
Spin diffusion in one-dimensional antiferromagnets

B. N. Narozhny
Department of Physics, Rutgers University, Piscataway, New Jersey 08855

~Received 15 January 1996!

We study the problem of spin diffusion in magnetic systems without long-range order. We discuss the
example of the one-dimensional spin chain. For the system described by the Heisenberg Hamiltonian we show
that there are no diffusive excitations. However, the addition of an arbitrarily small dissipation term, such as
the spin-phonon interaction, leads to diffusive excitations in the long-time limit. For those excitations we
estimate the spin-diffusion coefficient by means of the renormalization group analysis.@S0163-
1829~96!01330-6#

I. INTRODUCTION

Spin dynamics in magnetic systems without long-range
order is a longstanding problem. It has been assumed1–4 that
in the high temperature limit, where no long-range order is
present, the microscopic spin fluctuations are governed by
the classical diffusion equation, i.e., that at small frequencies
and momenta the retarded spin-correlation function has a dif-
fusive pole1
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whereD is the diffusion constant andZ is the residue.
Although the idea of spin diffusion is quite common, we

are not aware of any theoretical approach, within which one
has actually derived the correlation function Eq.~1!, starting
from the nearest-neighbor Heisenberg Hamiltonian

HH5(
i
JiSW i•SW i11 . ~2!

On the contrary, recent computer simulations have given
us reason to question these assumptions. In particular, it was
found that the usual hydrodynamic assumptions break down
in one dimension, so that the asymptotic behavior of the
spin-spin correlation function deviates from the predictions
of the classical diffusion theory~see Ref. 5 and references
therein!.

In this paper we present a technique which allows for a
direct calculation of the spin correlation function for a one-
dimensional ~1D! spin-1/2 Heisencberg chain of infinite
length. At any nonzero temperature the chain is in a disor-
dered state with exponentially decaying spin-spin correla-
tions, and even atT50 the correlations decay as a power
law, so there is no true long-range order~where the correla-
tion function would be constant in the long-time limit!. We
show that in one dimension it is impossible to derive the
diffusive form of the spin-spin correlation function Eq.~1!
from the Heisenberg Hamiltonian Eq.~2! without any kind
of additional dissipation mechanism, in agreement with the
prior expectations based on the results of the scaling theory.6

We also present a general argument supporting this result.
We show then that, if one takes into account an additional

dissipation, for example due to spin-phonon interaction
~which is always present in any real system at finite tempera-
ture!, then the renormalization-group approach leads to the
correlation function Eq.~1! in the long-time asymptotic.

Our results could be applied to materials like KCuF3 ,
CuSO4 5H2O, Sr2CuO3. In a broad temperature range they
are nearly ideal 1D antiferromagnetic chains with the cou-
pling constantJ ranging from 1.45 K in CuSO4 5H2O ~Ref.
2! to 190 K in KCuF3 ,

7,8 and 2600 K in Sr2CuO3.
9 The

diffusion equation was successfully used in a number of ex-
perimental papers to fit the data and explain the results of the
experiments.2,3 This approach was also confirmed by com-
puter simulations.4

The rest of this paper is organized as follows. In Sec. II
we briefly review the mapping of the spin system onto 1D
fermions. In Sec. III we map the fermions onto a boson sys-
tem, justifying the bosonization procedure at finite tempera-
tures. Section IV gives the calculation, which shows the ab-
sence of spin diffusion in the Heisenberg model Eq.~2! and
presents some general qualitative arguments supporting this
conclusion, based on the theory of the sine-Gordon equation.
Section V discusses the spin-phonon interaction and its
renormalization. Section VI contains conclusions and a dis-
cussion of results. The details of the calculations are pre-
sented in the Appendixes.

II. FERMION MODEL

In this section we review the well-known procedure of
mapping the Heisenberg model Eq.~2! on a system of spin-
less fermions,10 and establish the notations. The spin model
Eq. ~2! can be transformed into a model of spinless fermions,
noting that operatorsSi

1 andSi
2 anticommute. The Jordan-

Wigner transformation then relates spin to fermion operators
(a

i
,ai

†) via
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When transforming the Hamiltonian Eq.~2! the spin-flip
terms give rise to the motion of the fermions~kinetic energy
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in the fermion Hamiltonian! andSi
zSi11

z interaction leads to a
fermion-fermion interaction between adjacent cites. Since
Sz is quadratic in fermion operators, the interaction between
fermions is the four-particle interaction. Since the original
spin model was formulated on a lattice, all possible types of
four-fermion interaction are present, including the umklapp
term.

The 1D fermion models are often treated using
bosonization.11,12 In the case of massless fermions with four-
fermion interaction with small momentum transfer it allows
an exact solution. It is shown in the thermodynamic limit that
the system can be mapped onto a system of free bosons. The
propagator of a free boson has a pole atv5ck and therefore
corresponds to the particle, propagating without dissipation,
so that this interaction cannot lead to any significant change
in the long-time dynamics of the system. Therefore the only
source of dissipation might be interaction with large momen-
tum transfer, such as the umklapp term.

The treatment of the umklapp term is much more compli-
cated, because in boson language it corresponds to a highly
nonlinear term, namely, cos(2bf) @wheref(x,t) is the bo-
son field and the numberb is a parameter of the transforma-
tion, depending on the fermion interaction with small mo-
mentum transfer#. This term does not conserve momentum
and is only marginally irrelevant, so atT.0 it might lead to
some additional dynamics. Thus we should investigate the
impact of that term on the long-time fermion~and thus spin!
dynamics, disregarding all other possible four-fermion inter-
action terms. Sections III and IV present the results of this
investigation.

Since we are interested only in the low-energy behavior
of the system, we can linearize the fermion kinetic energy,
thus allowing an exact bosonization. Therefore our model
Hamiltonian is

Hm5vF(
k

@~k2kF!cR
†c

R
1~2k2kF!cL

†c
L
#

1V( ~c
R
c
R
cL
†cL

†1 H.c.!, ~4!

wherecR(L) is the operator of a ‘‘right’’~‘‘left’’ ! mover. The
quantity we are interested in here is the density-density cor-
relation function, which corresponds to the^Si

zSj
z& correlator

in the spin problem. We shall now investigate whether the
long-time asymptotic of this correlator has the diffusive
form, Eq. ~1!.

III. BOSONIZATION

As mentioned above our main technical tool will be
bosonization. The procedure is well established in 1D at zero
temperature. We consider finite temperatures, and we look
for the long-time asymptotic of the spin-spin correlator. It is
quite difficult to obtain the results in that limit in the Mat-
subara technique, since the analytic continuation from the
Matsubara frequenciesvn to real frequencies much less that
the inverse temperature would require a precise knowledge
of the Green’s functions on the infinite range ofvn , which is
usually not the case in perturbation theory. Therefore we
have to resort to the Keldysh technique,13 which incorporates
finite temperatures and a real-time representation. In this sec-

tion we construct the bosonisation procedure for the Keldysh
technique and then confirm its correctness by comparing the
results of the perturbation theory for bosons and fermions.
The fermion and boson Green’s functions in a space-time
representation, which we are using in our calculations, are
presented in Appendix A.

Thirty years ago Keldysh has presented a field-theoretical
technique to calculate the real-time correlation functions of a
quantum system. To allow the treatment of advanced and
retarded correlators, Keldysh introduced the time contourC
~Fig. 1! with the upper branch going in positive direction
from 2` to 1` and the backward lower branch. All the
operator products are now time ordered along the contour
C. To distinguish particles on the upper and lower branches
of the contour, the fermion field operatorcg is given an
index g, which equals 1 on the upper branch and 2 on the
lower. Green’s functions become 232 matrices with respect
that index.

In a one-dimensional fermion problem we have four dif-
ferent operatorscg

L(R) — left and right movers on both
branches of the contour. Since operators on each separate
branch are completely analoges to the zero-temperature op-
erators, we can proceed with the bosonization separately on
each branch in exactly the same way as atT50. Thus we
introduce two boson fieldsfg ~one for each branch!, which
we shall treat as two components of the Keldysh field. The
resulting bosonized Hamiltonian will thus be formulated in
the Keldysh technique also.

The left- (fg
L) and right- (fg

R) moving bose fields ex-
pressed viafg and its canonically conjugatePg ,

fg
L~R!~x!5

1

2 Ffg~x!7E
2`

x

Pg~x8!dx8G
56E

0

` dp

2pA2upu
e2aupu@fg~p!eipx1H.c.#. ~5!

As in the usual procedure,fg
L(R) are functions of only

(x7t).
The fermion operators are constructed in analogy with the

zero-temperature case,

cg
L~R!;

1

Aa
exp~6 ibfg

L~R!!, ~6!

whereb254p, and the upper sign corresponds to the left
mover.

The commutation relations between fermion fields hold
for exactly the same reason11 as atT50. The fact that we
have a different time contour~the Keldysh contourC as
opposed to the usual time axis! does not change the calcula-
tion, for the integrals involved in Eq.~5! are over space
coordinates, and the Bose fields commute no matter which

FIG. 1. Keldysh time contour.

3312 54B. N. NAROZHNY



branch of the time contour they are on. Another way of say-
ing this is that the Keldysh operators on different branches
still correspond to the same particle. Dividing the time con-
tour into two parts is a matter of mathematical convenience
rather than physical distinction.

The cutoff a is a lattice spacing, and so should be the
same for both bosons and fermions. The operator equality
Eq. ~6! means that any correlation function~in the limit
a→0), calculated in the Fermi theory with the cutoffa is
reproduced in the bosonic theory with the same cutoff if the
fermion operator on the left-hand side is replaced by the
bosonic operator on the right-hand side of Eq.~6!. Using this
operator equivalence we can construct the boson Hamil-
tonian from the fermion Hamiltonian Eq.~4!. The fermion
kinetic energy corresponds to that of bosons. The umklapp
interaction term gives rise to the cosine interaction of the
boson field. The conjugate operatorsP1 andP2 cancel out,
so the interaction is a function only of the boson fieldsf1

andf2 itself, as it is in the zero-temperature bosonization.
The interaction constantV now acquires the factor 1/a2 from
the prefactor in Eq.~6!. The boson Hamiltonian therefore is

HB5~]mf!21V8cos2bf. ~7!

whereV85V/a2.
Due to the special form of the interaction (cos2bf), it is

most convenient to formulate the Keldysh technique in the
path integral representation, developed by Schmid.14 The bo-
son action for our model is

A5E dx dt@fg*Bgn
f

n
2V8~cos2bf

1
2cos2bf

2
!#,

~8!

wheref
1
andf

2
are the two components of the Keldysh

boson field, andg andn denote Keldysh indices.B
mn

is the

kinetic operator, so that the inverseBmn
21 is proportional to the

boson Green’s function in the Keldysh basis

Bmn
2152 i S D11 D12

D21 D22D . ~9!

We shall later use these functions in the space-time represen-
tation ~see Appendix A!.

The fermion density in the conventional bosonization is
represented by the spatial derivative of the boson fieldw,

r5
1

Ap
]1w. ~10!

Here in the same manner we write the fermion density op-
erators. The density-density correlators are represented by
functional integrals in which the preexponential is some lin-
ear combination of the spatial derivatives of the Bose fields
corresponding to that particular correlator. The advanced
correlator is

^rr&A5P~x12x2!

5
1

ZE D@f1 ,f2#]1fa* ~x1!tab]1fb
~x2!exp~2A!,

~11!

where the density vertextab is

tab5
1

p S 1 21

1 21D . ~12!

We now check, following the approach of Shankar,12 that
the above construction yields correct results in perturbation
theory. The density-density correlation function for noninter-
acting fermions should be calculated separately for the
‘‘left’’ and ‘‘right’’ movers, and the results should be added.
That gives, for the advanced correlator,

P05
2

p

q2

v22q222idv
, ~13!

whered is infinitesimately small. In the next order we have
two topologically nontrivial diagrams given in Fig. 2 Again
we have to repeat the calculation for the ‘‘left’’ movers and
add the results with proper combinatorial factors. For sim-
plicity here we give only the imaginary part of the first-order
correction, which for us is most important:

ImP15
V2

2p2

q2

v22q2
vT

v22q2
. ~14!

The next order of perturbation is discussed in Sec. IV.
We now turn to a calculation of the same perturbation

series on the boson language. In the noninteracting case we
have to calculate a simple Gaussian integral, which in mo-
mentum space gives

P0~v,q!5
2

p
q2DA~v,q!5

2

p

q2

v22q222idv
, ~15!

which is the same as Eq.~13!. DA(v,q) is the advanced
boson Green’s function, connected to the original Keldysh
basis via

DA5D222D12. ~16!

We now expand the exponent in the integral Eq.~11! in
the series inV8. In the first nontrivial order we get

FIG. 2. First-order corrections to the fermion density-density
correlator.
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P1~x12x2!5V82E d2y1d
2y2

1

ZE D@f1 ,f2#]1fa* ~x1!tab]1fb
~x2!expS 2E dxdtfm*Bmn

f
n
D @cos2bf

1
~y1!

2cos2bf
2

~y1!#@cos2bf
1

~y2!2cos2bf
2

~y2!#. ~17!

Since the cosines contribute the linear terms in the expo-
nent, the integral is still Gaussian with the same prefactor of
the exponent. This feature will remain in all higher orders of
the perturbation series. We shall discuss the calculation of
that integral in more detail due to its importance for the later
arguments. In the first-order integral Eq.~17! we have four
different terms of the same type, arising from the cosines. In
the exponent they have combinations like
2b@f

1
(y2)2f

2
(y1)# with all possible permutations of indi-

ces. To calculate the functional integral we make the Fourier
transform of the Bose fields. We perform the transform in the
most general way, since the same expressions will appear
later. As we show below, in any order of the perturbation
theory we shall need to calculate averages of the form

K ]1fa* ~x1!tab]1fb
~x2!

3expS E d2k

~2p!2
~r !Im* ~k,yi !fm

~k!1H. c.D L . ~18!

For the first-order integral Eq.~17!, we find four different
factors (r )Im* (k):

S ~1!I 1* ~k,yi !
~1!I 2* ~k,yi

D 5S ibeiky1

2 ibeiky2D , S ~2…I 1* ~k,yi !
~2!I 2* ~k,yi !

D 5S 2 ibeiky2

ibeiky1 D
S ~3!I 1* ~k,yi !

~3!I 2* ~k,yi !
D 5S ib~eiky12eiky2!

0 D ,
S ~4!I 1* ~k,yi !

~4!I 2* ~k,yi !
D 5S 0

ib~eiky12eiky2! D . ~19!

Completing the square in the exponent, we calculate the
functional integral in Eq.~17! and apart from the numerical
factor, in momentum space we get

P1~v,q!;E d2kkqE ) d2yi(
$r %

~r !Im* ~q,xi !Bma
21~q!

3tabBbn
21~k!~r !I

n
~k,xi !K1~yi !, ~20!

where

K1~yi !5expS E d2k8

~2p!2
~r !I g* ~k8,yi !Bgd

21~k8!~r !I d* ~k8,yi ! D ,
~21!

and the sum is over four different factors(r )I
n
(k,yi) corre-

sponding to the four different terms of type~18! in the first
order integral Eq.~17!.

Here the integration measure)d2yi is equal to
dy1dt1dy2dt2 . All dependence on these variables is con-
tained in the factors(r )Im* (k,yi). These factors are nothing

but exponentialsbeiky with different signs. Therefore the
integral in the exponent in Eq.~21! is just the Fourier trans-
form of the boson Green’s function back from momentum
space to the real space. The boson functions in real space are
logarithms, so all four exponentsK1(xi) can be evaluated.
All four have the same structure,

K1~y5y12y2!5
f ~y,t !

S~y,t !
, ~22!

where

S21~y,t !5
~pTa!4

sinh2pT~y2t !sinh2pT~y1t !
, ~23!

while f (y,t) is some algebraic function which has no poles.
In the long-time asymptoticK1(y,t) acts like a derivative of
a d function. It has@due to the denominator Eq.~23!# a sharp
singularity aty,t50, and decays very fast as the variables
go away from that point. Therefore the integral overy,t is
dominated by the small region of sizea around the origin.
The remaining spatial integration over the sumy11y2 in-
volves only functions(r )Im* (k,yi) from the prefactor, since
K1(yi) depends only on the difference of the variablesy1
and y2 . Since

(r )Im* (k,yi) are exponentials, the integral is
easily evaluated to yieldd(k2q), which solves the momen-
tum integration. So after the summation over all four terms
we get the result Eq.~14!, as expected.

The next orders of the perturbation series, which we dis-
cuss in Sec. IV, could be calculated in the same manner, and
are also the same for the boson and the fermion formulations
of he theory. The bosonization procedure is thus justified.

IV. ABSENCE OF DIFFUSION
FOR THE HEISENBERG MODEL

Although the boson and fermion versions of the theory
are completely equivalent and should give the same results in
the perturbation theory, the bosonized version allows an
easier evaluation or the higher orders of the perturbation
theory. Indeed, all higher-order corrections differ from the
first order Eq.~17! only by the appearance of additional co-
sine brackets~and corresponding spatial integrations!. This
means that in any order of perturbation we have to calculate
averages of the form Eq.~18!. The functions(r )Im(k,xi) will
be now sums of exponentials, for example, in the next order
of perturbation we will have terms like

~r !Im~k,xi !5b@eikx12eikx21eikx32eikx4#, ~24!

similar to the first-order factors Eq.~19!, but constructed
from four different exponentials. We can still perform the
functional integration and get the same general formula Eq.
~20!. Since functions(r )Im(k,xi) are exponentials, the inte-
gral in the exponent in Eq.~20! still yields the boson Green’s
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functions in the space-time representation, but now instead
of one such a function as in the first order we have a sum of
them. In the second order we shall get

K2~x1 , . . .x4!5
S~x22x3!S~x12x4!

S~x12x2!S~x12x3!S~x22x4!S~x32x4!

3 f 2~x1 , . . . ,x4!, ~25!

whereS(x) is the ‘‘singular’’ denominator, defined in Eq.
~23!.

In higher orders functionsK have the same structure, but
with more factorsS(x) in the numerator and denominator.
These factors have the same singular behavior as described
in Sec. III. Therefore the integration over multidimensional
space will be dominated by the regions where the two pairs
of variables are almost equal to each other, for example
x15x2 and x35x4 . The integration over one such pair ef-
fectively reduces the function Eq.~25! to the form of the
previous order Eq.~22! ~in the long-time asymptotic!. One
can see it by inspecting Eq.~25!. Consider, for instance, the
contribution from the regionx15x2 . In this region
K2;S21(x12x2)S

21(x32x4), so the integral overx2 leads
to the same form@;1/S(x32x4)#, which is the main part of
the first-order functionK1 , Eq. ~22!. The integration over
x3 andx4 is then the same as in the first order . Therefore the
spatial integration in in the higher-order terms does not yield
any additional singularity to that produced by the prefactor
of the exponent, which is the same as in the first order Eq.
~20! and contains just two boson Green’s functions. So the
structure of any term in the perturbation series is

ImP1~v,q!;P
vq2

~v22q2!2
g~v,q!. ~26!

Hereg(v,q) is some function, which has no poles at small
v,q. We note that ImP1(v,q) differs from the first order
Eq. ~17! only by g(v,q), andP denotes the principal value.

Combining our conclusions, we can write down the struc-
ture of the density-density correlation function in our model,

P~v,q!5
2

p

q2

v22q212idv
1 i

vTq2

~v22q2!2
g~v,q,V!.

~27!

The significance of this result for us is in the fact that the
higher-order corrections do not acquire additional poles in
the imaginary part, which could sum up in a diffusive pole in
P(v,q).

The fermion perturbation theory gives the same results in
the low orders of the perturbation. In the second nontrivial
order we have six topologically different diagrams, presented
in Fig. 3. Our purpose is to show that the correction to the
density-density correlation function, which is the sum of
these diagrams, is not qualitatively different from the first-
order result. The only diagrams that produce the extra pole
are the diagramsa and b in Fig. 3. These singular terms
cancel out exactly, so that the second-order correction has a
pole of the same order as the first-order one. This cancella-
tion seems to be an accidental property of the problem in the
fermion representation, but the bosonization approach shows
that it happens in all orders of perturbation theory.

Our results clearly show the absence of spin diffusion in
the Heisenberg model. Instead of the diffusive pole in the
density-density correlation function we found some kind of a
propagating behavior. Note that the second-order pole in Eq.
~27! should be regarded as a principal value, so the imagi-
nary part of the general susceptibilities does not contain un-
physical contributions proportional tod2(v22q2). This re-
sult should have been expected. In the boson representation
our problem is essentially the sine-Gordon model. It is
known in the theory of the sine-Gordon equation that due to
the infinite number of conserved charges the excitations of
the model are propagating andnot diffusive. So by showing
the mapping of the Heisenberg model onto the sine-Gordon
model we have showed the absence of spin diffusion in the
model Eq.~2!.

V. SPIN-PHONON INTERACTION

The Heisenberg model Eq.~2! does not exactly describe
the physics of a real material. We now try to make it a bit
more realistic. Even in the absence of disorder, at finite tem-
peratures there always are phonons in the system. The ex-
change integral depends in general on the instantaneous
separation of magnetic ions. We consider the linear approxi-
mation for spin-phonon coupling. That is, we expand the
separation-dependent Heisenberg coupling constant to the
first order in ionic displacementu(Ri),

J~r i2r j !5J0~Ri2Rj !1x@u~Ri !2u~Rj !#, ~28!

where Ri is the equilibrium position of the ion and
r i5Ri1u(Ri). That leads to the simplest form of the spin-
phonon interaction Hamiltonian,

Hsp-ph5J8(̂
i j &

SW iSW j~bi
†1b

i
!. ~29!

FIG. 3. Second-order corrections to the fermion density-density
correlator. The terms with the third-order pole exactly cancel.
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We shall now try, treating interaction Eq.~29! as a small
perturbation of the original Hamiltonian Eq.~2!, to examine
its impact on the long-time spin dynamics. To do that we
first bosonize Eq.~29!. We get

Hb-ph5J8(
k

ufku2~bk
†1b

k
!. ~30!

The boson self-energy in the first nontrivial order inH b-ph is
presented by the diagram on Fig. 4. The solid line represents
a boson, and the dashed a phonon. For the imaginary part we
are interested in we get

ImS~v,q!5H hvqvF if q.T

hvT if q,T, ~31!

where restoring the unitsh;(J8/c)2 and c is the speed of
sound. The momentum dependence of ImS(v,q) arises due
to the momentum in the numerator of the phonon Green’s
function

Dph~v,q!5
c2q2

v22c2q21 idv
, ~32!

whered is infinitesimally small. Note that although we con-
sider a 1D spin chain, the phonons in a real material are three
dimensional, so when evaluating the self-energy Eq.~31! one
must integrate out the two other components of the phonon
momentum.

We shall now investigate how the umklapp term renor-
malizes this self-energy. We now divide the boson field into
‘‘slow’’ and ‘‘fast’’ parts, separated by some cutoffk0 . We
integrate out all ‘‘fast’’ degrees of freedom~those with mo-
mentum larger than the cutoff! and see how the imaginary
part of the boson self-energy~namely, the coefficienth)
changes with the cutoff. The result is that when the cutoff is
larger than the temperatureT, h rises as some power of the
cutoff. But after the cutoff becomes smaller than the tem-
perature, the imaginary part grows exponentially. This means
that at large distances the motion becomes diffusive. We
notice that this should happen in any experimental situation,
because it is just the existence of the spin-phonon interaction
~no matter how small! that is responsible for the diffusion.

After we introduce the ‘‘slow’’ and ‘‘fast’’ variables as

f
m

5fm
s 1fm

f , ~33!

the integral Eq.~11! is then

P~x12x2!5
1

ZE D@f1
s ,f2

s#D@f1
f ,f2

f #

3]1fa
s* ~x1!tab]1fb

s ~x2!exp~2A!, ~34!

where the prefactor contains only slow degrees of freedom
since we are looking for the infrared asymptotic. We can
separate the integral over fast variables, and the density in-
tegral now becomes

P~x12x2!5
1

Z8
E D@f1

s ,f2
s#]1fa

s* ~x1!tab]1fb
s ~x2!

3expS E d2k8

~2p!2
@fm

s*B
mn

fn
s# Dexp~ lnM !,

~35!

whereM is the integral over the fast variables, which in the
first nontrivial order in perturbation is a Gaussian integral
without any prefactor,

M5
V82

2 E D@f1
f ,f2

f #expS E d2k8

~2p!2
@fm

f*B
mn

fn
f # D

3E d2x1d
2x2$cos2b@f1

s~x1!1f1
f ~x1!#

2cos2b@f2
s~x1!1f2

f ~x1!#%$cos2b@f1
s~x2!1f1

f ~x2!#

2cos2b@f2
s~x2!1f2

f ~x2!#%. ~36!

In the functional integral Eq.~35!, lnM plays the role of
renormalization of the imaginary part of the kinetic operator.
Now we calculate the functional integral and expand the re-
sult in the boson fieldsf i

s to get their bilinear combination,
which gives the renormalization ofh. We get

M5
~V8b!2

4 E d2x1d
2x2@fa

s ~x1!Rab~x12!fb
s ~x2!#,

~37!

where as usualx125x12x2 . The elements of the matrix
Rab(x) are the exponentials of the boson Green’s functions
in the space-time representation. They are presented in Ap-
pendix B, where we give the detailed renormalization calcu-
lation. The boson Green’s functions entering the matrix
Rab(x12) are now different from those in Appendix A, due
to the self-energy Eq.~31!. The retarded function in the mo-
mentum space is now

DR~v,q!5
1

v22q21 i ImS~v,q!
~38!

and the corresponding functionsDA(v,q) andDF(v,q) ac-
quire the same self-energy. Note thatRab(x12) is expressed
via boson Green’s functions in the unrotated Keldysh basis.
However, the coefficienth is easier to extract from the
Green’s functions in the rotated Keldysh basis Eq.~52!. The
elementRR of the matrixRab in the rotated basis which
corresponds to the renormalization of the retarded function is

RR5 1
2 @R11~x!2R22~x!2R12~x!1R21~x!#. ~39!

FIG. 4. Boson self-energy eiagram. The solid line denotes the
boson propagator, and the dashed line denotes the phonon propaga-
tor.
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If the cutoff is large,vFk0.T, this yields, after the Fourier
transform,

RR5 iv
h

k0
3 expS 2

b2

2p
lnk0a D , ~40!

so that the change inh is

Dh5h
V2

4~k0a!6
, ~41!

since b5A4p. Here as always,a is the lattice spacing
which cutsoff the large momentum integration. So here we
have a power-law rise inh. When the cutoff is less that the
temperature, we get an exponential renormalization:

Dh5hTexpS 4 T

vFk0
D V2

4~k0a!4
. ~42!

HerehT is the effective damping at scalesvFk0;T. That
means that, on scales of momenta less than the temperature,
the imaginary part coefficienth grows very rapidly, and we
immediately get the diffusive dynamics. The
renormalization-group treatment breaks down when the cor-
rection Eq.~42! becomes of the order of unity. That deter-
mines the length scales, where the dynamics becomes diffu-
sive. The mean free path is

l;
vF
T
ln~h0V

2!, ~43!

whereh0 is the original value of the coefficienth, propor-
tional to the spin-phonon coupling constant@Eq. ~31!#.

The estimate of the mean free path allows us to estimate
the diffusion coefficient asD5 lvF , so that

D;
vF
2

T
lnS J8Vc D . ~44!

VI. CONCLUSIONS

We now briefly review our results. We started from a 1D
Heisenberg Hamiltonian Eq.~2!. Our goal was to calculate
the spin-spin correlation function at long times and nonzero
temperature. and check whether or not it had a diffusive pole
Eq. ~1! in some region in phase space. To perform such a
calculation we mapped our original problem onto 1D ferm-
ion model Eq.~4! using the Jordan-Wigner transformation
Eq. ~3!. We used the usual diagrammatic technique to calcu-
late a few first orders of the perturbation theory~shown in
Figs. 2 and Fig. 3!. In order to go beyond that simple ap-
proximation we bosonized the fermion model. To get the
long-time asymptotic of the spin-spin correlator, we had to
combine bosonization with the Keldysh technique, which al-
lows one to calculate real-time correlation functions at finite
temperatures without any need of analytic continuation.

The bosonization procedure allowed us to find the general
form of higher-order corrections, and to sum up the pertur-
bation series. It turned out that in each order of perturbation
the correction to the spin-spin correlator had the same form
Eq. ~26!; therefore we concluded that the exact spin-spin
correlation function does not acquire a diffusive pole from

the summation of the perturbation series. This result is also
known in the theory of the sine-Gordon model~which coin-
cides with our boson model!, where it has been found that
due to the infinite number of conserved charges excitations
are propagating and not diffusive.

We also check whether these results~the absence of spin
diffusion in the perturbation theory! are robust with respect
to small dissipation effects present in real physical systems.
Specifically, we considered the effect of a weak spin-phonon
interaction Eq.~29!. We mapped the full problem~including
the spin-phonon interaction! to the bosonic model. We found
that the interaction with phonons leads to the boson self-
energy Eq.~31!, the imaginary part of which is proportional
to the constanth at small momenta. Further, we applied the
renormalization-group analysis; we integrated out ‘‘fast’’ de-
grees of freedom, and showed that this constanth grows
moderately while the cutoff is larger than the temperature
@Eq. ~41!#, but grows exponentially after the cutoff becomes
smaller than the temperature@Eq. ~42!#. At scales where the
imaginary part of the spin-spin correlator becomes of the
order of the real part the spin dynamics becomes purely dif-
fusive. By associating the mean free path with the scale on
which the renormalization procedure breaks down@namely,
the renormalization Eq.~42! becomes of the order of unity#
we estimate the diffusion coefficient Eq.~44!. Restoring the
original units and estimating the spin-phonon coupling con-
stant J8 from the expansion of the exchange integral Eq.
~28!, we have

D;
p2~Ja!2

\kBT
lnS Ja

\cD . ~45!

wherea is the lattice spacing andc is the speed of sound.
Thus we found that the presence of the spin-phonon interac-
tion changes the long-time behavior of the spin-spin correla-
tor, which becomes diffusive.

After this work was completed we learned about the dy-
namical NMR study on the 1D spin chain Sr2CuO3.

15 The
data suggest the presence of weak spin diffusion in the chain,
with the diffusion coefficient much larger than the classical
expectation (J/\)A2pS(S11)/3, which is consistent with
the estimate Eq.~45! ~in the experimentT,,J). Unfortu-
nately the temperature dependence turns out to be very dif-
ficult to measure, although the data suggests thatD tend to
increase when temperature is decreasing.

ACKNOWLEDGMENTS

The author is greatly indebted to Professor L. Ioffe for
drawing his attention to the spin-diffusion problem, and for
most stimulating discussions.

APPENDIX A

We present here the boson and fermion Green’s functions,
which we use in our calculations. It is the certain similarity
between them that inspired the bosonization. As in the usual
zero-temperature bosonization we need the Green’s functions
in the space-time representations. We perform the bosoniza-
tion on the original Keldysh basis, but for simplicity here we
calculate Green’s functions on the rotated basis and then
transform them back.
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The retarded fermion Green’s function in the momentum
space is

GR~e,k!5
1

e7k1 i0
, ~A1!

where ‘‘-’’ is for the ‘‘left’’ and ‘‘ 1’’ for the ‘‘right’’ mov-
ers. For the simplification of the formulas the Fermi velocity
is set equal to unity. The Fourier integral, which one has to
calculate in order to transform the function Eq.~A1! real
space, is formally divergent at large momenta. As usual in
1D calculations we introduce a cutoffa by adding the expo-
nente2auku to the integral. Thus we have

GR~x,t !5E de dk

~2p!2
eikx2 i et

1

e7k1 i0
e2auku. ~A2!

Now we have a perfectly converging integral and get

GR~x,t !52
u~ t !

2p

2ia

~x7t !21a2 , ~A3!

where

u~ t !5H 1 i f t.0

0 i f t,0

Similarly, the advanced function is

GA~x,t !5
u~2t !

2p

2ia

~x7t !21a2 ~A4!

The third Keldysh function in this basis for the right movers
in momentum space is

F~e,k!522p i tanh
k

2T
d~e2k!. ~A5!

The Fourier integral is converging, and we get

F~x,t !5
T

sinhpT~x2t !
. ~A6!

The function for the left movers has a sign opposite to that of
the time variable. To be more careful with the pole one has
to addia to the space coordinate in Eq.~A6!.

That completes the calculation of the fermions Green’s
functions in the rotated Keldysh basis,

Grot5S 0 GR

GA F D . ~A7!

To return to the original basis which is needed for
bosonization, one has to perform the rotation

G5S G11 G12

G21 G22D 5RGrotR
21, ~A8!

where the rotation matrix is given by

R5
1

A2 S 1 1

21 1D . ~A9!

We now calculate the boson functions. We start again
with the rotated basis. The retarded Green’s function in the
momentum space is

DR~v,q!5
1

v22q212idv
. ~A10!

Again we have to introduce the cutoffa. It is essential for
purposes of bosonisation to do it in exactly the same way as
for the case of fermions, Eq.~A2!. That way we get

DR~x,t !52
i

4p
u~ t !ln

~x2t1 ia!~x1t2 ia!

~x2t2 ia!~x1t1 ia!
.

~A11!

For the advanced function we get the same logarithm,

DA~x,t !5
i

4p
u~2t !ln

~x2t1 ia!~x1t2 ia!

~x2t2 ia!~x1t1 ia!
.

~A12!

The third function in this basis,DF , containsd function, as
does its fermion counterpart Eq.~50!,

DF~v,q!52
ip

v
coth

v

2T
@d~v2q!1d~v1q!#,

~A13!

but we have to introduce the cutoff here. In real space we get

DF~x,t !5
i

2p
ln

~pTa!2

sinhpT~x2t !sinhpT~x1t !
, ~A14!

where the zeros of the denominator should be treated in ex-
actly the same way as in the fermion case@see the text after
Eq. ~A6!#.

One can clearly see that the fermion functions and the
arguments of the logarithm in the boson functions are con-
structed from the same elements. That is why the bosoniza-
tion works. To get exactly the same results in the fermion
and boson perturbation series we have to turn to the original
Keldysh basis Eq.~A8! and calculate physical quantities like
the density-density correlation function, which is indepen-
dent of Keldysh indices and therefore of the choice of the
calculational technique. Then the boson and fermion ver-
sions are the same in the limita50 ~the physical quantities
should not depend on that cutoff!.

APPENDIX B

We start from the functional integral for the density-
density correlation function Eq.~11!, where the kinetic term
now contains the nonzero imaginary part Eq.~31!. We are
interested in the infrared asymptotic of that correlator. There-
fore we divide the boson fieldfm into two part — ‘‘fast’’
and ‘‘slow,’’

f
m

5fm
s 1fm

f . ~B1!

The integral Eq.~11! then becomes

P~x12x2!5
1

ZE D@f1
s ,f2

s#D@f1
f ,f2

f #]1fa
s*
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3~x1!tab]1fb
s ~x2!exp~2A!, ~B2!

where the prefactor contains only slow degrees of freedom
since we are looking for the infrared asymptotic. We can
separate the integral over fast variables as

I5
1

Z9
E D@f1

f ,f2
f #expS E d2k8

~2p!2
@fm

f*B
mn

fn
f

2V8~cos2bf1
scos2bf1

f 2sin2bf1
ssin2bf1

f

2cos2bf2
scos2bf2

f 1sin2bf2
ssin2bf2

f !# D . ~B3!

The density integral becomes now

P~x12x2!5
1

Z8
E D@f1

s ,f2
s#]1fa

s* ~x1!tab]1fb
s ~x2!

expS E d2k8

~2p!2
@fm

s*B
mn

fn
s# Dexp~ lnM !,

~B4!

where lnM plays now a role of renormalisation of the imagi-
nary part of the kinetic operator.

We now calculate the integral over the fast degrees of
freedom, Eq.~62!. We expand the exponent in Eq.~62! up to
the first nontrivial order in perturbation~which is actually all
we need, noting the results of Sec. IV! and get the Gaussian
integral without any prefactor,

M5
V82

2 E D@f1
f ,f2

f #expS E d2k8

~2p!2
@fm

f*B
mn

fn
f # D E d2x1d

2x2@cos2bf1
s~x1!cos2bf1

f ~x1!2sin2bf1
s~x1!sin2bf1

f ~x1!

2cos2bf2
s~x1!cos2bf2

f ~x1!1sin2bf2
s~x1!sin2bf2

f ~x1!#@cos2bf1
s~x2!cos2bf1

f ~x2!2sin2bf1
s~x2!sin2bf1

f ~x2!

2cos2bf2
s~x2!cos2bf2

f ~x2!1sin2bf2
s~x2!sin2bf2

f ~x2!#. ~B5!

We can now calculate the functional integral. The result is

M5
V82

4 E d2x1d
2x2H @cos2bf1

s~x1!cos2bf1
s~x2!1sin2bf1

s~x1!sinsin2bf1
s~x2!#

3expS ib2E
k8.k0

d2k8

~2p!2
Dk

22~12eikx!~12e2 ikx! D 1@cos2bf2
s~x1!cos2bf2

s~x2!1sin2bf2
s~x1!sin2bf2

s~x2!#

3expS ib2E
k8.k0

d2k8

~2p!2
Dk

11~12eikx!~12e2 ikx! D 2@cos2bf1
s~x1!cos2bf2

s~x2!1sin2bf1
s~x1!sin2bf2

s~x2!#

3expS ib2E
k8.k0

d2k8

~2p!2
~Dk

111Dk
222Dk

21eikx2Dk
12e2 ikx! D 2@cos2bf2

s~x1!cos2bf1
s~x2!

1sin2bf2
s~x1!sin2bf1

s~x2!#expS ib2E
k8.k0

d2k8

~2p!2
~Dk

111Dk
222Dk

21e2 ikx2Dk
12eikx! D J , ~B6!

wherex5x12x2 andk0 is the momentum cutoff, delimiting
fast variables from slow.

The remaining integrals are similar to those calculated in
the regular perturbation series. We have the Fourier trans-
form of the boson Green’s functions to the real space in the
exponent; then we take the exponential and Fourier trans-
form back to the momentum space. The difference is that we
now have another set of Green’s functions — with a nonzero
imaginary part — and the momentum integration in limited
by the cutoff k0 . The result of this integration will now
depend on the cutoff. For the retarded and advanced func-
tions we get

DR~x,t;k0!5
i

4p
u~ t !e2h8t2i Im~E1$k0@ht2 i ~x1t !#%

2E1$k0@ht1 i ~x2t !#%!, ~B7!

DA~x,t;k0!52
i

4p
u~2t !e2h8utu2i Im~E1$k0@ht

2 i ~x1t !#%2E1$k0@ht1 i ~x2t !#%!,

~B8!
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whereE1 is the exponential integral. The result for the third
Keldysh functionDF depends on whether the cutoff is larger
or smaller than the temperature. Fork0.T we get

DF~x,t;k0.T!52
i

2p

1

2
Re~E1$k0@a1 i ~x1t !#%

1E1$k0@a1 i ~x2t !#%!, ~B9!

so that at the origin

DF~0;k0.T!5
i

2p
ln~k0a! ~B10!

which is a small number. For the other case,k0,T, in the
limit of large x and t, and assuming that the originalh is
much less than the temperature, we have

DF~x,t;k0,T!52
iT

pk0
S sink0~x1t !

k0~x1t !
1
sink0~x2t !

k0~x2t ! D ,
~B11!

and at the origin is

DF~0;k0,T!52
i

p

T

k0
, ~B12!

which is extremely large.
We can now proceed with the renormalization of the

imaginary part coefficienth. To do that we expand Eq.~B6!
in boson fields, and get their bilinear combination

M5
~V8b!2

4 E d2x1d
2x2H f1

s~x1!f1
s~x2!expS ib2E

k8.k0

d2k8

~2p!2
Dk

22~12eikx!~12e2 ikx! D
1f2

s~x1!f2
s~x2!expS ib2E

k8.k0

d2k8

~2p!2
Dk

11~12eikx!~12e2 ikx! D 2f1
s~x1!f2

s~x2!expS ib2E
k8.k0

d2k8

~2p!2
~Dk

111Dk
22

2Dk
21eikx2Dk

12e2 ikx! D 2f2
s~x1!f1

s~x2!expS ib2E
k8.k0

d2k8

~2p!2
~Dk

111Dk
222Dk

21e2 ikx2Dk
12eikx! D J , ~B13!

which can be abbreviated as

M5
~V8b!2

4 E d2x1d
2x2@fa

s ~x1!Rab~x!fb
s ~x2!#,

~B14!

where as usualx5x12x2 .
The imaginary part coefficienth is most transparent in the

rotated Keldysh basis Eq.~A7!. The element of the matrix
Rab(x) in the rotated basis which corresponds to the renor-
malization ofh in the retarded function in terms of original
elements is

RR5 1
2 @R11~x!2R22~x!2R12~x!1R21~x!#. ~B15!

For the case of the large cutoff this yields, after the Fourier
transform, ivh(k0 /k0

4)exp@2(b2/2p)lnk0a#, so that the
change inh is

Dh5h
V2

4~k0a!6
, ~B16!

since b5A4p. Here, as always,a is the lattice spacing
which cuts off the large momentum integration. So here we
have a power-law rise inh. When the cutoff is less that the
temperature we gain a different exponential, so that now

Dh5h expS 4Tk0D V2

4~k0a!4
. ~B17!

This means that, on scales of momenta less than that of the
temperature, the imaginary part coefficienth experiences a
tremendous growth, and we immediately get the diffusive
dynamics.
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