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Giant enhancement of cubic nonlinearity in a polycrystalline quasi-one-dimensional conductor
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We show that the cubic nonlinear response of a polycrystalline quasi-one-dimensional conductor, such as a
conducting polymer, can be expressed exactly in terms of the single-crystal cubic susceptibility and the electric
fields in the analogous linear polymer. We also propose a simple nonlinear decoupling approximation which
allows the polycrystalline nonlinear susceptibility to be simply estimated. Using this method, we show that
local field effects may hugely enhance the nonlinear susceptibility of the polycrystal above its single-crystal
value. A comparable enhancement is shown to exist in the conductivity n6i8&63-18206)06229-1

[. INTRODUCTION some simple numerical examples, based on model calcula-
tions, and conclude with a brief discussion.
Quasi-one-dimensiondlLD) organic polymers may have
a huge cubic nonlinear response at optical frequericies. Il. FORMALISM
Since such a large nonlinearity is equivalent to a highly . . . o .
intensity-dependent dielectric function, these materials ma%a\\/lgeacr?gr?lliﬂzrara?eg?ilosr?tg?ﬁlr::eToitne*nnali in whiChand E
be useful as intensity-dependent filters, self-focusing optical

media, etc. Beca_luse of_ these p_ossibilities,.many papers have D= €;iE; + xiju E;ExE - )
discussed possible microscopic mechanisms for this ob-
served nonlinearity. HereD; andE; are theith Cartesian components BfandE,

In this work, we study, not the mechanism, but rather,&; and x;j are second-rank and fourth-rank Cartesian ten-
how the nonlinearity of quasi-1D material may be affected ifSOrs, and we use the Einstein convention that repeated indi-
the polymer is a polycrystal. Polycrystalline structures areF€S are summed over. Initially, we assume that we are work-
certainly of practical interest, because it can be difficult tolnd @t Zero frequency, and that all of the quantities in @4.
prepare quasi-1D materials as single crystals. Unless speci%fe real. We also assume thgtis symmetric, which insures

preparation techniques are used, these materials will tend { a\s\llé (;?2 Egnoclfr?]%r:ja\l/:/zitidawﬁ: rceals'?z:i;g?;/r?igﬁéterial The
have their principal axes randomly oriented in space—in_. . palyery ‘
other words, to be polycrystalline principal axes of the crystallites are assumed to be randomly

. ! . oriented—that is, they point with equal probability in an
Our main result'|s that 'th|s raf'dom. structure may.hUQelydirection. Equatior{1) i)S/ t%en understgod th; expressythe cor>1/—
enhance the effective cubic nonlinearity of the organic polyir tive relation in a coordinate system fixed in the crystal-
mer. This gnhar_lcement is caused by a local field effect_: thete (body coordinates It can be converted to laboratory co-
cubic nonlinearity depends on the cube of theal electric orginates by a transformation using appropriate rotation
field, and this can be greatly increased above the applieghatrices.
field by local fluctuations in the dielectric properties. We define the effective dielectric functiog, and cubic
Local field effects have already been discussed extemonlinear susceptibility, of the polycrystal by generalizing
sively for suspensions abotropic nonlinear material in a the method of Ref. 10. The sample is assumed to have vol-
linear host~8 In this case, the cubic response is greatly enume V, bounded by surfacg, on which the potentiad is
hanced near the frequency of the surface plasmon resonanspecified asb(x)=— E,-x. This choice insures that the vol-
of the suspended particles. More recently, an experiment hasne averaged electric field withW is E, .12 If the polycrys-
shown that a layered microstructure of alternating nonlineatal is macroscopically isotropie, and x. may be defined by
dielectrics can have an effective cubic nonlinearity which isthe relatiof®12-14-17
larger than that of of either pure compon@r®n the theo-

retical side, it has been shown that the enhancement factor is (D)= €cEq+ xel Eol*Eo, 2
proportional to the averagge_clizfourth power of the electric fe'%here{ ) denotes a volume average. It can be shown that this

in a relatedinear medium®
In this paper, we will show that a similar result also ap-
plies to polycrystals. Using this formallsm, we will show that W=V(D)- EoEV{eeE%+eré}, 3)
a large enhancement can occur in a polycrystal of quasi-1D
material, if the components of the dielectric tensor have suitwhere we have introduced an energylike functdhfrom
able values. which €, and y, may be derived®
The remainder of this paper is organized as follows. The Note that even though the constitutive relationstiipis
next section describes a method for treating cubic nonlinearironlinear and anisotropic, the local fiel@sand E still sat-
ties in a polycrystalline material. Following this, we give isfy the usual electrostatic equations

definition is equivalent to
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V.D=0; (4)

VXE=0. 5)

From the second of thesE,can be expressed as the negative

gradient of a scalar potentiaE=—-V®. However,® no
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The effective coefficientg, and y, are given, according
to Eq. (3), by the coefficients o¥ E5 and VES in W. Using
the results just proven, we have

=f€ij Edin:i Ejin;d°X

€e VEZ (12)

longer obeys Laplace’s equation, because of the complicated

(and inhomogeneolgonstitutive relation.

The definition(3) can be written in another equivalent
form, which is more convenient for approximations, hamely

W:f {EijEiEj+)(i]'k|EiEjEkE|}d3XEW2+W4. (6)

It is easy to prove, from the electrostatic equatioi)s (4),
and (5), that expression$3) and (6) are equivalent. The

and

zinjkI Eiin:iEiin: jEtin:kEiin:1 %X
Xe VE;

. (13

Thus, just as in an isotropic composite, bethand y, can be
expressedto lowest order in the nonlinearityn moments of
the electric field in the relatelihear medium.

Next, we write down a simple approximation for,.

proof follows closely the analogous proof for isotropic two- @halogous to the “nonlinear decoupling approximation”

component composité8.Thus, to determine, and y,, we

(NDA) of isotropic nonlinear composité$.Hereafter, we

need only evaluat&V for the actual microstructure of the drop the subscript “lin;” unless otherwise stated, only linear

polycrystalline sample, using E¢p).
We now show that tdirst order in yx;j , just as in the

fields will be discussed. First, we prove a simple lemma
which allows us to state this approximation more clearly.

isotropic casey, involves the fourth moment of the electric Denoting the eigenvalues ef; by €, we write

field in a relatedinear problem. We first write

E:Elin+ 5E, (7)

&l Ei(x)2d%

€e V—ES’ (14

whereEy,, is the electric field in a linear medium with the whereE;(x) is the field component parallel to the ith princi-

same €;(x) but with x;;,,(x)=0; and 6E is the additional
electric field due to the nonlinearity. By definitiodE is at

least first order iny;j, . Sincey is assumed to be a small
perturbation on the linear medium, it is sufficient to calculate
W only to first order iny. To this order, we may neglect the
contribution of 6E to the fourth order term, since this will

only have an effect ol of secondorder in they;jy's.
The term involvinge; may be written

szf [ €} (Ejin;i + E)) (Ejin:j+ SE) Jd3x. (8

That portion ofW, which isfirst order in SE can be written

5W(21):f [26€;Ejin; E; 103X, 9

where we have used the symmetry ef;. Writing
OEj=—V;6® and integrating by parts, we obtain

5\N(21): 2[ f [Vj(€ijEin;i) 5P ]d°x

_f Vj(EijE“n;i(Sq))(PX . (10)
But

V;(€ijEijin.i) =V - Dy =0, (11

where Dy, is the displacement vector in the related linear

medium, and is, like the total displacemdb} divergence

free. The integrand of the second term is the divergence of a

vector whosgth component is;; Ej,.; 6®. Using the diver-

gence theorem, we can convert this integral into a surface Xe

integral, which vanishes becaus®=0 on S. Thus sW4!
also vanishes.

pal axis atx. Equation(14) implies that

E2)  de
Q=—e, (15)

EO &Ei
where( ) denotes a spatial average. This is the analog of a
result in isotropic composités,

(16)

where( ), denotes the average of a quantity in tté com-
ponent,p, the volume fraction of that componeng, its
dielectric constant, and, the effective composite dielectric
constant.

We now consider the nonlinear susceptibility explicitly.
For convenience, we will assume that, in the body coordinate
system, the elements gfall vanish excepy;;;; , with indices
equal in pairs. Then from Eq13),

(EFED)
Xe= Xiijj —gZ 17
0
The NDA is specified by the assumption that
(EPE])~(EP)(E), (18)
or, upon using Eq(15),
B d€g\ [ d€g
Xe_Xiijj(a_gi (a—q : (19
This is closely analogous to the equation
1 [de 2 20
=0 | 7e. (20

which specifies the NDA in an isotropic composife.
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Equation(19) is particularly useful given an approxima- while oj;(x) is the same for each member of the ensemble
tion for e.(e;,6,,63). The simplest of these is the effective- (but is position dependentThe fluctuating part is assumed

medium approximatioiEMA),* which gives to have zero mean, i.e.,
€ —€ 50’-~(X) 20, (28)
2 i e -0 (21) < ij >av
=1 €+ 2¢€ where( ),, is to be understood as an ensemble average. We

For a uniaxial material with principal elemends e,, ande,, assume also that

Eqg. (21) simplifies to

(60 (X) 601 (X") ) av=@ijict (X) S(X—X"). (29
€1~ €3 €27 € _ The fluctuations in conductivity might arise, for example,
+2 =0. (22 . ) . .
€1+ 2¢, €+ 2€, from a special noise process, which causes the conductivity

The physical solution to this quadratic equation must giveOf the s_ample fo fluciuate in time, such that there are no
(e .6.6)=€" correlations between fluctuations measured at the same time
e LRV but at different spatial points within the sample. The fourth-
et \/m rgnk tensora!jm(x) describes the strength of these conduc-

€= (23)  tivity fluctuations.
Within this model, from Eq(12), the mean-square con-

From Eqs.(19) and(23), x. is greatly enhanced ;> e, ductivity fluctuations of thepolycrystalare determined by

which gives
V(0 + 80)2 VE4=<Jd3xJ d3x' E;(x) (o7 (X)
€~ €162, (29 ((oe o) )ako l N
In this regime, if onlyy,.,,is nonzero, and ik;>¢,, then + 60 (X)) Ej(X) E(X") (ap(X")
€1 + ’ ’ .
Xe~ X222 (25) S0 (X") Ey(X ))>av (30)
which gives ararbitrarily large enhancemerit €/e,—. We simplify this using Eqs(28) and (29) for the ensemble

The physical origin of this enhancement is a large in-averages oboy; and its square. The term on the right-hand
crease in local electric fields. In each individual crystallite,Side Which involvessi;(x)aiy(x’) gives Vo ¢E. The cross
the uniaxial(high-dielectric-constaptlirection predominates t€rms involving products ofr and éo vanish. Finally, the
in carrying displacement current. But because the crystallite!em quadratic inéo- simplifies to a single integral over
are randomly oriented, there is an impedance mismatch &k (X). When this is evaluated, we obtain
mg% i%rrﬁgctr)]o%ﬂgary. The EMA predicts that, becausg of V((800)) a2, 31)

, polycrystal is exactly at the percolation

threshold for carrying displacement current. This leads to gherea, is the effective cubic nonlinear susceptibility of a

large local field enhancement in the low-conductivity crystalmedium whose linear conductivity jsij(x) and whose cubic

directions. Thereforey,, which depends on the fourth power nonlinear conductivity is; (x'). Thus, just as in an isotro-

of the local electric field, is greatly increased owgpo,. pic composite, there is a connection between the mean-
We can also introduce @ossover field k, defined as the  square conductivity fluctuations in a linear polycrystal with

electric field at which the linear and nonlinear ContribUtionSConductivity noise, and the effective non"nearity of a related
to the displacement current become comparable: nonlinear polycrystat*

Ey= xo Ex|?Ey. 26
€eEx=XelEx|*Ex (26) IIl. NUMERICAL EXAMPLE

Using the EMA . . .
g To illustrate the predicted enhancement of nonlinear sus-

€ ceptibility, we consider a highly oversimplified model of a
Ex= 6e/Xe%( 2)\/62/51- (27)  quasi-1D conductor. In the high-conductivity direction, we
X222 assume a Drude metal with dielectric function
Thus the crossover field iseducedrelative to the corre-
sponding field in the single crystal by a factor of e1(0)=1- o[ w(w+il7)]. (32
Veole;—that is, nonlinear effects set in at a much lower
field in the polycrystal than in the single crystal.

Next, we prove a connection betwegpand the conduc-
tivity fluctuations in a related noise problefir? A similar er(w)=1 33
theorem has also been proved for isotropic composit&s. 2 '

We assume that our polycrystal is a member of an ensembMithin this model, the EMA predicts that the polycrystal is
of polycrystals. Each member of the ensemble is assumed farecisely at the percolation threshold, so that the enhance-
have the same geometry, but a different conductivity tensoment of x, will be especially large. In a possibly more real-
Let the conductivity tensor of one such member be denotedstic situation with finite conductivity in both parallel and
aij(X)+ da;;(x), where doy; (x) represents the fluctuating part, perpendicular directions, the enhancement may be smaller.

In the perpendicular direction, we postulate an insulator with
a constant dielectric function,
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FIG. 1. (a) This is a plot of xo/x1111 in @ polycrystalline material, assuming that the only nonzero component of the single-crystal
nonlinear susceptibility tensor ig;111 (parallel to the high-conductivity axisCalculation carried out using the nonlinear decoupling
approximatior Eq. (19)] within the linear effective medium approximatifgg. (22)], with single-crystal dielectric functions given by Egs.
(32) and (33) with w,7=10. (b) Same aga) except we plotye/x,.2, assuming only componenb,,, is nonzero(c) Same aga) except
Xe/X1122 i plotted, assuming only, 45, is nonzero(d) Plot of the linear dielectric functioe,(w) in the EMA.

Because the principal componergsand e, are, in gen- there is an enormous enhancement at low frequencies pro-
eral, complex at finite frequenciéas are the components of vided x».0,, the transverse component, is nonzero. This large
the nonlinear susceptibility ten9oiEq. (17) must be modi- enhancement occurs because the rigjte,| becomes arbi-
fied slightly. The appropriate generalization is trarily large at low frequencies. If2,5, is nonzero, there is

2 12 only a modest enhancement due to the parallel components

. (EFIE|®) (34) of the tensor at higher frequencies. Note that the predicted

Xe™ Xiijj E; enhancement may be somewhat magnified by the use of the
where E; and E; are in general complex. This form takes EMA and the NDA, which predicts that the polycrystal is
correct account of the phase relationships betweemdE, precisely at the percolation threshold. In addition, if our

at finite frequencies. The generalized NDA is now model dielectric function had a lesser contrast between the
high and low conductivity directions, the enhancement
_ J€e |O€e would be smaller, with or without the NDA.
Xe= Xiiii | 52 | 3¢l |- (39
i |0€j

. . . IV. CONCLUSIONS
To apply this approximation to the present example we

solve Eq.(22) for e, and compute the specified derivatives, We have derived an exact formal expression for the cubic
assumingw, 7=10. The results are shown in Fig. 1. Clearly, nonlinear susceptibilityy, of a polycrystal. As previously
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shown for composites with isotropic components, we findmechanisms. But whatever the microscopic origin, these ma-
that y. in a polycrystal depends entirely on the fourth mo-terials may be even more nonlinear as polycrystals than as
ments of the electric field in thénear limit. To evaluate single crystals. Since polycrystals are often more easily pre-
these moments, we have also described a simple nonlinepared than single crystals, this result may lead to a method
decoupling approximation for estimating from the corre-  for preparing even more strongly nonlinear conducting poly-

sponding linear dielectric function. This approximation pre-mers. It would be of great interest, therefore, to test these
dicts thaty, can be enormously enhanced in a polycrystal abyredictions experimentally.

appropriate frequencies, provided that the constitutive pa-
rameters of the single crystal are appropriately chosen. In
particular, if the componeny,,,, of the nonlinear suscepti-
bility in the direction perpendicular to the high conductivity
axis is nonzero, there may be a large enhancemegt .iA It is a pleasure to thank Professor A. J. Epstein, Professor
similar enhancement is demonstrated for the corresponding. M. Hui, and Dr. Ohad Levy for many useful conversa-
conductivity noise in a polycrystalline material. tions. | am also most grateful to Professor S. Doniach and

The present results may be of practical importance. Ashe Department of Applied Physics at Stanford University
noted in the Introduction, many quasi-one-dimensional confor their warm hospitality while this work was being com-
ductors have large cubic nonlinear susceptibilities, whos@leted. This work was supported by NSF Grant No. DMR94-
origins have been attributed to a wide variety of microscopid2131.
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