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We study the effects of spin-density fluctuation in itinerant electron magnetism. Spin fluctuation is described
in terms of an averaged electron-hole polarization bubble dressed with paramagnons in effective random
potential. We approximate the polarization bubble by letting all internal paramagnon lines have zero momen-
tum transfer and by taking the Gaussian average over the fluctuating local field. The resultant static suscepti-
bilities calculated for paramagnetic systems agree with experimental data better than those from RPA which is
the noninteracting limit of this theory. The high temperature susceptibilities of Ni and Co approximate the
Curie-Weiss law for intermediate coupling.@S0163-1829~96!02725-7#

I. INTRODUCTION

The problem of itinerant electron magnetism~IEM! is of
fundamental importance in understanding the collective ef-
fects in many-body systems. For instance, the localized mag-
netic moments cannot explain1 ~i! that the neutron-diffraction
data showing atomic magnetic moments are located between
atoms thus being identified with the mobile electrons,~ii !
that the number of Bohr magnetons per atom is not integral
and the bandwidths are the order of electron volts, and~iii !
that the specific heat of some materials is much higher than
what is calculated with localized moment theory. The mean-
field approximation is not well suited for IEM, as shown in
the fact that the Stoner theory of a molecular field cannot
explain the Curie-Weiss law.2 Among many studies on IEM,
Wang, Evenson, and Schrieffer3 ~WES! substituted the two-
body interaction with the Gaussian functional average of a
fluctuating one-body potential following Hubbard4 and
Muhlsclegel.4 They solved the one-site Anderson model for
temperatures higher than the characteristic spin-fluctuation
temperature. Murata and Doniach5 ~MD! formed the parti-
tion function with a classical functional integral over the
magnetization field. Hertz and Klenin6 ~HK! calculated the
self-energy of paramagnon~which is exchange-enhanced
spin fluctuations! and the static susceptibility, using similar
methods of WES and MD. Moriya and Kawabata7 added
corrections to the Hartree Fock energy in terms of dynamic
susceptibility. Assuming a free-electron-like band, they de-
rived the static uniform susceptibility being consistent with a
Curie-Weiss law for weakly correlated itinerant magnets.
Lonzarich and Taillefer8 used the MD model to study the
magnetic equation of state of weak ferromagnets. After all
these efforts, the theory is still far from satisfactory in ex-
plaining the experimentally observed, temperature-dependent
magnetic susceptibility of various materials.9

In this paper, we study the exchange-enhanced spin fluc-
tuation to explicitly calculate the temperature-dependent sus-

ceptibility for the paramagnetic states of itinerant electron
ferromagnets. Calculated spin susceptibilities are compared
with experimental data of a strong ferromagnet nickel which
has the least-localized spins among pure transition metals
and another ferromagnet cobalt. Since fluctuations in both of
these materials are highly localized in momentum space, we
employ a similar procedure to that done by WES and HK,
while using different approximations for averaged electron-
hole polarization bubble and the susceptibilities.

II. SPIN FLUCTUATIONS
AND PARAMAGNON INTERACTIONS

The Hubbard Hamiltonian of on-site Coulomb repulsion
is
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whereN is the number of sites. We take the spin-dependent
second part as the interaction HamiltonianHI . Due to spin-
exchange interactions, spin density fluctuates throughout the
medium, in addition to thermal fluctuation. This spin fluctua-
tion is expressed3,4,6asgs$f(t)2f(0)% whereg is the cou-
pling between one spin and the effective magnetic field
which arises due to the fluctuating spin density and given by
g25UkBT. Here,t is the imaginary time ands511 for up
spin and21 for down spin.

At finite temperature, the exact partition function is
given:10
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Using the Hubbard-Stratonovich transformation,11 we reduce
the quadratic exponent from theHI to a linear term. Then the
partition function becomesZ5Z0ZI , where
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The fluctuating effective potential can be written3,6,11

Vs[gsf(t) which is the Zeeman term. We multiply the
potentialV in ZI by an arbitrary parameterl and differenti-
ate with respect tol to obtain
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where
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Also, the Green’s function is expressed as a series in terms of
the free partG0 and the propagator of an interacting particle
~electron!:
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Thus,
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Integrating the equation overl, we get
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Then the total partition function is reduced to
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where the second part describes the electron scattering by the
effective potentialV.

Now we represent the spin fluctuation by paramagnon
which is the quanta of elementary excitations in magnets for
temperatures higher than the phase transition temperature.
That is, paramagnon propagates as it polarizes medium thus
creating electron-hole pair bubbles. The mean-square fluc-
tuation of Fourier-transformed field components~averaged
over the auxiliary field! is defined
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whereq is the paramagnon wave vector or the momentum
transfer.

We take the static limitvm50 components only of the
field fqm , for the thermal energy ofkBT@kBTSF where
kBTSF is the characteristic energy

6,7 of spin fluctuation. Since
TSF'TC in transition-metal ferromagnets, we work in the
rangeT.TC . While letting the intermediate paramagnon
lines have zero momenta,6 we keep the wave vectorq on the
paramagnon lines outside the bubbles~shown as dotted lines
in Fig. 1!. So, the paramagnons propagate~or spins fluctuate!
in this ‘‘static’’ limit. The paramagnon self-energy
diagrams6,10 in Fig. 1 show the polarization bubble
B(q,ivm) dressed by absorbing and reemitting paramag-
nons. We exclude the interactions between the emitted para-
magnons in higher-order diagrams in the series. The pair
bubbleB2(q) is
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From a generalized Hartree approximation of the diagram
series and by requiring a self-consistent relation6 between the
polarization amplitude and the effective field, the mean-
square fluctuation in Eq.~11! is determined:
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III. SPIN SUSCEPTIBILITY

The static susceptibility follows:
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FIG. 1. Paramagnon self-energy diagrams shown to the fourth
order in g. Solid lines are for electrons and holes, dotted lines
outside the bubbles are the effective external field and the interme-
diate ones for paramagnon propagators.
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Abovex has the general structure of the response function in
its form except being written in terms of theaveragedbubble
^B2(q)& which is an effective Lindhard function and the sus-
ceptibility at a noninteracting limit.

The Gaussian average of the polarization bubble is de-
fined exactly:3,6

^B~q!&5E df

@2p^uf~q!u2&#1/2

3exp@2f2~q!/2^uf~q!u2&#B~q!. ~15!

Up to this point, the general formalism followed the previous
works by other authors as cited. Now we approximate the
wave-vector-dependent pair bubble differently~from what
was given in Ref. 6 by HK, for instance!. Our purpose is to
write the approximated average value of the pair bubble con-
sistently from the definition of the Gaussian average given
above and to calculate the temperature-dependent form of
the spin susceptibility explicitly. We take

B~q!'B~e1gf!'B~eF!1gfB8~e1gf!ueF1•••'B~eF!

by expanding it around the Fermi energyeF and taking into
account of the fact that the lowest-order bubble for noninter-
acting electron falls off very slowly from its maximum value
at q50 for 0,q,2kF . The eF is actually the chemical
potential which is determined from fixing the electron num-
ber n5* f (e)^N(e)&de. Then we take the averaged bubble
at the long-wavelength limit as

^B2~q!&'^B2~0!&exp@2f~q!2/2^ufu2&#, ~16!

where the exponential term comes from the integral in Eq.
~15!.

From the expression of the bubble as a product of electron
Green’s functions, we find the pair bubble as energy inte-
grals by Poisson’s summation formula,6,11 including the ther-
mal factor through the Fermi distribution functionf (e):
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1
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In order to determine temperature-dependent susceptibility,
we note that the general structure of susceptibility functions
~correlations! is an average of a product of density of states
~at different times or at different temperatures, for instance!.

First we approximate the derivative of Fermi function
f (n21)(e) with a Gaussian density of states:6
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where the factorp2/3b2 is from the second moment of the
derivative of Fermi function and the widthw5gA^f2&
which is from considering what follows . According to the
random-phase approximation which is the noninteracting
limit of this theory, we have ferromagnetic instability when
U^N(e)&.1. In the intermediate-coupling region where
UN(e)>1, we take the averagêN(e)& over the energy
width ^f2&AUkBT. Next, we integrate after taking
the product of the band density of states

N0(e)5(2pw2)21/2e2e2/2w2 with the above Gaussian den-
sity of statesN. Then, we equateBn(0)51/(n21)!N(n22)

3(eF) for the effective density of states at finite
temperature.6 That is, we have the average pair bubble
^B2(0)&5^N(eF)&.

Thus, we arrive at
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where the f integral is over the range of
gA^f2&,0.5<^f2&>1.5 and the chemical potential near the
top of the band iseF51/2pg2^f2&'1/2pUkBT.

Finally, the inverse susceptibility is computed

x215
12U^B2~0!&

^B2~0!&
'ApkBT@U1~p2/3!kBT#2U.

~21!

We choose eV units since the Coulomb interactionU is usu-
ally given in eV. Above x21 is not identical to
x215C21(T2TC) in its algebraic form. But, the actual
curve of this, plotted as a function of temperature, is very
much linear over most of the temperature range of interest.
As a matter of fact, many experimental data of inverse sus-
ceptibilities of many paramagnets differ from the simple
straight line of theC21(T2TC) type.

IV. RESULTS AND CONCLUSION

We calculate the spin susceptibility of nickel which is a
representative of the face-centered-cubic iron group and a
pure transition metal whose itinerant ferromagnetism calls
for clear understanding based on an improved theory beyond
the Stoner model. The inverse susceptibility of Ni as a func-
tion of temperature plotted in Fig. 2 approximates the Curie-
Weiss law very well. The solid line from our calculation is
for the Coulomb interactionU of 0.23 eV fitting the experi-
mental data12 most closely while the effectiveU value esti-
mated for the 3d84 f 2 configuration is between 0.11 eV~ac-
cording to Herring13! and 0.5 eV~according to Gunnarson in
Wohlfarth,13 based on the spin-density functional formal-
ism!. This is a much better agreement than the qualitative
nature of previous calculations6 that formulated a similar mi-
croscopic theory. The paramagnetic temperatureU for the
Curie-Weiss-like line in Fig. 2 is 600 K, while the experi-
mentally determined Curie temperature isU5654 K. Since
the theory is meant to apply to the paramagnetic states for
higher temperatures, the minor discrepancy inU should not
concern us. Actually, experimental data for many paramag-
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nets show nonlinear behaviors near the critical points. The
random-phase-approximation~RPA! result for similar range
of U values falls between the dotted line~HK! and the solid
line which is our calculation, in Fig. 2. In Fig. 3, we have the
inverse susceptibility of beta cobalt~fcc! which is another
pure transition-metal ferromagnet. The paramagnetic Curie
temperatureU is known to be between 1403 and 1423 K and
the effective U'0.9 eV according to Gunnarson in
Wohlfarth.13 Our calculated fitting line for the experimental
data is withU50.62 eV, which is rather close, considering
the semiquantitative nature of these estimates. TheU from
our calculation is between 1400 and 1480 K~the range com-
ing from the difference in the slopes of fitting lines!.

Both results show the improvements from the RPA calcu-
lation which is a partial sum of ring diagrams valid for the
limit of no coupling between one spin~of one electron! and
the rest of spins in the medium. The susceptibility expression
we have is in terms of the~electron-hole! pair bubble aver-
aged over a fluctuating effective field which represents the
spin fluctuation. Though the paramagnetic susceptibility as a
function of temperature has been studied before by some
authors,6,13 it has not been written out explicitly in a nonphe-
nomenological version of the exchange-enhanced spin-

fluctuation theory. Also, we used a different approximation
of the averaged pair bubble from that of HK. Unlike some
studies in which arbitrary momentum cutoffs were intro-
duced, our procedure does not require such parameters, since
we evaluated for the static limit.

As for low-density systems, we may employ the ladder
approximation as well. The criterion for low density10 would
bekFR!1 whereR is the range of repulsive force. Since the
particle contribution is much greater than the hole contribu-
tion then, the ladder diagrams~having the least number hole
lines! would be the dominant ones. As a microscopically
well-founded calculation, the agreements of our calculation
and the experimental data indicate that the spin fluctuations
in paramagnetic systems are the dominant mechanism for the
Curie-Weiss behavior. Comparisons with other contributions
such as electron-phonon interactions are left for future study.
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FIG. 2. Inverse susceptibility of Ni. The experimental data are
from Zornberg~Ref. 12!.

FIG. 3. Inverse susceptibility of beta Co. The experimental data
are from Wijn ~Ref. 12!.
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