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Memory effects in the frictional damping of diffusive and vibrational motion of adatoms
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We investigate the memory effects in the frictional damping of the vibrational and diffusive motion of an
adatom. Using the molecular-dynamics simulation method, we solve the equations of motion of an adatom in
a periodic potential coupled to substrate phonons which are in turn coupled to a heat bath. The frustrated
translational mode and the diffusion constant of the adatom is studied by calculating appropriate time-
dependent correlation functions. We discuss our numerical results in the context of a generalized Langevin
equation. The validity of analytic approximations to the memory function in the Langevin equation such as
mode-mode coupling and initial value approximation are examined by comparing the analytic results with
those obtained from the numerical simulatiof80163-1826)02229-]

I. INTRODUCTION wp> wg, wp=wq, andwp<wy, Wherewp is the maximum
frequency of the substrate excitations, whilg is the char-
Much attention has recently been focused on the dynamiacteristic vibrational frequency of the adatom. In the case of
cal properties of adatoms coupled to substrate excitations’o>®o, We recover the results obtained earlier

. . . . . H 24 . -
The diffusive as well as the vibrational motion of the adsor-analytically™ In the other regimespp=w, and wp<wy,

bate have been probed with several experimenta‘ihe vibrational and diffusive motion of the adatom is strongly
techniques Theoretical models have also been develope nfluenced by the nonlinearity of the coupling. No exact ana-

. e 149 . ytical results exist in this case.
to explain the process of diffusiofi® and the different Formally, the motion of the substrate phonons can be in-

mechanlfomlsA that affect the vibrational properties of th§egrated out and the adatom motion can then be described by
adatont}**~ a generalized Langevin equati@@LE) with a memory func-
Most of these theoretical studies have focused on physicajon replacing the simple damping described by a constant
systems where the substrate excitation time scale is mudhiction,'®”-3*-*3However, even though a formal expression
shorter than the time scale of the motion of the adatom. Ifor the memory function can be obtained, in most cases the
this case, memory effects are not important and the motiofletailed evaluation of the memory function is not possible.
of the adsorbate is described by a simple Langevin equatiolfloreover, for a general memory function, no analytic solu-
with a damping force proportional to the instantaneoudion of the GLE valid in all the frequency regimes exists. In

velocity $15-19If, however, the excitations have a time scale (N€ literature, two main approximations for the memory
y function have been uséﬂ?zg?“The first one is the initial

gg;nspair:blﬁér(])_r'\}f;r:lg(]g\r/i;hnangzgt o;q;hmeoa:gatg?égg enggso?]:gvalue approximatior{lVA). Here, the adatom time spale.is
) {20-26 assumed to be much longer than the substrate vibrational
Important. . . . period and the adatom coordinate in the memory function is
In this paper, we investigate the mechanism of th&parefore replaced by its initial value. This results in a
adatom-phonons coupling and its effect on the diffusive angnemory function similar to the linear coupling case and al-
vibrational properties of the adatom using molecular-joys an analytic solution for the various correlation func-
dynamics(MD) simulation studies. Our object is to under- tions using a matrix continued-fraction methi§d-243031
stand in detail the memory effects in the frictional dampingFor the cases where the two time scales are comparable and
of the adatom due to the coupling to the substrate phonog clear cut separation is not possible, the mode-mode cou-
excitations. In particular, we study a coupling which is non-pling approximation is often employed. This involves the
linear in the adatom coordinates, and we stress the differfactorization of the memory function into the product of two
ences and similarities with the more commonly studied lin-time correlation functions, one for the adatom motion, and
ear coupling case. The nonlinear effects are most importarthe other for the substrate motion. The various time correla-
in the temperature range of the order of the energy barrier. Ition functions for the adatom can then be determined self-
this regime the diffusive and vibrational motion of the ada-consistently. In this paper, besides studying the dynamics of
tom are intrinsically coupled to each other; so they cannot béhe adatom for our theoretical model through molecular-
studied separatef?-2*In our model, therefore, diffusive and dynamics simulation, we also solve the corresponding GLE
vibrational motion are treated on equal footing. Experimen-using these standard approximations for the memory func-
tally this regime can be probed using the helium scatteringion- This allows us to compare the analytic and numerical
techniqué?’ ~2°We calculate the diffusion constant as well as approaches to establish the region of validity, if any, of these

the width and the shift of the frustrated translational mode Standard approximations widely used in the literature.

The physical mechanisms responsible for the broadening of
the vibrational peak are clarified through the study of the

energy as well as the velocity autocorrelation function for the Since our main interest is to explore the qualitative fea-
adatom. The results are analyzed in three different regimesure of nonlinear coupling to the substrate and memory ef-

Il. THE MODEL
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fects in the frictional damping, in this paper, we adopt thecesses are much shorter than that of the adatom motion and
simplest theoretical model which contains all the necessarglearly memory effects, in electronic friction, can be ne-
ingredients. First of all, we restrict the motion of the adatomglected. They can be easily included as an additional Mar-
to one dimension. The extension to higher dimension ikovian friction acting on the adatom.

straightforward. The substrate excitations, however, are still The phonons are assumed to be in contact with a heat bath
fully three dimensional. We describe an adatom interactingt a constant temperature. The coupling of the phonons to the
with substrate excitations with the following Hamiltonian: heat bath are mathematically described by a Langevin equa-

tion with dampingy, and random force, , related by the

H=HpntHo+ Hi. (2.1 fluctuation and dissipation theoreif**
There are three components in this Hamiltonian. The first (r (O (t))y=2mkgTy, 8(t—t'). (2.6)
part is the Hamiltonian for the substrate excitations in the .
harmonic approximation: Therefore, in the absence of the adatom, the phonons behave

like Brownian harmonic oscillators whose position correla-
2, tion functions are knowr>*? The adatom, instead, is only
Hpn= 2 oM T T2 Y- (2.2 directly coupled to the phonons which thermalize its motion.
> We choose for the adiabatic periodic surface potential the
This describes the substrate by a set of harmonic oscillatoigmplest cosine potentiaM(x)=Vy[1—cosf/d)], where
corresponding to the normal modes of the lattice characted=a/27 anda is the lattice constant. For the phonons, we
ized by an index.. The frequency, coordinate and momentadivide them into two groups according to their symmetries.
of the normal mode are denoted by, u, , andp, , respec- The general indexx can now be replaced by the index
tively. (i,1) wherei=1,2 labels the symmetry group andruns
The second part describes an adatom in a static potentidkom 1 to N/2, with N being the total numbers of phonons
considered. The frequencies; have been chosen so that
p? wa 5 they depend only on the inddxand not on the particular
H0=ﬁ+V(x)+ ; 2 Wi(X), (2.3 symmetry group. The coupling function is chosen to have the
N form Wy ()= aV,/(dVN2Mwf)sind) and W,(x)
wherex andp are the adatom position and momentum, — — ;v /(d\/N/2M w?)cosg/d) (see the Appendix for a dis-
andM are the adatom and the substrate atom masses, resp@grsion on the choice of this form of the coupling funcion

tively, V(x) is the static potential, an/,(x) is a function  Here o is dimensionless and characterizes the coupling
describing the coupling of the adatom coordinate to the subgirength,

strate excitations. Here the second term has been added in The equation of motion of the adatom is
order to counterbalance the effect of the adiabatic force due
to the coupling® This way, the energy shift of the vibra-

y \Y Y,
tional peak and the change in diffusion barrier are only due X=— m—(()jsin(x/d)— C; 9
to the nonadiabatic effect of the adatom-phonons coupling. md=yN/2
Finally there is the coupling term N/2
Mo X|21 [uy,cogx/d)—uy,sin(x/d)]. 2.7
: <
Hin= 20—~ Uy Wa(x), (2.4

The equations of motion for the phonon variables are

where each phonon mode is coupled to the adatom through

the functionW, (x) that depends, in general, on the position aVo n

2sin(x/d)— Uy +

. _ 2 _ v
of the adatom and on the particular phonon made U= @t = o TN M
The force acting on the adatom is
= V r
. dV(x) Mo?  dW(x) {iy = — wPUy — — 2 —cogx/d) — yliy + +,
=g X 3 g @9 | " MdNR2 M
(2.9
where where y, is a constant friction and, is the corresponding
M o2 random force.
V(x)=V(X)+ > )\Wi(x)- The dynamics of the adatom can be easily studied by
x 2 evaluating appropriate time-dependent correlation functions.

) ) ) The Fourier transform of the velocity autocorrelation func-
There are two components in the force: the adiabatic pagion of the adatom is defined as

generated by the interaction with the substrate atoms on the
lattice in their average position and the nonadiabatic part ot
which is entirely due to fluctuations of the lattice and is D(“’)Effm e “(v(t)v(0))dt. (2.9
responsible for the dissipation.

In this paper, we consider only coupling to substrateThis correlation function yields important information on the
phonons and not to high-frequency excitations such aslynamical processes on the surface: at finite frequency
electron-hole pairs. The time scales for the electronic prob(w) describes the vibrational spectrum of the adatom while
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its zero-frequency limiD(0) is exactly twice the diffusion tions in the Debye model for the substrate phonons. This is
constant® In order to understand the different mechanismthe simplest model for the substrate excitations that allows
responsible for broadening of the vibrational peak, we alsdor the dispersion of the phonons and provides a time scale
evaluate the Fourier transform of the energy autocorrelatiofor the excitations in terms of the inverse of the cutoff fre-
function: quencywp . It also allows us to compare the result of our
. simulation studies with earlier analytical studitsmploying
N IR the same model for the substrate excitations. In the three-
E(w)—f_me (BO=(EL),E(Opdt, (210 dimensional Debye model, the density of stajfsv) is

i by th i
whereE= p%/2m+ V[ 1—cosf/d)] and(E(t)) is the aver- given by the expression

age value of the adatom energy at equilibrium. The Fourier 3w?

transform of the energy autocorrelation function has a plw)=5—230(wp—w). (213
Lorentzian peak centered at zero. The width of the peak is a

measure of the rate of energy transfer between the adatohtere, ¢ is the velocity of sound anay, is the Debye fre-
and the substrate excitations, due to inelastic collisions bejuency. The real and imaginary part of the Laplace transform
tween the phonons and the adatom. In the quantum limit, thisf 7(t), defined as

is related to the inverse of the lifetinig of the vibrational .

level. The study of the energy autocorrelation funqtmn thus ﬂ(w):f eloty(t)dt, (2.14
allows us to separate the energy decay contribution to the 0

broadening of the vibrational peak from pure dephasin

mechanisms that also induce broaderih®=*° These in- tan be evaluated easily to yield the result

clude the anharmonicity of the cosine potential and dephas- 7 |w—wp
ing due to elastic scattering between adatom and phonons. Rep(w)=70(w—wp), IMp(w)=—— ,

The damping effects of the substrate phonons on the ada- 2m | ot “’% 1
tom depends crucially on the functiag(t) which is essen- (219
tially the correlation function of the phonon coordinates mul-and the constany is
tiplied by the coupling constant® and appropriately o 2
normalized: _ Ba Vg .18

24y 1 T ArmEMNG® :
o
n(t)= Td“oﬁg (U, (1)U, (0)). (2.1) For our model with a finite number of modes, the function

n(t) can be expressed as

HereU, (t) describes the time dependence of the particular 5 5 N2
phonon mode in the absence of the adatom, gnid the (t)= aBVo EZ T(HT,(0)) 2.17)
inverse of the thermal energy. As we will show in the next K md* N4 ! ! ' '
section, n(t) is related to the frictional damping generated . )
by the adatom-phonons coupling. In the special case of linea¥here the summation over is replaced by the one over
coupling, it is exactly the memory function appearing in the The Laplace transform af(t) can be derived from the equa-
generalized Langevin equation. Examinif®)11), one sees tions of motion(2.8) and
that in the thermodynamic limity(t) depends only on the 2y2 o, N2 ,
density of state per unit volume(w) and not on any other (@)= @ Vo 32 i —loty . (218
details of the phonon excitations. Equati¢2.11) in this d*Mm N&L 0? — 0’+ of—ioy
limit can be written as
To mimic the Debye model, we choose the phonon pa-
a2vg Qo (t=p(w) rameters such that the real part®fw) approximates a step
n(t)= mw[ —z codetide. (212 function as shown in Eq2.15. In Fig. 1 we plot the func-
tion Ren(w), resulting from our choice om=M=1 and
Here() is the volume ang(w) is the density of states per nine distinct phonon modes. The maximum phonon fre-
unit volume. Thus, instead of actually using macroscopicallyguency in our model can be regarded as the effective Debye
large number of phonons in our simulation, we need only tdfrequency wp which in Fig. 1 has chosen to be equal to
deal with a small number of “effective” phonorf.The  w,. The approximation to the step function is reasonably
effect on the adatom motion due to the coupling to thesgjood. The value ofy(w) at w=0 corresponds to the con-
effective phonons would be identical to the real macroscopigtant in the Debye model result it2.15.
system provided that the damping and the frequency of these
effective phonons are chosen to generate the same density of Il. GLE AND THE MEMORY FUNCTION
states as the actual macroscopic number of phonons. It will
be shown below that, even for nonlinear coupling, the The motion of the adatom in our model can be equiva-
memory function in the initial value approximation or mode- lently ~described by ~a  generalized  Langevin
mode coupling approximation is still proportional #4t). In equatiorf®*"2030:31
this paper, the frequenay, and the damping, of the pho-
non modes are chosen so that the resultpi@) and o+ dVv(x) + ftz(t—t’)p(t’)dt’:R(t). 3.1)
n(w), fit, as closely as possible, to the corresponding func- dx 0

0
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4.5 . motion. The Liouville operatoQLQ has the effect of pro-
jecting out the adatom coordinate in the phonons equations
3.5) U

of motion:

a’V . —
s(0= 2508 @ogo). @

N

Ren(m)/0g
[\
w

wherel, is the coordinate of thath eigenmode in the ab-

1.5 1 sence of the adatom. Note th&(t), in this case, is simply
1l ] the function(t), defined earlier in(2.11).2*° For phonons
o5l | in the Debye model without the cutoff, the memory function
) is proportional to a delta functiol (t) = n4(t). Therefore
ST o7 oeos T T3 121¢1is its Fourier transform () is frequency independent, and

0o, there are no memory effects. The GLE, in this case, reduces
to the simple Langevin equatidf!’3**When the cutoff of
FIG. 1. Rey(w)/wy Vs w/wg, with a=1, m=M=1, and the Debye model is taken into accouldt{w) is frequency
wp= wWg. dependent even in the linear coupling model. In general, the
real and imaginary parts of the Laplace transforn, ¢f) are
Here,R(t) is the nonadiabatic fluctuating random force. It is related, respectively, to the damping and the shift of the ada-
formally given by the expressioR(t) =exp(—iQLQt)QLp, tom energy.
with L the Liouville operator and) the projection operator For the case wherg, (x) is not a constant, two approxi-
onto the Hilbert space orthogonal to adatom variables. Thenations have frequently been employed in the literat®fé.
term QL p represents the nonadiabatic part of the faiz.®) The first is the initial value approximatioVA). This is
(Ref. 29 valid when the substrate phonons time scale is much shorter
than the adatom time scale. In this case, during a period of
oL _2 U f (3.2 oscillation of the phonons, the particle has barely moved, so
p= =~ U\ (), : (fy(x(1)),f1(x(0))) can be replaced byf,(x(0))?), and
3 (t) becomes
wherefx(x)Ewa[dWA(x)/dx]. For the coupling model

adopted in this paper, we replace the general indelzy B ) .
(i,1), and the coupling functions can be written as Sva(t)= a; ([FA(X(0)|*)(u\|exdQLQtuy). (3.7
aVy The expression for the memory function now does not con-

cogx/d), tain explicitly the adatom variables, and the effect of nonlin-

ear coupling is only to reduce its value by the temperature-
dependent factof| f, (0)|?). As in the linear coupling case,
Foi(X)=fH(X) = —aVo the effect of the Liouville operatd@L Q is to project out the
2} 2 d2\N/2 adatom coordinate in the phonons equation of motion. For
our choice of the coupling function, it is easy to see that
Note that, for this particular choice, the coupling is indepen=X,,5(t) reduces to the functiony(t) defined earlier in
dent of the phonon indek (2.12).

The operator exp{iQLQt) ensures that the time evolu-  The generalized Langevin equation with the IVA approxi-
tion of QLp is at all times orthogonal to the Hilbert space of mation for the memory function has been studied anaytically
the adatom variables. The memory functi®ft—t’) is re-  with the matrix continued-fraction methé#°3! we will
lated to the fluctuating random foré&qt) by the fluctuation- compare our molecular-dynamics simulations results with

fl,l(x)zfl(x)z dz\/N_/Z

sin(x/d). (3.3

dissipation theorem: the corresponding analytic results in the next section.
The second common approximation for the memory func-
(R(1),R(t"))=mkg T (t—t"). (3.4  tion is the mode-mode coupling approximation. Here, one

approximates the full memory function by the product of two
So, using the definition oR(t) and the relation(3.4), the  distinct correlation functions, one for the adatom variables
memory function becomes and the other for the substrate phonon variables. The
memory function is then given as

E(t)=§§}\: (uyFL 00 [expiQLQY[ufy(X)). (3.5 B
Smod V)= 12 (U] exaQLQ Uy )(FL(X(1), Fu(x(0))).

This expression for the memory function is formal and (3.9
does not allow easy evaluation. Thus, various approxima-
tions have been introduced. The exception is the case dfhanging the summation from to (i,I) and expressing the
linear coupling. For a constaifif (x) = aV,/d?\N , the cor-  phonons coordinate correlation function in termsyf), we
responding memory function is independent of the particleobtain the expression
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IS
(= ol
T

d*N
Smod )= 7(1) 7z 2 (filx(1).£i(x(0)), (3.9
@ Vgi=1,2

w
w

wheref;(x), defined in(3.3), is independent of the inddx
As stated earlier, in both the IVA and mode-mode coupling 3r

Qo
approximations, the memory function depends on the pho- 2 2.5
non excitations only through the functiof(t) defined ear- N
lier, and not on other details of the substrate. Even with the = d
mode-mode coupling approximation to the memory function, A 1.5

the solution of the GLE is rather difficult sin&&,,,{ ) still
involes the adatom correlations function. The solution re-
quires then iteration to self-consistency. So far, only limited
results exist for specific modetd?*In order to compare our
molecular-dynamics simulation results to the corresponding o
solution of the GLE in the mode-mode coupling approxima-
tion, we employ the following scheme. First, from our  FIG. 2. Fourier transform of the velocity autocorrelation func-
molecular-dynamics results, we can compute the correlatiotion D(w)/kgTD, Vs w/wy, with Dy=2wyd?. Here kgT/Vq
function for the adatom variabléf;(x(t))f;(x(0))). To- =0.2,0.5,1 (dotted, dashed, and solid line, respectiyelyith
gether with the knowledge of the damping functiaexft) wp= 10wy and 7/ wy=0.21.
introduced earlier, this allows us to evaluate thg,{®)
according to Eq.(3.1). We then introduce an effective tion of GLE with the IVA approximation should be very
Hamiltonian in which the adatom is coupled linearly to a setaccuraté”**Also, the cutoff in the phonon spectrum should
of substrate phonons_ We choose the phonon parametelﬂgve negllglble effects and the IVA solution is therefore
w, andy, , for this new problem such that the correspondingeduivalent to a constant friction in the Langevin equation.
memory function in this linear coupling model, is equal to  In Fig. 2, we plot the velocity autocorrelation function
the mode-mode coupling memory function calculated fromP(w) Vs w, for several temperaturégT=0.2,0.5,, and
the nonlinear coupling under study. We then run awith the friction parameters/w,=0.21. At low tempera-
molecular-dynamics simulation for this effective linear cou-tures, a large vibrational peak, centeredat w,, dominates
pling model. The comparison of the results from this secondhe spectrum. To understand the mechanisms that contribute
simulation with the original simulation results for the nonlin- to the broadening of the vibrational peak, we have also
ear model then allows us to gauge the accuracy of the mod@valuated the energy autocorrelation function. Its Fourier
mode coupling approximation for the memory function. Thistransform E(w) has a Lorentzian peak centered at zero
comparison will be presented in the next section. whose width is related to the rate of energy transfer between
the adatom and the substrate excitations. In this case, we find
that the value of the halfwidth at half maximudWHM) of
the Lorentzian peak is equal to the width of the vibrational
In this section, we analyze the results obtained with MDpeak. This indicates that the main cause of broadening at low
in three different regimes, characterized by the ratio of théemperatures is through the decay of the adatom vibrational
frequency of the adatom vibrational mode to the maximumenergy by transfer to the substrate excitations. At higher tem-
substrate phonon frequencywp=10w,, wp=w,, and peratures, the anharmonicity of the cosine potential starts to
wp=0.1wg. play an important role. The vibrational peak broadens further
Molecular-dynamics simulations are performed with anand the diffusive peak becomes dominant. Furthermore, as
integration step of 0.050,' and a total number of shown in Fig. 2, we observe a shift of the vibrational peak to

13 607 200 steps is used to obtain the results presented {Awer frequencies as temperature increases. There are actu-
this section. Long simulations are necessary to evaluate dilly two competing effects contributing to the peak shift.
fusion properties correctly. At low temperatures the jumpFwst, the anharmonlcny of the cosine potential changes the
rate is quite small and many steps are needed in order teUrvature of the potential well, allowing the existence of a
obtain good statistics of the everif&'! Diffusive and vibra- ~ Wider spectrum of energy state, thus shifting the peak to
tional properties are studied by evaluating the time depenlower frequencies. This effect is strongly temperature depen-
dent correlation functions defined {@.9) and (2.10. Their  dent. Second, the phonon-coupling produces a shift to higher
Fourier transforms are calculated in an interval of 65 53grequencies’ The effect due to the anharmonic cosine po-

steps, in order to have a good resolution in frequency spacéential dominates in this regime. .
In Fig. 3, the diffusion constant is plotted as a function of

inverse temperature forwp=10wg, wp=wg and wp
A. Results for ep =10, =0.1wy. The data forwp= 10w, shows that the diffusion

This is the regime where most analytical work has beerprocess in this regime is thermally activated, with the diffu-
done and many theories have been developed to account feton barrierA simply equal to twice the amplitude of the
diffusive and vibrational properties of the adatom. Becauseosine potential ¥, as expectef.
of the rapid fluctuating force acting on the adatom due to the In Fig. 4, we show a comparison between velocity auto-
coupling to fast substrate phonons, we expect memory efeorrelation function calculated using molecular dynamics
fects to be negligible and the results obtained from the soluand obtained solving analytically the GLE in the IVA

IV. RESULTS
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FIG. 3. Diffusion constanD/Dg vs 2V, /kgT plotted in loga- FIG. 5. Fourier transform of the velocity autocorrelation func-

rithmic scale withDy=w,d?; for wp=10w, (squarel wp= w, tion D(w)/kgTDy Vs wlwy, (Do=2wed?). Here kgT/V,
(plusse$ and wp=0.1w, (thomboids. The slopes for straight line =0.2,0.5,1 (dotted, dashed, and solid line, respectiyelyith
fitting the data are, respectively; 1.02+0.03 for wp= 10w, wp=wy and n/wy=0.95.
—1.25+0.05 for wp= wg, and—1.05+0.1 for wp=0.1w,.

applicable here. Referring back to Fig. 3, we see that the

approximatiort>?* These results are obtained fop,  diffusion constanD for wp=w, still shows an Arrehnius
=100y, kgT=0.2,0.333,0.9,, and 7/wy,=0.21. As ex- activated form but with an effective diffusion barrigrequal
pected, the results from the two calculations are almost iderfo 2.5+ 0.05V, insead of 2/,. The difference between the
tical in this regime provided we identify the value of effective barrier and the adiabatic barrie¥2can be under-
n(w=0) with the friction parameter; used in solving the stood from the following reasoning. When the adatom sits in
GLE. Thus, in this regime, the IVA approximation provides the well, it performs many oscillations before it attempts to
an excellent description of the memory function and the efjump, allowing therefore the substrate to relax. However the
fect of the cutoff in the phonon density of states is negligible.adatom crosses the barrier in a time interval of the order of
Furthermore, it is also an explicit demonstration that thel/wg, which is comparable to the time scale of the substrate.
scheme of using a few effective phonons is indeed able tdherefore the substrate does not have enough time to relax.
describe the coupling to macroscopically large number offhus, the potential at the barrier is higher by approximately
phonons provided that the phonon density of states is choséhe magnitude of the relaxation energy which can be evalu-
to be the same in the two cases. ated using2.3) as

3a2VO

B. Results for wp=wy E ——0
rel 2 2
2d“Mwg

4.7
In this regime the time scales of the adatom and the
phonons are comparable and we do not expect IVA to bgvhere we have used the properties of the Debye model for
the phonons. Indeed, we find that the differedAce 2V, and
E o agree within our numerical uncertainty which is about
10%. In Fig. 5, we plot the velocity correlation function
D(w), for kgT=0.2,0.5,V,, andn/ wy=0.95. At low tem-
peratures, the vibrational peak dominates over the diffusive
peak. In this regime, we notice that there is a significant blue
shift of the vibrational peak. This is due to the strong level
repulsion resulting from the coupling to substrate phonons.
In fact, when the memory function is a step function, as
resulting from the linear coupling to a Debye model
phonons, the shift can be evaluated analytically as in
(2.15.1%24The position of the vibrational peak is shifted to a
new frequencyw given by

w—w
a:wo\/l—iw D). 4.2

Twyg W+t wp

D(w) /D¢
[e]

FIG. 4. Fourier transform of the velocity autocorrelation func- o ) )
tion D(w)/Dy VS w/wg With Do=2w02. Lines are MD results, AS @ approaches)p, the shift diverges logarithmically. For
while symbols are the results from the analytical solution to GLE inthe nonlinear coupling model under study, the shift is not
the IVA approximation, using continued-fraction expansion. Curvesdivergent but still very large ab close towp . Besides this
for kgT/Vo=0.2,0.333,0.5(solid, dashed, and dashed-dotted, re-mechanism, the anharmonicity of the cosine potential causes
spectively 7/wy=0.21 andwp= 10w, . a red shift in the opposite direction. The anharmonicity effect
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D(w)/Dg
D(w) /KT Dg

0 0.2 040608 1L 1T.2141.61.8 2 05040608 I T2 12176175 2
(n/coo [0

FIG. 6. Fourier transform of the velocity autocorrelation func-  FIG. 7. Fourier transform of the velocity autocorrelation func-
tion D(w)/Dg VS w/wy With Dy=2wyd?. Solid curve represents tion D(w)/kgTDy VS w/wy with Dy=2wd?. Here kgT/V,
tha exact numerical solution, the dashed curve has been obtained0.2,0.5,1 (dotted, dashed, and solid line, respectiyelyith
using the memory function in mode-mode coupling approximation.wp=0.1wy and 7/ wy=2.2.
kgT/Vy=0.5, 7/ wy=0.95, andwp= wg.
, - like the IVA limit, both % ,{0=0) and % (w=wy) are
gets stronger as the temperature increases but it is not suftly g1y temperature dependent. A qualitative trend indicates

cient to counterbalance the shift due to adatom-phonons coynat as temperature increases the friction at zero frequency

pling. _ decreases, while its value at finite frequency increases.
Examining the Fourier transform of the energy autocorre-

lation function, we found thaE(w) in this regime is not a
simple Lorentzian. The energy decay, therefore, cannot be C. Results for ap=0.1eg
described by an unique time scale but it is more complex and In this regime, the adatom moves much faster than the
involves several decay rates. The shape of the velocity autgzhonons. In Fig. 7, we plot the velocity autocorrelation func-
correlation function is also not a simple Lorentzian but it istion for values ofkgT=0.2,0.5,%, and for 7/w,=2.2.
asymmetric with a larger wing towards lower frequencies. ItHere nonlinear coupling is essential for an understanding of
is clear, therefore, that when adatom and phonons time scalése vibrational properties of the adatom. If the coupling be-
are comparable, memory effects are very strong and th&ween the phonons and the adatom were linear, the broaden-
simple picture of constant frictional damping is inadequate.ing of the vibrational peak would be dominated by effects of
It is obvious that the IVA for the memory function breaks the anharmonic cosine potential, and the vibrational peak
down here. We now want to compare our molecular-would approach @ function at low temperaturé$.However
dynamics results with the corresponding solution of the GLEthe nonlinear coupling enhances both the elastic and inelastic
using the mode-mode coupling approximation for thecollision of the adatom with the substrate excitations and
memory function. We calculat® ,,,{ @) by evaluating first leads to finite broadening even at low temperatures. An
the adatom correlation functio;_; X f;(x(t)),f;(x(0))), analysis of the Fourier trasform of the energy autocorrelation
through our MD simulation results, and then substituting intofunction E(w) shows that the HWHM of the Lorentzian
Eq. (3.8) for 3 o @). The memory function shows a strong peak is, in fact, more than an order of magnitude smaller
temperature dependence and only approaches the IVA limihan the width of the vibrational peak. This indicates that, in
at low temperatures. As temperature increases the nonlinetiis regime, the coupling of the adatom to the substrate ex-
part of the coupling becomes important so the zero<itations results mainly in pure dephasing mechanisms, and
frequency value ok (@) decreases and a large tail startsthe decay of the adatom vibrational energy due to the cou-
to form. Unlike the IVA, at high temperature, the sharp droppling to substrate excitations is negligible. At low tempera-
at w= wp has completely disappeared. tures, the dephasing due to the anharmonicity of the periodic
Figure 6 shows a comparison between velocity autocorrepotential is not important. Thus, the broadening mechanism
lation functions, obtained from the molecular-dynamics stud-here is due to the elastic dephasing events in the collision of
ies and the one obtained from solving the GLE in the modethe adatom with the substrate excitati6is’® In the
mode coupling approximation fokgT=0.5Vy and n/wg  quantum-mechanical regime, this would correspond to a
=0.95. The two results are very similar. This indicates thatmultiphonon process resulting in no net energy transfer.
the mode-mode coupling approximation gives a reasonablyhese events would be too weak for the linear coupling
good description of the adatom dynamics in this regime. Irmodel but they are strongly enhanced in the nonlinear cou-
particular, the diffusion motion is controlled by the friction pling model.
7=2%mod @=0). On the other hand, the adatom experiences Referring back to Fig. 3, we see that fop=0.1w,, the
a different damping whose strength is given byw=w,) diffusion constant again obeys the Arrenhius form with a
when it is vibrating in the well. The value of memory func- barrierA=2.1+0.1V,. The difference ofA from the adia-
tion at w=0 can differ significantly from the one at batic barrier /o can be understood again from the lack of
w=wqy, When memory effects are important. Moreover, un-substrate relaxation when the adatom is crossing the barrier.
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FIG. 8. Fourier transform of the velocity autocorrelation func-  FIG. 9. The phonons density of statgéw)/wq Vs w/wg with
tion D(w)/Dy VS w/wy With Do=2wyd?. Solid curve represents a=1, m=M=1, andws=0.850y.
tha exact numerical solution, the dashed curve has been obtained . . o
using the memory function in mode-mode coupling approximationtye model. It is natural, therefore, to ask if the qualitative
kgT/Vo=0.5, 7/ wy=2.2, andwp=0.1lw,. features of the diffusive and vibrational motion of the ada-

tom change for more realistic models of substrate excita-
The prefactoD, here is more complicated than in the two tions. We discuss here briefly results obtained with
regimes previously discussed. For example, the mode-modgolecular-dynamics simulation using a different model for
coupling approximation predicts an effective friction at zeroyne sypstrate phonons which contains more realistic features.
frequencyzer(w=0)/wo=1.3 forkgT=0.5V,. This would |5 Fig. 9 we show the effective phonon density of state

lead to a result foD, according to the solution of the GLE adopted in this case. Referrina to E¢2.6) and (2
of Dg=3.5wd?. Instead, we observe from the MD simula- ZEZ; is dgﬁned as ' g @6 @7,

tions a value oD ,=121.8v,d?. The comparison shows that
the numerical result fob is, at least, an order of magnitude 2NM w?
larger than the one obtained solving the GLE in mode-mode p(w)=———7Ren(w), 4.3
i L , T

coupling approximation. This result extends at all tempera-
tures and suggests that mode-mode coupling approximationhere Rey(w) is the real part of the Laplace transform of
is inadequte to describe the diffusive properties of the adaz(t) (2.18. As opposed to the Debye model, this new
toms when its characteristic vibrational frequency is muchp(a,) now peaks in the middle of the spectrum and does not
faster than the substrate timescale. . . drop off to zero sharply abb=wp. We now define a fre-

It is important to stress that, in this regime, as in the casgencyw, as the frequency at whigh(w) reaches its maxi-
wp=wy, the effective friction acting on the adsorbate is amym_ The important parameter that determines the relation

frequency-dependent functiqn..ln its diffusive motion the ad-q¢ 1o time scale of the adatom to that of the substrtate ex-
sorbate experiences a frictional force proportional to

. {0~0) whie the damping is proportional to citations is now the ratio= ws/wq. This now plays the role
222({wzw0) when the adatom vibrates in the well. Further- of thg paramgtewD/wo defined earlier for the Debye model.
more, when memory effects are important, the effective fric-We find again that the memory effects depend strongly on

tion is also strongly temperature dependent. The memor%e ratu()jy, W'tg the lV'lA. working vyeII Itr'] the l'm't7>b|1’ anclilf
function in the mode-mode coupling approximation € mode-mode coupling approximation reasonably well Tor

2 mod @) (3.8), only approaches the IVA value at low tem- 7$1: Al _the qualita'give _feature_s of the memory EﬁeCt.S on
pénr%tures A’s temperature rises, in fact the value 0;he vibrational and diffusive motion of the adatom for differ-

S {0=0) decreases whil& , {w=wg) increases. This ent regimes ofy carries over to the new model. The only

indicates that, unlike the IVA limit, the contribution to the major difference is the frequency dependence of the friction

vibrational damping due to adatom-phonons coupling is nof? the IVA limit. For the Debye model in the [VA limit, the

. real part ofp(w) is proportional to the step function and the
negligible. . X ] e
Figure 8 shows a comparison between velocity autocorreMaginary part is negligible foy>1. For the present model,

lation functions, obtained through molecular-dynamics simu-While the imqginary part of(w) is Sti.” negligible, the real_
part of »(w) is no longer a constant in the frequency region

lation studies, and the one in the mode-mode coupling apof _ but it is indeed W f d q
proximation for ksT=0.5V, and the phonons friction ©' INterest but it'is indeed strongly frequency dependent.

nlwo=2.2. At finite frequencies, there is a reasonable agreeTh's implies that the diffusive and vibrational motion are

ment between the two results. The agreement, however, getfaen controlled by different friction valueg(w=0) and
worse asw— 0, leading to the difference in the value of the 7= o), respectively, instead of a single friction param-
diffusion constant as discussed above. eter 5 in the case of the Debye model.

D. Results beyond Debye model substrate phonons V. CONCLUSIONS

All the results presented in the previous paragraphs have In this paper, we have studied the diffusive and vibra-
been obtained using substrate phonons characterized by Diésnal motion of an adatom coupled to substrate excitations
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starting from a miscroscopic description of the system. Westrate to relax. At the saddle the time necessary for the ada-
consider a coupling between the adatom and substratem to cross is very short compared to the time needed for
phonons which is linear in the phonons coordinates but nonthe substrate to relax. As a consequence, the effective barrier
linear in the adatom coordinate. We perform molecular simuis increased by the amount of the energy relaxation at the
lation studies for this system with a small number of effec-saddle. This analytical prediction agrees with the numerical
tive phonons. It is demonstrated that with proper choice ofesult within 10%. This is in strong contrast to the Markov-
effect on the adatom is identical to that due to the interactiorftant friction which only affects the prefactor in the Arrhen-
with a macroscopic number of substrate phonons in the thefl!S form but not the barrier itself. As far as the prefactor is
modynamic limit. Our main focus is to analyze the memoryconcerned, itis now controlled by an effective friction which
effects of the frictional damping on the motion of the ada-iS different from the finite frequency value contributing to
tom. the broadening of the vibrational line. This effective friction
We find that the importance of memory effects dependglepends now not just on the phonon properties of the sub-
crucially on the parametey= wp /wo, With wp representing ~ Strateé but also on the adatom motion itself. _
the Debye frequency of the substrate phonons agdhe As discussed earlier, there is a GLE associated with the
adatom vibrational frequency. In the limjt>1, the memory ~Model we use in our molecular-dynamics simulation study.
effects are largely negligible. In this case, we can identify an the regimey<1, the IVA for the memory function is no
constant friction parametey related to the zero-frequency onger valid. The commonly used approximation in this re-
limit of the phonon correlation function in our model. To 9iMe, to incorporate memory effects in the solution of the
better understand our numerical results, we can compargLE. is the so-called mode-mode coupling approximation.
them with results obtained from a different but equivalent!n the context of application to adatom dynamics, there have
analytic approach. Starting from our microscopic model, we'0t been too many studies using this approach because of the
can derive a generalized Langevin equati@LE) describ- complexities in its actual implementation. Unlike the IVA,
ing the motion of the adatoR?3*—3¢The effect of adatom- the accuracy of the mode-mode coupling approximation for

phonon coupling is contained in the memory function and ghe memory function is more difficult to gauge. Our
fluctuating random force in the GLE. Whep>1, the molecular-dynamics results allows us to determine the accu-

memory function can be approximated in the initial value'@cy Of the mode-mode coupling approximation for adatom
approximatio®24(IVA ) and the GLE then can be solved by dynamics. Wg find that over the wide frequency regime that
the matrix continued fraction methd#2°31Our numerical = We have studied, ranging from 1 to 0.1) the correlation
results for the diffusion constant and the vibrational motionfunctions obtained from the GLE in the mode-mode coupling
of the adatom are in excellent agreement with the IVA solu-2PProximation agrees well with the exact numerical result in
tion of the GLE. Thus we have demonstrated explicitly thethe finite frequency region of the spectrum. Thus, it is a good
validity of the IVA in the limit where the time scale of the @Pproximation for the study of the vibrational properties of
substrate excitations is much shorter than that for the motiof’€ adatom. In the low-frequency region, the mode-mode
of the adatom. coupling results start to deviate significantly from the
When y is comparable or much smaller than 1, memorym_ole<_:u|ar-dynamics results fgr<1. This has a strong im-
effects start to manifest themselves. First, the vibrationaPlication on the value of the diffusion constant, which can be
peak begins to deviate from a pure Lorentzian shape becau§&Pressed as the zero-frequency transform of the velocity
of the frequency dependence of the frictional damping. Also@utocorrelation function. For example, we find that for
the mechanism through which the adatom phonon couplin@’zo-l_' the yalue (_)f th_e diffusion constant obtained from the
contribute to the vibrational lineshape broadening changedlumerical simulation is more than an order of magnitude
For y>1, the line broadens mainly through the decay of the/arger than the corresponding value from solving the GLE
adatom vibrational energy via transfer to the substrate excivith the mode-mode coupling approximation. We expect
tations. Asy increases, the broadening becomes dominatefat the qualitative features of our model will carry over to
by pure dephasing effects due to the elastic collision of thénoreé complicated systems. Thus we conclude that while the
adatom with the substrate phonons. Another manifestation gf'0de-mode coupling approximation can be used with confi-
the memory effect is the shift in the vibrational peak fre- dence for studying adatom vibrational dynamics, its applica-
quency. Unlike the anharmonicity of the potential which al-tion to surface diffusion can be problematic.
ways causes a red shift and is strongly temperature depen-
dent, the frequency dependence of the frictional damping APPENDIX
gives rise to a blue shift of the vibrational peak to higher
frequencies. This shift peaks at the valueyetl as easily
understood from the usual Kramer-Kronig analy$i&’

In this appendix we derive the form of the coupling func-
tion, as given in Sec. Il, from a pair potential interaction
between the adsorbate and the substrate atoms. Let us as-

Thet.merR(t)rly eftfects alfo affect ?trgntaly (;2]? Q|ffu3|on sume that potential experienced by the adsorbate due to all
properties. ow temperatures, we find the diffusion con-y "o oo 0 attice s

stant to obey an Arrehnius-activated form independent of the

value of y. However, starting aty=1 and for y<1, the R o

value of the barrier gets renormalized by the adatom phonon Viet(X) = 2, W(xX—R;)= > W(k)e'k %R (A1)
coupling and becomes appreciably larger than the static bar- ) bE

rier 2V, . In fact, while at the well the adatom oscillates for wherex is the adatom coordinate aiyj is the coordinate of
many periods before attempting to jump, allowing the sub-the substrate atoms characterized by the inddx the har-
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monic approximatiorR; =R+ u;, whereR} is the equilib-
rium position of the atom in the lattice anglis the displace-
ment from the equilibrium position such that<R;. Then
Vio(X) to lowest order inu; can be rewritten as

vim<x>=—in(;’(q+G>~{[qu<q+G>

—U_qW(—g—G)]cog (ax+G,x]

o, o +i[uW(g+G)+u_W(—q—G)
Vil X) = 2, W(k)elk xR > W(k)e'k'<XX—R?>ik-uj. ,q a K a-¢
ik ik X sin (gy+Gy)x]}.

(A2)

The total potential consists of two parts. The first is the staticSUb.StItlJtIng forug=(Uyq i u2vq)/‘ﬁ andu_q=u, and as-
potential generated by the lattice atoms in their equilibrium>4MN9 thaw(q+G)=W(—g-G), then
position and in our model is approximated by a cosine po-
tential. The second depends op, therefore on the dynam-
ics of the substrate and it corresponds to the interacting part
of the Hamiltonian described i(2.4).

Focusing on the second term, we rewrite the wave vector HU24004 (G + Gy)X]}- (AG)

k=q+G whereq is restricted to the first Brillouin zone, The specific coupling that we have choosen for our simula-
while G are the reciprocal-lattice vectors. Since tions retains some of the features of the general coupling

(A5)

Vin(X) = ﬁqZG’W<q+G>(q+G>-{ul,qsir[<qx+ex>x]

exp(-iG-Rf) =1 V;, becomes

Vi) =~ > W(q+G)e +CX(q+G)-uje aR;,
j.a.G
(A3)
Noting thatE,—uje*iq'Rio is just the Fourier componen;,
then

Vin(X) = —inG W(g+G)(q+G) - ug{cog (qu+ Gy)x]
+isin (g, + G,)x]}. (A4)

Furthermore, restricting the summation@to half spin

derived here. It can be regarded as an approximation to
Vint(X) when the functionW(q+G) peaks sharply at
g+ G=(2mn/a)X. Replacing they label by the general index

I, the coupling can then be written as

Vim(x)=A2l [ugsin(x/d) +u,,cogx/d)], (A7)
whereA=aV,/(d\N) andd=a/27.
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