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A simple model describing the dynamics of a collective strongly anharmonic mode embedded in a thermo-
stat is investigated by numerical integration of the Langevin equation using methods with strong and weak
convergences. We appb initio potentials with several wells describing some types of such modes in the
bcc phase of Zr. The results obtained demonstrate a number of peculiarities of lattice vibrations, which do not
keep within the limits of the conventional phonon picture. In particular, an analysis of the results allows one to
explain some unusual features of the lattice dynamics of Ti and Zr and their iloyesxample, symmetrically
forbidden splitting of phonon branches, central pef&0163-1826)07929-5

[. INTRODUCTION (B)-phase. Multiwell potentials appear to be typical for crys-
tals undergoing structural transitions, in particular martensi-
Recent inelastic neutron scattering experiments in higlic transformations in metafs.
temperature bcc phases of Ti, Zr, Hf, La, and(See, Ref. 1 One could think that the effects of strong anharmonicity
and references thergilave again attracted attention to the lead only to a renormalization of the phonon frequency and
old and still unsolved problem of the description of lattice @n increase of phonon dampifigr example, in the spirit of
dynamics in the presence of strong anharmonicity, frequenti{he self-consistent phonon approdéhFor instance, in the
arising near structural instabilities. A number of unusual pheRRef- 1 experimental data which demonstrated the broadband
nomena in alloys Zr_,Nb,, such as the central peak in €N€rgy distribution of inelastic neutron scattering were inter-

neutron scattering, symmetrically forbidden splitting of pho-P'€ted in the limits of the traditional phonon picture, al-

non branches, and anomalies of quasielastic scattering 6lpough the width of the phonon peak was comparable with

. L ) : ts frequency.
Mossbauer radiation, were discovered long ago in Refs. 2,3‘. Starting from the pioneer paper by Krumhansl and

Qrsa:]vgwserseifmet?]tleyhsigr?fe(frsnep?e,r:teL; dlbége;rzzzzvsfr?ﬁle F;T)%T/ce)? Schrief_fef‘_the soliton(more ex_actly, kink theory of _Iattice_
. L dynamics in strong anharmonic crystals has been intensively
mentioned metals along te10) and(112) directions, re-  geyeloped29n particular, this theory allowed us to ex-
lated to theB-« (hcp) andB-w transitions(see Sec. )l were  hjain the presence of the central peak qualitatielyow-
poorly determined, and a broadband distribution of scatteregver, the central peak is not the unique unusual feature ob-
neutrons in energy was observed instead of the central peajerved in the experimentsanother important peculiarity in
which was typical for Ti- and Zr-based allogs. the inelastic scattering cross section measured in Ref. 1 is the
In general, the anharmonic effects for most vibrationproadband distribution in energy. A considerable part of the
modes in all crystals can be considered, based on perturbgpectral density was observed in the frequency region below
tion theory with respect to the adiabatic parameter, as theghe usual phonon frequencies but above the central peak. A
effects of weak nonideality of the phonon gas. Indeed, dugalitative explanation of this peculiar phenomenon is the
to the Lindemann criterion, the inequality=0.01a?<a?is  main aim of the present paper.
valid atT=T, (a is a lattice constant, ant, is the melting To clarify this question, it appears to be natural to start
temperaturg where u? is the mean square of atomic dis- from the simplest model of one distinguishable collective
placement. If anharmonicities are very strong in a considermode which is embedded in a thermostat of all other excita-
ably large part of the Brillouin zone 8t<T,,, this criterion  tions. We hope that despite the model under consideration
cannot certainly be fulfilled. However, anharmonicity of the being oversimplified, it includes, nevertheless, the main fea-
potential energyv can be very strong for some distinguish- tures important for real systems. The power spectral density
able vibration modes in metals near structural instability, re{PSD of a generalized coordinate determining the collective
sulting in several stable equilibrium positiofsee, for ex- mode is an analog of the dynamic structure factor which is
ample, Refs. 4,6 This is confirmed by direct calculations measured in inelastic neutron scattering experiments. If the
using the frozen phonon method for different deformationd®SD as a function of frequency is characterized by a single
of Zr (Refs. 6 and Y and Ba(Ref. § lattices in the bcc clearly observed maximum at= wy# 0, it is natural to con-
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sider wg as a phonon frequency which can depend on tem-
perature in general case, and the width of the peak is asso-
ciated with phonon damping. If the PSD as a functiorwof

has several peaks or is monotonous, then no specific energy
of excitation corresponds to the given transferred momentum
during inelastic neutron scattering. In this case we shall
speak about the nonphonon picture of lattice dynamics.

The approximations made are discussed in Sec. Il and the
formulation of the model is given. In Sec. Illl numerical
methods are described in detail, in Sec. IV the results ob-
tained are presented and in Sec. V we discuss the results of
simulation.

Some preliminary results were previously published in
Ref. 13.

(a)

II. APPROXIMATIONS AND FORMULATION
OF THE MODEL

In Refs. 4,14 the following model of a strongly anhar- ®) 123123123
monic crystal was considered. The on-site potential of each | | | I | | | | | bee
atom (displacing ion in terms of Ref.)4s bistable and dif- AT TERTSE
ferent atoms are connected by “springs.” A single atom at a |11 11T phonon
constant temperature jumps between two wells, the average l | | I | | o-phase
displacement being equal to zero. The inclusion of atom in-
teraction results in either a phase transitfrihe dimension _ _ _
of the crystal is greater than br a short-range order in the  F!G- 1. (8 bec lattice and three neighborin@1l) planes;(b)
one-dimensional1D) case® Bearing in mind the application SPacing of the planes for bce anskphase and plane vibrations
of the model to structural phase transitions of displacemen‘forreSpond'ng to the longitudinal phone2/3,2/3,2/3.
type rather than order-disorder typewe shall consider the
anharmonic potential for eollective vibration modelf only spatial coordinates and timet in the form
a singlemode is chosen, we, of course, cannot describe the
phase transition itselfjust as one would retain only one
atom in the approach of Refs. 4)18ut, in our opinion, this u(r,t)=ex(r,t)cogQ-r), )
simple model describes the lattice dynamics of strongly an-
harmonic crystals above the transition temperature qualita-
tively correctly, since in this case the vibration modes arewhere e=(1/y/3)(1,1,1) is a polarization vector,
quasi-independent. Just that very case is realized in th@=(4/3a)(1,1,1) is the wave vector corresponding to the
experiments. To build a more realistic description of the mode which transforms thé phase to thev phase, ana is
lattice dynamics of strongly anharmonic crystals one mush lattice constaritd= (y/3/2)a]. Let us suppose that the an-
solve nonlinear equations for interactiagpms resulting in ~ harmonic effects are strong only in a small regiorgafpace
the formation of inhomogenous domaingispace similar to near the pointQ and the functionX(r,t) contains Fourier
nucleations of a new phase, or consider the model includingomponentgwith respect tor) only from this area. There-

a set ofcoupling vibration modes, i.e., take into account thefore X(r,t) is a slowly varying function of compared to the
spatial dispersion. In this sense the investigated model is kattice constana. We start from the equations of motion for
rough idealization which, as we hope, catches the principathe generalized coordinaté(r,t) which take into account
features of the considered phenomenon. the anharmonicity of the potenti®l(X), the interaction with

To explain the notion of a collective variable which is the all other vibration modes of the crystal being simulated by
key for the formulation of our model, it is convenient to the inclusion of a thermostat into the equations of motion.
choose, as an example, tiew transition. Thew phase Later we shall neglect the effects of spatial dispersion, i.e.,
arises from theB phase(bco as a result of merging of the dependence of(r,t) on the coordinate. A qualitative
atomic planeq111} with period tripling(see Fig. 1L Let us  discussion of some effects implied from the spatial disper-
then describe a displacement of these planes from equilitsion one can be seen in Refs. 5,16.
rium positions along the directiofi11) by introducing some Neglect of the spatial dispersion, which is based on the
generalized coordinaté in such a way that the total energy assumption that anharmonic effects are strong only in a small
of a crystal per atonv(X) has minima at pointX=0, if the  neighborhood of the poirg=Q in reciprocal space, may be
B phase is stable with respect to small perturbations, anfustified to some extent. In fact, as we have discussed in the
X=d/2 (d is the distance between planes the w phase is Introduction, due to the Lindemann criterion, anharmonici-
stable. Therefore, the potential enerdg¢X) is a multiwell  ties cannot be very strong in a considerably large part of the
function near theB-o phase transition line and, hence, is Brillouin zone even at melting temperature. In some situa-
strongly anharmonic. tions, for example, for the bce-hep phase transition, it is nec-

More exactly, consider a displacement field depending oressary to introduce two collective variables, describing the
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transformation from one crystal structure to anothér.the
present paper we shall confine ourselves to the simplest casg)fxom)
of one variable.

Based on the assumptions mentioned above, a detailed 000!
formulation of the original equations is given. Consider the
case of a harmonic crystal. Then there is the well-known
canonical transformation to the normal coordinates which
determine the vibration modgphonon$ of the given sys-
tem. Let all these modes, except one distinguishable mode, |

0.001
be in thermal equilibrium at the initial instant of time. As
Bogoliubov showed! while switching on the interaction of
the distinguishable mode with others it is also thermalized, -0.002

this process being described by the Fokker-Planck equation
(FPB. The last one is known to be equivalent to the Lange-
vin equation(see, for example, Ref. 18 which the inter-
action of the distinguishable mode with all others is simu-
lated by including a viscous friction and a random force of
the white noise type. A detailed discussion of the applicabil-
ity of the Langevin equation approach to systems with an-
harmonic potentials was given in Ref. 19 in connection with £, 2. The total energy/(x) as a function of displacements
a consideration of the dynamics of the Josephson contacts. [responding to the longitudinal phonon  withg= (27/
that paper both quantum and classical regimes have bee{y(2/3 2/3,2/3)(solid line) (Ref. 6 and the transversal phonon with
discussed. We restrict ourselves to the classical limit of nog=(27/a)(1/2,1/2,0)(dashed ling(Ref. 7; x is measured in units
too high characteristic frequenciéso<T (T is a tempera- of the corresponding interplane distances.
ture), where the white noise approximation holds.

Thus, the dynamics of the variabk(t) is described by where w?(Q) is the phonon frequency with wave vectQr
the Langevin equation and polarization vectoe (see, for example, Ref. 16

-0.003
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wherem is the atom masd;, is the damping of small vibra-
tions withg=Q, andF(t) is the Gaussian white noise,

(F(OF(t"))=2Tr8(t—t'). 3

The coefficient in relatior{3) is such that Eq(2) describes
the relaxation of the distribution function
P(X,0,t)=(8(X=X(t))8(v—2(t))) to the stationary
Boltzman distribution

P(X,0,t=o0)=exp{—[mv2/2+ V(Xe) 1/ T},

with the temperaturd and stationary values of the coordi-
nateX, and the velocityo g= v T/m.*®

In principle, the functioriV(X) can be calculated, for ex-
ample, by the frozen phonon mettiotias a variation of the
total energy of crystal per atom for the crystal deformation
corresponding to the given mofisee Eq(1)]. In particular,
specifying the deformation of the forifl) in the model of
pair central forces with the potentigl(R) we obtain in the
harmonic approximation

1
V(X)= 352 ¢(R=R™+Uu(R)=u(R")))
RR

AN TP 9R,0Rg

—cogQ-R)]?= (4)

w*(Q)X?
2

Thus, the Langevin equation is used as a stochastic ap-
proach to the molecular dynamics problem at constant tem-
perature, which is supported by the balance between the fric-
tion and the random forcE(t) in (2). Such an approach has
been described in Ref. 20. However, only recently have nu-
merical methods for solution of systems of stochastic differ-
ential equationgSDE'’s), efficient in a computing sense and
mathematically justified, been constructéd? the Langevin
equation being a special case of a SDE.

Another more ordinary method of the inclusion of tem-
perature into the molecular dynamics of physical systems is
the NoseHoover thermostat In this approach thermaliza-
tion is achieved by interaction of the investigated system
with a certain additional degree of freedom which is chosen
in a special form. However, this approach, in contrast to the
Langevin equation, has turned out to be nonapplicable for
systems with a small number of degrees of freedom. For
example, numerical calculatithdid not allow us to repro-
duce the stationary Boltzmann distribution for the one-
dimensional harmonic oscillator being in thermal contact
with the heat bath.

The functionsV(X), which were obtained as a result of
calculations forB-Zr and corresponded to the displacement
of atoms along thé111) direction withq=Q (8- transi-
tion) (Ref. 6§ and along the (110) direction with
q=(2m/a)(3,3,0) (one of the variables “taking part” in the
B-a (hcp transition) are chosen as an example of strong
anharmonic potentialsee Fig. 2 In the first case the deep
and shallow minima correspond to theand 8 phases show-
ing the instability of 3-Zr at T=0 with respect to theB-w
transition[the potential energy(X) is symmetrically con-
tinued relatively to the minimum In the second case the
maximum ofV(X) at X=0 points to an instability oB-Zr at
T=0 with respect to thg8-« transition. The problem of the
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lattice dynamics simulation with such potentials is a modelfrom the distribution functioP(x,v, 7). That is why we use
one since in Refs. 1 and 2 tiephase stabilized by entropy methods of numerical integration of SDE(sumerical ex-
contributions at high temperatures was substantively experperiment.
mentally investigated, but rigorous calculations, which take Thus we have to solve problems of two types. On the one
into account these contributions and are similar to that irhand, computation of individual trajectories requires one to
Refs. 6,8, are not yet possible. However, one can considapply methods that reproduce the dynamics of the investi-
that such features of(X), as the presence of several wells gated system sufficiently accurately for each realization of
and the smallness of the corresponding barriers heights, atbe stochastic proce$so-called mean-squatstrong meth-
typical for metals and alloys near martensitic transforma-ods]. On the other hand, the strong methods are “redundant”
tions. to calculate mean values, such @$7)x(0)), and one can

At last it is convenient to go over to natural dimensionlessgo over to weak methods which are simpler than the mean-
variablesx=X/d, y=T/wq, U(X)=V(x)/ad?, T=T/ad?,  square ones. The definitions and detailed discussion of the

and 7=tw,, andf(r):F(t)/mde, where mean-square and weak methods were given in Refs.
21,22,27.
1 V() We used both Taylor-type and Runge-Kutta metfbéfs
T 92 2 ’ as mean-square approximations. According to such features
~*min of the system of SDE’s, Eqg7), such as the presence of

and wy=/a/m, for the three-well potentiak,,,, means the stochastic terms only in the second equation, dispersion con-
coordinate of a shallow well. Then Eq®) and(3) take the ~ stancy(independent on time additive nojsdinearity of the

form equations with respect to, and independence of the right
side of the first equation ow, the numerical schemes are
dx dU(x) dx strongly simplified even compared to methods for SDE'’s
a2~ T dx Yd_7+f(7)’ (5 with additive noises.
The Taylor-type mean-square method of the third order
(F(DF(r))=2Tys(r—1). ©) for the SDE’s, Eqs(7), has the forrff
In conclusion, we shall rewrite the Langevin equatif®)s h? h3 ,
and(6) in the form adopted in the theory of SDE’s, Xkt 1=X+hv— ?[U (Xp) + yvi] + E[—vku (Xy)
dx=vdr, ,
+y(U (X)) +ywl+ol—vyols,
dv=[—-U"(xX)— yv]d7+ ocdW, 7
— \/_ 1 f ! h2 "
whereo=+2Ty andW is a standard Wiener process. Vi 1=0k—h[U' (x) + yvi ]+ 7[—ka (%)
. NUMERICAL METHODS 3

h
! 2 m "
A common way to investigate the Langevin equation both U )+ yod]+ g { =i (00 ol O

by analytical and numerical methods consists in the reduc-

tion of it to the Fokker-Planck equatiaiffPE),%® which is a —[U (x)+ w [ Y= Un(x) 1} + ol 1~ yol,
deterministic partial differential equation for the distribution 5 "
function P(x,v,7). However, an analytical solution of the Ty —U (x)]ols, 9

FPE for multiwell potentials has turned out to be possible

only in the limiting cases when the temperature is much 3/

larger or much smaller than the height of the barrier between |, =hV% = ﬂ+§
wells. As to a numerical solution of the FPE, difference ! o e 2\ 3t
scheme® and the matrix continued fraction meth&tyhich

allow one to calculat®(x,v, 7) effectively, were developed.

First of all we are interested in the power spectral density hS2( & Lk
(PSD |3—7 §+ﬁ_ﬁ . (10
+o0 2
_ i vz
S(w)= fﬁx dre" (x(n)x(0))=x7]| ®  Here X, and v, are the mean-square approximations of the

coordinate and the velocity at the instant of timg and
which is directly connected with the quantities observed inh=7,_ ,—7,; &, 7, and ¢, are independently normally
experiment. Here the angular brackets denote averaging ove[stributed variables with zero mean and unit variance.

realizations of the stochastic proceqs), andx is the sta- The Runge-Kutta mean-square method of the second or-
tionary mean value. However, information on the behaviorder for the systent7) takes the forrft

of individual trajectories is necessary for a reliable interpre-
tation of the peculiarities and fine features of the PSD
S(w). Hence, more detailed information on the dynamics of
the investigated system is required for us than is implied

h h
Xk+1:Xk+§[Uk+Ukj+0' |2—§| ), (11)
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h , , Carlo error is inversely proportional to the square root of a
Vi1 =0k~ U () T yoi] HU (X + yoidt+ oty number of statistical tesisealizations.
The first problem leads to the following requirements con-
cerning the interval length of integration of the systém
- 70( l2= 51 1), The function(x(7)x(0)) has to achieve its stationary mean
value and, at least, the length of the integration interval must
not be less than a period of the slowest oscillations in the
physical system.
The notation is the same as(® and(10). Note that for the To overcome the difficulties mentioned above we use the
system(7) the mean-square methdd1) contains only the classical method of spectral estimation, namely, Welch’s pe-
first derivative of the potential and, hence, the schébigis  riodogram method with windowor tapering functions of
the fully Runge-Kutta method. Hamming and Nuttall type® Let us discuss the reasons
Due to the specific features of the SDE’s, E(®, weak  which determine our choice of the concrete methods on the
methods take the same forms as the corresponding meafollowing example. Let a system with a discrete spectrum of
sguare approximations, but the quantitigs I,, andl; can  frequenciesy; exist. Actual calculations lead to a broadening
be simulated much more easily. For example, for the Taylorof the peaks atw= w;. In addition, sidelobes appear near
type weak method of the third order we h&ve these peaks. Then, if a peak @t w; with large spectral
weight and a peak ab=w, with much smaller spectral
312 . s "
|, =hi2 L= (&+ 27, 13=h5? @Jr weight are close to each oth_er, the last one can be _ hidden
1 k1277 skT oM, s 6 K by the sidelobes of the main large peak. To get rid of the
(12 sidelobes the procedure of convolution with a so-called win-
dow (or tapering function is used. But suppression of the
sidelobes is always accompanied by a broadening of the
main peaks. That is why the choice of that or another proce-
3 dure of spectrum calculation depends on the concrete aims.
[H(é=—-1)=II(é=1)= 10’ Use of the Hamming window function gives lesser broaden-
ing of the peaks and, therefore, draws a spectrum with more
1 details. In turn, use of the Nuttall window function allows us
(é=—6)=T(¢=6)= —, to suppress the sidelobes more effectively and, thus, gives a
30 more adequate general picture of the spectrum.
In conclusion we note that, by virtue of the numerical
1 1 1 error of the calculation of the functiofx(7)x(0)), the val-
11(¢=0)= 3 I} 7=— \/TZ = 7= \/TZ R ues of the frequencies; vary themselves with time. The
(13) influence of such nonphysical variations $fw) can be par-
tially eliminated by division of numerical data into segments

wherelI(£=a) is the probability of an everg=a. and further averaging of spectrum over the segments.
In the case of the Runge-Kutta weak method of the sec-

ond order, the quantitiels andl,, are simulated &%

X=X+ hvy , vi=v,—h[U (%) + yui]+ ol ;.

where the random variabl&g and 7, are distributed accord-
ing to the law

IV. NUMERICAL RESULTS
h . .
l,= hl/2§k, |2:§| . (14) A. Bistable potential

The potential shown in Fig. 2dashed ling is approxi-
and the random variableg are distributed according to the mated by the analytical expression
law o
V(X)=ax?+ Bx*, a=-0.6 (Ry/atom,

2 1 _
M(E=0)=3, M(¢=-\3)=I(¢=\3)=5. (19 =30 (Rylatom (16)

Thus, due to Ref. 21 it is sufficient to use a uniform distri- according to Ref. 7.

bution of random numbers for weak methods instead of the The Taylor-type method of the third ordé®) was used

normal one as in the case of the mean-square approxim&er calculation of realizationx(7). As a rule, the step of

tions. This fact does explain the computational efficiency ofintegration was chosen equal to 0.1. In this case the error of

the weak approximations for the SDE’s, E(8). numerical integration of SDE’s was of the same order as the
At the end of the section we shall point out the problemsMonte Carlo one with averaging over realizations N2,

arising during calculation of the PSS(w). There are three whereN is the number of realizations, in our calculations

main difficulties. N=10°). The additional numerical investigations with varia-
(1) The integration interval, on which the SDE’s, E¢8.  tion of the integration step size confirmed the validity of the

are solved, is finite. selected values. The parametein Eq. (5), which we iden-
(2) The function{x(7)x(0)) is calculated only in a dis- tified as a phonon damping, was equafte 0.065 compared

crete set of points. to the order of typical values of the damping in met&ihe

(3) The correlatoKx(7)x(0)) is computed with some nu- temperature T was measured in the barrier heights
merical error. It is difficult to diminish this, since the Monte AE=470 K. We chose the initial conditions as
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FIG. 3. PSDE(w) =S(w)/x?(0) for the anharmonic oscillator in the bistable potential in the temperature range from 0.1(&h &-Gm
0.7 to 1.5(b), and in semilogarithmic scalg). The temperature is in barrier height units. Averaging was carried out overealzations
containing 5000 points with an integration step 0.1. The length of the segments during the spectral estimation was equal to 512 points. The
Hamming(a), (b) and Nuttall(c) windows and half overlapping of segments were chosen.

x(0)=Val2B, v(0)= JT; i.e., the particle was considered processes of three types are clearly visiiposcillations in
to be at the bottom of one of the wells with the thermalone of the wells(fast oscillationg and (ii) transitions be-
velocity at7=0. tween wells of the two typega) transitions with trapping in
The results forS(w) are presented for various tempera- the second well anéb) transitions with immediate return to
tures in Fig. 3. FoT <1 [Fig. 3@] the peak atv~1, which  the first well.
is caused by small oscillations near the well’s bottom, domi- In Fig. 4 these processes are marked by the labels |, Il,
nates inS(w). One can see that while the temperature isand Ill. The processes of the second and third types we shall
increasing this peak shifts to lower frequencies by virtue ofcall as trapped transitions and transitions with return, corre-
the dependence of the frequency on the oscillation amplitudspondingly. The last ones were called “flight trajectories” in
caused by anharmonicities. At=0.2 the central peak ap- Ref. 13.
pears inS(w) [see Fig. &), in which PSDS(w) is plotted in Essentially the transitions with return can be considered
semilogarithmic scale In a narrow interval of temperature as oscillations covering the two wells. The period of such
close toT~1 the PSD shape is changed once more; namelypscillations may be roughly estimated as a doubled period of
the maximum atw~0.5 appears. Moreover, most of the oscillations in one well. Thus, it is natural to suggest that the
spectral density is concentrated in this peak while the peak ahiddle peak inS(w) (at w=0.5) is connected with such a
w=~1 is disappearindFig. 3b)]. process. As to the central peak, it is natural to associate it
To understand the reasons for such behavior of the PSWith the slowest process of the second type. If transitions
S(w) a typical trajectory alT~0.5 is presented in Fig. 4. The from one well to another happened with just the same semi-
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FIG. 4. A typical trajectory of the anharmonic oscillator in the
bistable potential T=0.8, y=0.065and h=0.00). The labels I,
I, and 1ll mark typical processe&ee text of the paper FIG. 6. The distribution function of the second exit time at

T=0.5. Averaging was carried out over *1@rajectories with an
periodt, (the first exit timeg, then the central peak would be integration step 0.1.
situated at the frequency,=w/t;. Actually, the first exit
timet, is a random variable and the shape of the central pea,
is determined by its distribution functiofR(t;). This func-
tion is shown in Fig. 5 for a certain value of temperature.
One can see that the dispersiontgfhas the order of the
mean value of the first exit timg which, in turn, does not
correspond to the maximum &f(t;) (see Fig. 5. Precisely
this circumstance leads to the maximum nea#0 in

x(7)| in the PSDS(w), which imitates the merging of the
wo wells. The central peak practically disappears when this
replacement is done.

To investigate the contribution of the transitions with re-
turn it is useful to introduce a distribution functidf(t,) of
the second exit timé,. This quantity is determined in the
following way. Let the position of the oscillator at the bot-

S(w). The large height of the peak is caused by the Iargéom of_the well be the initial.one. Then the tingis defined
amplitude of transitions between wells compared to that offs an interval between the first and the second appearances of
oscillations in each well an oscillator at the barrier's position. The distribution func-

The following procedure proves directly that the centralton F(t2) is shown for a certain temperature in Fig. 6. In
peak is caused by the trapped transition processes. The§gntrast to the distribution functiof(ty), it has a sharp

processes can be removed by the replacement(of to ~ P8ak just aly~m/ wien Wherewier~0.5 is the frequency of
the processes of the third type. The height of the middle peak

in S(w) is less than that of the central one because the prob-
; . T . T , . ability of such processes is very small. At last, if we simply
remove parts corresponding to the processes of type Il from
the trajectories, then the middle maximum disappears in

20000 - S(w).

F(t,)

B. Three-well potential

L - Consider the case of the potentigx) which is shown by
the solid line in Fig. 2. In contrast to the previous case, the
potential was given in tabular form and is approximated by
cubic splines. To avoid calculation of the higher derivatives
of V(x) used in the Taylor-type methddee(9)] we applied
the Runge-Kutta method of the second orfere(11)]. The
initial conditions were chosen in the forr{0)=X, (center
of the deepest wall v(0)=T. The temperature is mea-
sured in the heights of the barridiE; =72 K counted from
the bottom of the shallow we(barrier height measured from
0 : : : : ' : the bottom of the deepest well S8E,~8AE;).

0 200 400 600 The results of calculations foB(w) and x(7) are pre-

sented in Figs. 7 and 8. The principal qualitative difference
FIG. 5. The distribution function of the first exit time at from the previous case consists in the absence of the central

T=0.5. Averaging was carried out over *1@rajectories with an peak. This is explained by the fact that the oscillator gets
integration step 0.1. The arrow marks the mean of the first exitrapped by the shallow well with a small probability because
times. the conditionAE;<AE, holds.

10000 -
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. . . ' - bistable potential. This shift is the most noticeable in the

temperature range from 0.1 to 2. Thus, the low-frequency
peak is caused by oscillations covering all three wells and
the high-frequency one is determined by oscillations in the

deep well. We notice that the heights of the peaks are equal
at TWAEZ

S(w)

3x10°7

x -5
210 V. DISCUSSION OF RESULTS

One should stress three most important circumstances.
(I) If the model investigated in the present paper is con-
sidered as a certain simplified description of lattice dynamics
for realistic systems above the structural transition tempera-
ture, then the appearance of the additional pea(in) at
intermediate frequencies seems to be very unusual. These
frequenciegsee Fig. &) and Fig. 7 are smaller than those
typical for oscillations in a well, but essentially greater than
_ those typical for the central peak. Indeed, let us suppose that
FIG. 7. PSDS(w)=S(w)/x*(0) for the anharmonic oscillator  in inelastic neutron scattering experiments the distribution in
in the three-well potential in the temperature range from 0.1 to 10.Qransferred energy, like that represented in Fig) and Fig.
(the temperature is in barrier height upit&veraging was carried 7, is observed when the transferred momen@Qnand the
out over 18 realizations containing 5000 points with an integration polarization vectore, are fixed. In the usual situation the

step 0.1. The length of the segments during the spectral estimatioIQSD S(w) can have only one maximum, the position of

was equal to 512 points. The Hamming window and half overlap-Which corresponds to the phonon frequeney(Q). If two
ping of segments were chosen. :

maxima are observed, then they could be interpreted as a

W . h fthe f ith th .splitting of the phonon branch into two ones. However, the
€ can point out the processes of the four types with thelyg ;e analysis of origin of the second pealS{w) (at the

typical frgqugncigs: Label | denotes oscillations in the deeF?ntermediate frequengywhich is presented in the previous
well, oscillations in one of the shallow wells are marked bysection, shows that it is caused by processes having little to
label 11, label 11l denotes the processes of transitions from 3o with “naive” ideas about atom vibrations in the phonon
deep well to a shallow one with re_turn, and the tranSItlonspicture (transitions with return Just in this sense we speak
from one shallow well to another with return are marked by, ¢ e inadequacy of the phonon picture for such situa-
label Iv. The typical frequencies of the processes, Iab_eled b¥IOI’IS. Otherwise, if at the initial instant of time a spatial
lll and 1V, are very close to each other and determine theyiqyintion of the atom displacement field is given in the

Ipw—freque_ncy maximum OS(“.’) (at “’.NO'S); at the same form cosQ-R) (when the spatial dispersion is absent it re-
time the high-frequency pea.k is practically completely deter—mains just the same at any instant of timthen its time
mined by processes of the f|r§t typerocesses of the second dependence has nothing resembling the simple damped os-
t)_/pe.have both small probablllty and small_amplltude of 0S-Gillations of the form cos)-R— wot)exp(—yqt). Perhaps,
cillations). Note that while the temperature is increasing, the]ust that very circumstance is the cause of the appearance of

high-frequency maximum shifts to higher frequencies on acz : ; s : 2
count of anharmonic effects in contrast to the case of th the symmetrically forbidden splitting of branches in Zr*Nb

%Iloys, which is accompanied by a considerable broadening
of the peaks. Of course, the spatial dispersion plays an im-

15107

X(%) ' ' ' ' ' ' - portant part in the actual situation, since the anomalous be-
S havior of phonons takes place in a sufficiently large area of
15 - w [ the wave vector space.
n (1) The next important circumstance is the following.
n i " Starting from traditional ideas, intensity swapping Stw)

from the right peak to the left one can be considered as an

05 ﬂ s %t unusually strong dependence of the phonon frequency on

temperature. Really, as we have seen, the situation is essen-
tially more complicated.
A Y U V V, (1) Now let us pass to a discussion of the central peak. In
e Ll the model considered it is caused by trapped processes and
05 |- e appears only in the case of symmetrical wells. It is natural to
assume that if the difference between the well depths is not
1 . . . . . . . too large, such a peak also exists; anyway it is absent when
0 100 200 300 T AE,>AE; (see Sec. IV B The central peak has noticeable
intensity (for the model analyzed in Sec. IV)Aat
FIG. 8. A typical trajectory of the anharmonic oscillator in the 0.2AE<T<AE with the maximal intensity af=0.3AE;
three-well potential T=6.0, y=0.065andh=0.1). The labels I, I,  see Fig. &). These results can possibly explain, as discussed
11, and IV mark typical processesee text of the paper in Ref. 1, the difference between alloys of Ti and Zr in the
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B+ o phase, where the central peak is clearly observed, antthe effective potentig) the main features of the dynamic
the B phase of pure Ti and Zr near the melting temperaturestructure factor observed in Ref. 1 may be explained quali-
where a wideband distribution was observe®f) without  tatively even in this simple approach. In our opinion, this
a clearly visible central peak. This difference can be associexplanation is possible due to the small sensitivity of these
ated with either the larger closeness of the depths of theough features to the details of the shape of potential curves.
wells corresponding to thg and w phases in alloys or to It is worthwhile to note in conclusion that the results of
different ratio betweerd E andT in these two cases. Let us the simulations presented here may be applied to situations

recall once more that at high temperatures the potentiavhich are quite different from lattice vibrations, due to the

V(X) for B-Zr differs from that shown in Fig. 2 since it is

importance of the concept of a multiwell potential in a very

necessary to take into account the entropy contribution. Thuroad field of phenomena. As an example one can compare
the comparison with experiments can be only qualitative. Wéhe results of our simulationsee Fig. 4 with the experi-

also note that the central peak in Zr-Nb alloys is observed irmental data on stochastic resonance in paramagnetic reso-
the same region of the wave vector space where the splittingance systems.

of the phonon branches occirsyhich does not contradict

the considered model of the symmetric wells. For the sharply

asymmetric casdsee Fig. 7 the splitting can take place
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