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Spin-density fluctuation in paramagnets
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We study the effects of spin-density fluctuation in itinerant electron magnetism. Spin fluctuation is described
in terms of an averaged electron-hole polarization bubble dressed with paramagnons in effective random
potential. We approximate the polarization bubble by letting all internal paramagnon lines have zero momen-
tum transfer and by taking the Gaussian average over the fluctuating local field. The resultant static suscepti-
bilities calculated for paramagnetic systems agree with experimental data better than those from RPA which is
the noninteracting limit of this theory. The high temperature susceptibilities of Ni and Co approximate the
Curie-Weiss law for intermediate couplings0163-18286)02725-7

I. INTRODUCTION ceptibility for the paramagnetic states of itinerant electron
ferromagnets. Calculated spin susceptibilities are compared

The problem of itinerant electron magnetigt&M) is of ~ With experimental data of a strong ferromagnet nickel which
fundamental importance in understanding the collective eflas the least-localized spins among pure transition metals
fects in many-body systems. For instance, the localized magid another ferromagnet cobait. Since fluctuations in both of
netic moments cannot explaifi) that the neutron-diffraction hese materials are highly localized in momentum space, we

data showing atomic magnetic moments are located betwe gmploy a similar procedure to that done by WES and HK,
g atomi g . : .. While using different approximations for averaged electron-
atoms thus being identified with the mobile electrofib),

. _ hole polarization bubble and the susceptibilities.
that the number of Bohr magnetons per atom is not integral

and the bandwidths are the order of electron volts, @ng II. SPIN FLUCTUATIONS

that the specific heat of some materials is much higher than AND PARAMAGNON INTERACTIONS

what is calculated with localized moment theory. The mean- o i )

field approximation is not well suited for IEM, as shown in . The Hubbard Hamiltonian of on-site Coulomb repulsion

the fact that the Stoner theory of a molecular field cannot®

explain the Curie-Weiss lavAmong many studies on IEM, U ) )

Wang, Evenson, and SchrieffefWVES) substituted the two- HU:UEi ”iT”iL:ZEi [(nip i) = (i —n;)7]

body interaction with the Gaussian functional average of a

fluctuating one-body potential following Hubb&rdand ul 5

Muhlsclegel They solved the one-site Anderson model for = ZZ ni+H,, (1)

temperatures higher than the characteristic spin-fluctuation '

temperature. Murata and Doni@ctMD) formed the parti- whereN is the number of sites. We take the spin-dependent

tion function with a classical functional integral over the second part as the interaction Hamiltonidp. Due to spin-

magnetization field. Hertz and KlerfifHK) calculated the ~€xchange interactions, spin density fluctuates throughout the

self-energy of paramagnofwhich is exchange-enhanced medium, in add|t|06n to thermal fluctuation. This spin fluctua-

spin fluctuations and the static susceptibility, using similar t1ON 1S expressetf" asgo{ (1) — ¢(0)} whereg is the cou-

methods of WES and MD. Moriya and Kawabagdded pllr]g be.tween one spin and _the ef_fectlve.magnetl_c field

corrections to the Hartree Fock energy in terms of dynami¢V/nich arises due to the fluctuating spin density and given by

susceptibility. Assuming a free-electron-like band, they ded .:UkBT' Here, 7 is the Imaginary time ang-=+1 for up

rived the static uniform susceptibility being consistent with aSPIn an_d_— 1 for down spin. . . :

Curie-Weiss law for weakly correlated itinerant magnets. . Al l‘;'”'te temperature, the exact partition function is

Lonzarich and Tailleférused the MD model to study the given:

magnetic equation of state of weak ferromagnets. After all B
Z=ZO<TTeX[< - J;) H|d7') > .

N

these efforts, the theory is still far from satisfactory in ex- (2

plaining the experimentally observed, temperature-dependent

magnetic susceptibility of various materidls. Using the Hubbard-Stratonovich transformatfomye reduce
In this paper, we study the exchange-enhanced spin fludhe quadratic exponent from tli§ to a linear term. Then the

tuation to explicitly calculate the temperature-dependent sugpartition function become&=2Z,Z,, where
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B
Zo= J D¢<r)eXp(—Z gt JO ¢(r)2dr), @ O ____________ Q ______

e
Z :Tr< TTexpfO {—Ho+g¢(7')[nm(7')—nu(T)]}dT> :
(4)

The fluctuating effective potential can be writtért!
V?=go¢(7) which is the Zeeman term. We multiply the : '
potentialV in Z, by an arbitrary parameter and differenti- 7" ‘ """" A
ate with respect ta. to obtain

J B FIG. 1. Paramagnon self-energy diagrams shown to the fourth

XIHZF—; fo dTV0<ni4r>! 5 order ing. Solid lines are for electrons and holes, dotted lines
outside the bubbles are the effective external field and the interme-
diate ones for paramagnon propagators.

where
1 d¢ Vm!
(T.niexd —NfGd7'Von,(7')]) <|¢|2>:_f [1 L|¢q’m’|zex - |¢q’m’|2
_<n >:_ 0 Z q/mr \/; qrmr
' (T.exd —\[Bd7'Von (7')])
= (TN, (7)N;x(0)) =G/ (7). (6) +§ Trln(l—V"GO)), 11

Also, the Green’s function is expressed as a series in terms @fhereq is the paramagnon wave vector or the momentum
the free parG® and the propagator of an interacting particle transfer.
(electron: We take the static limitw,,=0 components only of the
field ¢qm, for the thermal energy okgT>kgTsr where
ks Tsris the characteristic energ§of spin fluctuation. Since
GU(T,T')IG?,(T,T')JFRJ GV'G(r,7)dr.  (7)  Tg=~T. in transition-metal ferromagnets, we work in the
range T>T.. While letting the intermediate paramagnon
Thus lines have zero momentaye keep the wave vectar on the
’ paramagnon lines outside the bubblsisown as dotted lines
5 5 in Fig. 1). So, the paramagnons propagaiespins fluctuate
7 __ ¥ 2 _\\yor0 in this “static” limit. The paramagnon self-energy
ax n%1= ; (”\([Trln(l AWIGH])- ® diagram8° in Fig. 1 show the polarization bubble
B(q,iw,,) dressed by absorbing and reemitting paramag-
Integrating the equation over, we get nons. We exclude the interactions between the emitted para-
magnons in higher-order diagrams in the series. The pair
bubbleB,(q) is

= — _ o0
“ exp( 2 Trin(1-2v°G ))‘ © (Balthi o)) = (Bo(0))
Then the total partition function is reduced to — —,8‘1% (G(K,iwn:{d})
z=jp¢(7>exp(_z ﬁ—lfﬁd)mzm XGI(k+Qiwnimi{d}). (12
i 0

From a generalized Hartree approximation of the diagram
series and by requiring a self-consistent reldtioetween the
—2 TrIn(l—V"GO)), (10 polarization amplitude and the effective field, the mean-
v square fluctuation in Eq11) is determined:

where the second part describes the electron scattering by the n 1 1
effective potentiaV. (lel%)= E% m (3
Now we represent the spin fluctuation by paramagnon
which is the quanta of elementary excitations in magnets for
temperatures higher than the phase transition temperature.
That is, paramagnon propagates as it polarizes medium thus The static susceptibility follows:
creating electron-hole pair bubbles. The mean-square fluc-
tuation of Fourier-transformed field componertgeraged
over the auxiliary fielglis defined

lll. SPIN SUSCEPTIBILITY

| 1 (B2(a))
X(@ion) = (2|9l = 1= =7 o (14
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Above y has the general structure of the response function imo(e):(zwa)—lﬂe—fz/Z\NZ with the above Gaussian den-
its form except being written in terms of tiaweragecbubble ity of statesN. Then, we equat®,(0)=1/(n—1)!N("~2)

(B2(q)) which is an effective Lindhard function and the sus- x(e;) for the effective density of states at finite

ceptibility at a noninteracting limit. o ~ temperaturd. That is, we have the average pair bubble
The Gaussgan average of the polarization bubble is de<|32(0)>=<N(eF)>_
fined exactly® Thus, we arrive at
d¢é
(B(a)= f S _ dé
[2m(lg(@I)1™ LN | s ia D+ )

xexd — dX(@)/|#(a)|*)]B(q).  (15)

$*(g%($?) + 71367 + eE($%)

Up to this point, the general formalism followed the previous X - 202 + 7213820 b2

works by other authors as cited. Now we approximate the 29 %)+ mI3B7)(67)

wave-vector-dependent pair bubble differenffyom what (19

was given in Ref. 6 by HK, for instant.eOur purpose is to

write the approximated average value of the pair bubble con- 1

sistently from the definition of the Gaussian average given P e e

above and to calculate the temperature-dependent form of Am\gT+ mI3p

the spin susceptibility explicitly. We take ;{ 1 }
X ex ,

- 202 2 2
B(q)~B(e+g)~B(er) + gpB’ (e+gh)|. + - - ~Bl(ep) Amgi(gT T34
where the ¢ integral is over the range of

by expanding it around the Fermi energy and taking into RN 2 . .
account of the fact that the lowest-order bubble for noninter? (47),0.5<(¢%)=>1.5 and the chemical potential near the

acting electron falls off very slowly from its maximum value ©P_0f the band isee= 1/2mg*(¢*)~1/2mUkeT.

at q=0 for 0<q<2ke. The e¢ is actually the chemical Finally, the inverse susceptibility is computed
potential which is determined from fixing the electron num- 1-U(B,(0))

bern=[f(e)(N(€))de. Then we take the averaged bubble X*l:—z
at the long-wavelength limit as (B2(0))

(Ba(@))=(Ba(0))exd — d(@)?/2(|4|?)], (16

We choose eV units since the Coulomb interactibis usu-
where the exponential term comes from the integral in Eqally given in eV. Above y~' is not identical to
(15). x '=C}T-T) in its algebraic form. But, the actual

From the expression of the bubble as a product of electrofurve of this, plotted as a function of temperature, is very
Green’s functions, we find the pair bubble as energy intemuch linear over most of the temperature range of interest.
grals by Poisson’s summation form&; including the ther- ~ As a matter of fact, many experimental data of inverse sus-
mal factor through the Fermi distribution functidie): ceptibilities of many paramagnets differ from the simple

straight line of theC™3(T—T¢) type.

(20

~\ kg T[U + (7%13)kgT]— U.
(21)

1
-~ (n—1)

Bn(0)= (n—1)! f deNo(e) (€)- @9 IV. RESULTS AND CONCLUSION
In order to determine temperature-dependent susceptibility, We calculate the spin susceptibility of nickel which is a
we note that the general structure of susceptibility functiongepresentative of the face-centered-cubic iron group and a
(correlation$ is an average of a product of density of statespure transition metal whose itinerant ferromagnetism calls
(at different times or at different temperatures, for instance for clear understanding based on an improved theory beyond

First we approximate the derivative of Fermi function the Stoner model. The inverse susceptibility of Ni as a func-

f("~1)(¢) with a Gaussian density of statés: tion of temperature plotted in Fig. 2 approximates the Curie-
Weiss law very well. The solid line from our calculation is
1 ) ) w? for the Coulomb interactiot of 0.23 eV fitting the experi-
N(e)= V27 (W2 + 72i32) exy — /2 wo 3_32 ' mental dat¥ most closely while the effective) value esti-

(19  Mated for the 884f2 configuration is between 0.11 eldc-
cording to Herring® and 0.5 eV(according to Gunnarson in
where the factorr?/352 is from the second moment of the Wohlfarth!® based on the spin-density functional formal-
derivative of Fermi function and the Width=g\/(qS2) ism). This is a much better agreement than the qualitative
which is from considering what follows . According to the nature of previous calculatiohthat formulated a similar mi-
random-phase approximation which is the noninteractingroscopic theory. The paramagnetic temperatardor the
limit of this theory, we have ferromagnetic instability when Curie-Weiss-like line in Fig. 2 is 600 K, while the experi-
U(N(e))>1. In the intermediate-coupling region where mentally determined Curie temperatureds=654 K. Since
UN(e)=1, we take the averagéN(e)) over the energy the theory is meant to apply to the paramagnetic states for
width (¢?)JUkgT. Next, we integrate after taking higher temperatures, the minor discrepancyirshould not
the product of the band density of statesconcern us. Actually, experimental data for many paramag-
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FIG. 2. Inverse susceptibility of Ni. The experimental data are  FIG. 3. Inverse susceptibility of beta Co. The experimental data
from Zornberg(Ref. 12. are from Wijn (Ref. 12.

nets show nonlinear behaviors near the critical points. The,ctuation theory. Also, we used a different approximation
random-phase-approximatidRPA) result for similar range  of the averaged pair bubble from that of HK. Unlike some
of U values falls between the dotted liGeK) and the solid  sydies in which arbitrary momentum cutoffs were intro-
line which is our calculation, in Fig. 2. In Fig. 3, we have the gced, our procedure does not require such parameters, since
inverse susceptibility of beta cobdlicc) which is another \ye evaluated for the static limit.

pure transition-metal ferromagnet. The paramagnetic Curie ag for low-density systems, we may employ the ladder
temperatur® is known to be between 1403 and 1423 K andapproximation as well. The criterion for low densftyvould

the effective U~0.9 eV according to Gunnarson in pek.R<1 whereR is the range of repulsive force. Since the
Wohlfarth™* Our calculated fitting line for the experimental particle contribution is much greater than the hole contribu-
data is withU=0.62 eV, which is rather close, considering tjon then, the ladder diagrantsaving the least number hole

the semiquantitative nature of these estimates. @heom  |ines) would be the dominant ones. As a microscopically
our calculation is between 1400 and 148QtKe range com-  ye||-founded calculation, the agreements of our calculation
ing from the difference in the slopes of fitting lines and the experimental data indicate that the spin fluctuations

Both results show the improvements from the RPA calcu4n paramagnetic systems are the dominant mechanism for the
lation which is a partial sum of ring diagrams valid for the cyrie-Weiss behavior. Comparisons with other contributions

limit of no coupling between one spiff one electronand  gych as electron-phonon interactions are left for future study.
the rest of spins in the medium. The susceptibility expression

we have is in terms of thélectron-holg¢ pair bubble aver- ACKNOWLEDGMENTS
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