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We show that the cubic nonlinear response of a polycrystalline quasi-one-dimensional conductor, such as a
conducting polymer, can be expressed exactly in terms of the single-crystal cubic susceptibility and the electric
fields in the analogous linear polymer. We also propose a simple nonlinear decoupling approximation which
allows the polycrystalline nonlinear susceptibility to be simply estimated. Using this method, we show that
local field effects may hugely enhance the nonlinear susceptibility of the polycrystal above its single-crystal
value. A comparable enhancement is shown to exist in the conductivity noise.@S0163-1829~96!06229-7#

I. INTRODUCTION

Quasi-one-dimensional~1D! organic polymers may have
a huge cubic nonlinear response at optical frequencies.1

Since such a large nonlinearity is equivalent to a highly
intensity-dependent dielectric function, these materials may
be useful as intensity-dependent filters, self-focusing optical
media, etc. Because of these possibilities, many papers have
discussed possible microscopic mechanisms for this ob-
served nonlinearity.1

In this work, we study, not the mechanism, but rather,
how the nonlinearity of quasi-1D material may be affected if
the polymer is a polycrystal. Polycrystalline structures are
certainly of practical interest, because it can be difficult to
prepare quasi-1D materials as single crystals. Unless special
preparation techniques are used, these materials will tend to
have their principal axes randomly oriented in space—in
other words, to be polycrystalline.

Our main result is that this random structure may hugely
enhance the effective cubic nonlinearity of the organic poly-
mer. This enhancement is caused by a local field effect: the
cubic nonlinearity depends on the cube of thelocal electric
field, and this can be greatly increased above the applied
field by local fluctuations in the dielectric properties.

Local field effects have already been discussed exten-
sively for suspensions ofisotropic nonlinear material in a
linear host.2–8 In this case, the cubic response is greatly en-
hanced near the frequency of the surface plasmon resonance
of the suspended particles. More recently, an experiment has
shown that a layered microstructure of alternating nonlinear
dielectrics can have an effective cubic nonlinearity which is
larger than that of of either pure component.9 On the theo-
retical side, it has been shown that the enhancement factor is
proportional to the averaged fourth power of the electric field
in a relatedlinear medium.9–12

In this paper, we will show that a similar result also ap-
plies to polycrystals. Using this formalism, we will show that
a large enhancement can occur in a polycrystal of quasi-1D
material, if the components of the dielectric tensor have suit-
able values.

The remainder of this paper is organized as follows. The
next section describes a method for treating cubic nonlineari-
ties in a polycrystalline material. Following this, we give

some simple numerical examples, based on model calcula-
tions, and conclude with a brief discussion.

II. FORMALISM

We consider an anisotropic material, in whichD andE
have a nonlinear relation of the form

Di5e i j Ej1x i jkl EjEkEl . ~1!

HereDi andEi are thei th Cartesian components ofD andE,
ei j andxi jkl are second-rank and fourth-rank Cartesian ten-
sors, and we use the Einstein convention that repeated indi-
ces are summed over. Initially, we assume that we are work-
ing at zero frequency, and that all of the quantities in Eq.~1!
are real. We also assume thatei j is symmetric, which insures
that it can be diagonalized with real eigenvalues.

We are concerned with a polycrystal of this material. The
principal axes of the crystallites are assumed to be randomly
oriented—that is, they point with equal probability in any
direction. Equation~1! is then understood to express the con-
stitutive relation in a coordinate system fixed in the crystal-
lite ~body coordinates!. It can be converted to laboratory co-
ordinates by a transformation using appropriate rotation
matrices.

We define the effective dielectric functionee and cubic
nonlinear susceptibilityxe of the polycrystal by generalizing
the method of Ref. 10. The sample is assumed to have vol-
umeV, bounded by surfaceS, on which the potentialF is
specified asF~x!52 E0•x. This choice insures that the vol-
ume averaged electric field withinV is E0.

13 If the polycrys-
tal is macroscopically isotropic,ee andxe may be defined by
the relation10,12,14–17

^D&5eeE01xeuE0u2E0 , ~2!

where^ & denotes a volume average. It can be shown that this
definition is equivalent to

W[V^D&•E0[V$eeE0
21xeE0

4%, ~3!

where we have introduced an energylike functionW from
which ee andxe may be derived.10

Note that even though the constitutive relationship~1! is
nonlinear and anisotropic, the local fieldsD andE still sat-
isfy the usual electrostatic equations
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¹•D50; ~4!

¹3E50. ~5!

From the second of these,E can be expressed as the negative
gradient of a scalar potential,E52¹F. However,F no
longer obeys Laplace’s equation, because of the complicated
~and inhomogeneous! constitutive relation.

The definition ~3! can be written in another equivalent
form, which is more convenient for approximations, namely

W5E $e i j EiEj1x i jkl EiEjEkEl%d
3x[W21W4 . ~6!

It is easy to prove, from the electrostatic equations~1!, ~4!,
and ~5!, that expressions~3! and ~6! are equivalent. The
proof follows closely the analogous proof for isotropic two-
component composites.10 Thus, to determineee andxe , we
need only evaluateW for the actual microstructure of the
polycrystalline sample, using Eq.~6!.

We now show that tofirst order in xi jkl , just as in the
isotropic case,xe involves the fourth moment of the electric
field in a relatedlinear problem. We first write

E5Elin1dE, ~7!

whereElin is the electric field in a linear medium with the
sameei j ~x! but with xi jkl ~x!50; and dE is the additional
electric field due to the nonlinearity. By definition,dE is at
least first order inxi jkl . Sincexi jkl is assumed to be a small
perturbation on the linear medium, it is sufficient to calculate
W only to first order inx. To this order, we may neglect the
contribution ofdE to the fourth order term, since this will
only have an effect onW of secondorder in thexi jkl ’s.

The term involvingei j may be written

W25E @e i j ~Elin; i1dEi !~Elin; j1dEj !#d
3x. ~8!

That portion ofW2 which is first order indE can be written

dW2
~1!5E @2e i j Elin; idEj #d

3x, ~9!

where we have used the symmetry ofei j . Writing
dEj52¹ jdF and integrating by parts, we obtain

dW2
~1!52H E @¹ j~e i j Elin; i !dF#d3x

2E ¹ j~e i j Elin; idF!d3xJ . ~10!

But

¹ j~e i j Elin; i !5¹•Dlin50, ~11!

whereDlin is the displacement vector in the related linear
medium, and is, like the total displacementD, divergence
free. The integrand of the second term is the divergence of a
vector whosej th component ise i j Elin; idF. Using the diver-
gence theorem, we can convert this integral into a surface
integral, which vanishes becausedF50 on S. Thus dW2

~1!

also vanishes.

The effective coefficientsee andxe are given, according
to Eq. ~3!, by the coefficients ofVE0

2 andVE0
4 in W. Using

the results just proven, we have

ee5
*e i j Elin; iElin; jd

3x

VE0
2 ~12!

and

xe5
*x i jkl Elin; iElin; jElin;kElin ; ld

3x

VE0
4 . ~13!

Thus, just as in an isotropic composite, bothee andxe can be
expressed~to lowest order in the nonlinearity! in moments of
the electric field in the relatedlinear medium.

Next, we write down a simple approximation forxe
analogous to the ‘‘nonlinear decoupling approximation’’
~NDA! of isotropic nonlinear composites.14 Hereafter, we
drop the subscript ‘‘lin;’’ unless otherwise stated, only linear
fields will be discussed. First, we prove a simple lemma
which allows us to state this approximation more clearly.
Denoting the eigenvalues ofe i j by e i , we write

ee5
e i*Ei~x!2d3x

VE0
2 , ~14!

whereEi(x) is the field component parallel to the ith princi-
pal axis atx. Equation~14! implies that

^Ei
2&

E0
2 5

]ee
]e i

, ~15!

where^ & denotes a spatial average. This is the analog of a
result in isotropic composites,13

^E2&a5
1

pa

]ee
]ea

, ~16!

where^ &a denotes the average of a quantity in theath com-
ponent,pa the volume fraction of that component,ea its
dielectric constant, andee the effective composite dielectric
constant.

We now consider the nonlinear susceptibility explicitly.
For convenience, we will assume that, in the body coordinate
system, the elements ofx all vanish exceptxi i j j , with indices
equal in pairs. Then from Eq.~13!,

xe5x i i j j

^Ei
2Ej

2&

E0
4 . ~17!

The NDA is specified by the assumption that

^Ei
2Ej

2&'^Ei
2&^Ej

2&, ~18!

or, upon using Eq.~15!,

xe5x i i j j S ]ee
]e i

D S ]ee
]e j

D . ~19!

This is closely analogous to the equation

xe5
1

pa
S ]ee
]ea

D 2 ~20!

which specifies the NDA in an isotropic composite.14
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Equation~19! is particularly useful given an approxima-
tion for ee~e1,e2,e3!. The simplest of these is the effective-
medium approximation~EMA!,18 which gives

(
i51

3
e i2ee

e i12ee
50. ~21!

For a uniaxial material with principal elementse1, e2, ande2,
Eq. ~21! simplifies to

e12e3
e112ee

12
e22ee

e212ee
50. ~22!

The physical solution to this quadratic equation must give
ee~e1,e1,e1!5e1:

ee5
e21Ae2

218e1e2
4

. ~23!

From Eqs.~19! and~23!, xe is greatly enhanced ife1@e2,
which gives

ee'Ae1e2/2. ~24!

In this regime, if onlyx2222 is nonzero, and ife1@e2, then

xe'x2222

e1
2e2

, ~25!

which gives anarbitrarily large enhancementif e1/e2→`.
The physical origin of this enhancement is a large in-

crease in local electric fields. In each individual crystallite,
the uniaxial~high-dielectric-constant! direction predominates
in carrying displacement current. But because the crystallites
are randomly oriented, there is an impedance mismatch at
every grain boundary. The EMA predicts that, because of
this mismatch, the polycrystal is exactly at the percolation
threshold for carrying displacement current. This leads to a
large local field enhancement in the low-conductivity crystal
directions. Therefore,xe , which depends on the fourth power
of the local electric field, is greatly increased overx2222.

We can also introduce acrossover field Ex , defined as the
electric field at which the linear and nonlinear contributions
to the displacement current become comparable:

eeEX5xeuEXu2EX . ~26!

Using the EMA

EX5Aee /xe'S e2
x2222

DAe2 /e1. ~27!

Thus the crossover field isreduced relative to the corre-
sponding field in the single crystal by a factor of
Ae2 /e1—that is, nonlinear effects set in at a much lower
field in the polycrystal than in the single crystal.

Next, we prove a connection betweenxe and the conduc-
tivity fluctuations in a related noise problem.19–23 A similar
theorem has also been proved for isotropic composites.10,14

We assume that our polycrystal is a member of an ensemble
of polycrystals. Each member of the ensemble is assumed to
have the same geometry, but a different conductivity tensor.
Let the conductivity tensor of one such member be denoted
si j ~x!1dsi j ~x!, wheredsi j ~x! represents the fluctuating part,

while si j ~x! is the same for each member of the ensemble
~but is position dependent!. The fluctuating part is assumed
to have zero mean, i.e.,

^ds i j ~x!&av50, ~28!

where^ &au is to be understood as an ensemble average. We
assume also that

^ds i j ~x!dskl~x8!&av5ai jkl ~x!d~x2x8!. ~29!

The fluctuations in conductivity might arise, for example,
from a special noise process, which causes the conductivity
of the sample to fluctuate in time, such that there are no
correlations between fluctuations measured at the same time
but at different spatial points within the sample. The fourth-
rank tensorai jkl ~x! describes the strength of these conduc-
tivity fluctuations.

Within this model, from Eq.~12!, the mean-square con-
ductivity fluctuations of thepolycrystalare determined by

V2^~se1dse!
2&avE0

45 K E d3xE d3x8Ei~x!„s i j ~x!

1ds i j ~x!…Ej~x!Ek~x8!„skl~x8!

1dskl~x8!El~x8!…L
av
. ~30!

We simplify this using Eqs.~28! and ~29! for the ensemble
averages ofdsi j and its square. The term on the right-hand
side which involvessi j ~x!skl(x8! givesV

2s e
2E 0

4. The cross
terms involving products ofs and ds vanish. Finally, the
term quadratic inds simplifies to a single integral over
ai jkl ~x!. When this is evaluated, we obtain

V^~dse!
2&av5ae , ~31!

whereae is the effective cubic nonlinear susceptibility of a
medium whose linear conductivity iss i j ~x! and whose cubic
nonlinear conductivity isai jkl ~x8!. Thus, just as in an isotro-
pic composite, there is a connection between the mean-
square conductivity fluctuations in a linear polycrystal with
conductivity noise, and the effective nonlinearity of a related
nonlinear polycrystal.24

III. NUMERICAL EXAMPLE

To illustrate the predicted enhancement of nonlinear sus-
ceptibility, we consider a highly oversimplified model of a
quasi-1D conductor. In the high-conductivity direction, we
assume a Drude metal with dielectric function

e1~v!512vp
2/@v~v1 i /t!#. ~32!

In the perpendicular direction, we postulate an insulator with
a constant dielectric function,

e2~v!51. ~33!

Within this model, the EMA predicts that the polycrystal is
precisely at the percolation threshold, so that the enhance-
ment ofxe will be especially large. In a possibly more real-
istic situation with finite conductivity in both parallel and
perpendicular directions, the enhancement may be smaller.
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Because the principal componentse1 and e2 are, in gen-
eral, complex at finite frequencies~as are the components of
the nonlinear susceptibility tensor!, Eq. ~17! must be modi-
fied slightly. The appropriate generalization is

xe5x i i j j

^Ei
2uEj u2&
E0
4 , ~34!

whereEi and Ej are in general complex. This form takes
correct account of the phase relationships betweenE andE0
at finite frequencies. The generalized NDA is now

xe5x i i j j S ]ee
]e i

U]ee
]e j

U D . ~35!

To apply this approximation to the present example we
solve Eq.~22! for ee and compute the specified derivatives,
assumingvpt510. The results are shown in Fig. 1. Clearly,

there is an enormous enhancement at low frequencies pro-
videdx2222, the transverse component, is nonzero. This large
enhancement occurs because the ratioue1/e2u becomes arbi-
trarily large at low frequencies. Ifx2222 is nonzero, there is
only a modest enhancement due to the parallel components
of the tensor at higher frequencies. Note that the predicted
enhancement may be somewhat magnified by the use of the
EMA and the NDA, which predicts that the polycrystal is
precisely at the percolation threshold. In addition, if our
model dielectric function had a lesser contrast between the
high and low conductivity directions, the enhancement
would be smaller, with or without the NDA.

IV. CONCLUSIONS

We have derived an exact formal expression for the cubic
nonlinear susceptibilityxe of a polycrystal. As previously

FIG. 1. ~a! This is a plot ofxe/x1111 in a polycrystalline material, assuming that the only nonzero component of the single-crystal
nonlinear susceptibility tensor isx1111 ~parallel to the high-conductivity axis!. Calculation carried out using the nonlinear decoupling
approximation@Eq. ~19!# within the linear effective medium approximation@Eq. ~22!#, with single-crystal dielectric functions given by Eqs.
~32! and ~33! with vpt510. ~b! Same as~a! except we plotxe/x2222 assuming only componentx2222 is nonzero.~c! Same as~a! except
xe/x1122 is plotted, assuming onlyx1122 is nonzero.~d! Plot of the linear dielectric functionee~v! in the EMA.
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shown for composites with isotropic components, we find
that xe in a polycrystal depends entirely on the fourth mo-
ments of the electric field in thelinear limit. To evaluate
these moments, we have also described a simple nonlinear
decoupling approximation for estimatingxe from the corre-
sponding linear dielectric function. This approximation pre-
dicts thatxe can be enormously enhanced in a polycrystal at
appropriate frequencies, provided that the constitutive pa-
rameters of the single crystal are appropriately chosen. In
particular, if the componentx2222 of the nonlinear suscepti-
bility in the direction perpendicular to the high conductivity
axis is nonzero, there may be a large enhancement inxe . A
similar enhancement is demonstrated for the corresponding
conductivity noise in a polycrystalline material.

The present results may be of practical importance. As
noted in the Introduction, many quasi-one-dimensional con-
ductors have large cubic nonlinear susceptibilities, whose
origins have been attributed to a wide variety of microscopic

mechanisms. But whatever the microscopic origin, these ma-
terials may be even more nonlinear as polycrystals than as
single crystals. Since polycrystals are often more easily pre-
pared than single crystals, this result may lead to a method
for preparing even more strongly nonlinear conducting poly-
mers. It would be of great interest, therefore, to test these
predictions experimentally.
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