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We investigate the memory effects in the frictional damping of the vibrational and diffusive motion of an
adatom. Using the molecular-dynamics simulation method, we solve the equations of motion of an adatom in
a periodic potential coupled to substrate phonons which are in turn coupled to a heat bath. The frustrated
translational mode and the diffusion constant of the adatom is studied by calculating appropriate time-
dependent correlation functions. We discuss our numerical results in the context of a generalized Langevin
equation. The validity of analytic approximations to the memory function in the Langevin equation such as
mode-mode coupling and initial value approximation are examined by comparing the analytic results with
those obtained from the numerical simulations.@S0163-1829~96!02229-1#

I. INTRODUCTION

Much attention has recently been focused on the dynami-
cal properties of adatoms coupled to substrate excitations.
The diffusive as well as the vibrational motion of the adsor-
bate have been probed with several experimental
techniques.1–3 Theoretical models have also been developed
to explain the process of diffusion1,4–9 and the different
mechanisms that affect the vibrational properties of the
adatom.3,10–14

Most of these theoretical studies have focused on physical
systems where the substrate excitation time scale is much
shorter than the time scale of the motion of the adatom. In
this case, memory effects are not important and the motion
of the adsorbate is described by a simple Langevin equation
with a damping force proportional to the instantaneous
velocity.6,15–19If, however, the excitations have a time scale
comparable, or longer than that of the adatom, then the pro-
cess is non-Markovian and memory effects become
important.20–26

In this paper, we investigate the mechanism of the
adatom-phonons coupling and its effect on the diffusive and
vibrational properties of the adatom using molecular-
dynamics~MD! simulation studies. Our object is to under-
stand in detail the memory effects in the frictional damping
of the adatom due to the coupling to the substrate phonon
excitations. In particular, we study a coupling which is non-
linear in the adatom coordinates, and we stress the differ-
ences and similarities with the more commonly studied lin-
ear coupling case. The nonlinear effects are most important
in the temperature range of the order of the energy barrier. In
this regime the diffusive and vibrational motion of the ada-
tom are intrinsically coupled to each other; so they cannot be
studied separately.22–24In our model, therefore, diffusive and
vibrational motion are treated on equal footing. Experimen-
tally this regime can be probed using the helium scattering
technique.27–29We calculate the diffusion constant as well as
the width and the shift of the frustrated translational mode.
The physical mechanisms responsible for the broadening of
the vibrational peak are clarified through the study of the
energy as well as the velocity autocorrelation function for the
adatom. The results are analyzed in three different regimes:

vD@v0 , vD.v0 , andvD!v0 , wherevD is the maximum
frequency of the substrate excitations, whilev0 is the char-
acteristic vibrational frequency of the adatom. In the case of
vD@v0 , we recover the results obtained earlier
analytically.24 In the other regimes,vD.v0 andvD!v0 ,
the vibrational and diffusive motion of the adatom is strongly
influenced by the nonlinearity of the coupling. No exact ana-
lytical results exist in this case.

Formally, the motion of the substrate phonons can be in-
tegrated out and the adatom motion can then be described by
a generalized Langevin equation~GLE! with a memory func-
tion replacing the simple damping described by a constant
friction,16,17,30–33However, even though a formal expression
for the memory function can be obtained, in most cases the
detailed evaluation of the memory function is not possible.
Moreover, for a general memory function, no analytic solu-
tion of the GLE valid in all the frequency regimes exists. In
the literature, two main approximations for the memory
function have been used.20–22,24The first one is the initial
value approximation~IVA !. Here, the adatom time scale is
assumed to be much longer than the substrate vibrational
period and the adatom coordinate in the memory function is
therefore replaced by its initial value. This results in a
memory function similar to the linear coupling case and al-
lows an analytic solution for the various correlation func-
tions using a matrix continued-fraction method.16,17,24,30,31

For the cases where the two time scales are comparable and
a clear cut separation is not possible, the mode-mode cou-
pling approximation is often employed. This involves the
factorization of the memory function into the product of two
time correlation functions, one for the adatom motion, and
the other for the substrate motion. The various time correla-
tion functions for the adatom can then be determined self-
consistently. In this paper, besides studying the dynamics of
the adatom for our theoretical model through molecular-
dynamics simulation, we also solve the corresponding GLE
using these standard approximations for the memory func-
tion. This allows us to compare the analytic and numerical
approaches to establish the region of validity, if any, of these
standard approximations widely used in the literature.

II. THE MODEL

Since our main interest is to explore the qualitative fea-
ture of nonlinear coupling to the substrate and memory ef-
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fects in the frictional damping, in this paper, we adopt the
simplest theoretical model which contains all the necessary
ingredients. First of all, we restrict the motion of the adatom
to one dimension. The extension to higher dimension is
straightforward. The substrate excitations, however, are still
fully three dimensional. We describe an adatom interacting
with substrate excitations with the following Hamiltonian:

H5Hph1H01H int . ~2.1!

There are three components in this Hamiltonian. The first
part is the Hamiltonian for the substrate excitations in the
harmonic approximation:

Hph5(
l

F pl
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2M
1
Mvl

2

2
ul
2G . ~2.2!

This describes the substrate by a set of harmonic oscillators
corresponding to the normal modes of the lattice character-
ized by an indexl. The frequency, coordinate and momenta
of the normal mode are denoted byvl , ul , andpl , respec-
tively.

The second part describes an adatom in a static potential:

H05
p2
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1V~x!1(
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Mvl
2

2
Wl

2~x!, ~2.3!

wherex and p are the adatom position and momentum,m
andM are the adatom and the substrate atom masses, respec-
tively, V(x) is the static potential, andWl(x) is a function
describing the coupling of the adatom coordinate to the sub-
strate excitations. Here the second term has been added in
order to counterbalance the effect of the adiabatic force due
to the coupling.34 This way, the energy shift of the vibra-
tional peak and the change in diffusion barrier are only due
to the nonadiabatic effect of the adatom-phonons coupling.

Finally there is the coupling term

H int5(
l

Mvl
2

2
ulWl~x!, ~2.4!

where each phonon mode is coupled to the adatom through
the functionWl(x) that depends, in general, on the position
of the adatom and on the particular phonon model.

The force acting on the adatom is

ṗ52
dṼ~x!

dx
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, ~2.5!

where

Ṽ~x!5V~x!1(
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2

2
Wl

2~x!.

There are two components in the force: the adiabatic part
generated by the interaction with the substrate atoms on the
lattice in their average position and the nonadiabatic part
which is entirely due to fluctuations of the lattice and is
responsible for the dissipation.

In this paper, we consider only coupling to substrate
phonons and not to high-frequency excitations such as
electron-hole pairs. The time scales for the electronic pro-

cesses are much shorter than that of the adatom motion and
clearly memory effects, in electronic friction, can be ne-
glected. They can be easily included as an additional Mar-
kovian friction acting on the adatom.

The phonons are assumed to be in contact with a heat bath
at a constant temperature. The coupling of the phonons to the
heat bath are mathematically described by a Langevin equa-
tion with dampinggl and random forcer l , related by the
fluctuation and dissipation theorem:40,41

^r l~ t !r l~ t8!&52mkBTgld~ t2t8!. ~2.6!

Therefore, in the absence of the adatom, the phonons behave
like Brownian harmonic oscillators whose position correla-
tion functions are known.35,42 The adatom, instead, is only
directly coupled to the phonons which thermalize its motion.

We choose for the adiabatic periodic surface potential the
simplest cosine potentialV(x)5V0@12cos(x/d)#, where
d5a/2p anda is the lattice constant. For the phonons, we
divide them into two groups according to their symmetries.
The general indexl can now be replaced by the index
( i ,l ) where i51,2 labels the symmetry group andl runs
from 1 toN/2, with N being the total numbers of phonons
considered. The frequenciesv l have been chosen so that
they depend only on the indexl and not on the particular
symmetry group. The coupling function is chosen to have the
form W1,l(x)5aV0 /(dAN/2Mv l

2)sin(x/d) and W2,l(x)
5aV0 /(dAN/2Mv l

2)cos(x/d) ~see the Appendix for a dis-
cussion on the choice of this form of the coupling function!.
Here a is dimensionless and characterizes the coupling
strength.

The equation of motion of the adatom is

ẍ52
V0

md
sin~x/d!2

aV0

md2AN/2

3(
l51

N/2

@u1,lcos~x/d!2u2,lsin~x/d!#. ~2.7!

The equations of motion for the phonon variables are

ü1,l52v l
2u1,l2

aV0

MdAN/2
sin~x/d!2g l u̇1,l1

r l
M
,

ü2,l52v l
2u2,l2

aV0

MdAN/2
cos~x/d!2g l u̇2,l1

r l
M
,

~2.8!

whereg l is a constant friction andr l is the corresponding
random force.

The dynamics of the adatom can be easily studied by
evaluating appropriate time-dependent correlation functions.
The Fourier transform of the velocity autocorrelation func-
tion of the adatom is defined as

D~v![E
2`

1`

e2ıvt^v~ t !v~0!&dt. ~2.9!

This correlation function yields important information on the
dynamical processes on the surface: at finite frequency
D(v) describes the vibrational spectrum of the adatom while
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its zero-frequency limitD(0) is exactly twice the diffusion
constant.1,5 In order to understand the different mechanism
responsible for broadening of the vibrational peak, we also
evaluate the Fourier transform of the energy autocorrelation
function:

E~v![E
2`

1`

e2ıvt^~E~ t !2^E~ t !&!,E~0!&dt, ~2.10!

whereE5 p2/2m1V0@12cos(x/d)# and ^E(t)& is the aver-
age value of the adatom energy at equilibrium. The Fourier
transform of the energy autocorrelation function has a
Lorentzian peak centered at zero. The width of the peak is a
measure of the rate of energy transfer between the adatom
and the substrate excitations, due to inelastic collisions be-
tween the phonons and the adatom. In the quantum limit, this
is related to the inverse of the lifetimeT1 of the vibrational
level. The study of the energy autocorrelation function thus
allows us to separate the energy decay contribution to the
broadening of the vibrational peak from pure dephasing
mechanisms that also induce broadening.10,43–45 These in-
clude the anharmonicity of the cosine potential and dephas-
ing due to elastic scattering between adatom and phonons.

The damping effects of the substrate phonons on the ada-
tom depends crucially on the functionh(t) which is essen-
tially the correlation function of the phonon coordinates mul-
tiplied by the coupling constanta2 and appropriately
normalized:

h~ t !5
a2bV0

2

md4
1

N(
l

^ũl~ t !ũl~0!&. ~2.11!

Here ũl(t) describes the time dependence of the particular
phonon mode in the absence of the adatom, andb is the
inverse of the thermal energy. As we will show in the next
section,h(t) is related to the frictional damping generated
by the adatom-phonons coupling. In the special case of linear
coupling, it is exactly the memory function appearing in the
generalized Langevin equation. Examining~2.11!, one sees
that in the thermodynamic limith(t) depends only on the
density of state per unit volumer(w) and not on any other
details of the phonon excitations. Equation~2.11! in this
limit can be written as

h~ t !5
a2V0

2

mMd4
V0

N E
0

1`r~v!

v2 cos~vt !dv. ~2.12!

HereV0 is the volume andr(v) is the density of states per
unit volume. Thus, instead of actually using macroscopically
large number of phonons in our simulation, we need only to
deal with a small number of ‘‘effective’’ phonons.42 The
effect on the adatom motion due to the coupling to these
effective phonons would be identical to the real macroscopic
system provided that the damping and the frequency of these
effective phonons are chosen to generate the same density of
states as the actual macroscopic number of phonons. It will
be shown below that, even for nonlinear coupling, the
memory function in the initial value approximation or mode-
mode coupling approximation is still proportional toh(t). In
this paper, the frequencyv l and the dampingg l of the pho-
non modes are chosen so that the resultingr(v) and
h(v), fit, as closely as possible, to the corresponding func-

tions in the Debye model for the substrate phonons. This is
the simplest model for the substrate excitations that allows
for the dispersion of the phonons and provides a time scale
for the excitations in terms of the inverse of the cutoff fre-
quencyvD . It also allows us to compare the result of our
simulation studies with earlier analytical studies24 employing
the same model for the substrate excitations. In the three-
dimensional Debye model, the density of statesr(v) is
given by the expression

r~v!5
3v2

2p2c3
Q~vD2v!. ~2.13!

Here, c is the velocity of sound andvD is the Debye fre-
quency. The real and imaginary part of the Laplace transform
of h(t), defined as

h~v!5E
0

1`

eivth~ t !dt, ~2.14!

can be evaluated easily to yield the result

Reh~v!5hQ~v2vD!, Imh~v!52
h

2p
lnU v2vD

v1vD
U,

~2.15!

and the constanth is

h5
3a2V0

2V0

4pmc3MNd4
. ~2.16!

For our model with a finite number of modes, the function
h(t) can be expressed as

h~ t !5
a2bV0

2

md4
2

N(
l

N/2

^ũl~ t !ũl~0!&, ~2.17!

where the summation overl is replaced by the one overl .
The Laplace transform ofh(t) can be derived from the equa-
tions of motion~2.8! and

h~v!5
a2V0

2

d4Mm

2

N(
l51

N/2
1

v l
2

2 iv1g l

2v21v l
22 ivg l

. ~2.18!

To mimic the Debye model, we choose the phonon pa-
rameters such that the real part ofh(v) approximates a step
function as shown in Eq.~2.15!. In Fig. 1 we plot the func-
tion Reh(v), resulting from our choice ofm5M51 and
nine distinct phonon modes. The maximum phonon fre-
quency in our model can be regarded as the effective Debye
frequencyvD which in Fig. 1 has chosen to be equal to
v0 . The approximation to the step function is reasonably
good. The value ofh(v) at v50 corresponds to the con-
stanth in the Debye model result in~2.15!.

III. GLE AND THE MEMORY FUNCTION

The motion of the adatom in our model can be equiva-
lently described by a generalized Langevin
equation16,17,20,30,31

ṗ1
dV~x!

dx
1E

0

t

S~ t2t8!p~ t8!dt85R~ t !. ~3.1!
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Here,R(t) is the nonadiabatic fluctuating random force. It is
formally given by the expressionR(t)5exp(2iQLQt)QLp,
with L the Liouville operator andQ the projection operator
onto the Hilbert space orthogonal to adatom variables. The
termQLp represents the nonadiabatic part of the force~2.5!
~Ref. 24!

QLp5(
l

ul f l~x!, ~3.2!

where f l(x)[Mvl
2@dWl(x)/dx#. For the coupling model

adopted in this paper, we replace the general indexl by
( i ,l ), and the coupling functions can be written as

f 1,l~x!5 f 1~x!5
aV0

d2AN/2
cos~x/d!,

f 2,l~x!5 f 2~x!5
2aV0

d2AN/2
sin~x/d!. ~3.3!

Note that, for this particular choice, the coupling is indepen-
dent of the phonon indexl .

The operator exp(2iQLQt) ensures that the time evolu-
tion ofQLp is at all times orthogonal to the Hilbert space of
the adatom variables. The memory functionS(t2t8) is re-
lated to the fluctuating random forceR(t) by the fluctuation-
dissipation theorem:

^R~ t !,R~ t8!&5mkBTS~ t2t8!. ~3.4!

So, using the definition ofR(t) and the relation~3.4!, the
memory function becomes

S~ t !5
b

m(
l

^ul f l~x!uexp~ iQLQt!uul f l~x!&. ~3.5!

This expression for the memory function is formal and
does not allow easy evaluation. Thus, various approxima-
tions have been introduced. The exception is the case of
linear coupling. For a constantf l(x)5aV0 /d

2AN , the cor-
responding memory function is independent of the particle

motion. The Liouville operatorQLQ has the effect of pro-
jecting out the adatom coordinate in the phonons equations
of motion:

S~ t !5
b

m

a2V0

d4N (
l

^ũl~ t !,ũl~0!&, ~3.6!

whereũl is the coordinate of thelth eigenmode in the ab-
sence of the adatom. Note thatS(t), in this case, is simply
the functionh(t), defined earlier in~2.11!.24,35For phonons
in the Debye model without the cutoff, the memory function
is proportional to a delta functionS(t)5hd(t). Therefore
its Fourier transformS(v) is frequency independent, and
there are no memory effects. The GLE, in this case, reduces
to the simple Langevin equation.16,17,34When the cutoff of
the Debye model is taken into account,S(v) is frequency
dependent even in the linear coupling model. In general, the
real and imaginary parts of the Laplace transform ofS(t) are
related, respectively, to the damping and the shift of the ada-
tom energy.

For the case wheref l(x) is not a constant, two approxi-
mations have frequently been employed in the literature.20,24

The first is the initial value approximation~IVA !. This is
valid when the substrate phonons time scale is much shorter
than the adatom time scale. In this case, during a period of
oscillation of the phonons, the particle has barely moved, so
^ f l„x(t)…, f l„x(0)…& can be replaced bŷ f l„x(0)…

2&, and
S(t) becomes

S IVA ~ t !5
b

m(
l

^u f l„x~0!…u2&^uluexpiQLQtuul&. ~3.7!

The expression for the memory function now does not con-
tain explicitly the adatom variables, and the effect of nonlin-
ear coupling is only to reduce its value by the temperature-
dependent factor̂u f l(0)u2&. As in the linear coupling case,
the effect of the Liouville operatorQLQ is to project out the
adatom coordinate in the phonons equation of motion. For
our choice of the coupling function, it is easy to see that
S IVA (t) reduces to the functionh(t) defined earlier in
~2.11!.

The generalized Langevin equation with the IVA approxi-
mation for the memory function has been studied anaytically
with the matrix continued-fraction method.24,30,31. We will
compare our molecular-dynamics simulations results with
the corresponding analytic results in the next section.

The second common approximation for the memory func-
tion is the mode-mode coupling approximation. Here, one
approximates the full memory function by the product of two
distinct correlation functions, one for the adatom variables
and the other for the substrate phonon variables. The
memory function is then given as

Smod~ t !5
b

m(
l

^uluexpiQLQtuul&^ f l„x~ t !…, f l„x~0!…&.

~3.8!

Changing the summation froml to (i ,l ) and expressing the
phonons coordinate correlation function in terms ofh(t), we
obtain the expression

FIG. 1. Reh(v)/v0 vs v/v0 , with a51, m5M51, and
vD5v0 .
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Smod~ t !5h~ t !
d4N

a2V0
2 (
i51,2

^ f i„x~ t !…, f i„x~0!…&, ~3.9!

where f i(x), defined in~3.3!, is independent of the indexl .
As stated earlier, in both the IVA and mode-mode coupling
approximations, the memory function depends on the pho-
non excitations only through the functionh(t) defined ear-
lier, and not on other details of the substrate. Even with the
mode-mode coupling approximation to the memory function,
the solution of the GLE is rather difficult sinceSmod(v) still
involes the adatom correlations function. The solution re-
quires then iteration to self-consistency. So far, only limited
results exist for specific models.20,24 In order to compare our
molecular-dynamics simulation results to the corresponding
solution of the GLE in the mode-mode coupling approxima-
tion, we employ the following scheme. First, from our
molecular-dynamics results, we can compute the correlation
function for the adatom variablêf i„x(t)…f i„x(0)…&. To-
gether with the knowledge of the damping functionh(t)
introduced earlier, this allows us to evaluate theSmod(v)
according to Eq.~3.1!. We then introduce an effective
Hamiltonian in which the adatom is coupled linearly to a set
of substrate phonons. We choose the phonon parameters
vl andgl , for this new problem such that the corresponding
memory function in this linear coupling model, is equal to
the mode-mode coupling memory function calculated from
the nonlinear coupling under study. We then run a
molecular-dynamics simulation for this effective linear cou-
pling model. The comparison of the results from this second
simulation with the original simulation results for the nonlin-
ear model then allows us to gauge the accuracy of the mode-
mode coupling approximation for the memory function. This
comparison will be presented in the next section.

IV. RESULTS

In this section, we analyze the results obtained with MD
in three different regimes, characterized by the ratio of the
frequency of the adatom vibrational mode to the maximum
substrate phonon frequency:vD510v0 , vD5v0 , and
vD50.1v0 .

Molecular-dynamics simulations are performed with an
integration step of 0.05v0

21 and a total number of
13 607 200 steps is used to obtain the results presented in
this section. Long simulations are necessary to evaluate dif-
fusion properties correctly. At low temperatures the jump
rate is quite small and many steps are needed in order to
obtain good statistics of the events.40,41Diffusive and vibra-
tional properties are studied by evaluating the time depen-
dent correlation functions defined in~2.9! and ~2.10!. Their
Fourier transforms are calculated in an interval of 65 536
steps, in order to have a good resolution in frequency space.

A. Results for vD510v0

This is the regime where most analytical work has been
done and many theories have been developed to account for
diffusive and vibrational properties of the adatom. Because
of the rapid fluctuating force acting on the adatom due to the
coupling to fast substrate phonons, we expect memory ef-
fects to be negligible and the results obtained from the solu-

tion of GLE with the IVA approximation should be very
accurate.22,24Also, the cutoff in the phonon spectrum should
have negligible effects and the IVA solution is therefore
equivalent to a constant frictionh in the Langevin equation.

In Fig. 2, we plot the velocity autocorrelation function
D(v) vs v, for several temperatureskBT50.2,0.5,1V0 and
with the friction parameterh/v050.21. At low tempera-
tures, a large vibrational peak, centered atv.v0 , dominates
the spectrum. To understand the mechanisms that contribute
to the broadening of the vibrational peak, we have also
evaluated the energy autocorrelation function. Its Fourier
transform E(v) has a Lorentzian peak centered at zero
whose width is related to the rate of energy transfer between
the adatom and the substrate excitations. In this case, we find
that the value of the halfwidth at half maximum~HWHM! of
the Lorentzian peak is equal to the width of the vibrational
peak. This indicates that the main cause of broadening at low
temperatures is through the decay of the adatom vibrational
energy by transfer to the substrate excitations. At higher tem-
peratures, the anharmonicity of the cosine potential starts to
play an important role. The vibrational peak broadens further
and the diffusive peak becomes dominant. Furthermore, as
shown in Fig. 2, we observe a shift of the vibrational peak to
lower frequencies as temperature increases. There are actu-
ally two competing effects contributing to the peak shift.
First, the anharmonicity of the cosine potential changes the
curvature of the potential well, allowing the existence of a
wider spectrum of energy state, thus shifting the peak to
lower frequencies. This effect is strongly temperature depen-
dent. Second, the phonon-coupling produces a shift to higher
frequencies.10 The effect due to the anharmonic cosine po-
tential dominates in this regime.

In Fig. 3, the diffusion constant is plotted as a function of
inverse temperature forvD510v0 , vD5v0 and vD
50.1v0 . The data forvD510v0 shows that the diffusion
process in this regime is thermally activated, with the diffu-
sion barrierD simply equal to twice the amplitude of the
cosine potential 2V0 as expected.

6

In Fig. 4, we show a comparison between velocity auto-
correlation function calculated using molecular dynamics
and obtained solving analytically the GLE in the IVA

FIG. 2. Fourier transform of the velocity autocorrelation func-
tion D(v)/kBTD0 vs v/v0 with D052v0d

2. Here kBT/V0

50.2,0.5,1 ~dotted, dashed, and solid line, respectively! with
vD510v0 andh/v050.21.
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approximation.22,24 These results are obtained forvD
510v0 , kBT50.2,0.333,0.5V0 , and h/v050.21. As ex-
pected, the results from the two calculations are almost iden-
tical in this regime provided we identify the value of
h(v50) with the friction parameterh used in solving the
GLE. Thus, in this regime, the IVA approximation provides
an excellent description of the memory function and the ef-
fect of the cutoff in the phonon density of states is negligible.
Furthermore, it is also an explicit demonstration that the
scheme of using a few effective phonons is indeed able to
describe the coupling to macroscopically large number of
phonons provided that the phonon density of states is chosen
to be the same in the two cases.

B. Results forvD5v0

In this regime the time scales of the adatom and the
phonons are comparable and we do not expect IVA to be

applicable here. Referring back to Fig. 3, we see that the
diffusion constantD for vD5v0 still shows an Arrehnius
activated form but with an effective diffusion barrierD equal
to 2.560.05V0 insead of 2V0 . The difference between the
effective barrier and the adiabatic barrier 2V0 can be under-
stood from the following reasoning. When the adatom sits in
the well, it performs many oscillations before it attempts to
jump, allowing therefore the substrate to relax. However the
adatom crosses the barrier in a time interval of the order of
1/v0 , which is comparable to the time scale of the substrate.
Therefore the substrate does not have enough time to relax.
Thus, the potential at the barrier is higher by approximately
the magnitude of the relaxation energy which can be evalu-
ated using~2.3! as

Erel5
3a2V0

2d2MvD
2 , ~4.1!

where we have used the properties of the Debye model for
the phonons. Indeed, we find that the differenceD22V0 and
E rel agree within our numerical uncertainty which is about
10%. In Fig. 5, we plot the velocity correlation function
D(v), for kBT50.2,0.5,1V0 , andh/v050.95. At low tem-
peratures, the vibrational peak dominates over the diffusive
peak. In this regime, we notice that there is a significant blue
shift of the vibrational peak. This is due to the strong level
repulsion resulting from the coupling to substrate phonons.
In fact, when the memory function is a step function, as
resulting from the linear coupling to a Debye model
phonons, the shift can be evaluated analytically as in
~2.15!.10,24The position of the vibrational peak is shifted to a
new frequencyṽ given by

ṽ.v0A12
h

pv0
lnu

v2vD

v1vD
u. ~4.2!

As v approachesvD , the shift diverges logarithmically. For
the nonlinear coupling model under study, the shift is not
divergent but still very large atv close tovD . Besides this
mechanism, the anharmonicity of the cosine potential causes
a red shift in the opposite direction. The anharmonicity effect

FIG. 3. Diffusion constantD/D0 vs 2V0 /kBT plotted in loga-
rithmic scale withD05v0d

2; for vD510v0 ~squares!, vD5v0

~plusses! andvD50.1v0 ~rhomboids!. The slopes for straight line
fitting the data are, respectively,21.0260.03 for vD510v0 ,
21.2560.05 forvD5v0 , and21.0560.1 forvD50.1v0 .

FIG. 4. Fourier transform of the velocity autocorrelation func-
tion D(v)/D0 vs v/v0 with D052v0d

2. Lines are MD results,
while symbols are the results from the analytical solution to GLE in
the IVA approximation, using continued-fraction expansion. Curves
for kBT/V050.2,0.333,0.5~solid, dashed, and dashed-dotted, re-
spectively! h/v050.21 andvD510v0 .

FIG. 5. Fourier transform of the velocity autocorrelation func-
tion D(v)/kBTD0 vs v/v0 (D052v0d

2). Here kBT/V0

50.2,0.5,1 ~dotted, dashed, and solid line, respectively! with
vD5v0 andh/v050.95.
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gets stronger as the temperature increases but it is not suffi-
cient to counterbalance the shift due to adatom-phonons cou-
pling.

Examining the Fourier transform of the energy autocorre-
lation function, we found thatE(v) in this regime is not a
simple Lorentzian. The energy decay, therefore, cannot be
described by an unique time scale but it is more complex and
involves several decay rates. The shape of the velocity auto-
correlation function is also not a simple Lorentzian but it is
asymmetric with a larger wing towards lower frequencies. It
is clear, therefore, that when adatom and phonons time scales
are comparable, memory effects are very strong and the
simple picture of constant frictional damping is inadequate.

It is obvious that the IVA for the memory function breaks
down here. We now want to compare our molecular-
dynamics results with the corresponding solution of the GLE
using the mode-mode coupling approximation for the
memory function. We calculateSmod(v) by evaluating first
the adatom correlation function( i51,2̂ f i„x(t)…, f i„x(0)…&,
through our MD simulation results, and then substituting into
Eq. ~3.8! for Smod(v). The memory function shows a strong
temperature dependence and only approaches the IVA limit
at low temperatures. As temperature increases the nonlinear
part of the coupling becomes important so the zero-
frequency value ofSmod(v) decreases and a large tail starts
to form. Unlike the IVA, at high temperature, the sharp drop
at v5vD has completely disappeared.

Figure 6 shows a comparison between velocity autocorre-
lation functions, obtained from the molecular-dynamics stud-
ies and the one obtained from solving the GLE in the mode-
mode coupling approximation forkBT50.5V0 and h/v0
50.95. The two results are very similar. This indicates that
the mode-mode coupling approximation gives a reasonably
good description of the adatom dynamics in this regime. In
particular, the diffusion motion is controlled by the friction
h5Smod(v.0). On the other hand, the adatom experiences
a different damping whose strength is given byS(v.v0)
when it is vibrating in the well. The value of memory func-
tion at v.0 can differ significantly from the one at
v.v0 , when memory effects are important. Moreover, un-

like the IVA limit, both Smod(v.0) and S(v.v0) are
strongly temperature dependent. A qualitative trend indicates
that as temperature increases the friction at zero frequency
decreases, while its value at finite frequency increases.

C. Results forvD50.1v0

In this regime, the adatom moves much faster than the
phonons. In Fig. 7, we plot the velocity autocorrelation func-
tion for values ofkBT50.2,0.5,1V0 and for h/v052.2.
Here nonlinear coupling is essential for an understanding of
the vibrational properties of the adatom. If the coupling be-
tween the phonons and the adatom were linear, the broaden-
ing of the vibrational peak would be dominated by effects of
the anharmonic cosine potential, and the vibrational peak
would approach ad function at low temperatures.10 However
the nonlinear coupling enhances both the elastic and inelastic
collision of the adatom with the substrate excitations and
leads to finite broadening even at low temperatures. An
analysis of the Fourier trasform of the energy autocorrelation
function E(v) shows that the HWHM of the Lorentzian
peak is, in fact, more than an order of magnitude smaller
than the width of the vibrational peak. This indicates that, in
this regime, the coupling of the adatom to the substrate ex-
citations results mainly in pure dephasing mechanisms, and
the decay of the adatom vibrational energy due to the cou-
pling to substrate excitations is negligible. At low tempera-
tures, the dephasing due to the anharmonicity of the periodic
potential is not important. Thus, the broadening mechanism
here is due to the elastic dephasing events in the collision of
the adatom with the substrate excitations.43–45 In the
quantum-mechanical regime, this would correspond to a
multiphonon process resulting in no net energy transfer.
These events would be too weak for the linear coupling
model but they are strongly enhanced in the nonlinear cou-
pling model.

Referring back to Fig. 3, we see that forvD50.1v0 , the
diffusion constant again obeys the Arrenhius form with a
barrierD52.160.1V0 . The difference ofD from the adia-
batic barrier 2V0 can be understood again from the lack of
substrate relaxation when the adatom is crossing the barrier.

FIG. 6. Fourier transform of the velocity autocorrelation func-
tion D(v)/D0 vs v/v0 with D052v0d

2. Solid curve represents
tha exact numerical solution, the dashed curve has been obtained
using the memory function in mode-mode coupling approximation.
kBT/V050.5, h/v050.95, andvD5v0 .

FIG. 7. Fourier transform of the velocity autocorrelation func-
tion D(v)/kBTD0 vs v/v0 with D052v0d

2. Here kBT/V0

50.2,0.5,1 ~dotted, dashed, and solid line, respectively! with
vD50.1v0 andh/v052.2.
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The prefactorD0 here is more complicated than in the two
regimes previously discussed. For example, the mode-mode
coupling approximation predicts an effective friction at zero
frequencyheff(v.0)/v051.3 for kBT50.5V0. This would
lead to a result forD0 according to the solution of the GLE
of D053.5v0d

2. Instead, we observe from the MD simula-
tions a value ofD05121.8v0d

2. The comparison shows that
the numerical result forD0 is, at least, an order of magnitude
larger than the one obtained solving the GLE in mode-mode
coupling approximation. This result extends at all tempera-
tures and suggests that mode-mode coupling approximation
is inadequte to describe the diffusive properties of the ada-
toms when its characteristic vibrational frequency is much
faster than the substrate timescale.

It is important to stress that, in this regime, as in the case
vD.v0 , the effective friction acting on the adsorbate is a
frequency-dependent function. In its diffusive motion the ad-
sorbate experiences a frictional force proportional to
Smod(v.0) while the damping is proportional to
Smod(v.v0) when the adatom vibrates in the well. Further-
more, when memory effects are important, the effective fric-
tion is also strongly temperature dependent. The memory
function in the mode-mode coupling approximation
Smod(v) ~3.8!, only approaches the IVA value at low tem-
peratures. As temperature rises, in fact the value of
Smod(v.0) decreases whileSmod(v.v0) increases. This
indicates that, unlike the IVA limit, the contribution to the
vibrational damping due to adatom-phonons coupling is not
negligible.

Figure 8 shows a comparison between velocity autocorre-
lation functions, obtained through molecular-dynamics simu-
lation studies, and the one in the mode-mode coupling ap-
proximation for kBT50.5V0 and the phonons friction
h/v052.2. At finite frequencies, there is a reasonable agree-
ment between the two results. The agreement, however, gets
worse asv→0, leading to the difference in the value of the
diffusion constant as discussed above.

D. Results beyond Debye model substrate phonons

All the results presented in the previous paragraphs have
been obtained using substrate phonons characterized by De-

bye model. It is natural, therefore, to ask if the qualitative
features of the diffusive and vibrational motion of the ada-
tom change for more realistic models of substrate excita-
tions. We discuss here briefly results obtained with
molecular-dynamics simulation using a different model for
the substrate phonons which contains more realistic features.
In Fig. 9 we show the effective phonon density of state
r(v) adopted in this case. Referring to Eqs.~2.6! and~2.7!,
r(v) is defined as

r~v!5
2NMv2

pV0a
2 Reh~v!, ~4.3!

where Reh(v) is the real part of the Laplace transform of
h(t) ~2.18!. As opposed to the Debye model, this new
r(v) now peaks in the middle of the spectrum and does not
drop off to zero sharply atv5vD . We now define a fre-
quencyvs as the frequency at whichr(v) reaches its maxi-
mum. The important parameter that determines the relation
of the time scale of the adatom to that of the substrtate ex-
citations is now the ratiog5vs /v0. This now plays the role
of the parametervD /v0 defined earlier for the Debye model.
We find again that the memory effects depend strongly on
the ratiog, with the IVA working well in the limitg@1, and
the mode-mode coupling approximation reasonably well for
g<1. All the qualitative features of the memory effects on
the vibrational and diffusive motion of the adatom for differ-
ent regimes ofg carries over to the new model. The only
major difference is the frequency dependence of the friction
in the IVA limit. For the Debye model in the IVA limit, the
real part ofh(v) is proportional to the step function and the
imaginary part is negligible forg@1. For the present model,
while the imaginary part ofh(v) is still negligible, the real
part ofh(v) is no longer a constant in the frequency region
of interest but it is indeed strongly frequency dependent.
This implies that the diffusive and vibrational motion are
then controlled by different friction valuesh(v.0) and
h(v.v0), respectively, instead of a single friction param-
eterh in the case of the Debye model.

V. CONCLUSIONS

In this paper, we have studied the diffusive and vibra-
tional motion of an adatom coupled to substrate excitations

FIG. 8. Fourier transform of the velocity autocorrelation func-
tion D(v)/D0 vs v/v0 with D052v0d

2. Solid curve represents
tha exact numerical solution, the dashed curve has been obtained
using the memory function in mode-mode coupling approximation.
kBT/V050.5, h/v052.2, andvD50.1v0 .

FIG. 9. The phonons density of statesr(v)/v0 vs v/v0 with
a51,m5M51, andvs.0.85v0 .
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starting from a miscroscopic description of the system. We
consider a coupling between the adatom and substrate
phonons which is linear in the phonons coordinates but non-
linear in the adatom coordinate. We perform molecular simu-
lation studies for this system with a small number of effec-
tive phonons. It is demonstrated that with proper choice of
the frequency and damping of these effective phonons, the
effect on the adatom is identical to that due to the interaction
with a macroscopic number of substrate phonons in the ther-
modynamic limit. Our main focus is to analyze the memory
effects of the frictional damping on the motion of the ada-
tom.

We find that the importance of memory effects depends
crucially on the parameterg5vD /v0 , with vD representing
the Debye frequency of the substrate phonons andv0 the
adatom vibrational frequency. In the limitg@1, the memory
effects are largely negligible. In this case, we can identify a
constant friction parameterh related to the zero-frequency
limit of the phonon correlation function in our model. To
better understand our numerical results, we can compare
them with results obtained from a different but equivalent
analytic approach. Starting from our microscopic model, we
can derive a generalized Langevin equation~GLE! describ-
ing the motion of the adatom.32,34–36The effect of adatom-
phonon coupling is contained in the memory function and a
fluctuating random force in the GLE. Wheng@1, the
memory function can be approximated in the initial value
approximation20,24~IVA ! and the GLE then can be solved by
the matrix continued fraction method.24,30,31Our numerical
results for the diffusion constant and the vibrational motion
of the adatom are in excellent agreement with the IVA solu-
tion of the GLE. Thus we have demonstrated explicitly the
validity of the IVA in the limit where the time scale of the
substrate excitations is much shorter than that for the motion
of the adatom.

Wheng is comparable or much smaller than 1, memory
effects start to manifest themselves. First, the vibrational
peak begins to deviate from a pure Lorentzian shape because
of the frequency dependence of the frictional damping. Also,
the mechanism through which the adatom phonon coupling
contribute to the vibrational lineshape broadening changes.
For g@1, the line broadens mainly through the decay of the
adatom vibrational energy via transfer to the substrate exci-
tations. Asg increases, the broadening becomes dominated
by pure dephasing effects due to the elastic collision of the
adatom with the substrate phonons. Another manifestation of
the memory effect is the shift in the vibrational peak fre-
quency. Unlike the anharmonicity of the potential which al-
ways causes a red shift and is strongly temperature depen-
dent, the frequency dependence of the frictional damping
gives rise to a blue shift of the vibrational peak to higher
frequencies. This shift peaks at the value ofg.1 as easily
understood from the usual Kramer-Kronig analysis.16,17

The memory effects also affect strongly the diffusion
properties. At low temperatures, we find the diffusion con-
stant to obey an Arrehnius-activated form independent of the
value of g. However, starting atg.1 and for g,1, the
value of the barrier gets renormalized by the adatom phonon
coupling and becomes appreciably larger than the static bar-
rier 2V0 . In fact, while at the well the adatom oscillates for
many periods before attempting to jump, allowing the sub-

strate to relax. At the saddle the time necessary for the ada-
tom to cross is very short compared to the time needed for
the substrate to relax. As a consequence, the effective barrier
is increased by the amount of the energy relaxation at the
saddle. This analytical prediction agrees with the numerical
result within 10%. This is in strong contrast to the Markov-
ian limit where the adatom substrate coupling leads to a con-
stant friction which only affects the prefactor in the Arrhen-
ius form but not the barrier itself. As far as the prefactor is
concerned, it is now controlled by an effective friction which
is different from the finite frequency value contributing to
the broadening of the vibrational line. This effective friction
depends now not just on the phonon properties of the sub-
strate but also on the adatom motion itself.

As discussed earlier, there is a GLE associated with the
model we use in our molecular-dynamics simulation study.
In the regimeg,1, the IVA for the memory function is no
longer valid. The commonly used approximation in this re-
gime, to incorporate memory effects in the solution of the
GLE, is the so-called mode-mode coupling approximation.
In the context of application to adatom dynamics, there have
not been too many studies using this approach because of the
complexities in its actual implementation. Unlike the IVA,
the accuracy of the mode-mode coupling approximation for
the memory function is more difficult to gauge. Our
molecular-dynamics results allows us to determine the accu-
racy of the mode-mode coupling approximation for adatom
dynamics. We find that over the wide frequency regime that
we have studied, (g ranging from 1 to 0.1) the correlation
functions obtained from the GLE in the mode-mode coupling
approximation agrees well with the exact numerical result in
the finite frequency region of the spectrum. Thus, it is a good
approximation for the study of the vibrational properties of
the adatom. In the low-frequency region, the mode-mode
coupling results start to deviate significantly from the
molecular-dynamics results forg!1. This has a strong im-
plication on the value of the diffusion constant, which can be
expressed as the zero-frequency transform of the velocity
autocorrelation function. For example, we find that for
g50.1, the value of the diffusion constant obtained from the
numerical simulation is more than an order of magnitude
larger than the corresponding value from solving the GLE
with the mode-mode coupling approximation. We expect
that the qualitative features of our model will carry over to
more complicated systems. Thus we conclude that while the
mode-mode coupling approximation can be used with confi-
dence for studying adatom vibrational dynamics, its applica-
tion to surface diffusion can be problematic.

APPENDIX

In this appendix we derive the form of the coupling func-
tion, as given in Sec. II, from a pair potential interaction
between the adsorbate and the substrate atoms. Let us as-
sume that potential experienced by the adsorbate due to all
the atoms on the lattice is

Vtot~x!5(
j
W~xx̂2Rj !5(

j ,k
W~k!eik•~xx̂2Rj ! ~A1!

wherex is the adatom coordinate andRj is the coordinate of
the substrate atoms characterized by the indexj . In the har-
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monic approximationRj5Rj
01uj , whereRj

0 is the equilib-
rium position of the atom in the lattice anduj is the displace-
ment from the equilibrium position such thatuj!Rj . Then
Vtot(x) to lowest order inuj can be rewritten as

Vtot~x!5(
j ,k

W~k!eik•~xx̂2Rj
0
!2(

j ,k
W~k!eik•~xx̂2Rj

0
!ik•uj .

~A2!

The total potential consists of two parts. The first is the static
potential generated by the lattice atoms in their equilibrium
position and in our model is approximated by a cosine po-
tential. The second depends onuj , therefore on the dynam-
ics of the substrate and it corresponds to the interacting part
of the Hamiltonian described in~2.4!.

Focusing on the second term, we rewrite the wave vector
k5q1G where q is restricted to the first Brillouin zone,
while G are the reciprocal-lattice vectors. Since
exp(2iG•Rj

0)51 Vint becomes

Vint~x!52 i (
j ,q,G

W~q1G!ei ~qx1Gx!x~q1G!•uje
2 iq•Rj

0
.

~A3!

Noting that( juje
2 iq•Rj

0
is just the Fourier componentuq ,

then

Vint~x!52 i(
q,G

W~q1G!~q1G!•uq$cos@~qx1Gx!x#

1 isin@~qx1Gx!x#%. ~A4!

Furthermore, restricting the summation ofq to half spin

Vint~x!52 i(
q,G

8~q1G!•$@uqW~q1G!

2u2qW~2q2G!#cos@~qx1Gx!x#

1 i @uqW~q1G!1u2qW~2q2G!#

3sin@~qx1Gx!x#%. ~A5!

Substituting foruq5(u1,q1 iu2,q)/A2 andu2q5uq
! and as-

suming thatW(q1G)5W(2q2G), then

Vint~x!5A2(
q,G

8W~q1G!~q1G!•$u1,qsin@~qx1Gx!x#

1u2,qcos@~qx1Gx!x#%. ~A6!

The specific coupling that we have choosen for our simula-
tions retains some of the features of the general coupling
derived here. It can be regarded as an approximation to
Vint(x) when the functionW(q1G) peaks sharply at
q1G5(2p/a) x̂. Replacing theq label by the general index
l , the coupling can then be written as

Vint~x!5A(
l

@u1,lsin~x/d!1u2,lcos~x/d!#, ~A7!

whereA5aV0 /(dAN) andd5a/2p.
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