Consequently, we have

dY/dl5g̃ 21~Y22D !2/3Y, ~5.20!

where g̃ is yet another number. The proper scaling in this
case isY→D1/2Y andl→g̃D22/3l . A new dependence of the
correlation length onD follows,

j1.aexp~ g̃/D2/3!. ~5.21!

4. Free energy

Let us now turn to the behavior of the free energy in the
vicinity of the transition. Following the discussion of Sec.
IV A, we may write the contribution to the free energy per
unit area from pairs in the size rangeR to R1dR as

dFv.2T^ ln~11ypzp!&/R
2. ~5.22!

Comparing the above equation with~4.5!, we obtain

yp
]~dFv!

]yp
52T^W&/R2. ~5.23!

By making analogy to Eqs.~4.17! and ~4.19!, and using the
definition ofY, we find

dFv
dlnR

.H 22pTY2/R2 for T.T* ,

22pT*Y
2/R2 for T,T* .

~5.24!

The total vortex contributionFv to the free energy density
of theXY model is obtained by integratingdFv overR. Let
Fv,c be the vortex free energy density at the transition. Equa-
tion ~5.24! then yields

Fv2Fv,c;2E
a

`

R23dR~Y22Yc
2!, ~5.25!

whereYc(R) is the value ofY(R) at the transition. A full
analysis of the integral is quite involved, but the following
consideration should yield a correct estimate of the expected
singular behavior.

Approaching the transition from the ordered phase,Y
flows to 0 atR5`. The differenceY2(R)2Yc

2(R) is ex-
pected to remain constant, say, equal toD,0, up to
R5j2 , and then goes to 0. Truncating the integral at
R5j2 , we obtain

Fv,22Fv,c;2Da221Dj2
22. ~5.26!

The crossover lengthj2 has the same behavior asj1 , ex-
cept that one should replaceD by 2D in Eqs. ~5.18! and
~5.21!, as the case may be. From the disordered side, the
story is the same up toR5j1 , but beyond thatY2 becomes
of order 1. Hence we expect

Fv,12Fv,c;2Da222j1
22 . ~5.27!

The singularity ofFv,6 is thus related to the singular behav-
ior of j6 . In both cases, it is an essential singularity.

Finally, it is interesting to see if the pair-freezing line
T* in the ordered phase corresponds to another singularity of
the vortex free energy. The analysis presented in Appendix
D suggests that this is not the case. We should, however,
note that the absence of a true glass transition in our model is
a result of the very special type of functional dependence of
relevant quantities on temperature and pair size, and hence
might be susceptible to various types of perturbations.

C. Two-point correlation function

Consider now the two-point phase-phase correlation func-
tion
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C~r i j ![^exp@ i ~f i2f j !#&, ~5.28!

where the average is taken over thermal and then disorder
fluctuations. When only spin-wave contributions tof are
taken into account, one obtains a power-law decay ofC with
distancer i j , as shown in Eq.~1.3!. Vortex-pair excitations
‘‘soften’’ the spin waves, and lead to a faster decay of the
correlation function. On grounds of the renormalizability of
the model, one expects that, in the ordered phase,

C~r !;r2h ~5.29!

at large distances, but the exponenth differs fromhsw in that
the renormalized valuesK`

21 ands` should be used,

h5
1

2p
~K`

211s`!. ~5.30!

The above conjecture for the average behavior ofC(r )
can be verified by a direct calculation. Since the spin-wave
and vortex fluctuations decouple, and the disorder which en-
tersHsw is orthogonal to the disorder inHv ~see Sec. II A!,
we may write

C~r !5Csw~r !Cv~r !, ~5.31!

whereCv(r ) is the correlation of phasesfv generated by
vortex excitations,

Cv~r i j ![^exp@ i ~fv,i2fv, j !#&. ~5.32!

Following Kosterlitz,2 we calculate the right-hand side of
~5.32! by successive elimination of vortex-antivortex pairs,
starting from the smallest pair size. The formula below gives
the difference in the phase at two sitesi and j , generated by
a single vortex-antivortex pair atr p :

fv,i2fv, j.~2pJ!21~p3 ẑ!•E~r p!, ~5.33!

wherep is the dipole moment of the pair~assumed to have a
magnitudeR much smaller thanr ) andE(r p) is the electric
field at r p due to a11 charge placed at sitei and a21
charge placed at sitej . The variance of the phase difference
generated byall pairs in the size rangeR to R1dR can now
be easily calculated with the help of the equivalence of Eqs.
~AQ6! and ~A8!,

^~fv,i2fv, j !
2&dR.2p^W& ln~r i j /R!. ~5.34!

Going fromR to R1dR, Cv(r ) is reduced by a factor

exp@2 1
2 ^~fv,i2fv, j !

2&dR#.~r /R!2dh. ~5.35!

Comparing the coefficient of the logarithm in~5.34! with
Eqs.~4.9!, ~4.16!, and~5.11!, we obtain

dh5
1

2p
~dK211ds!, ~5.36!

which is nothing but the differential form of~1.4!. This con-
firms the intuitive idea that the asymptotic value ofh is
given by ~5.30!. On the transition line,h decreases mono-
tonically from the value 1/4 for the pure case to 1/16 at the
zero-temperature transition point.18

Inspecting Eq.~5.33!, we see that spatial and angular lo-
calization of the vortex-antivortex pairs may lead to a rare,

but significant deviation of the thermally averaged correla-
tion function at two fixed sitesi and j ,

C̃v~r i ,r j ![^exp@ i ~fv,i2fv, j !#& thermal, ~5.37!

from its average valueCv(r i j ). Such a fluctuation comes
about when we are looking at large-size pairs which have
strong density fluctuations~after thermal averaging! on the
scaler i j , and that the presence or absence of such a pair in
the region surroundingi and j will make a significant change
to the phase differencefv,i2fv, j . Below T* , the typical
density of these pairs is significantly smaller than the average
density. Consequently, the typical value of the exponent,
h typ , can be somewhat smaller than its average valueh.

VI. SUMMARY

The main conclusions of the present work can be summa-
rized as follows. When the variances of the random phase
shifts is sufficiently small, the quasi-long-range order of the
2D XY model survives at sufficiently low temperatures. The
two-point phase-phase correlation decays algebraically with
distance in the entire ordered phase up to the transition. At
the transition, the exponent of the power-law decay lies in
the range between 1/16 and 1/4. Approaching the transition
from the disordered side, the correlation length diverges ex-
ponentially with a2 1

2 or 2 2
3 power of the distance from the

transition point. The free energy exhibits an essential singu-
larity on the phase boundary. Fors.sc , the system is in the
paramagnetic phase at anyT.0, without a finite-temperature
glass transition. The value ofsc is nonuniversal but should
be smaller thanp/8.

The behavior of vortex-antivortex pairs inside the ordered
phase is quite interesting. In contrast to the pure case, there is
a finite density of such pairs at zero temperature. As the
temperatureT increases, the pair density increases, initially
slowly up to T5T* , and then grows rapidly as entropy
comes into play. Following an opposite sequence, asT is
lowered from the transition temperature, large-size pairs un-
dergo various degrees of localization both in space and in its
angular distribution. However, in the Coulomb gas language,
a finite susceptibility for the gas of pairs is found at all tem-
peratures. Localization also introduces a zero-field random
polarization of the gas of pairs, which has the effect of en-
hancing disorder seen by large-size pairs.

Much of the qualitative aspects of our results agree with
those of NSKL~Ref. 18! and of Cha and Fertig,19 though
there are minor but important differences on a quantitative
level. Technically, the analogy introduced here to the ran-
dom energy model offers a heuristic understanding of some
of the subtle features introduced by the disorder potential,
responsible for the failure of previous calculations based on a
small-fugacity expansion. In fact, we have shown that an
expansion with respect to the pair fugacityyp fails for any
s.0. A somewhat surprising result is that no singularity in
the free energy is found atT* . The whole analytic structure
of the free energy as a function ofT ands remains to be
explored.

The question of a possible reentrance transition at a dis-
order strengths sufficiently close to the critical valuesc
cannot be satisfactorily addressed within the level of accu-
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racy of the RG method adopted here. In fact, due to the
renormalization ofs we obtained, there is room for the re-
entrance scenario, though it is clear that reentrance does not
occur at weak disorder. In this connection, it would be very
interesting to consolidate our work and that of Ozeki and
Nishimori16 on a model which admits gauge symmetry.~See
also Ref. 20.!

A new quantity which appeared in this paper is the single-
vortex glass temperatureTg . This temperature also signals
localization in the angular distribution of a pair when trans-
lation of the pair over a distance larger than its size is for-
bidden. As we have seen,Tg plays no special role in the
thermodynamics of theXY model. Nevertheless, one might
contemplate possible changes of dynamical behavior atTg ,
an issue to be studied further.
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APPENDIX A: ELECTROSTATICS IN TWO DIMENSIONS

In this appendix we collect some useful formula from
electrostatics in two dimensions. We adopt the convention
that the unit of charge is 1. The electric potential due to a
11 charge at origin is given by

V~r !52e21ln~ ur u/a!, ~A1!

wheree5(2pJ)21 is the bare dielectric constant. The elec-
tric field E52¹V satisfies

¹•E52pe21r~r !, ~A2!

wherer(r ) is the charge density atr .
In a dielectric medium, the induced polarizationP5xE,

wherex is known as the dielectric susceptibility. The dis-
placement vectorD5eE12pP satisfies

¹•D52pr f~r !, ~A3!

where r f(r ) is the density of free charges atr . Writing
D5 ẽ E, we obtain

ẽ 5e12px. ~A4!

Let us now consider three examples encountered in the
main text. In the first example we establish the equivalence
of two expressions for the energy of a charge-neutral system.
The electric field generated by a set of point chargesmi
located atr i is given by

E~r !52pJ(
i
mi

r2r i
ur2r i u2

. ~A5!

Consider now the integral

E5
1

8p2JE d2r uEu2. ~A6!

Writing

uEu25V¹•E2¹•~VE!, ~A7!

and using the Gauss’s theorem and Eq.~A2!, we obtain

E5(
i
mi
2Ec2pJ(

iÞ j
mimj ln~ ur i2r j u/b!. ~A8!

Here

Ec5
J

2Eur u,b
d2r ur u22 ~A9!

is the ‘‘core energy’’ of a unit charge.@The divergence of
~A9! at small distances is cut off by the existence of a lat-
tice.# Note that, in the continuum,b is an arbitrary parameter
which does not influence the result~A8!.

As the second example we consider an expression for the
interaction energy between a set of chargesmi at r i and
quenched dipolesqj at Rj . Let E(r ) be the electric field
generated by all the charges, andEd(r ) be the field due to the
dipoles but excluding those within a distanceR from r . Con-
sider now the integral

E15
1

4p2JE d2rE•Ed . ~A10!

We now writeEd as a sum over the field due to individual
dipoles. Using again~A7! and the Gauss’s theorem sepa-
rately for eachj , we obtain

E15(
i
miVd~r i !1(

j
U j . ~A11!

HereVd(r ) is the potential due to dipoles outside a circle of
radiusR centered atr , and

Uj5
1

2pE0
2p

dfR•E~Rj1R!
qj•R

R2 , ~A12!

where R5R(cosf,sinf). Elementary calculation yields

Uj5
1
2 qj•E(Rj ). It follows that the second sum on the right-

hand side of~A11! is 2 1
2 times the first sum. Hence

E15
1

2(i miVd~r i !. ~A13!

Our final example concerns the fieldEQ inside a circle of
radiusR generated by a medium with a permanent polariza-
tion Q which fills the circle. To bypass an explicit calcula-
tion, we use the result that, in a uniform external fieldE0 ,
the field inside such a circle filled with apolarizablemedium
of dielectric constante1 is given by

E15
2e

e1e1
E0 , ~A14!

wheree is the dielectric constant of the medium outside the
circle. The polarization inside the circle is
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Q5(e12e)E1 /(2p), and the field it produces is
EQ5E12E0 . Using the above results, we obtain

EQ52~p/e!Q522p2JQ, ~A15!

which is uniform inside the circle.

APPENDIX B: FREEZING AND LONG TAILS
IN THE RANDOM ENERGY MODEL

As shown by Derrida,23 the freezing transition in the ran-
dom energy model can be understood as a switching of terms
which contribute most to the partition sum~3.4!. For
T,Tg , the lowest of theN energiesxi dominatesz, while
for T.Tg , typically a finite fraction of theN energies con-
tribute significantly toz. ~The word ‘‘typical’’ refers to
events which occur with a large probability, and ‘‘rare’’ re-
fers to events with a very small probability.! This can be
seen more explicitly as follows.

In a given realization of the disorder, the random energies
fall into a bandxmin<xi<xmax, where xmin5mini$xi% and
xmax5maxi$xi%. Introducing the integrated density of state,
N(x), which gives the number of levels withxi<x, one can
rewrite Eq.~3.4! as

z5exp~2xmin /T!1E
xmin

`

exp~2x/T!dN. ~B1!

The contribution from the lowest-energy level has been iso-
lated from the rest. When the total number of levels is large,
there are typically many levels in an intervaldx;T, so that
one may replacedN by its mean,

dN.Nc~x!dx. ~B2!

Equation ~B2! fails when N(x);1. This happens for
x,x0 , wherex0 is determined by the conditionN(x0)51.
From Eqs.~B2! and ~3.5! we get

x052~2s!1/2lnN1O~ lnlnN!. ~B3!

Substituting~B2! into ~B1!, and restricting the integral to
x.x0 , we obtain

z.exp~2xmin /T!1ztyp , ~B4!

where

ztyp5NE
x0

`

dxc~x!exp~2x/T!. ~B5!

It is easy to show that the typical value ofxmin is given by
x0 , while the typical value of the partition function is given
by

ztyp.exp~2^ f &/T!. ~B6!

Thus the contribution from the lowest-energy level toz be-
comes significant in atypical realization of the disorder only
whenT<Tg .

On the other hand, fluctuations ofz far away fromztyp
~say, z.2ztyp) are dominated by fluctuations ofxmin at all
temperatures. This is especially so forT,Tg , where the
fluctuations ofz are typically of orderztyp . To characterize
this behavior more precisely, let us consider the distribution

of xmin , denoted bycmin(x). For the minimum of theN
energies to be greater than a certain numberx, all N energies
must be greater thanx. Hence we have

E
x

`

dycmin~y!5F E
x

`

c~y!dyGN. ~B7!

For x!2AD, the integral on the right-hand side is very
close to 1, in which case one can write

cmin~x!52
d

dx
expF2NE

2`

x

c~y!dyG . ~B8!

For x,x0 , the argument of the exponential is less than 1,
and hence

cmin~x!.Nc~x!5
1

A2pD
expF S 12

x2

x0
2D lnNG . ~B9!

The distribution ofxmin gives us an idea about the high
end of the distribution of the partition functionz, where we
can write z.exp(2xmin /T). On a log-log plot, the local
slope of the distribution is essentially given by

z~z!5
dlncmin

dlnz
.

T

Tg

Tlnz

x0
, ~B10!

which is a slow-varying function ofz. This implies that the
distribution of z has a long tail. High moments ofz are
sensitive to the tail of the distribution. Using~B9!, we find

^zn&

^z&n
.H 1 for T.Tn ,

N~n21!@~Tn /T!221# for T,Tn ,
~B11!

where

Tn5n1/2Tg . ~B12!

The result agrees with an exact calculation by Derrida start-
ing from ~3.4!.

APPENDIX C: MEAN PAIR DENSITY
AND FLUCTUATIONS

The disorder average of the cell occupation numberW
can be calculated by expanding Eq.~4.5! as a power series of
ypzp for ypzp,1, and a power series of (ypzp)

21 for
ypzp.1. Denoting byP(z) the probability distribution of
zp , we obtain

^W&5 (
n51

`

~21!n21I 1~n!1 (
n50

`

~21!nI 2~n!, ~C1!

where

I 1~n!5yp
nE

0

1/yp
znP~z!dz, ~C2!

I 2~n!5yp
2nE

1/yp

`

z2nP~z!dz. ~C3!
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In principle, evaluation of the integralsI 1 and I 2 requires
full knowledge ofP(z), which we do not have at hand. On
the other hand, as we discussed in Appendix B, the large-z
tail of P(z) is due to fluctuations of the minimum energy
xmin . Thus for largez the substitution

P~z!dz→cmin~x!dx.Nc~x!dx, ~C4!

with z5exp(2x/T), yields a good approximation. The inte-
gral I 2 is now readily calculated. The result reads

I 2~n!.
N

2
yp

2nexpS n2D2T2 D F12erfXS nT1
1

T*
DAD

2
CG ,

~C5!

where erf(u)52p21/2*0
uexp(2x2)dx is the error function.

Here

T*[2D/~Tlnyp!, ~C6!

which coincides with~1.5! in the limit R→`.
The integralI 1(n) can be written as

I 1~n!5yp
n^zn&2I 2~2n!. ~C7!

To obtain its leading-order behavior, we need to examine
which part of the distributionP(z) contributes most to the
average^zn&. For T.Tn5n1/2Tg , the main contribution
comes from the central part ofP(z) aroundzp,typ, so that

I 1~n!.~yp^zp&!n. ~C8!

For T,Tn andT,nT* , the main contribution comes from
the tail ofP(z) at z.yp

21 . In this case, the two terms on the
right-hand side of~C7! almost cancel each other. The main
contribution to I 1 thus comes fromP(z) aroundz5yp

21 ,
where again the approximate expression for the tail of
P(z) can be used. This yields

I 1~n!.
N

2
yp
nexpS n2D2T2 D F12erfXS nT2

1

T*
DAD

2
CG .

~C9!

When Tn,nT* , the leading-order behavior switches from
~C8! to ~C9! at Tn , though ~C9! appears as a subleading-
order term in the temperature rangeTn,T,nT* . ~This is
due to the fact that, aroundT5Tn , ^zn& picks up significant
contributions fromz.zp,typ and from the tail atz.yp

21 .) On
the other hand, whenTn.nT* , there is an intermediate-
temperature rangenT*,T,Tn where I 1 is dominated by
contributions fromz betweenzp,typ and yp

21 . In this case,
I 1(n).yp

n^zn&, which essentially coincides with the expres-
sion ~C9!. For n51, ~C9! is valid at all temperatures.

A careful analysis of the above expressions is quite cum-
bersome, but the following observations are useful and suf-
fice for our purpose.

~i! Leading-order behavior. ForT.T* , ^W& is domi-
nated byI 1(1),

^W&.Nypexp~D/2T2!. ~C10!

In terms of parameters of the model, we have

^W&.2pexpS 2
2Ec

T D SRa D 422pK12psK2dR

R
. ~C11!

For T,T* , I 1(n) and I 2(n) all contribute. Using the as-
ymptotic expression erf(u).12p21/2u21exp(2u2) at large
u, we obtain

^W&.AS T

T*
D NT*

~2pD!1/2
exp~2D/2T

*
2 ! ~C12!

or, more explicitly,

^W&.AS T

T*
D S 2s

ln~R/a! D
1/2SRa D 42p/~2s! dR

R
. ~C13!

Here

A~u!5u (
n52`

`
~21!n

n1u
5

pu

sin~pu!
. ~C14!

The crossover from~C10! to ~C12! is not sharp, but occurs
over a temperature range of order

dT;T* @s/ ln~R/a!#1/2. ~C15!

@The apparent divergence ofA(T/T* ) at T5T* can be re-
moved by separating out the contribution fromI 1(1). This
procedure yields a full description of the crossover, which
we shall not elaborate here.# Note also that, sinceA(0)51,
^W& has a finite value atT50, proportional to the density of
cells with a negative ground-state pair energy. For smallT,
the excess density increases asT2.

~ii ! Correction to the leading-order behavior. For
T.T* , the right-hand side of Eq.~C12! appears as a cor-
rection to the leading-order behavior, Eq.~C10!. The diver-
gence ofA(T/T* ) at T5nT* signals switching of behavior
for I 1(n), and the corresponding crossover can be analyzed
in detail by isolating out the contribution from this term.
When the temperature window 2T*,T,T2 exists, there is
another correction term to~C10! from I 1(2).yp

2^z2&
.Nyp

2exp(2D/T2). All terms other than these two are shown
to be of order̂ W&2 or smaller. Since our treatment of the
pair-pair interactions is not accurate enough to produce the
coefficient of the^W&2 term, these high-order corrections
will not be considered.

The above analysis shows explicitly that a perturbative
calculation of^W& in yp is dangerous at all temperatures.
Even forT.T* , one encounters difficulties when the calcu-
lation is carried out to sufficiently high orders, though low-
order terms are well behaved. Such behavior is typical for a
function which has an essential singularity atyp50.

The calculation of̂W2& can be reduced to the calculation
of ^W& with the help of the identity

^W2&52yp
2

]~yp
21^W&!

]yp
. ~C16!

The right-hand side of the above equation can be evaluated
using Eqs. ~C10! and ~C12! in respective regimes. For
T,T* , the leading-order result is given by~4.10!. For
T.T* , the leading-order expression of^W& is proportional
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to yp and hence does not contribute to^W2&. Going back to
Eq. ~C1!, and keeping the lowest nonvanishing terms, we
obtain

^W2&.I 1~2!1BS T

T*
D NT*

~2pD!1/2
expS 2

D

2T
*
2 D ,

~C17!

where B(u)5(12u)A(u)1u/(u22). It is seen that, for
T.T* , ^W2& is smaller than̂ W& by a factor which de-
creases as a power law ofR. Equation~C17! also accounts
for the crossover regime aroundT5T* , and reduces to
~4.10! for T,T* .

APPENDIX D: VORTEX FREE ENERGY
IN THE ORDERED PHASE

Following the same idea as in the calculation of^W& in
Appendix C, we may rewrite~5.22! as

dFv.2
T

R2 S I 31 (
n51

`
~21!n21

n
@ I 1~n!1I 2~n!# D , ~D1!

where

I 35E
1/yp

`

~ lnyp1 lnz!P~z!dz. ~D2!

The discussion of Appendix C indicates that a possible
source of singularity comes from the termsI 1(n) at
T5Tn , where the argument of the error function in Eq.~C9!
undergoes relatively rapid change. A true singularity, how-
ever, appears only in the limitR→`. Since the statistical
weight of large pairs vanishes rapidly withR, the rapid
change ofI 1(n) at largeR may not produce a singularity in
Fv . The following calculation supports this idea.

In terms ofl5 ln(R/a), Eq. ~C9! can be expressed as

I 1~n!5pyp
nexp~2unl !@12erf~dnl

1/2!#dl, ~D3!

where
un52pnK2422psn2K2, ~D4!

dn52nTg /T22Tg /T* . ~D5!

Substituting~D3! into ~D1!, and integrating overl , we obtain
the contribution toFv from I 1(n),

Fv,1~n!.~21!nyp
nS pT

na2D @p/~2s!22#21/2

dn1@p/~2s!22#1/2
. ~D6!

In deriving the above equation, we have neglected a weak
dependence of the parameterss andK5J/T onR, which is
justified asymptotically in the ordered phase. It is clear from
~D6! that the free energy has no singularity atdn50 or any
other point in the ordered phase for anyn.
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