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We have investigated conditions for the existence and for the stability of a soliton ground state of the
Fulton-Gouterman-transformed extended one-dimensional Jahn-Teller model with low electron density against
quantum fluctuations of optical phonons. The Jahn-Teller band splitting occurs but the respective gap is
narrowed by the self-trapping effect modified by quantum fluctuations and by many-phonon effects due to the
participation of phonons in the electron transfer. The electron transfer parameterreduced by the self-
trapping effect which is further modified by the effects of complex squeezing parameters. These effects
determine then the value of the strength of the paranfetef)/ T, which is a measure of the influence of the
guantum fluctuations. We have shown that the electron channels are coupled due to the participation of the
phonons, which couple the original electron levels, in the electron transfer. However, the dominating contri-
bution of these phonons is diagonal and the coupling of the channels becomes negligible if the change of the
phonon wave vector by the scattering with an electron at the distance of the soliton width is negligible. Under
these conditions, the problem of the Fulton-Gouterman quantum ground state of the Jahn-Teller model be-
comes qualitatively equivalent to the related problem of a Holstein pok@aoliton of the nonlinear Schro
dinger equation The soliton ground state is shown to be unstable against quantum fluctuations for weak
electron-phonon coupling and fﬁlr>§ % (k=\"1is an inverse soliton widdh The fluctuations compete the
self-trapping polaron effect: For<puqi, w an effective coupling constany = a?expl’(r,6)/4Q°T, the
stability of the soliton of the nonlinear Sclinger equation describing the traveling lattice distortion is
destroyed. The soliton was found to be stable only for a sufficiently strong effective electron-phonon coupling
> et Because the soliton effect on the phonon displacements couples with the squeezing effect through
I (or w), the nonadiabatic effects are either amplified, if the net effect of squeezing degugasaseakened,
if the net effect of squeezing increasgs The latter case can occur if the phonon displacement and/or the
squeezing parameter are complex quantities. The many-phonon effects are shown to contribute only for large
quantum fluctuation§.>2 «? beyond the validity of the above condition for the use of the perturbation theory.
The soliton ground state withA>(2T/3Q)¥® is destabilized by the quantum fluctuations.
[S0163-18296)09629-4

[. INTRODUCTION equivalent two-sitédimer one are well understood: A fully
exact analytical treatment of the® e Jahn-Teller effect has
Traveling electron-phonon bound states accompanied by mot yet been done and only a combination of unitary trans-
lattice distortion(polarons, solitonsare relevant for under- formations and the variational principle was appltethere
standing various physical effects. Nonadiabdtimantum is a similar state of affairs also in the analysis of the electron-
effects in these systems become important if the scales @br molecular-exciton-phonon interaction in a periodic lat-
phonon and electron energies are comparable, i.e., the ratitise in spite of a long-standing effort since the early days of
#Q/T (T an intersite electron transfer matrix elemefor a  solid states physics® The analytical results on the ground
low electron density ofiQ)/E (Er Fermi energyfor a high  state of the electrofexcitony phonon system in a one-
electron density are not too small. In high-oxides, e.g., dimensional lattice have been achieved by a combination of
there is a typical local Jahn-TelléJT) configuration* a de-  variational principle and unitary transformatiohis?
generate electron level at each TCuion lattice site sur- Fulton and Goutermdf (FG) obtained important new re-
rounded by a high-symmetry © ionic configuration. A sults on two-level and equivalent two-sitdimer problems
similar, although a little more complicated situation is also inwith a reflection symmetry by applying a nonlinear unitary
Cso compounds which indicates the necessity to investigat&ransformation. It has been used in exciton-phonon and
nonadiabatic effects in the electron-phonon interaction in alimer problems starting from the pioneering work by Shore
Jahn-Teller systerhRecently, a theory of nonadiabatic su- and Sandérin combination with the variational principle.
perconductivity by Pietronero and co-workers appearedhe FG transformation exactly diagonalizes two-level
which emphasized the role of nonadiabatic effects due télamiltonians of the above-mentioned probléimand re-
very small Fermi energy in all high; superconductors. duces substantially the transfer probability between levels. In
In contrast to the lattice of Jahn-Teller molecules, thea combination with the variational approach it yields the
quantum effects inE®e Jahn-Teller system and in an lowest ground state’si*°e.g., also for local problems with
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a coherent two-phonoftsqueezedphonon trial wave func- function with the inverse width of the soliton as a variational
tion (Ref. 16 and references thergirt leads to a peculiar parameter. At a certain stage of the calculations it is neces-
structure of the excited-spectra—exotic staté§'8for pho-  sary to specify the electron dispersion law, for our case of
non subsystems. The generalization of the FG approach t@mall electron density as a quadratic one near the bottom of
pr0b|ems with translation symmetry done by Wadﬂ@p- the conduction band. The case of hlgh electron density is of
peared to be equivalent to the Bloch formalism. It has beefnterest for highT. superconductors mentioned above and
applied, e.g., to the formulation of the theory of excitonic Will not be investigated here.

solitonst420 In general, quantum fluctuations are known to play a sig-

We shall investigate a model system specified in the Seclificant role for a weak electron-phonon couplﬁnghey
II: a degenerate electron level at each lattice site interactin§€Stroy the adiabatic ground state. Therefore, in our case,
with optical phonongi) via coupling to the respective elec- On€ can expect nonadiabatic eff_ects to play a significant role
tron densities andii) via phonon-assisted transitions be- for weak electron-phonon couplings.
tween the levels. Due to the presence of interacignour
model contains intrinsically the problem of the Holstein po- Il. HAMILTONIAN
laron in one dimensioflD) (in the adiabatic approximation
a soliton of a nonlinear Schdinger equatiopand, in addi-
tion, there is are-ph term responsible for the coupling of the
split JT levels.

The qim of the present study (a) to specify th_e phy;ical H= 2 [Q
mechanism which makes the JT model qualitatively different n
from the case yielding a soliton and to find conditions for the 3
existence of a soliton ground state awl to investigate the T _Po .t t t
nonadiabatic effects %n a soliton ground sta?e for the X (b1n+b1n) = 5 (C1nCan+ C2nC1n) (D2 +D2n)
Holstein-like extended Jahn-Teller model.

In this respect we shall focus @i a modification of the —T(cl ,jcintch . comtH.C)
self-trapping due to the complex displacements and complex ’ ’
squeezing parametefthe variational functions for the dis- ] ] ] ] +
placements are supposed to account for the electron effectiere, the optical phonoris=1,2 are dispersionless;, ,cj,

(i) a modification of the soliton ground state of our modelare electron annihilation and creation operators related to
for the case of phonons weakly scattered during their transfdfvo degenerate level§=1,2, respectively, and=1. The

at the distance of the soliton width, afid) an investigation first interaction term related to the difference of the electron
of the stability of the soliton ground state against the quandensities at two levels causes the splitting of the degenerate
tum fluctuations included i) and (i) (Sec. V). level; the second interaction term represents phonon-assisted

In Sec. Ill, we shall investigate the physical mechanism oftransitions between the levels. Transitions between levels 1
the channel coupling when applying the transformations ond 2 of two neighbor sites] . ;C2,+ H.c. are not allowed.
the Fulton-Gouterman type to the extended Jahn-Telleltis evident that the respective one-level problem turns to the
Hamiltonian. We shall generalize the FG transformation inproblem of the Holstein polarch.
such a way that the dominating diagonal part of the trans- It is convenient to rewrite Hamiltoniafi) in the “spin”
formed Hamiltonian will then represent the problem of arepresentation of electrons:
modified Holstein polaron suitable for variational calcula-
tions of the ground state. The condition for neglecting the H_E
nondiagonal part will be specified. &

Investéglations of the cohegent and squeezing phenomena
by Zheng~ and Feinberget al” within the Holstein model
b?/ought interesting newgﬁ‘eeatures for the transfer probability — B(bl,+ban) oyn— T(Ry+R_1)! n}: 2
of electrons: While the transfer probability was reduced by
the self-trapping effectT<T (the ratio Q/T therefore in- WherecIncln+cchzn=ln, and
creased and the system became more sensitive to quantum
fluctuationg, the squeezing effect enhanced the transfer t t
probability for real displacements of the coherent states. Txn=7 (C1nC2n C2nC1n),

We shall treat this problem using a generalized variational
ansatz for the coherent and squeezed phonons, taking com- 1
plex displacements as variational functions and complex Uyn=—-(05n01n—CInC2n), 3
squeezing parameters. The variational ansatz for the electron 2i
wave function is chosen to be compatible with known ana-
lytical results of the adiabatic approach to the related IR
electron-phonon problem. The soliton ground state of the UZ“_Z(CZHCZH C1nC1n)-
electron-(molecular-excitor}- phonon problem in the adia-
batic approximation was found to be a soliton of the nonlin-The Pauli matricesoy, are related by o, ,0jn]=i0yn,
ear Schrdinger equatiof#:31%14222\We shall use the re- i,j,k=x,y,z; |, is a unit 2x2 matrix. R, is an operator of
spective soliton solution as an electron variational waveranslation in a lattice space; it is defined BYO,,=O+n

The Hamiltonian of the Jahn-Teller electron-phonon sys-
tem on a 1D lattice is

a

T T T
E binbin+1 +2(C2nc2n_clncln)
i=1,2

+a(bl, +byn)ogn

Q( > blbp+1
i=1,2
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and R'I'=|, R, én(K) =exp(ikn) ¢,(k).*° Hamiltonian(2) is IS & unitary operator of a local Fulton-Gouterman transfor-

. 2 _ . B .
a two-level multisite two-phonon Hamiltonian with transla- mation,Gy;=1. Evidently,U,,, diagonalizes the local part of
tion symmetry. the Hamiltonian(2),

+a(b1n+bln)|n

=~ -1
IIl. GROUND STATE Hon=Un1 HOnUnlzﬂ(izlzbiJrnbin+1
A. Extended Fulton-Gouterman transformation

_abt &

The FG transformations will be applied in three stegi$: ﬂ~(b2n P2n) Gn17zn, _ @
a transformation which diagonalizes the local two-leveldue t0 Ty, =U oy Un1=Gniosn,  T2n=Up1o,Uns
e-ph problem,(2) a transformation which diagonalizes a =oy,, and U;ll(bJ{nJr bln)Unlz(bIn+ b)) oy, where
dominant term of the transfer part of the Hamiltonian, ando;,, i=X,y,z are Pauli matrices, related to the site Be-
(3) the generalized F@loch) transformation for the diago- sides the shifts of the phonon operators related tand 3,
nalization of the translation-invariant electron lattice prob-the effect ofe-ph interactions is represented by a highly
lem. nonlinear way through the operat@r,,, Eq. (6) in the last

The ground state of the system given by the model abovéerm of (7). This indicates the presence of many-phonon ef-
will be chosen in the form of the translation-invariant Fulton- fects respected by the ansatz for the wave function, &js.
Gouterman variational ansatz and(5). The nonlinear periodic term mediates multiple oscil-

lations of an electron between two levels due to the assis-
T , tance of phonons 1 and coupling to phonons 2.
WVee(k)=N En: exp(ikna)U,D(n)S(n)d(n)[0), The respective transformation of the hopping term of the
(4) lattice Jahn-Teller Hamiltonian ifR),

where®(n) is an electron amplitude vector of a two-level

_ _ 1
local state Vn,lE UnllRlUn1: Un11Un+ 1,125(1+ Gn1Gn+ 1,1)I n

f(n) } 3 _
d(n)= ) (43) +2(1 Gann+1,l)0'xn Vi -1, (8

g(n)

yields a nondiagonal form. When applying further the uni-

The amplitudesf(n),g(n) are variational functions which @1y transformationd,, we get for the terms of the local
are to be determined. In Ed4), |0) is the electron and Hamiltonian(7)

phonon vacuum state. Bloch electron wave vectors are —1,.1 R

k=(2w/L)n, n==*1,...,£N/2, L=Na, wherea is a lat- Uz (b2y+b2n)Unz= (b, +b2n) oxn,

tice constant. FurtheB (n) andS(n) are phonon parts of the
variational ansatz representing unitary operators for coherent
states, and for the transfer pafB)

—~ _ _1 _
0n=Unz 070Un2= oxn,

~ 1
1 —y-t -
D(n)=exp—N E [yiq(n)b;rq—fyi'a(n)biq], (59 an_UnzanUn+l,2_Z[(1+Gann+l,1)|n
VNag,i=1,2

+(1-Gp1 Gyt 1,1)Gn20'zn][( 1+GoGhy 1,2)I n
and for squeezed states,

+(1_GnZGnJrl,Z)O'xn]:vn,flEvn- 9
1
S(n) = exp-— E [é“i(n)biqu— ﬁ(n)bizq]- (5b) According to(9) channels 1 and 2 are coupled due to the
YNa =12 participation of phonons 2 in the transfer introduced by the

: Fulton-Gouterman transformatio{®). While in the initial
Here, the d|sr)lacement§/iq(n) _and the parameters of omijonian(2) phonons 2 mediate local transitions between
squeezingg;(n) =riexp(—i#), i=1,2, and their complex  nannels 1 and 2for givenn) due to the transformatiof®)
conjugates are variational functions which are to be deterg,, nondiagonality is revealed due to the hopping transfer of

mir_led as well. Th_en dependence of; will be neglected: Ponons 2. However, the dominant contribution of phonons
This dependence is expected to be much weaker than that in (9) is diagonal.

¥iq(n) and would make the variational problem too compli- |, the continuum approximation the nondiagonal term in
cated. The ansat#a is a generalization of the adiabatic (9) yields, under account c(Bz(x)zl
ansatz of the polaron theory with eithgg, n independent or ' 2 '
periodically n dependent. Thé dependence of;4(n) ac- dG,(x) 1 d2G,(X)
counts for an effect of electrons on the phonon variational 1—Gz(x)(Gz(x)+ Ta+ > Taz
parameters. Further, the operatdf=U,,U,1 with

1 d?G,(x 1 __d%Gy(x)
=— EGZ(X) ﬁz()az: - EGZ(X %Kz.

(10

1/1 1
)

Al —Gn-)’ Gni=expimblbi), (6)
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Here, we introduced the dimensionless quantiiesx and  nondiagonal part10) can be neglected and the diagonal part
«=as as defined beloyEgs.(223 and(22b)]. sis an extent  of Eg. (9) in this case yields

of the localization of a soliton used here as a relevant length
measure and defined by the ans&®) for the electron am- ~ 1

plitude. Expressiori10) is negligibly small if the change of Vo~ 5(1+GniGni1)lnt 5(1=Gn1Gn112)Gn 2020
the phonon wave vector due to the scattering at the electron (9)
at the distance of a soliton widtk ™! fulfills the condition

(Aqk)2<1. This condition forAq is respectively weakened In the momentum representation we get, with the us@)ef
by the fact that the inverse soliton width<l. Then, the (9), the Hamiltonian(2) in the form

N| =

1 . . ;
+ \/_NEn: {a[ bl expigna) +b;qexp —iqna)]l,— Bl b]expligna)

. 1 ~ . .

+bogexp( —iqNa)1Gy 1l o} _TTN; {Va[RPextli(Pns1—P) ]+ RPYexd =i (Posa—P) I (1)
Here,q=(2m/N)m, m=*1,+2,...=N/2, andb;,= 1/YN=expigna)b;,, i=1,2. In Eq.(11) we introduced the electron
momentum operatons, which apply to the electron amplitudés, exdi(pns1—Pn)1fn="fn.1. The operator P apply to
the phonon part of the wave function.

B. Self-trapping effect with complex displacement and squeezing parameters

The aim of this section is to calculate the ground state energy of the Hamiltdrijpwith the reduced phonon transfer term
(9") for weakly scattered phonons 2 and find an effective self-trapping in the framework of the Fulton-Gouterman variational
ansatz (4). Let us first transform the Hamiltoniafll) by the unitary operator®(n) and S(n) defined by (5a,b;
H(n) S(n) "D(n) " *HD(Nn)S(n). The result for the Hamiltonian density(n) reads as follows:

1 1 . -
2 cosh4r;)| b/ b,q+ +[Yig(n)|? +y,q(n)b,q+ Yig(Mbiq +§smr(4ri){e [ big+Yig(n)]?+H.c}

H(n) E(QE

+\/——{{COSHZV1)(b1q+qu) e “1sinh(2r ;)[byq+ Y1q(M) Jrexpligna) + H.c} - \/—{{COSNZFz)(quJqu)

+e71%28inR(2r ,)[ boq + F2q(N) 1} expiqna) + H.c3Gp 1l n | — TVH{RPexd i (pns1— Pp)]

+RPDexi —i(Pns1—po) I} (12
In Eq. (12) we defined
Fiq(N) = ¥iq(n)coshZ; + ¥, (n)e'isinh2r; . (133
Evidently, the respective inverse transformation reads
Yig(N) =%ig(n)cosh2; =¥ (n)e' fisinh2r;,  i=1,2. (13b

For the evaluation of expressi@¢fh2) we used formulasAl)—(A5) of Appendix A. Furtherﬁ(tmf) is given by(A5)—(A7).
Using formulag/A5)—(A8) for the averaging of the transfer term({b2) over the phonon part of the wave functiof), we
obtain exactly

1
T(n)=T(Op V,RY | Opr = —exr[ W(n)Ji|1+ 3 [el(n)+61(n)] —E[el(n)ﬂ’i(n)] exp(— 2| y2n(n)|?) 021
1 1
1+ 5lea(n)+e5 (]|l +] 1= 5Lea(n) + €5 ()] a] (14
where, in the continuum representation, we have accordirig@p and (A7),
dy 2 i dy; 2
-ig/p2_"19 —4r; -ig/2_"19 ar;
W(X)= 2\/_ qIZMH e( K dx” e ¥i+|Imle'? dx) e ] (143
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and, according t¢A8),

1 - - - - - - ~
ei(n)=exr{— §(|7i,n(n)|2+|7i,n(n+ D+ Vi1 (M P+ Vi e 2(n+1)[D) =7 n(n+ 1)7i*,n(”)—7i,n+1(n+1)7i*,n+1(n)}
(14b)

Here,?i,m(n)=(1/\/N)Eq7i’q(n)exp0qma) is a nonlocal expression. In the continuum limit it becomes locad; &%), Eq.
(14b), tends to

&(n)— &(x) =€ (x) =exfd — 4% (x)|*]. (149
From Eq.(14), it is evident that the participation of phonons in the transfer opens a\gaff|A(x)|f), where

-
A(x)= 5 exd —=W(x) {1 —ex —4[71(x)[*Trexd - 27,00 [2}{1+ exf — 4[72(x)[°]}. (15

The gapA represents a joint effect of phonons 1 and 2, coupled to the electron transfer term, to the band splitting in the
extended Jahn-Teller model. Both bands are coupled due to the participation of phonons 2 in the Egnd@féy], unless this
contribution could be neglected for weakly scattered phonons.

In what follows we shall investigate the case of a soliton, i.e., either the one-level case of a Holstein @tafomr a
qualitatively equivalent reduced case with negligible couplib@ of channels 1 and 2a modified Holstein polargn

We shall go over to the continuunp{, ; —p,—pa) and expand into series exp{pa) near the bottom of the lower band
[specified byo,;=1 in (14)], neark=0. (For the upper band the expansion would be performed keat/a). Then, using
the formulas(A9)—(A12), we obtain for the effective density of the Hamiltoni&t2) as an average in the FG sta®
[0,1=1in (14)]

1

N

~ Q _ = ortnim 2 ~ i~ ~ ~% 0
<‘I’FG|H(X)|‘I’FG>:§Z cosh4; + IE;« <Uiq|QCOSh4i+TaAA|Uiq>+§5'”h4fi(<f|7iqe i[Uig)+ (Uil ¥i5e )

+ aiNZ {cosh [ (T4lexp(—igx)|f)+ H.c]+sinh2r ;[ €' “(T; lexpligx)|f) + H.c.]}
q

N
1 — . -
_ﬁ\/_ﬁg {cosh2 ,[(U,q|exp(—igx)exd — 2| y1(n)[?[f)+H.c]

+sinh2r J[e! (T, | exp( —igx)exd — 2[F1(m)[2]| )+ H.elb+ (T )(f| -2+ (ap)?f). (16

In Eq. (16) the auxiliary states - T
Tr=(F[T(x)[f)= 5 (flexd —W(x)]

T)= ) ) o o
_ 139 X (L+exp — 4|70 ]+ {1—exd —4[y.(x)|*]}
were defined, wherg;q(n) are given by Eq(133. -
The confinement to small electron momemtamade it xex = 2[2(x)°DIf), (18)

poss_ible for us to express part of the averaged Hamiltoniawherew(x) is given by Eq.(14a. The coefficient ofT, Eq.
(16) in a convenient compact form by the use of the operatofy g) yenresents the reduction due to the self-trapping polaron

effect modified by the squeezing, Ed44a, and a reduction
A= E ﬂ—ip by exponential factors stemming from many-phonon effects
f dx ’ if y,#0. Consequently, the respective effective mass is
modified according tan* ~1=2a?(f|T(x)|f). If B=0, then
An identity A|f)=0 is evidently fulfilled: It allows an inter- ¥,(x)=0 and Tg=T{(f|exd —W(X)]|f). Formula (148 for
pretation ofA as a soliton annihilation operator and simpli- W(x) brings a generalization of the effective self-trapping
fies the calculation of the related matrix elements in the nexgffect found by Zhentf and Feinbergt al® for the Holstein
section. The operatok was introduced by Nag§ and was polaron in the framework of coherent and squeezed states
used with convenience in a variational problem of a freewith real displacements;, and a real parameter of squeez-
electron interacting with acoustic phonons. ing, 6;=0. Evidently, the generalization to complex param-
In the last term of Eq.(lGLWE decoupled the electron eters brings a new term in the exponent which gr@vgi
term, which was approved it varies much more slowly and introduces &; dependence. For the final effect, how-
with x than f(x). The reduced transfer matrix element ever, an explicit evaluation ofiq(x) or ¥iq(x), Eq.(13), is
of T, Egs.(14)—(140), reads necessary and will be performed in the next section.
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The classical case;=6;=0 reduces to the problem respect to quantum phonon fluctuations included in the
solved by Brizhiket al!! This case of a polaron resembles Hamiltonian (16) with T(x), Eq. (14), diagonal @_:o) or,
also the problem of the acoustic polaron as it was presentegiuivalently, with the negligible nondiagonal tef®) when
by Nagy:? These facts lead us to the choice of the variathe related conditions found above are fulfilled. To this pur-
tional ansatz for the respective local electron amplitudgypse we shall assume the shape of the electron amplitude

f(x), Eq.(4a), in a form compatible with the known adia- f(gy) of the quantum ground statéa) in a form similar to
batic solution for the ground state of the electferciton) in (19),

the Holstein modé&land in the Davydov mod®ivhich imply
the nonlinear Schiinger equation for the electron ampli-
tude f(x). The respective adiabatic solution reads

f(sx)=(as)1’2%secmsx), (20)

1 o d
faa(SX)=(asad)1’Zﬁsecmsa&<), aSa= 7 77 = Mac

(19 taking s as an electron variational parameter, and minimize
as,q being a dimensionless inverse soliton width ahda  the energy(16) with respect to the electron and phonon
bandwidth parameter. The adiabatic approximation in thesariational parametergs=as and}?iq(x) ,3;i*q (x).
above-mentioned models was approved for lafge An In view of the form of the averaged enerd¢6) it is
analogous result for the exciton-acoustic phonon adiabatigonvenient to minimize it with respect to the auxiliary states
ground state was obtained, e.g., by Venzl and Fiéf@rd  |Ti;,) Eq.(17). This way of minimization is not quite exact as
by Nagy in his generalized adiabatic variational apprd&ch. in expression(16) there occur a|sa/iq ,’;,;'a explicitly. How-

It should be noted that the soliton soluti¢h9) breaks the ever, this effect can be accounted for by iteration of the
translational invariance of the problem. As is known, it cany,’s at the end. Then, from
be restored by introducing an arbitrary constaggiinto the
argument off (sx) asf[s(x—Xg)].

HHITg)
IV. STABILITY OF THE SOLITON AGAINST QUANTUM —F—F—=0, (21
FLUCTUATIONS I Uig

The aim of this section is to investigate the stability of a
ground state with a localized solution of the tyfi®) with we get operator equations fﬁlTiq>,

— — x| . . X
(Qcosh 4+ K?ATA) [Ty +Efcosh2 1exr{ —iq ;j +sinh2r ;€ alexp( m%ﬂ |f)=0, (223

_ ey X ) ” —X igx )
(Qcosh4 ,+ k“A'A)[Uy,) — B| cosh2r ) ex —iq— +sinh(2r,)e'%2ex iq—|ex —7—2|71(X_)\ |f)=0.
(22b
Here, we went over to dimensionless variables by rescaling the Hamiltg’rﬁaH/TR, Eq. (21), and consequently also the
variablesQ=Q/Tg, a=alTg, B=p/Tg, where Ty was defined by Eq(18). Further, we definesx=x, p=sp, and

A=sA in order to eliminates from the_functionf(sx)=f(x_). We introduced also the dimensionless quantitiessa,
g=qa. From Eqgs.(22) we can findy;q(x). The result is

Y14(X) = —a_exp( - iq_gj[ﬁcosh4rl+az—2x2(1—tanr?x_)— i2qktanhk |71, (23a

. d_ _
q_“<&|71(x)| tanhx

. x _
Yaq(X) = ﬁexr{ - i_; - 2|71(Y5|2) Qcosh4 ,+q?— 2k?(1—tanhx) + 2i k

-1

(23b

[d 2 d? _ 2
—4ik qd_x|71(x)| _|Kd_xz|‘}’1(x)|

The x dependence of the nonperiodic part"m(x_) represents the localizing influence of a soliton on phonons at the soliton
width scalex 2.
There remains to minimize the ener@}6) with respect to the electron variational parametedefined above.

Let us substitute the functior®2) into the mean energgl6). The result reads, up to ordef and 82,
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E(K;rlyrz;01,02;(1—1m:<\PFGlﬁ|\PFG>:9 005h4i—2+<f|3252|f>——i2 (f]Qqlf)
29 OJNG I
,82
W—E (Flexil —2[71(x) ”1Qqext — 2[72(x)2]|f). (24
In Eq. (24) we defined
Qq=0(Q+q7~2qxp+ *ATA) L. (25

This quantity is rewritten into a more suitable form in Appendix B. There its mean V&|@|f) is also calculated, which
appears in Eq(24).

The exponential reduction of the last term (24) enhances the energy of the ground state. This reduction is due to a
decrease of the transition probability between two split levels by the self-trapping due to pherom®nlinearly coupled to
phonons = 2.

In order to makeE(k;ry,r,;01,6,,a,8,Q), Eq.(24), more suitable for variational calculations, we shall simplify it for
small a and B or for smallk. We expect a weak dependence oiV(x) and of|y;(x)|? given by (238 and(23b) and write

Tr=T(f|exd —W(x)]3 [1+exd — 4|71(X)|2]+{1—exd — 4|71(X) |2 ] exd — 2| 72(x) 211 f)
~Texd —(fIW(x) —In3 ({1 +exd — 471 () |21} +{1—exd — 4|71(x)|*T}exd — 2|72(x)[?]D)| f)b]=Texp —T).
(26)

Here, the dominant term df is x independenfsee Eqs(23)] and the remaining terms are slowly varying witHor « small;
therefore we shall considér as « independent. Evidently, fo8=0, I'={f|W(x)|f). Similarly, we assume

(flg eXF{—2|71(X)|2]Qqexri—2|71(X)|2]|f>~§ (f1Qql Frexd — 4¢f|[7100|% 1. (27)
In Eq. (27) the integration oveq can be performed by the use of the relation
1 a? a® a (mla U™ a?
N e e MG N 2

I' was given by(26) and u= a?/2Q2T.
In Eq. (27), v1(X) is given by(14a and(23a. Evidently, the exponential reduction factor ({@7) reads

~ 1. ; i
[Faal®=1719/°c0S4 1 = Ssinhdry(yige'+ yie ), (283
where
|y14/%= H[Q+ 7 2k2(1—tanifX) ]2+ 4q%«2tantfx 2, (28b)
V5= [{ 2|‘j[ﬂ+_2 2k%(1— tantfx)—i2qktanhk |2, (289
and
yiZe''+ yie e 9= 2a2{[ O+ % — 2k*(1—tani?xX) |2+ 492 k>tantPx |} 2
X (cos 2qxTk — 0){[ QL+ 2K2(1 tantfx)]?—4q°k*tanh?x }
+2sin2qx/k— 6;)qrtantx [Q+qZ—2x2(1— tanr?m). (280)

In the case of the Holstein polaro@=0, Eq.(23b) implies y,(x) =0 ande,(x) =1 [Egs.(15b and(23b)], and, according to
Eq. (14), the problem becomes diagonal exactly. Then, with the use of (B§s-(28), Eq. (24) yields

_ 0 1 wim
E(K;rl,rz;b’l,@z;mﬂ)—gz003h4i+2:§K2_;f dq<f|Qq|f>' (29
i -
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Here, u= uexp(’). The matrix elementf|Qg|f) is calculated in Appendix B. Details of the integration ogein (29) are

presented in Appendix C.
According to Appendix C, Eq(29) yields finally

EminEE(Kﬂ'l,rz;01,92;,%9)—Ez cosh4;+2
i=1.2
Lo 20 [k 0. & Bt A sies 5 30
3 (1+ Q/ k2)12 37k 2k (7P+ 69 -7 arctans E[ (1,6)=S(k,=0)];. (30)

We defined see(C3)]

K+6
4k

S(k,0)=S(1,k,0)= P

and 6= 8(«,Q) = (x%+Q)Y?— k. Numerical evaluations of
E(x,Q,u), Eqg. (30), are plotted in Figs. (&), 1(b) and 2,
with u defined in(29) and Q=Q/Tg as parameters, and
ri=6=0. E(x,Q,u) exhibits a minimum _for
k= kmin(Q, 1) only for a sufficiently largew, u> wei(€2).
As we utilized the soliton bare ansd®0) for the evaluation

of (29), the terms withs there are considered as perturba-

tions, 6<% k% or Q<2 3+ 1 k%
1 E@¥)

0.2

0.1

‘ E(x)

=09

FIG. 1. () EnergyE(«,u), Eqg.(27), in the adiabatic case and
in the quantum case fork®>0=0Q/T, 0=0.001, x=0.1,
0.2,..,09, r;=6,=0, i=12. For the adiabatic curves
E(k=0u)=0. The term expt2J) in (27) contributes for
2K2<Q,_i.e., beyond the scope of validity of the perturbation
theory, Qix?’. The curves are not plotted in this regidib) The
same for(=0.005.

+(6+2k)

+ il t 7
2kt o arctan

1+5
K o+ 2k’

K

The dependence of = x(Q,u) is plotted in Fig. 3.
The phase diagramu(Q) is shown in Fig. 4. A line
mei(2) of critical coupling parameters results: At
w(Q)> uei(Q) the electron-phonon interaction gives rise to
a finite soliton widthA(Q)=x"3(Q). If w(Q)< (),
then the quantum fluctuations destabilize the soliton.

In order to get the adiabatic limit dB0) and compare it
with the Holstein resul{19) we have to have a clear defini-
tion of w in Eq. (29) for the adiabatic case. If in the classical
Hamiltonian the coefficient of the interaction term dgg,
then by transformation to quantum normal phonons it be-
comesa— a,4/\2. Our choicea/2 as the respective coeffi-
cient in(1) yields a,f2— a/(2+2). Then, the adiabatic limit
of Eq. (30) yields

_ _ 1 2
an(Kvﬂad)'f_z:(ﬂKzﬁz_Mad% Qq|f>: §K2_ §MadK-

(31

By minimization of(31) with respect tax, we obtain for the
adiabatic ground state finally

Kaq=Saq= o= 0°eXD(T o 40T = S exT o

= XTI o), (32

There, Eqs(14a and(26) imply

E(x)
5
4
3
2
] Q=0005
0
/ 1 2 3 4 5
-1
2 Q=05

FIG. 2. Energy E(x,u) for x=1.8 and Q=0.5, 0.005,
ri:0i:0.
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Q

0.01

0.008

0.006

0.004

0.002

0 u
04 05 06 07 08 09 1

FIG. 4. Phase diagram vs Q. View of the surface in Fig. 3
from above. The dark region of the soliton instability is separated
from the region of stability by the curve(2).

FIG. 3. Inverse width of the solitor vs iz and(). Note that the
adiabatic curve Q=0) starts afu?%+0.

d7’iq

1
Fa=——=a, | f
w3

2

result by Holsteir?. It is evident that the self-trapping effect
lowers the soliton ground state ener@3) and increases

) . ) ) . .k, Eq. (32); i.e., it lowers the soliton width which means
Using (32) we obtain for the dimensionless adiabatic increasing of the soliton stability.

> The preexponential term is identical with the corresponding
f

ground state energ{B1) , If B#0, then instead ofz in Eq. (30) we have
Mad
Ead ptad) + 2€XH—Tad) = = —Z-exp(Tad) _ 5
\ pm—ugl 1+ ?GXH—ZMRJ)), (34)
T Wexp(l“ad). (33 where
|
— OT (= dx (= 7 24 2 4K7P -1
J=J(k,Q,rq,0 z—f H d 1+ —— —(1—tank’x) | + tanirx; cosh4
(k 1,61) 7 ) _wcostfxdo #([ Q Q ( ) Q 1
~NZ 2 2

2 ~Z,.2 -
1+q——2K—(1—tanm +4q “ tanix
QO Q Q

1.
- Esmhélrl

~Z K2 2 _ZKZ
1+q—— 25(1—tanr?x_) —4qQ tanhzf}

Q )

The integrald, Eg. (35) diverges (§— +x) for Q< 2k phonon effects. If the change of the phonon wave vector due
therefore in the region relevant for the nonadiabatic contrito their scattering at electrons during the transfer at a dis-
butions to the soliton ground state the contribution of thetance of a soliton width is small, then this effect was shown
exponential term in(34) is zero. On the other hand, this to be negligible. Then the problem becomes effectively a
contribution is finite forQ)>2«?, i.e., out of the region of one-level problem qualitatively equivalent to the problem of
soliton stability. a Holstein polaron with parameters renormalized due to
V. CONCLUSION phonons 2: The reduction factor gxpMXx)] is additionally
reduced[see Eq.(26)]. For this case, one can summarize

Generally, the extended Jahn-Teller Hamilton{@andoes foIIc_meg resu!ts. e
not admit the Fulton-Gouterman ground state with a local- (1) Expression(15) related to the band splitting implies
ized (solitor) electron amplitude. The reason is that phonondhat the gap is opened by the interaction of the electron states
2 which in the original Hamiltoniaiil) couple the JT levels with phonons 1 during their transfer in the lattice and a si-
participate also in the transfer of electrons due to manyMultaneous coupling to phonons 2. The gap is narrowed by

X | cog2qx/k— ;)

_ _ 9% 2«2
+2sin2gx/k— ﬁl)thanrYflﬂL o ?(1—tanhzﬂ
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the self-trapping effect—the self-trapping is further modified (i) Further, the contribution of the many-phonon effects,

by the quantum effects discussed next. « B2 in (34), is zero forQ<2«2. On the other hand, they are
(if) The soliton ground state is affected by quantum fluc-shown to contribute fof)> 2«2, i.e., out of the region of the

tuations: The measure of the influence is the ratio of thestapility of the soliton against the quantum fluctuations dis-

phonon and electron energy scal&ss (/T . This ratio is

modified by the self-trapping effect determined by the com-

cussed above.
From Fig. 3 and from the phase diagram at Fig. 4 we see

plex displacements and complex squeezing parameters: Thgsg a shift of theue(2) to higher values with increasing

self-trapping polaron effect given by Eg&6) and (143
reduces the bandwidth by a factor which includes a joint
effect of electrons on the phonon displacementgn) and

Q). There exists a line oft.;({2) increasing with(Q) above
which the soliton remains stab(€ig. 4). Let us note that we
did not perform a numerical analysis of the ground state

of the squeezing. It consists of two competing contributionsenergy forr;, 6,=0 as the respective set of equations for the

(14a: (1) a term

[Re(

weakens the self-trapping, ari@) a term

il G

competing with(i) enhances the self-trapping.

Evidently, the effect(2) is present if at least one of
Imyiq(X) or 6; is nonzero. Equation&3a and (23b) imply
that Imy;q contributes ifx#0 andg# 0, simultaneously.

Nonadiabatic effects due t6) become evident if one
compares the resu(B0) with the adiabatic on€31). In Eq.
(30), there are nonadiabatic contributions relatedte, ()
(6—0 if Q—0). The perturbation theory used for the calcu-
lation of the energy30) is valid only for §< «?/3, i.e., when
accounting for the definition ofs, Eq. (30), for

Q<2 3+ L k% From the numerical evaluation of the for-
mula (30) plotted in Figs. 1a) and 1b) we see that the

2

dqu e*4ri

dx

e i6/2

dvy; . 2
Yia o—igi2| | gan;

dx

ground state would be too complicated and the respective
corrections relatively very small.
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APPENDIX A

For calculation of the mean value of the Hamiltonian)
in the state(4) we need the following transformations:

D(9)S({)=S({)D(y), y=rycosh2r)+y*e’sinh(2r),

(=rel? (Al)

curves exhibit local minima which represent soliton ground

states. These minima disappear for smat uexp(l’). As
I enhances the effective interactipn it stabilizes the soli-

1,2,
(A2)

Dil(;’iq(n))biqDG”iq(n))zbiq"’?’iq(n)v i=

ton due to the respective decrease of the soliton width

A=k"1, (kxu). In the Figs. 1a) and 1b) the energies in
the region of smalk are not plotted as this region is beyond
the validity of our perturbation theory.

Nonadiabatic effects compete the self-trapping: For a

weak effectivee-ph couplingu< u. they destroy the sta-

bility of the soliton: the minimum of the ground state energy

disappear$Figs. 1@ and Xb)]. Above the critical coupling
they shift the minimum of the ground state eneEf), Eq.
(30), to lower values ofk,, (higher values of the width of
the soliton)).

S (£)bigS(£)) =biqcosh2; + b e'’sinh2r;,  (Ref. 25,

RPY=5"1(£,()D~ 1(g(M)RPYD (3ig(N)S(Zi(N))

(A3)
S™H(Zi(n)D ™ (¥iq(N))PnD (¥ig(N))S(Zi(N))
1 dy,
:pn+i\/—N§q: igz[%coshzi
dyd,
—ﬁe"osinhzi bi,+H.c., (A4)
=S HZi(N)D (¥ig(N) D (¥ig(N+1))S(Zi(n)S™ H(Zi(n)S(Li(n+1)), (A5)
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where

S™H&i(M)D " (yig(MID (yig(n+1)S(Gi(n+1))

1
ZEX[{ Zmz { [ —|6/21"|q(n)_|_H C]Z —4ri_ — [e—|0/2rlq(n) H. C]2e4r|])

q,l

xexpr {[[Tiq(n) =Ty (n)e ™" Ibjy+[Tiq(n)e'’~ T (n)Ibigle™

+[[Tig(n) +Ti(n)e™ "Iol, = [Tig(n)e'’+ T (n)Ibjgle "} (A6)

& il

and

(0IS(&i(n)~*S(gi(n+ 1))|0>=6XP{ —‘%EI ]=1, (AT)

as we supposg, and 6; to be independent of.
In (A6) we definedl’jq(n) = yig(n+1)— ¥iq(n).
Calculation of the phonon mean value (G4#) leads to

€1(nN)=(0n11,0,|Dy 16;1n(n))Dn+16”1n(n))Sn Sn+1 1)b1’"+1b1'"+1(_1)b1’”bl’"SnSn+1Dn6"1n(n+l))
XDny1(71n+1(N+1))[0n,001 1)

©

:mZo (_1)m"|g<71n(n)|mn>|2| > . (=)'t 1Y 2 (M 1) s a| Vs 2(n+1))g

n+1=

1 - - - - -
=EXD[ = 5P PH[Van(+ D+ T2 ()24 [Fne (D2 =Fin(n+ 1) ¥(n)

—Y1p+2(n+ 1)’:);;n+ 1(n) (A8)
[
where 1 p |2 y
Ly e e
Fm(N)=—=2, ¥4(n) expligma). 2 %2
N xex;{ %ﬂL VZ,Z ) (A10)

Evaluation of expressioA8) has been obtained using the
formulas(A9)—(A11). They read®

Here u=coshZ, v=e '’sinh2, |u|?—|v|?=1, and H,
are Hermitian polynomials[The squeezing parametex
used in the formul&#A10) does not occur more so that it does

e t T
(0|D~18 X (= 1)PPSD|0)=4(¥|(— 1)" | y>4

= Z (—1)”|<n|y)g|2, not interfere with the parameter of effective interactian
n=0 defined by Eq(29)].
(A9) By the calculation of(A9) with the use of(All), the
where|y)y=SD|0)=S|) and?® following formula is necessary/:
otk Atxy— 4t2(x2+y?) | M
E i HiemOOHicen(y) = (1-4t%) ~(mene iz xp[ T E 2%kl

o M X2 Ny [ Y2 ] < (A11)
| T—= x| T—=, <z.
k)" M i) N 1A 2
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In our calculations we use continuum versions of the above
formulas when replacinga— x,

d'}’iq(x) a

Yio(N) = —4— (A12)

7iq(n+ 1)—

APPENDIX B

In Eq. (25 we defined an operatd®, which can be re-
written as

Qq=UQ+ k2~ 2qxp+ K’ATA) 1
q°

=1-—— Refxdtex —t[(x2+ Q)2

+i(g—«p)1} (B1)

This form is suitable for calculation of the mean value of
(B1) which appears in Eq$24), (27), and(28), with the use
of a simple formula (f|e'*"*|f)= kt/sinh(xt), where
f(x)=(1/y2)seck. It yields

v
Sinf(7x)

[

2K(5+ K2)1/2

(k%+Q)1?— K+ia) 82 and

(flQqlf)=1~

XRe¥ M| 1+
2K

"z

3
2k(Q+ K2

1 2 i i |
XRe€ 52 2sinf(az) "2 (1252 |

where z={q—i[ (k*+ Q)Y2— k]}/2k. The digamma func-
tion ¥((1+x) Ref. 28 in Eq.(B2) was rewritten by using
the following identities

Emin

0.003 ™~ -0.1
0.005
_0.007 -0.15
Q 0.009
02
. 025
M35 06 07 08 00

FIG. 5. Ground state energy( ) for Q< «3.

PO (1+x)=—PD(=x)— 7?/sink(wx),

i |
( X)__Z |:z]_(x+

2 o

22 (x2+|2) 4X22

mX

APPENDIX C

iJﬁdq—m|f>=£fwd§{l‘ o -
L a T 2k(Q+ k22 7| (Q=10)°  2sini[(/2x)(q—i6)]

e

= {|2+[(q—l5)/2K]Z}ZH

_ J’ 2k
e - 2K(Q+K2)1’2 L

1

4282 T 1

(_Z+ 52)2

“ d
2

iq+o
3R e( 2k

{12+[(q—i8)/2]% ] 1

sml’?[ m(q—i6)/2«]

(B3)

(B4)

=1 (x2+1%)2

(B5)

(B6)

In Eq. (24) there is to evaluat¢” dq(f|Qq|f) where the
integrand is given byB2)—(B6). It is possible to perform it
exactly:

(C1
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where §=[ (k2+ Q)Y2— ]. ExpressionC1) except for the
last term is easy to obtain as

21+Q’1’25+25 o 52 +52+K
K2 PREF b i Ny R Y b

The integration of the last term qf£1) can be performed
exactly by simple but lengthy calculations. We obtain

NONADIABATIC EFFECTS IN A SOLITON GROUND ...
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st =l a2 200 (142 (54 24 L
(l,1,0)=\ 4l 50775 o) (or 2k 55
'
Xarctanm.

If we use the convenience of expressi@®) for integration
overl instead of the summation, we obtain

~1/2
[S(1,k,8)—S(1k,—d)].
(C3

1 -2
- + — — — _
5|1+ = Zldl[su,x,a) Sl,k,— &)1, .
~——| 1+
(C2) (C)~o—| 1+ >
where
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