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Spin diffusion in one-dimensional antiferromagnets
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We study the problem of spin diffusion in magnetic systems without long-range order. We discuss the
example of the one-dimensional spin chain. For the system described by the Heisenberg Hamiltonian we show
that there are no diffusive excitations. However, the addition of an arbitrarily small dissipation term, such as
the spin-phonon interaction, leads to diffusive excitations in the long-time limit. For those excitations we
estimate the spin-diffusion coefficient by means of the renormalization group analR063-
182996)01330-9

[. INTRODUCTION dissipation, for example due to spin-phonon interaction
(which is always present in any real system at finite tempera-
Spin dynamics in magnetic systems without long-rangdure), then the renormalization-group approach leads to the
order is a longstanding problem. It has been asstfi¢dat  correlation function Eq(1) in the long-time asymptotic.
in the high temperature limit, where no long-range order is Our results could be applied to materials like KGUF
present, the microscopic spin fluctuations are governed bguSGO, 5H,0, Sr,CuO;. In a broad temperature range they
the classical diffusion equation, i.e., that at small frequencieare nearly ideal 1D antiferromagnetic chains with the cou-
and momenta the retarded spin-correlation function has a difgling constant] ranging from 1.45 K in CuS®@5H,0 (Ref.
fusive polé 2) to 190 K in KCuR;,”® and 2600 K in SyCuQ;.° The
diffusion equation was successfully used in a number of ex-

© z perimental papers to fit the data and explain the results of the
lot/ QZ Z —
Jo dte'”(S%, Si(t)) = iw—Dk? @) experiments:® This approach was also confirmed by com-
puter simulation$.
whereD is the diffusion constant and is the residue. The rest of this paper is organized as follows. In Sec. Il

Although the idea of spin diffusion is quite common, we we briefly review the mapping of the spin system onto 1D
are not aware of any theoretical approach, within which ongermions. In Sec. lll we map the fermions onto a boson sys-
has actually derived the correlation function Et), starting  tem, justifying the bosonization procedure at finite tempera-
from the nearest-neighbor Heisenberg Hamiltonian tures. Section IV gives the calculation, which shows the ab-

sence of spin diffusion in the Heisenberg model E).and
H =E Jééi @) present_s some general qualitative arguments supporting .this
H™ < i 1 conclusion, based on the theory of the sine-Gordon equation.
Section V discusses the spin-phonon interaction and its

On the contrary, recent computer simulations have givefienormalization. Section VI contains conclusions and a dis-
us reason to question these assumptions. In particular, it wasission of results. The details of the calculations are pre-
found that the usual hydrodynamic assumptions break dowfented in the Appendixes.
in one dimension, so that the asymptotic behavior of the

spin-spin correlation function deviates from the predictions Il. FERMION MODEL
of the classical diffusion theorysee Ref. 5 and references ) ) )
therein. In this section we review the well-known procedure of

In this paper we present a technique which allows for anapping the Heisenberg model E@) on a system of spin-
direct calculation of the spin correlation function for a one-ess fermions? and establish the notations. The spin model
dimensional (1D) spin-1/2 Heisencberg chain of infinite Eq. (2) can be transformed into a model of spinless fermions,
length. At any nonzero temperature the chain is in a disornoting that operator§’ and S~ anticommute. The Jordan-
dered state with exponentially decaying spin-spin correlaWigner transformation then relates spin to fermion operators
tions, and even aT=0 the correlations decay as a power (ai,aiT) via
law, so there is no true long-range ordethere the correla-

tion function would be constant in the long-time limiwe i-1
show that in one dimension it is impossible to derive the St =alexp im >, aJ-TaJ. ,
i=1

diffusive form of the spin-spin correlation function E(.)
from the Heisenberg Hamiltonian E¢R) without any kind
of additional dissipation mechanism, in agreement with the Si= a?ai—%. 3

prior expectations based on the results of the scaling tteory.

We also present a general argument supporting this resufVhen transforming the Hamiltonian E@2) the spin-flip
We show then that, if one takes into account an additionaterms give rise to the motion of the fermiofisnetic energy
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in the fermion HamiltoniapandS’S’., ; interaction leads to a N
fermion-fermion interaction between adjacent cites. Since 3 »
$ is quadratic in fermion operators, the interaction between /
fermions is the four-particle interaction. Since the original Cc
spin model was formulated on a lattice, all possible types of
four-fermion interaction are present, including the umklapp
term.

The 1D fermion models are often treated using

FIG. 1. Keldysh time contour.

b - ation 121N th ¢ less fermi ith tion we construct the bosonisation procedure for the Keldysh
osonizatiort. In the case of massiess 1ermions with tour- technique and then confirm its correctness by comparing the

fermion t|nte|rzi{\_ct|or:t\_/wthhsmal! rrtlﬁmterz]ntum éransfe_r Ilt' a!![?{\r’]vstresults of the perturbation theory for bosons and fermions.
an exact solution. i 1S snown in the thermodynamic imit thatry, o amion and boson Green'’s functions in a space-time

the system can be mapped onto a system of free bosons. The) o centation, which we are using in our calculations, are
propagator of a free boson has a poleat ck and therefore presented in Appendix A

corresponds to the particle, propagating without dissipation, Thirty years ago Keldysh has presented a field-theoretical

so that this interaction cannot lead to any significant Chang'taechnique to calculate the real-time correlation functions of a

in the Iong-.tlm.e dynam!cs of the system. Therefore the onlyquantum system. To allow the treatment of advanced and
source of dissipation might be interaction with large momen

um 1 » h as th " ¢ retarded correlators, Keldysh introduced the time con®@ur
um fransier, such as the umxkiapp term. (Fig. 2) with the upper branch going in positive direction

cated, because in boson language it corresponds to a hig
nonlinear term, namely, cos8d®) [where ¢(x,t) is the bo-
son field and the numbeg is a parameter of the transforma-
tion, depending on the fermion interaction with small mo-
menFum transfdr_ This _term does not conserve momentumIower. Green'’s functions becomex2 matrices with respect
and is only marginally irrelevant, so &t>0 it might lead to that index

some additional dynamics. Thus we should investigate the ", one gimensional fermion problem we have four dif-
impact of that term on the long-time fermidand thus spin

C. To distinguish particles on the upper and lower branches
of the contour, the fermion field operatar, is given an
index vy, which equals 1 on the upper branch and 2 on the

L(R) __ i
dynamics, disregarding all other possible four-fermion inter_ferenthoper?ttcr)]rs(/fy ; IeSf_t and rlghtt MOVETS O?] both t
action terms. Sections Il and IV present the results of thi{ranC €s of the contour. since operalors on each separate
investigation. ranch are completely analoges to the zero-temperature op-

Since we are interested only in the low-energy behavio£rators, we can proceed with the bosonization separately on

of the system, we can linearize the fermion kinetic energy,each branch in exactl_y the same way asTat0. Thus.we

thus allowing an exact bosonization. Therefore our mode|ntroduce two boson fieldg,, (one for each branc)hvyhmh

Hamiltonian is we shall treat as two components of the Keldysh field. The
resulting bosonized Hamiltonian will thus be formulated in

: : the Keldysh technique also.
Hm=vp§ [(k=Ke)Yrip+ (—k—Ke) Y 4 ] The left- (¢%) and right- @5) moving bose fields ex-

pressed viap, and its canonically conjugate,,,

V2 (Yttlvl+ He, (@)

1 X
¢V (0= 5| ¢,(x)F f_mpy(xwdx’

whereyg) is the operator of a “right”(“left” ) mover. The
guantity we are interested in here is the density-density cor- = dp .
relation function, which corresponds to thﬁzsjz) correlator = _J —\/—e_“|p‘[¢y(p)e'px+ H.c]. (5
in the spin problem. We shall now investigate whether the 0 2my2|p|
long-time asymptotic of this correlator has the diffusive oq in the usual procedures
form, Eq. (). (XT1).

The fermion operators are constructed in analogy with the

IIl. BOSONIZATION zero-temperature case,

(R are functions of only

As mentioned above our main technical tool will be
bosonization. The procedure is well established in 1D at zero PR~ ieX[I("‘i,BqﬁL(R)) )
temperature. We consider finite temperatures, and we look L4 Ja - LA
for the long-time asymptotic of the spin-spin correlator. It is
quite difficult to obtain the results in that limit in the Mat- where 82=47, and the upper sign corresponds to the left
subara technique, since the analytic continuation from thenover.

Matsubara frequencias,, to real frequencies much less that The commutation relations between fermion fields hold
the inverse temperature would require a precise knowledgt®r exactly the same reastnas atT=0. The fact that we

of the Green’s functions on the infinite rangewf, whichis  have a different time contoufthe Keldysh contourlC as
usually not the case in perturbation theory. Therefore wepposed to the usual time axidoes not change the calcula-
have to resort to the Keldysh technigtfayhich incorporates tion, for the integrals involved in Eq5) are over space
finite temperatures and a real-time representation. In this secoordinates, and the Bose fields commute no matter which
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branch of the time contour they are on. Another way of say-

ing this is that the Keldysh operators on different branches
still correspond to the same particle. Dividing the time con-
tour into two parts is a matter of mathematical convenience
rather than physical distinction.

The cutoff « is a lattice spacing, and so should be the
same for both bosons and fermions. The operator equality
Eg. (6) means that any correlation functidin the limit FIG. 2. First-order corrections to the fermion density-density
a—0), calculated in the Fermi theory with the cutaifis  correlator.
reproduced in the bosonic theory with the same cutoff if the
fermion operator on the left-hand side is replaced by theyhere the density vertex, is
bosonic operator on the right-hand side of Eg). Using this
operator equivalence we can construct the boson Hamil-

tonian from the fermion Hamiltonian Ed4). The fermion 1(1 -1
kinetic energy corresponds to that of bosons. The umklapp Tap=—|1 -1 (12
interaction term gives rise to the cosine interaction of the ™

boson field. The conjugate operatéts andP_ cancel out,

so the interaction is a function only of the boson fieltls )

and ¢_ itself, as it is in the zero-temperature bosonization. We now check, following the approach of Shankathat
The interaction constai now acquires the factor &# from  the above construction yields correct results in perturbation

acting fermions should be calculated separately for the

HB=((7M¢)2+V’0052,8¢. (7)  “left” and “right” movers, and the results should be added.
whereV'’ =V/a? That gives, for the advanced correlator,

Due to the special form of the interaction (c@s3), it is

most convenient to formulate the Keldysh technique in the 2 92
path integral representation, developed by Schithithe bo- My=————5—, (13
. . T w°—(Q°—2idw
son action for our model is
A:f dx dif &*B —V'(cos —cos ' whered is infinitesimately small. In the next order we have
L4 W¢V ( 28¢+ 9] two topologically nontrivial diagrams given in Fig. 2 Again

(8  we have to repeat the calculation for the “left” movers and

where¢$ and¢ are the two components of the Keldysh add the results with proper combinatorial factors. For sim-
boson figld, and):andv denote Keldysh indice® is the plicity here we give only the imaginary part of the first-order
nv

o ) g . correction, which for us is most important:
kinetic operator, so that the inverBg,, is proportional to the
boson Green’s function in the Keldysh basis

2 ? oT
D™ DT Ml =5 ——2 72 (14)
_ . T 0" 07 0" (
B,,=—ilp* D ©)

Jhe next order of perturbation is discussed in Sec. IV.

We now turn to a calculation of the same perturbation
series on the boson language. In the noninteracting case we
have to calculate a simple Gaussian integral, which in mo-
mentum space gives

We shall later use these functions in the space-time represe
tation (see Appendix A

The fermion density in the conventional bosonization is
represented by the spatial derivative of the boson field

1
p=—T—0d1¢. (10
" 11 2 D 2 i 1
Here in the same manner we write the fermion density op- o @,0)= wd ale,q)= T 0°—Q°—2i o’ (19

erators. The density-density correlators are represented by
functional integrals in which the preexponential is some I|n-Which is the same as Eq13). Da(w,q) is the advanced

ear combination of the spatial derivatives of the Bose field , . -
. . oson Green’s function, connected to the original Keldysh
corresponding to that particular correlator. The advance asis via

correlator is

(pp)a=TI(x1—X5) Da=D ~-D*". (16)

1
= Zj D[¢1,¢2]a1¢2(x1)Taﬁa1¢ﬁ(xz)exlf(_A),
We now expand the exponent in the integral Etl) in
(11 the series irV’. In the first nontrivial order we get
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1
H1(X1_X2):V'2f szleYsz Dl 1, $21915(%1) Taﬁf91¢ﬁ(xz)eXF< _f dth¢ZBﬂv¢V)[COSZB¢+(y1)
—c0s28¢_(y1)][cos2B¢  (y2) —C0SPBd_(Yo)]. 17

Since the cosines contribute the linear terms in the expobut exponentials3e’Y with different signs. Therefore the
nent, the integral is still Gaussian with the same prefactor ointegral in the exponent in Eq21) is just the Fourier trans-
the exponent. This feature will remain in all higher orders ofform of the boson Green’s function back from momentum
the perturbation series. We shall discuss the calculation adpace to the real space. The boson functions in real space are
that integral in more detail due to its importance for the latedogarithms, so all four exponent§;(x;) can be evaluated.
arguments. In the first-order integral Eq.7) we have four All four have the same structure,
different terms of the same type, arising from the cosines. In
the exponent  they have combinations like f(y,t)

2B[,(y2)— ¢,(y2)] with all possible permutations of indi- Kily=yi=¥a) =gy 5 22
ces. To calculate the functional integral we make the Fouriefhere

transform of the Bose fields. We perform the transform in the

most general way, since the same expressions will appear . (mTa)?

later. As we show below, in any order of the perturbation S Hy.t)= SNEAT(y— sty + 1)’ (23

theory we shall need to calculate averages of the form
while f(y,t) is some algebraic function which has no poles.

. In the long-time asymptoti&(y,t) acts like a derivative of
9190 (X1) Tapd1 ¢ ,(X2) a & function. It hagdue to the denominator E6R3)] a sharp
singularity aty,t=0, and decays very fast as the variables
- go away from that point. Therefore the integral oyet is
xex;{f (277)2( )I#(k’y‘)¢#(k)+H' C') > (18) dominated by the small region of size around the origin.
The remaining spatial integration over the symty, in-
volves only functions(')IZ(k,yi) from the prefactor, since
K1(yi) depends only on the difference of the variablgs
andy,. Since (r)IZ(k,yi) are exponentials, the integral is
) easily evaluated to yield(k—q), which solves the momen-
tum integration. So after the summation over all four terms
@ - " we get the result Eq14), as expected.

17 (K,Yyi) _(lﬂ(e Y1—¢'"2) The next orders of the perturbation series, which we dis-
GN3(ky) | 0 cuss in Sec. IV, could be calculated in the same manner, and
@) % are also the same for the boson and the fermion formulations

(kY| _ 0 19 of he theory. The bosonization procedure is thus justified.
D3 (kyp) | TliBE—eh2) (19

Completing the square in the exponent, we calculate the
functional integral in Eq(17) and apart from the numerical

For the first-order integral Eq17), we find four different
factors (1% (k):

ITCyn| [ ipe ) (P (ky)| _(—ipe'
D5 (ey; | | —ige"z] | @15y | T\ ipen

’

IV. ABSENCE OF DIFFUSION
FOR THE HEISENBERG MODEL

factor, in momentum space we get Although the boson and fermion versions of the theory
are completely equivalent and should give the same results in

IL(w,q)~ | d2kk f d2y. S 1% (q x)B- L the_perturbathn theory, th_e bosonized version allows an
ile.q) J af 11 y'% n(8:X)B,4(a) easier evaluation or the higher orders of the perturbation

_ theory. Indeed, all higher-order corrections differ from the
AN G) . .
X TapBg, (K)' L (kxi)Ka(yi), 20 first order Eq.(17) only by the appearance of additional co-
sine bracketgand corresponding spatial integratipn$his

where means that in any order of perturbation we have to calculate
a2k’ averages of the form E¢18). The functions”1 ,(k,x;) will
1y ex;{ f 2 )z(r)l’;(k’,yi)Byﬁl(k’)(”l’;(k’,yi)>, be now sums of exponentials, for example, in the next order
™ of perturbation we will have terms like

(21)

and the sum is over four different factofSl V(k,yi) corre-

sponding to the four different terms of ty#8) in the first  similar to the first-order factors Eq19), but constructed
order integral Eq(17). from four different exponentials. We can still perform the
Here the integration measurdld?y; is equal to functional integration and get the same general formula Eq.
dy,dt,dy,dt,. All dependence on these variables is con-(20). Since functions(")| «(K,x;) are exponentials, the inte-
tained in the factors”1* »(K.yi). These factors are nothing gral in the exponentin Ec(20) still yields the boson Green’s

(r)l ,u(kixi) — ﬁ[eikxl— eikX2+ eikX3_ eikx4], (24)
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functions in the space-time representation, but now instead Our results clearly show the absence of spin diffusion in
of one such a function as in the first order we have a sum othe Heisenberg model. Instead of the diffusive pole in the

them. In the second order we shall get density-density correlation function we found some kind of a
propagating behavior. Note that the second-order pole in Eq.
B S(Xo—X3)S(X1—X4) (27) should be regarded as a principal value, so the imagi-
Ka(Xq, .. Xa) = S(X;— X5) S(X;— X3) S(Xo— X4) S(X3— X4) nary part of the general susceptibilities does not contain un-
physical contributions proportional t6?(w?—q?). This re-
XFo(X1, .o Xa), (25 sult should have been expected. In the boson representation

our problem is essentially the sine-Gordon model. It is
known in the theory of the sine-Gordon equation that due to
the infinite number of conserved charges the excitations of
the model are propagating andt diffusive. So by showing

These factors have the same singular behavior as describg(]uE mapping of the Heisenberg model ontq thg smg-Gprdon
model we have showed the absence of spin diffusion in the

in Sec. lll. Therefore the integration over multidimensional odel Eq.(2)
space will be dominated by the regions where the two pairén e Ea.te).
of variables are almost equal to each other, for example

X1=X, and x3=X,. The integration over one such pair ef- V. SPIN-PHONON INTERACTION

previous order Eq(22) (in the long-time asymptotic One  the physics of a real material. We now try to make it a bit
can see it by inspecting E5). Consider, for instance, the mgre realistic. Even in the absence of disorder, at finite tem-
contribution from the regionx;=x,. In this region peratures there always are phonons in the system. The ex-
Ka~S™*(x1—%2)S™ (X3~ X4), SO the integral ovex, leads  change integral depends in general on the instantaneous
to the same fornfi~ 1/S(x3—x,) ], which is the main part of ~separation of magnetic ions. We consider the linear approxi-
the first-order functiorky, Eq. (22). The integration over mation for spin-phonon coupling. That is, we expand the
X3 andx, is then the same as in the first order . Therefore theeparation-dependent Heisenberg coupling constant to the
spatial integration in in the higher-order terms does not yieldirst order in ionic displacement(R,),

any additional singularity to that produced by the prefactor

of the exponent, which is the same as in the first order Eq. J(ri—rj)=Jo(R—Rj) + x[U(R) —u(R)1, (28

(20) and contains just two boson Green'’s functions. So the

structure of any term in the perturbation series is where R; is the equilibrium position of the ion and
y P ri=Ri+u(R;). That leads to the simplest form of the spin-

where S(x) is the “singular” denominator, defined in Eq.
(23.

In higher orders functionK have the same structure, but
with more factorsS(x) in the numerator and denominator.

0g? phonon interaction Hamiltonian,
ImIly(w,0) ~Prz=c779(w,0). (26)
_ _ _ Heppr=d' 2 SSi(bf +b). (29)
Hereg(w,q) is some function, which has no poles at small (i)

,dq. We note that Irfil;(w,q) differs from the first order

Eq. (17) only by g(w,q), andP denotes the principal value.
Combining our conclusions, we can write down the struc-

ture of the density-density correlation function in our model,

I 2 q? . oTg? v
(w,CI)_; wZ_q2+2i5w+l (wz_qz)zg(w,CI- )

(27)

The significance of this result for us is in the fact that the
higher-order corrections do not acquire additional poles in
the imaginary part, which could sum up in a diffusive pole in
H(w,q).
The fermion perturbation theory gives the same results in
the low orders of the perturbation. In the second nontrivial c d
order we have six topologically different diagrams, presented
in Fig. 3. Our purpose is to show that the correction to the
density-density correlation function, which is the sum of
these diagrams, is not qualitatively different from the first-
order result. The only diagrams that produce the extra pole
are the diagrams and b in Fig. 3. These singular terms
cancel out exactly, so that the second-order correction has a e f
pole of the same order as the first-order one. This cancella-
tion seems to be an accidental property of the problem in the
fermion representation, but the bosonization approach shows FIG. 3. Second-order corrections to the fermion density-density
that it happens in all orders of perturbation theory. correlator. The terms with the third-order pole exactly cancel.
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— — E S S f f
0 -x)= 5 | PL63. 431D L, 64

. S/ X 016% (X1) Tapr b3(xp) XD~ A), (34)

where the prefactor contains only slow degrees of freedom
since we are looking for the infrared asymptotic. We can
FIG. 4. Boson self-energy eiagram. The solid line denotes theseparate the integral over fast variables, and the density in-
boson propagator, and the dashed line denotes the phonon propagegral now becomes

tor.
1
We shall now try, treating interaction E€R9) as a small (X1 —xp) = 7J D3, 4319107 (X1) Tapd1dp(X2)
perturbation of the original Hamiltonian E(Q), to examine
its impact on the long-time spin dynamics. To do that we d2k’ o s
first bosonize Eq(29). We get Xex (277)2[‘75# B, .1 explinM),
(35
_ 1 2T
Hp-pn=" ; | (bk+bk)' (30 whereM is the integral over the fast variables, which in the

first nontrivial order in perturbation is a Gaussian integral
The boson self-energy in the first nontrivial orderHf, ,,is ~ without any prefactor,
presented by the diagram on Fig. 4. The solid line represents

. . 12 211
a boson, and the dashed a phonon. For the imaginary partwe, _ V'* ff dok’ f
are interested in we get = 5| Plér.¢alex —(277)2[¢ B, o]

BTV
noque if g>T X f d2x;d%x,{c0s28] $5(x1) + B (x1)]
Im2(w,q)= noT if q<T, 3D
—c0S28[ ¢3(X1) + ph(X1) IHCOS2B[ $5(X2) + h(Xo)]

where restoring the unitg~(J'/c)? andc is the speed of —c0S28[ p5(X2) + Ph(X2) 1} (36)

sound. The momentum dependence oElw,q) arises due

to the momentum in the numerator of the phonon Green’sn the functional integral Eq(35), InM plays the role of

function renormalization of the imaginary part of the kinetic operator.
Now we calculate the functional integral and expand the re-

2 sult in the boson fieldg5} to get their bilinear combination,

(32)  which gives the renormalization af. We get

C2

Porl .= 2= 224 1 5

o V' B)2
V\{hereb‘ is |nf|_n|teS|r_naIIy small. Not(_e that although we con- M = V'B) f d2X1d2X2[¢Z(X1)Ra5(X12) ¢?3(X2)],
sider a 1D spin chain, the phonons in a real material are three 4
dimensional, so when evaluating the self-energy(8ij. one (37
must integrate out the two other components of the phonoulhere as usuaky,=Xx
momentum.

We shall now investigate how the umklapp term renor-
malizes this self-energy. We now divide the boson field into
“slow” and “fast” parts, separated by some cutdff. We

1—Xo. The elements of the matrix
R,p(X) are the exponentials of the boson Green’s functions
in the space-time representation. They are presented in Ap-
pendix B, where we give the detailed renormalization calcu-
lation. The boson Green’s functions entering the matrix

integrate out all “fast” degrees of freedofthose with mo- : : :
. ; R.p(X12) are now different from those in Appendix A, due
mentum larger than the cutgftind see how the imaginary to the self-energy Eq:31). The retarded function in the mo-

part of the boson self-energinamely, the coefficienty) ;
changes with the cutoff. The result is that when the cutoff ismentum space Is how
larger than the temperatuile » rises as some power of the 1

cutoff. But after the cutoff becomes smaller than the tem- Dr(®,9)= —5—5—

perature, the imaginary part grows exponentially. This means ®°—q*+ilimX(w,q)

that at large distances the motion becomes diffusive. W%nd the corresponding functio®(w,q) and Dr(w,q) ac-
notice that this should happen in any experimental situation, -« the same self-energy. Note tﬂ’agﬁ(xlz) isF ex'pressed

because it is just the existgnce of thg spin-phonon intgractioaia boson Green’s functions in the unrotated Keldysh basis.
(no matter how smallthat is responsible for the diffusion. However, the coefficienty is easier to extract from the

After we introduce the “slow” and “fast” variables as Green’s functions in the rotated Keldysh basis E&2). The
s o elementRg of the matrix R,z in the rotated basis which
¢, =butdu (33 corresponds to the renormalization of the retarded function is

(39

the integral Eq(11) is then Rr=3[R11(X) = Rox(X) = Ry X) + Roy(X)]. (39
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If the cutoff is largepyko>T, this yields, after the Fourier the summation of the perturbation series. This result is also
transform, known in the theory of the sine-Gordon modeihich coin-
cides with our boson modglwhere it has been found that

» =iw1exp( _ —2Ink a) (40) due to the infinite number of conserved charges excitations
R kg 27 o) are propagating and not diffusive.
o We also check whether these resifttse absence of spin
so that the change in is diffusion in the perturbation theoryare robust with respect
V2 to small dissipation effects present in real physical systems.

(41)  Specifically, we considered the effect of a weak spin-phonon
interaction Eq(29). We mapped the full problerincluding

since B=Aw. Here as alwaysa is the lattice spacin the spin-phonon interactipno the bosonic model. We found
: ySex P 9 that the interaction with phonons leads to the boson self-

which cutsoff the large momentum integration. So here W& erqy E (31), the imaginary part of which is proportional
have a power-law rise im. When the cutoff is less that the gy =qleL), ginary p prop

temperature, we get an exponential renormalization: to the constanty at small momenta. Further, we applied the
' ' renormalization-group analysis; we integrated out “fast” de-
T V2 grees of freedom, and showed that this constargrows
An= r;Texp< 4—) —. (420  moderately while the cutoff is larger than the temperature
vrko/ 4(koa) [Eq. (42)], but grows exponentially after the cutoff becomes
smaller than the temperatufEg. (42)]. At scales where the
i%]aginary part of the spin-spin correlator becomes of the
. . . , orter of the real part the spin dynamics becomes purely dif-
the imaginary part coefficieny grows very rapidly, and we fusive. By associating the mean free path with the scale on

immediately  get the diffusive dynamics. = The which the renormalization procedure breaks ddwamel
renormalization-group treatment breaks down when the cor; b 4

X . the renormalization Eq42) becomes of the order of unity
re_ctlon Eq.(42) becomes of the order of unlty. That dete_r we estimate the diffusion coefficient E@4). Restoring the
mines the length scales, where the dynamics becomes diffu-: . : s ; .

. . original units and estimating the spin-phonon coupling con-
sive. The mean free path is , . ;
stantJ’ from the expansion of the exchange integral Eq.

(28), we have

An= 7 2 (koa)®”

Here 7+ is the effective damping at scalegk,~T. That
means that, on scales of momenta less than the temperatu

I~ Fin(7oV?), 43
: - - D~—7—
where 7, is the original value of the coefficieng, propor- fikgT
tional to the spin-phonon coupling constdB&g. (31)].
The estimate of the mean free path allows us to estimat
the diffusion coefficient a® =lvg, so that

7 (45
where « is the lattice spacing and is the speed of sound.
Fhus we found that the presence of the spin-phonon interac-
tion changes the long-time behavior of the spin-spin correla-

m(Ja)? (Ja)
n .

w2 [V tor, which becomes diffusive.
D~ _F|n(_)_ (44) After this work was completed we learned about the dy-
T namical NMR study on the 1D spin chain &uQ;.'° The

data suggest the presence of weak spin diffusion in the chain,
VI. CONCLUSIONS with the diffusion coefficient much larger than the classical
. ) expectation J/4)27S(S+1)/3, which is consistent with
We now brlefly review our results. We started from a 1D ne estimate Eq45) (in the experiment < <J). Unfortu-
Heisenberg Hamiltonian Eq2). Our goal was to calculate el the temperature dependence turns out to be very dif-

the spin-spin correlation function at long times and nonzerg; it to measure although the data suggests Enaénd to
temperature. and check whether or not it had a diffusive pol, ..aase when te’mperature is decreasing.

Eqg. (1) in some region in phase space. To perform such a

calculation we mapped our original problem onto 1D ferm-

ion model Eq.(4) using the Jordan-Wigner transformation

Eq. (3). We used the usual diagrammatic technique to calcu- The author is greatly indebted to Professor L. loffe for

late a few first orders of the perturbation thedshown in  drawing his attention to the spin-diffusion problem, and for

Figs. 2 and Fig. B In order to go beyond that simple ap- most stimulating discussions.

proximation we bosonized the fermion model. To get the

long-time asymptotic of the spin-spin correlator, we had to APPENDIX A

combine bosonization with the Keldysh technique, which al-

lows one to calculate real-time correlation functions at finite We present here the boson and fermion Green'’s functions,

temperatures without any need of analytic continuation. ~ which we use in our calculations. It is the certain similarity
The bosonization procedure allowed us to find the generdbetween them that inspired the bosonization. As in the usual

form of higher-order corrections, and to sum up the perturzero-temperature bosonization we need the Green'’s functions

bation series. It turned out that in each order of perturbatiorin the space-time representations. We perform the bosoniza-

the correction to the spin-spin correlator had the same forrtion on the original Keldysh basis, but for simplicity here we

Eq. (26); therefore we concluded that the exact spin-spincalculate Green’s functions on the rotated basis and then

correlation function does not acquire a diffusive pole fromtransform them back.
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The retarded fermion Green’s function in the momentum We now calculate the boson functions. We start again
space is with the rotated basis. The retarded Green’s function in the
momentum space is

Ggr(e,k)= (A1)

erk+io Dr(w,q)= (A10)

PV TN
where “-" is for the “left” and “ +" for the “right” mov- ©°—q°+2idw
ers. For the simplification of the formulas the Fermi velocity Again we have to introduce the cutoff. It is essential for
is set equal to unity. The Fourier integral, which one has tgurposes of bosonisation to do it in exactly the same way as

calculate in order to transform the function E@1) real for the case of fermions, E§A2). That way we get
space, is formally divergent at large momenta. As usual in

1D calculations we introduce a cutaff by adding the expo- _ i (x—t+ia)(x+t—ia)
nente ! to the integral. Thus we have Dr(X,t)=~ Eg(t)ln(x—t—ia)(xﬂﬂa) '

(A11)
dedk .,
Gr(X,t)= J We'kx_'ftme_“‘k‘- (A2)  For the advanced function we get the same logarithm,

Now we have a perfectly converging integral and get Da(x,t)= '_0(_t)|n(x_t+f0‘)(x+t_fa) _
' A (x—t—ia)(x+t+ia)
o(t) 2ia (Al12)
Gr(X,t)=— -— ——5—, (A3) . L . . . .
2m (XF+1)"+a The third function in this basid)(, containsé function, as
where does its fermion counterpart E(0),
1 if t>0 I ®
_ De(w,q)=— —cot S(w—q)+ w+ ,
o(t) = 0 if 1<0 F(,q) ety [d(w—q)+5(w+q)]
(A13)
Similarly, the advanced function is but we have to introduce the cutoff here. In real space we get
Gaxp)— 1D 2a (Ad) i (7Ta)?
ACATRD A —+\2 2
2m (x¥)"+e De (4 = S N e T (x—DsinPrTx ). A1
The third Keldysh function in this basis for the right movers ] )
in momentum space is where the zeros of the denominator should be treated in ex-
actly the same way as in the fermion céssee the text after
. k Eq. (A6)].
Flek)=—2mi tanh;— 5(e—k). (A5) One can clearly see that the fermion functions and the
arguments of the logarithm in the boson functions are con-
The Fourier integral is converging, and we get structed from the same elements. That is why the bosoniza-
tion works. To get exactly the same results in the fermion
F(x,t)= (A6) and boson p_erturbation series we have to turn to th_e ori_ginal
' sinhaT(x—1)" Keldysh basis Eq(A8) and calculate physical quantities like

. . . the density-density correlation function, which is indepen-
The function for the left movers has a sign opposite to that ofjent of Keldysh indices and therefore of the choice of the

the time variable. To be more careful with the pole one hagyicylational technique. Then the boson and fermion ver-

to addi« to the space coordinate in EGA6). sions are the same in the limit=0 (the physical quantities
That completes the calculation of the fermions Green’ssnouid not depend on that cutpff

functions in the rotated Keldysh basis,

0 Gk APPENDIX B

Go=| G n F

(A7) We start from the functional integral for the density-
density correlation function Eq11), where the kinetic term
now contains the nonzero imaginary part Egl). We are
interested in the infrared asymptotic of that correlator. There-
fore we divide the boson fielg, into two part — “fast”

To return to the original basis which is needed for
bosonization, one has to perform the rotation

G*t Gt- and “slow,”
_ _ -1
emleTr & TRGR (A8 ¢ =+ b (8D)
where the rotation matrix is given by The integral Eq(11) then becomes

i
ol =

1 1 1 o e o
<_1 1)- (A9) H<X1—x2>=zf DL ¢3, 431D b1, b3101 0
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X (X1) Topd1Pp(Xo)eXp(— A), (B2)

where the prefactor contains only slow degrees of freedom
since we are looking for the infrared asymptotic. We can

1
H(x;—=X2) = fD[¢1 $3]917 (X1) Tapd1dp(X2)

separate the integral over fast variables as ex;{ J —z[qss* B ¢ 1] exp(InM),
(B4)
Z//j D[¢1!¢2]exf{f (2 )2[¢M ,u,V¢
A _ ; where IrM plays now a role of renormalisation of the imagi-
—V'(cos28¢1c0s28¢; —sin2B¢1sin2B¢; nary part of the kinetic operator.

We now calculate the integral over the fast degrees of
s P s . ‘ freedom, Eq(62). We expand the exponent in E&2) up to
—C0S2Bh;C082B¢,+SIN2B¢5SIN2B¢5)]|. (B3)  the first nontrivial order in perturbatiofwhich is actually all
we need, noting the results of Sec.)l&hd get the Gaussian
The density integral becomes now integral without any prefactor,

M=V—I2j D¢, dhlex J d [¢/*B ¢f])fd2x d2x,[ c0S28hS(X,)c0S28 1 (X,) — SiN2BhS(x1)SiN2B B! (X4)
2 1,92 (277)2 B Syt 1 2 1\A1 1\A1 1\A1 1\A1

—C0S28$5(X1)COS2Bh5(X1) +SiN2B P5(X1)SIN2B P5(X1) [[COS2Bh3(X,)COS2B b (X2) — SiN2BH3(Xo)SIN2BhY(Xo)
—C0S28$5(X2)COS2Bh5(Xo) + SIN2BP3(X2)SIN2BPH(X,)]. (B5)

We can now calculate the functional integral. The result is

12

\%
M= Tf deleXz{ [c0S28¢1(x1)COS2B1(X2) +SIN2BH3(X1)SINSIN2BPI(X,)]

d?k’ . .
Xexp( iﬁzf (2 D (1—-e*)(1-e )

+[c0s28¢5(X1)C0S2Bh5(Xz) +SiN2BP5(X1)SiN2B P5(Xz) ]

Xexp(lﬁz fk, o 277)2Dk (1—eikx)(1—e‘kx))—[00828¢i(x1)00828¢3(x2)+sin2/3¢§(x1)sin23¢>§(x2)]
i n2 d’k’ ++ |kx +— —|kx S S
xXexpip fk’ kW(Dk +Dk D D ) [COSZB(ﬁZ(Xl)COS?ﬂ(bl(Xz)
=Ko

+sm2,8¢2(x1)sm2/3¢1(x2)]exp{|,6'2J (27 2(D|(+++Dk —Dy fe *—DJ "‘X))], (B6)

wherex=xX; — X, andkg is the momentum cutoff, delimiting

fast variables from slow. Dr(X,t;kg) = —G(t)e 720 Im(Ey{ko[ 7t—i(x+1)]}
The remaining integrals are similar to those calculated in
the regular perturbation series. We have the Fourier trans- —E ko[ 7t+i(x—1)]}), (B7)

form of the boson Green’s functions to the real space in the

exponent; then we take the exponential and Fourier trans-

form back to the momentum space. The difference is that we i

now have another set of Green’s functions — with a nonzero  Du(x,t;ko) = — — 6(—t)e~ 7 12i Im(E,{ko[ 7t
imaginary part — and the momentum integration in limited 4

by the cutoffky. The result of this integration will now —i(x+1)]} = Eq{ko[ 7t+i(x—0)]}),
depend on the cutoff. For the retarded and advanced func-

tions we get (B8)
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whereE; is the exponential integral. The result for the third iT [sinkg(x+1)  sinkg(x—t)
Keldysh functionDg depends on whether the cutoff is larger ~ Dr(X,tiko<T)=——~| — X+ Ko(x=1)
or smaller than the temperature. Hgr>T we get oL "o 0

(B11
De(X,t;ko>T)=— e 2Re(E dkola+i(x+t)]} and at the origin is
+Ex{ko[a+i(x=1)]}), (B9
so that at the origin i T
M Dr(Osko<T) =~ — o, (12
i r kO
De(0;ko>T)= z—In(kpar) (B10)
2 .
which is extremely large.
which is a small number. For the other cakg< T, in the We can now proceed with the renormalization of the
limit of large x andt, and assuming that the originglis  imaginary part coefficieny. To do that we expand E¢B6)
much less than the temperature, we have in boson fields, and get their bilinear combination

(V'B)? . . , d’k’ . N
M= f jdledzxz[¢1(x1)¢1(x2)ex;{|/32fk,>kWDK (1-e*(1-e WX))
d2

+¢§(x1)¢§(x2)exp(i32fk,>k o)’ ST(1-e)(1- e"k")) B35(x1) 3( xz)exp(uﬁ fk (—Z(D T4+D,

-D, te**-D; e 'kX>) B5(X1) B3(%2) eXD(IB f 2(D +Dk—Dk*e‘kX—Dze‘kX>), (13
>k0 2 )
[

which can be abbreviated as V2

An= 7 akga)®” (B16)

2 S S
X1 0"l b (X1) Rap(X) $5(x2)], since 8= \4x. Here, as alwaysg is the lattice spacing
(B14) which cuts off the large momentum integration. So here we
where as usuat=x;—x,. have a power-law rise im. When the cutoff is less that the

The imaginary part coefficient is most transparent in the [€Mperature we gain a different exponential, so that now
rotated Keldysh basis EqA7). The element of the matrix
R.p(X) in the rotated basis which corresponds to the renor-
malization of » in the retarded function in terms of original

elements is A 4T ve Bl
n= Wex 4(k06¥)4 ( 7)

_1
Re= 2l Rui) = ReelX) = RadlX) + Res(¥)]. - (B9 This means that, on scales of momenta less than that of the
For the case of the Iarge cutoff this yields, after the Fourietemperature, the imaginary part coefficieptexperiences a
transform, |an;(k0/k yexd —(B42m)Inkya], so that the tremendous growth, and we immediately get the diffusive
change in7 is dynamics.
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