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A simple model describing the dynamics of a collective strongly anharmonic mode embedded in a thermo-
stat is investigated by numerical integration of the Langevin equation using methods with strong and weak
convergences. We applyab initio potentials with several wells describing some types of such modes in the
bcc phase of Zr. The results obtained demonstrate a number of peculiarities of lattice vibrations, which do not
keep within the limits of the conventional phonon picture. In particular, an analysis of the results allows one to
explain some unusual features of the lattice dynamics of Ti and Zr and their alloys~for example, symmetrically
forbidden splitting of phonon branches, central peak!. @S0163-1829~96!07929-5#

I. INTRODUCTION

Recent inelastic neutron scattering experiments in high
temperature bcc phases of Ti, Zr, Hf, La, and Sc~see, Ref. 1
and references therein! have again attracted attention to the
old and still unsolved problem of the description of lattice
dynamics in the presence of strong anharmonicity, frequently
arising near structural instabilities. A number of unusual phe-
nomena in alloys Zr12xNbx , such as the central peak in
neutron scattering, symmetrically forbidden splitting of pho-
non branches, and anomalies of quasielastic scattering of
Mössbauer radiation, were discovered long ago in Refs. 2,3.
As was recently shown~see, Ref. 1!, the transversal phonon
branches in the high-temperatureb ~bcc! phase of the above-
mentioned metals along thê110& and ^112& directions, re-
lated to theb-a ~hcp! andb-v transitions~see Sec. II!, were
poorly determined, and a broadband distribution of scattered
neutrons in energy was observed instead of the central peak
which was typical for Ti- and Zr-based alloys.2

In general, the anharmonic effects for most vibration
modes in all crystals can be considered, based on perturba-
tion theory with respect to the adiabatic parameter, as the
effects of weak nonideality of the phonon gas. Indeed, due
to the Lindemann criterion, the inequalityu2.0.01a2!a2 is
valid atT5Tm (a is a lattice constant, andTm is the melting
temperature!, whereu2 is the mean square of atomic dis-
placement. If anharmonicities are very strong in a consider-
ably large part of the Brillouin zone atT,Tm , this criterion
cannot certainly be fulfilled. However, anharmonicity of the
potential energyV can be very strong for some distinguish-
able vibration modes in metals near structural instability, re-
sulting in several stable equilibrium positions~see, for ex-
ample, Refs. 4,5!. This is confirmed by direct calculations
using the frozen phonon method for different deformations
of Zr ~Refs. 6 and 7! and Ba ~Ref. 8! lattices in the bcc

(b)-phase. Multiwell potentials appear to be typical for crys-
tals undergoing structural transitions, in particular martensi-
tic transformations in metals.9

One could think that the effects of strong anharmonicity
lead only to a renormalization of the phonon frequency and
an increase of phonon damping~for example, in the spirit of
the self-consistent phonon approach10!. For instance, in the
Ref. 1 experimental data which demonstrated the broadband
energy distribution of inelastic neutron scattering were inter-
preted in the limits of the traditional phonon picture, al-
though the width of the phonon peak was comparable with
its frequency.

Starting from the pioneer paper by Krumhansl and
Schrieffer4 the soliton~more exactly, kink! theory of lattice
dynamics in strong anharmonic crystals has been intensively
developed.11,12,9 In particular, this theory allowed us to ex-
plain the presence of the central peak qualitatively.4 How-
ever, the central peak is not the unique unusual feature ob-
served in the experiments.1 Another important peculiarity in
the inelastic scattering cross section measured in Ref. 1 is the
broadband distribution in energy. A considerable part of the
spectral density was observed in the frequency region below
the usual phonon frequencies but above the central peak. A
qualitative explanation of this peculiar phenomenon is the
main aim of the present paper.

To clarify this question, it appears to be natural to start
from the simplest model of one distinguishable collective
mode which is embedded in a thermostat of all other excita-
tions. We hope that despite the model under consideration
being oversimplified, it includes, nevertheless, the main fea-
tures important for real systems. The power spectral density
~PSD! of a generalized coordinate determining the collective
mode is an analog of the dynamic structure factor which is
measured in inelastic neutron scattering experiments. If the
PSD as a function of frequency is characterized by a single
clearly observed maximum atv5v0Þ0, it is natural to con-
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siderv0 as a phonon frequency which can depend on tem-
perature in general case, and the width of the peak is asso-
ciated with phonon damping. If the PSD as a function ofv
has several peaks or is monotonous, then no specific energy
of excitation corresponds to the given transferred momentum
during inelastic neutron scattering. In this case we shall
speak about the nonphonon picture of lattice dynamics.

The approximations made are discussed in Sec. II and the
formulation of the model is given. In Sec. III numerical
methods are described in detail, in Sec. IV the results ob-
tained are presented and in Sec. V we discuss the results of
simulation.

Some preliminary results were previously published in
Ref. 13.

II. APPROXIMATIONS AND FORMULATION
OF THE MODEL

In Refs. 4,14 the following model of a strongly anhar-
monic crystal was considered. The on-site potential of each
atom ~displacing ion in terms of Ref. 4! is bistable and dif-
ferent atoms are connected by ‘‘springs.’’ A single atom at a
constant temperature jumps between two wells, the average
displacement being equal to zero. The inclusion of atom in-
teraction results in either a phase transition~if the dimension
of the crystal is greater than 1! or a short-range order in the
one-dimensional~1D! case.4 Bearing in mind the application
of the model to structural phase transitions of displacement
type rather than order-disorder type,15 we shall consider the
anharmonic potential for acollective vibration mode. If only
a singlemode is chosen, we, of course, cannot describe the
phase transition itself~just as one would retain only one
atom in the approach of Refs. 4,14!. But, in our opinion, this
simple model describes the lattice dynamics of strongly an-
harmonic crystals above the transition temperature qualita-
tively correctly, since in this case the vibration modes are
quasi-independent. Just that very case is realized in the
experiments.1 To build a more realistic description of the
lattice dynamics of strongly anharmonic crystals one must
solve nonlinear equations for interactingatoms, resulting in
the formation of inhomogenous domains inr space similar to
nucleations of a new phase, or consider the model including
a set ofcoupling vibration modes, i.e., take into account the
spatial dispersion. In this sense the investigated model is a
rough idealization which, as we hope, catches the principal
features of the considered phenomenon.

To explain the notion of a collective variable which is the
key for the formulation of our model, it is convenient to
choose, as an example, theb-v transition. Thev phase
arises from theb phase~bcc! as a result of merging of
atomic planes$111% with period tripling ~see Fig. 1!. Let us
then describe a displacement of these planes from equilib-
rium positions along the direction̂111& by introducing some
generalized coordinateX in such a way that the total energy
of a crystal per atomV(X) has minima at pointsX50, if the
b phase is stable with respect to small perturbations, and
X5d/2 (d is the distance between planes!, if the v phase is
stable. Therefore, the potential energyV(X) is a multiwell
function near theb-v phase transition line and, hence, is
strongly anharmonic.

More exactly, consider a displacement field depending on

spatial coordinatesr and timet in the form

u~r ,t !5eX~r ,t !cos~Q•r !, ~1!

where e5(1/A3)(1,1,1) is a polarization vector,
Q5(4p/3a)(1,1,1) is the wave vector corresponding to the
mode which transforms theb phase to thev phase, anda is
a lattice constant@d5(A3/2)a#. Let us suppose that the an-
harmonic effects are strong only in a small region ofq space
near the pointQ and the functionX(r ,t) contains Fourier
components~with respect tor ) only from this area. There-
foreX(r ,t) is a slowly varying function ofr compared to the
lattice constanta. We start from the equations of motion for
the generalized coordinateX(r ,t) which take into account
the anharmonicity of the potentialV(X), the interaction with
all other vibration modes of the crystal being simulated by
the inclusion of a thermostat into the equations of motion.
Later we shall neglect the effects of spatial dispersion, i.e.,
the dependence ofX(r ,t) on the coordinater . A qualitative
discussion of some effects implied from the spatial disper-
sion one can be seen in Refs. 5,16.

Neglect of the spatial dispersion, which is based on the
assumption that anharmonic effects are strong only in a small
neighborhood of the pointq5Q in reciprocal space, may be
justified to some extent. In fact, as we have discussed in the
Introduction, due to the Lindemann criterion, anharmonici-
ties cannot be very strong in a considerably large part of the
Brillouin zone even at melting temperature. In some situa-
tions, for example, for the bcc-hcp phase transition, it is nec-
essary to introduce two collective variables, describing the

FIG. 1. ~a! bcc lattice and three neighboring~111! planes;~b!
spacing of the planes for bcc andv-phase and plane vibrations
corresponding to the longitudinal phonon~2/3,2/3,2/3!.
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transformation from one crystal structure to another.8 In the
present paper we shall confine ourselves to the simplest case
of one variable.

Based on the assumptions mentioned above, a detailed
formulation of the original equations is given. Consider the
case of a harmonic crystal. Then there is the well-known
canonical transformation to the normal coordinates which
determine the vibration modes~phonons! of the given sys-
tem. Let all these modes, except one distinguishable mode,
be in thermal equilibrium at the initial instant of time. As
Bogoliubov showed,17 while switching on the interaction of
the distinguishable mode with others it is also thermalized,
this process being described by the Fokker-Planck equation
~FPE!. The last one is known to be equivalent to the Lange-
vin equation~see, for example, Ref. 18! in which the inter-
action of the distinguishable mode with all others is simu-
lated by including a viscous friction and a random force of
the white noise type. A detailed discussion of the applicabil-
ity of the Langevin equation approach to systems with an-
harmonic potentials was given in Ref. 19 in connection with
a consideration of the dynamics of the Josephson contacts. In
that paper both quantum and classical regimes have been
discussed. We restrict ourselves to the classical limit of not
too high characteristic frequencies\v!T (T is a tempera-
ture!, where the white noise approximation holds.

Thus, the dynamics of the variableX(t) is described by
the Langevin equation

m
d2X

dt2
52

dV~X!

dX
2G

dX

dt
1F~ t !, ~2!

wherem is the atom mass,G is the damping of small vibra-
tions withq5Q, andF(t) is the Gaussian white noise,

^F~ t !F~ t8!&52T̃Gd~ t2t8!. ~3!

The coefficient in relation~3! is such that Eq.~2! describes
the relaxation of the distribution function
P(X,ṽ,t)5^d„X2X(t)…d( ṽ2 ṽ(t))& to the stationary
Boltzman distribution

Pst~X,ṽ,t5`!5exp$2@mṽst
2/21V~Xst!#/T̃%,

with the temperatureT̃ and stationary values of the coordi-
nateXst and the velocityṽst5AT̃/m.18

In principle, the functionV(X) can be calculated, for ex-
ample, by the frozen phonon method6–8 as a variation of the
total energy of crystal per atom for the crystal deformation
corresponding to the given mode@see Eq.~1!#. In particular,
specifying the deformation of the form~1! in the model of
pair central forces with the potentialf(R… we obtain in the
harmonic approximation

V~X!5
1

2N(
RR8

f„uR2R81u~R!2u~R8!u…

5
X2

4N(
RR8

eaeb

]2f~ uR2R8u!
]Ra]Rb

@cos~Q–R!

2cos~Q–R8!#25
v2~Q!X2

2
, ~4!

wherev2(Q) is the phonon frequency with wave vectorQ
and polarization vectore ~see, for example, Ref. 16!.

Thus, the Langevin equation is used as a stochastic ap-
proach to the molecular dynamics problem at constant tem-
perature, which is supported by the balance between the fric-
tion and the random forceF(t) in ~2!. Such an approach has
been described in Ref. 20. However, only recently have nu-
merical methods for solution of systems of stochastic differ-
ential equations~SDE’s!, efficient in a computing sense and
mathematically justified, been constructed,21,22 the Langevin
equation being a special case of a SDE.

Another more ordinary method of the inclusion of tem-
perature into the molecular dynamics of physical systems is
the Nose´-Hoover thermostat.23 In this approach thermaliza-
tion is achieved by interaction of the investigated system
with a certain additional degree of freedom which is chosen
in a special form. However, this approach, in contrast to the
Langevin equation, has turned out to be nonapplicable for
systems with a small number of degrees of freedom. For
example, numerical calculation24 did not allow us to repro-
duce the stationary Boltzmann distribution for the one-
dimensional harmonic oscillator being in thermal contact
with the heat bath.

The functionsV(X), which were obtained as a result of
calculations forb-Zr and corresponded to the displacement
of atoms along thê111& direction withq5Q (b-v transi-
tion! ~Ref. 6! and along the ^11̄0& direction with
q5(2p/a)( 12,

1
2,0) ~one of the variables ‘‘taking part’’ in the

b-a ~hcp! transition! are chosen as an example of strong
anharmonic potentials~see Fig. 2!. In the first case the deep
and shallow minima correspond to thev andb phases show-
ing the instability ofb-Zr at T50 with respect to theb-v
transition @the potential energyV(X) is symmetrically con-
tinued relatively to the minimum#. In the second case the
maximum ofV(X) atX50 points to an instability ofb-Zr at
T50 with respect to theb-a transition. The problem of the

FIG. 2. The total energyV(x) as a function of displacements
corresponding to the longitudinal phonon withq5(2p/
a)(2/3,2/3,2/3)~solid line! ~Ref. 6! and the transversal phonon with
q5(2p/a)(1/2,1/2,0)~dashed line! ~Ref. 7!; x is measured in units
of the corresponding interplane distances.
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lattice dynamics simulation with such potentials is a model
one since in Refs. 1 and 2 theb phase stabilized by entropy
contributions at high temperatures was substantively experi-
mentally investigated, but rigorous calculations, which take
into account these contributions and are similar to that in
Refs. 6,8, are not yet possible. However, one can consider
that such features ofV(X), as the presence of several wells
and the smallness of the corresponding barriers heights, are
typical for metals and alloys near martensitic transforma-
tions.

At last it is convenient to go over to natural dimensionless
variablesx5X/d, g5G/v0 , U(x)5V(x)/ad2, T5T̃/ad2,
andt5tv0 , and f (t)5F(t)/mdv0

2 , where

a5
1

d2
]2V~x!

]x2 U
x5xmin

,

andv05Aa/m, for the three-well potentialxmin means the
coordinate of a shallow well. Then Eqs.~2! and~3! take the
form

d2x

dt2
52

dU~x!

dx
2g

dx

dt
1 f ~t!, ~5!

^ f ~t! f ~t8!&52Tgd~t2t8!. ~6!

In conclusion, we shall rewrite the Langevin equations~5!
and ~6! in the form adopted in the theory of SDE’s,

dx5vdt,

dv5@2U8~x!2gv#dt1sdW, ~7!

wheres5A2Tg andW is a standard Wiener process.

III. NUMERICAL METHODS

A common way to investigate the Langevin equation both
by analytical and numerical methods consists in the reduc-
tion of it to the Fokker-Planck equation~FPE!,25 which is a
deterministic partial differential equation for the distribution
function P(x,v,t). However, an analytical solution of the
FPE for multiwell potentials has turned out to be possible
only in the limiting cases when the temperature is much
larger or much smaller than the height of the barrier between
wells. As to a numerical solution of the FPE, difference
schemes26 and the matrix continued fraction method,25 which
allow one to calculateP(x,v,t) effectively, were developed.

First of all we are interested in the power spectral density
~PSD!

S~v!5U E
2`

1`

dteivt@^x~t!x~0!&2 x̄2#U2, ~8!

which is directly connected with the quantities observed in
experiment. Here the angular brackets denote averaging over
realizations of the stochastic processx(t), and x̄ is the sta-
tionary mean value. However, information on the behavior
of individual trajectories is necessary for a reliable interpre-
tation of the peculiarities and fine features of the PSD
S(v). Hence, more detailed information on the dynamics of
the investigated system is required for us than is implied

from the distribution functionP(x,v,t). That is why we use
methods of numerical integration of SDE’s~numerical ex-
periment!.

Thus we have to solve problems of two types. On the one
hand, computation of individual trajectories requires one to
apply methods that reproduce the dynamics of the investi-
gated system sufficiently accurately for each realization of
the stochastic process@so-called mean-square~strong! meth-
ods#. On the other hand, the strong methods are ‘‘redundant’’
to calculate mean values, such as^x(t)x(0)&, and one can
go over to weak methods which are simpler than the mean-
square ones. The definitions and detailed discussion of the
mean-square and weak methods were given in Refs.
21,22,27.

We used both Taylor-type and Runge-Kutta methods21,22

as mean-square approximations. According to such features
of the system of SDE’s, Eqs.~7!, such as the presence of
stochastic terms only in the second equation, dispersion con-
stancy~independent on time additive noise!, linearity of the
equations with respect tov, and independence of the right
side of the first equation onx, the numerical schemes are
strongly simplified even compared to methods for SDE’s
with additive noises.

The Taylor-type mean-square method of the third order
for the SDE’s, Eqs.~7!, has the form28

xk115xk1hvk2
h2

2
@U8~xk!1gvk#1

h3

6
@2vkU9~xk!

1g„U8~xk!1gvk…#1sI 12gsI 3 ,

vk115vk2h@U8~xk!1gvk#1
h2

2
@2vkU9~xk!

1g„U8~xk!1gvk…#1
h3

6
$2vk

2U-~xk!1gvkU9~xk!

2@U8~xk!1gvk#@g22U99~xk!#%1sI 12gsI 2

1@g22U9~xk!#sI 3 , ~9!

I 15h1/2jk , I 25
h3/2

2 S hk

A3
1jkD ,

I 35
h5/2

2 S jk
3

1
hk

2A3
2

zk

6A5D . ~10!

Here xk and vk are the mean-square approximations of the
coordinate and the velocity at the instant of timetk, and
h5tk112tk ; jk , hk , and zk are independently normally
distributed variables with zero mean and unit variance.

The Runge-Kutta mean-square method of the second or-
der for the system~7! takes the form21

xk115xk1
h

2
@vk1v k̄ #1sS I 22 h

2
I 1D , ~11!
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vk115vk2
h

2
$@U8~xk!1gvk#1@U8~x k̄ !1gv k̄ #%1sI 1

2gsS I 22 h

2
I 1D ,

x k̄5xk1hvk ,v k̄5vk2h@U8~xk!1gvk#1sI 1 .

The notation is the same as in~9! and~10!. Note that for the
system~7! the mean-square method~11! contains only the
first derivative of the potential and, hence, the scheme~11! is
the fully Runge-Kutta method.

Due to the specific features of the SDE’s, Eqs.~7!, weak
methods take the same forms as the corresponding mean-
square approximations, but the quantitiesI 1 , I 2 , andI 3 can
be simulated much more easily. For example, for the Taylor-
type weak method of the third order we have21

I 15h1/2jk , I 25
h3/2

2
~jk12hk!, I 35h5/2S jk

6
1hkD ,

~12!

where the random variablesjk andhk are distributed accord-
ing to the law

P~j521!5P~j51!5
3

10
,

P~j52A6!5P~j5A6!5
1

30
,

P~j50!5
1

3
, PS h52

1

A12D 5PS h5
1

A12D 5
1

2
,

~13!

whereP(j5a) is the probability of an eventj5a.
In the case of the Runge-Kutta weak method of the sec-

ond order, the quantitiesI 1 and I 2 , are simulated as21

I 15h1/2jk , I 25
h

2
I 1 , ~14!

and the random variablesjk are distributed according to the
law

P~j50!5
2

3
, P~j52A3!5P~j5A3!5

1

6
. ~15!

Thus, due to Ref. 21 it is sufficient to use a uniform distri-
bution of random numbers for weak methods instead of the
normal one as in the case of the mean-square approxima-
tions. This fact does explain the computational efficiency of
the weak approximations for the SDE’s, Eqs.~7!.

At the end of the section we shall point out the problems
arising during calculation of the PSDS(v). There are three
main difficulties.

~1! The integration interval, on which the SDE’s, Eqs.~7!
are solved, is finite.

~2! The function^x(t)x(0)& is calculated only in a dis-
crete set of points.

~3! The correlator̂ x(t)x(0)& is computed with some nu-
merical error. It is difficult to diminish this, since the Monte

Carlo error is inversely proportional to the square root of a
number of statistical tests~realizations!.

The first problem leads to the following requirements con-
cerning the interval length of integration of the system~7!.
The function^x(t)x(0)& has to achieve its stationary mean
value and, at least, the length of the integration interval must
not be less than a period of the slowest oscillations in the
physical system.

To overcome the difficulties mentioned above we use the
classical method of spectral estimation, namely, Welch’s pe-
riodogram method with window~or tapering! functions of
Hamming and Nuttall types.29 Let us discuss the reasons
which determine our choice of the concrete methods on the
following example. Let a system with a discrete spectrum of
frequenciesv i exist. Actual calculations lead to a broadening
of the peaks atv5v i . In addition, sidelobes appear near
these peaks. Then, if a peak atv5v1 with large spectral
weight and a peak atv5v2 with much smaller spectral
weight are close to each other, the last one can be ‘‘hidden’’
by the sidelobes of the main large peak. To get rid of the
sidelobes the procedure of convolution with a so-called win-
dow ~or tapering! function is used. But suppression of the
sidelobes is always accompanied by a broadening of the
main peaks. That is why the choice of that or another proce-
dure of spectrum calculation depends on the concrete aims.
Use of the Hamming window function gives lesser broaden-
ing of the peaks and, therefore, draws a spectrum with more
details. In turn, use of the Nuttall window function allows us
to suppress the sidelobes more effectively and, thus, gives a
more adequate general picture of the spectrum.

In conclusion we note that, by virtue of the numerical
error of the calculation of the function̂x(t)x(0)&, the val-
ues of the frequenciesv i vary themselves with time. The
influence of such nonphysical variations onS(v) can be par-
tially eliminated by division of numerical data into segments
and further averaging of spectrum over the segments.

IV. NUMERICAL RESULTS

A. Bistable potential

The potential shown in Fig. 2~dashed line! is approxi-
mated by the analytical expression

V~x!5āx21b̄x4, ā520.6 ~Ry/atom!,

b̄530 ~Ry/atom! ~16!

according to Ref. 7.
The Taylor-type method of the third order~9! was used

for calculation of realizationsx(t). As a rule, the step of
integration was chosen equal to 0.1. In this case the error of
numerical integration of SDE’s was of the same order as the
Monte Carlo one with averaging over realizations (;N1/2,
whereN is the number of realizations, in our calculations
N5105). The additional numerical investigations with varia-
tion of the integration step size confirmed the validity of the
selected values. The parameterg in Eq. ~5!, which we iden-
tified as a phonon damping, was equal tog50.065 compared
to the order of typical values of the damping in metals.30 The
temperature T was measured in the barrier heights
DE5470 K. We chose the initial conditions as
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x(0)5Aā/2b̄, v(0)5AT; i.e., the particle was considered
to be at the bottom of one of the wells with the thermal
velocity att50.

The results forS(v) are presented for various tempera-
tures in Fig. 3. ForT!1 @Fig. 3~a!# the peak atv'1, which
is caused by small oscillations near the well’s bottom, domi-
nates inS(v). One can see that while the temperature is
increasing this peak shifts to lower frequencies by virtue of
the dependence of the frequency on the oscillation amplitude
caused by anharmonicities. AtT50.2 the central peak ap-
pears inS(v) @see Fig. 3~c!, in which PSDS(v) is plotted in
semilogarithmic scale#. In a narrow interval of temperature
close toT'1 the PSD shape is changed once more; namely,
the maximum atv'0.5 appears. Moreover, most of the
spectral density is concentrated in this peak while the peak at
v'1 is disappearing@Fig. 3~b!#.

To understand the reasons for such behavior of the PSD
S(v) a typical trajectory atT'0.5 is presented in Fig. 4. The

processes of three types are clearly visible:~i! oscillations in
one of the wells~fast oscillations! and ~ii ! transitions be-
tween wells of the two types:~a! transitions with trapping in
the second well and~b! transitions with immediate return to
the first well.

In Fig. 4 these processes are marked by the labels I, II,
and III. The processes of the second and third types we shall
call as trapped transitions and transitions with return, corre-
spondingly. The last ones were called ‘‘flight trajectories’’ in
Ref. 13.

Essentially the transitions with return can be considered
as oscillations covering the two wells. The period of such
oscillations may be roughly estimated as a doubled period of
oscillations in one well. Thus, it is natural to suggest that the
middle peak inS(v) ~at v'0.5) is connected with such a
process. As to the central peak, it is natural to associate it
with the slowest process of the second type. If transitions
from one well to another happened with just the same semi-

FIG. 3. PSDS̃(v)5S(v)/x2(0) for the anharmonic oscillator in the bistable potential in the temperature range from 0.1 to 0.7~a!, from
0.7 to 1.5~b!, and in semilogarithmic scale~c!. The temperature is in barrier height units. Averaging was carried out over 105 realizations
containing 5000 points with an integration step 0.1. The length of the segments during the spectral estimation was equal to 512 points. The
Hamming~a!, ~b! and Nuttall~c! windows and half overlapping of segments were chosen.
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periodt1 ~the first exit time!, then the central peak would be
situated at the frequencyv15p/t1 . Actually, the first exit
time t1 is a random variable and the shape of the central peak
is determined by its distribution functionF(t1). This func-
tion is shown in Fig. 5 for a certain value of temperature.
One can see that the dispersion oft1 has the order of the
mean value of the first exit timet1 which, in turn, does not
correspond to the maximum ofF(t1) ~see Fig. 5!. Precisely
this circumstance leads to the maximum nearv50 in
S(v). The large height of the peak is caused by the large
amplitude of transitions between wells compared to that of
oscillations in each well.

The following procedure proves directly that the central
peak is caused by the trapped transition processes. These
processes can be removed by the replacement ofx(t) to

ux(t)u in the PSDS(v), which imitates the merging of the
two wells. The central peak practically disappears when this
replacement is done.

To investigate the contribution of the transitions with re-
turn it is useful to introduce a distribution functionF̃(t2) of
the second exit timet2 . This quantity is determined in the
following way. Let the position of the oscillator at the bot-
tom of the well be the initial one. Then the timet2 is defined
as an interval between the first and the second appearances of
an oscillator at the barrier’s position. The distribution func-
tion F̃(t2) is shown for a certain temperature in Fig. 6. In
contrast to the distribution functionF(t1), it has a sharp
peak just att2'p/v left wherev left'0.5 is the frequency of
the processes of the third type. The height of the middle peak
in S(v) is less than that of the central one because the prob-
ability of such processes is very small. At last, if we simply
remove parts corresponding to the processes of type III from
the trajectories, then the middle maximum disappears in
S(v).

B. Three-well potential

Consider the case of the potentialV(x) which is shown by
the solid line in Fig. 2. In contrast to the previous case, the
potential was given in tabular form and is approximated by
cubic splines. To avoid calculation of the higher derivatives
of V(x) used in the Taylor-type method@see~9!# we applied
the Runge-Kutta method of the second order@see~11!#. The
initial conditions were chosen in the formx(0)5x0 ~center
of the deepest well!, v(0)5AT. The temperature is mea-
sured in the heights of the barrierDE1572 K counted from
the bottom of the shallow well~barrier height measured from
the bottom of the deepest well isDE2'8DE1).

The results of calculations forS(v) and x(t) are pre-
sented in Figs. 7 and 8. The principal qualitative difference
from the previous case consists in the absence of the central
peak. This is explained by the fact that the oscillator gets
trapped by the shallow well with a small probability because
the conditionDE1!DE2 holds.

FIG. 4. A typical trajectory of the anharmonic oscillator in the
bistable potential (T50.8, g50.065,and h50.001!. The labels I,
II, and III mark typical processes~see text of the paper!.

FIG. 5. The distribution function of the first exit time at
T50.5. Averaging was carried out over 105 trajectories with an
integration step 0.1. The arrow marks the mean of the first exit
times.

FIG. 6. The distribution function of the second exit time at
T50.5. Averaging was carried out over 105 trajectories with an
integration step 0.1.
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We can point out the processes of the four types with their
typical frequencies: Label I denotes oscillations in the deep
well, oscillations in one of the shallow wells are marked by
label II, label III denotes the processes of transitions from a
deep well to a shallow one with return, and the transitions
from one shallow well to another with return are marked by
label IV. The typical frequencies of the processes, labeled by
III and IV, are very close to each other and determine the
low-frequency maximum ofS(v) ~at v'0.5); at the same
time the high-frequency peak is practically completely deter-
mined by processes of the first type~processes of the second
type have both small probability and small amplitude of os-
cillations!. Note that while the temperature is increasing, the
high-frequency maximum shifts to higher frequencies on ac-
count of anharmonic effects in contrast to the case of the

bistable potential. This shift is the most noticeable in the
temperature range from 0.1 to 2. Thus, the low-frequency
peak is caused by oscillations covering all three wells and
the high-frequency one is determined by oscillations in the
deep well. We notice that the heights of the peaks are equal
at T'DE2 .

V. DISCUSSION OF RESULTS

One should stress three most important circumstances.
~I! If the model investigated in the present paper is con-

sidered as a certain simplified description of lattice dynamics
for realistic systems above the structural transition tempera-
ture, then the appearance of the additional peak inS(v) at
intermediate frequencies seems to be very unusual. These
frequencies@see Fig. 3~b! and Fig. 7# are smaller than those
typical for oscillations in a well, but essentially greater than
those typical for the central peak. Indeed, let us suppose that
in inelastic neutron scattering experiments the distribution in
transferred energy, like that represented in Fig. 3~b! and Fig.
7, is observed when the transferred momentumQ and the
polarization vectoren are fixed. In the usual situation the
PSD S(v) can have only one maximum, the position of
which corresponds to the phonon frequencyvn(Q). If two
maxima are observed, then they could be interpreted as a
splitting of the phonon branch into two ones. However, the
detailed analysis of origin of the second peak inS(v) ~at the
intermediate frequency!, which is presented in the previous
section, shows that it is caused by processes having little to
do with ‘‘naive’’ ideas about atom vibrations in the phonon
picture ~transitions with return!. Just in this sense we speak
about the inadequacy of the phonon picture for such situa-
tions. Otherwise, if at the initial instant of time a spatial
distribution of the atom displacement field is given in the
form cos(Q–R) ~when the spatial dispersion is absent it re-
mains just the same at any instant of time!, then its time
dependence has nothing resembling the simple damped os-
cillations of the form cos(Q–R2vQt)exp(2gQt). Perhaps,
just that very circumstance is the cause of the appearance of
the symmetrically forbidden splitting of branches in Zr-Nb2

alloys, which is accompanied by a considerable broadening
of the peaks. Of course, the spatial dispersion plays an im-
portant part in the actual situation, since the anomalous be-
havior of phonons takes place in a sufficiently large area of
the wave vector space.2

~II ! The next important circumstance is the following.
Starting from traditional ideas, intensity swapping inS(v)
from the right peak to the left one can be considered as an
unusually strong dependence of the phonon frequency on
temperature. Really, as we have seen, the situation is essen-
tially more complicated.

~III ! Now let us pass to a discussion of the central peak. In
the model considered it is caused by trapped processes and
appears only in the case of symmetrical wells. It is natural to
assume that if the difference between the well depths is not
too large, such a peak also exists; anyway it is absent when
DE2@DE1 ~see Sec. IV B!. The central peak has noticeable
intensity ~for the model analyzed in Sec. IV A! at
0.2DE<T<DE with the maximal intensity atT50.3DE;
see Fig. 3~c!. These results can possibly explain, as discussed
in Ref. 1, the difference between alloys of Ti and Zr in the

FIG. 7. PSDS̃(v)5S(v)/x2(0) for the anharmonic oscillator
in the three-well potential in the temperature range from 0.1 to 10.0
~the temperature is in barrier height units!. Averaging was carried
out over 105 realizations containing 5000 points with an integration
step 0.1. The length of the segments during the spectral estimation
was equal to 512 points. The Hamming window and half overlap-
ping of segments were chosen.

FIG. 8. A typical trajectory of the anharmonic oscillator in the
three-well potential (T56.0, g50.065,andh50.1!. The labels I, II,
III, and IV mark typical processes~see text of the paper!.
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b1v phase, where the central peak is clearly observed, and
theb phase of pure Ti and Zr near the melting temperature,
where a wideband distribution was observed inS(v) without
a clearly visible central peak. This difference can be associ-
ated with either the larger closeness of the depths of the
wells corresponding to theb andv phases in alloys or to
different ratio betweenDE andT in these two cases. Let us
recall once more that at high temperatures the potential
V(X) for b-Zr differs from that shown in Fig. 2 since it is
necessary to take into account the entropy contribution. Thus
the comparison with experiments can be only qualitative. We
also note that the central peak in Zr-Nb alloys is observed in
the same region of the wave vector space where the splitting
of the phonon branches occurs,2 which does not contradict
the considered model of the symmetric wells. For the sharply
asymmetric case~see Fig. 7! the splitting can take place
without the central peak. The results conform the kink theory
of the central peak4 in the sense that a kink of the type
considered in Ref. 4 exists only in the case of symmetrical
wells ~bistable potential!.

Despite the model under consideration being not quite
realistic and, therefore, the results obtained here being not
conclusive~e.g., due to neglect of the entropy contribution to

the effective potential!, the main features of the dynamic
structure factor observed in Ref. 1 may be explained quali-
tatively even in this simple approach. In our opinion, this
explanation is possible due to the small sensitivity of these
rough features to the details of the shape of potential curves.

It is worthwhile to note in conclusion that the results of
the simulations presented here may be applied to situations
which are quite different from lattice vibrations, due to the
importance of the concept of a multiwell potential in a very
broad field of phenomena. As an example one can compare
the results of our simulations~see Fig. 4! with the experi-
mental data on stochastic resonance in paramagnetic reso-
nance systems.31
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