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We have investigated conditions for the existence and for the stability of a soliton ground state of the
Fulton-Gouterman-transformed extended one-dimensional Jahn-Teller model with low electron density against
quantum fluctuations of optical phonons. The Jahn-Teller band splitting occurs but the respective gap is
narrowed by the self-trapping effect modified by quantum fluctuations and by many-phonon effects due to the
participation of phonons in the electron transfer. The electron transfer parameterTR is reduced by the self-
trapping effect which is further modified by the effects of complex squeezing parameters. These effects
determine then the value of the strength of the parameterV̄5V/TR , which is a measure of the influence of the
quantum fluctuations. We have shown that the electron channels are coupled due to the participation of the
phonons, which couple the original electron levels, in the electron transfer. However, the dominating contri-
bution of these phonons is diagonal and the coupling of the channels becomes negligible if the change of the
phonon wave vector by the scattering with an electron at the distance of the soliton width is negligible. Under
these conditions, the problem of the Fulton-Gouterman quantum ground state of the Jahn-Teller model be-
comes qualitatively equivalent to the related problem of a Holstein polaron~a soliton of the nonlinear Schro¨-
dinger equation!. The soliton ground state is shown to be unstable against quantum fluctuations for weak

electron-phonon coupling and forV̄.
2
3 k3 (k5l21 is an inverse soliton width!. The fluctuations compete the

self-trapping polaron effect: Form̄,mcrit , m̄ an effective coupling constant,m̄5a2expG(r ,u)/4V2T, the
stability of the soliton of the nonlinear Schro¨dinger equation describing the traveling lattice distortion is
destroyed. The soliton was found to be stable only for a sufficiently strong effective electron-phonon coupling
m̄.mcrit . Because the soliton effect on the phonon displacements couples with the squeezing effect through
G ~or m̄), the nonadiabatic effects are either amplified, if the net effect of squeezing decreasesm̄, or weakened,
if the net effect of squeezing increasesm̄. The latter case can occur if the phonon displacement and/or the
squeezing parameter are complex quantities. The many-phonon effects are shown to contribute only for large
quantum fluctuationsV̄.2k2 beyond the validity of the above condition for the use of the perturbation theory.
The soliton ground state withl.(2T/3V)1/3 is destabilized by the quantum fluctuations.
@S0163-1829~96!09629-4#

I. INTRODUCTION

Traveling electron-phonon bound states accompanied by a
lattice distortion~polarons, solitons! are relevant for under-
standing various physical effects. Nonadiabatic~quantum!
effects in these systems become important if the scales of
phonon and electron energies are comparable, i.e., the ratios
\V/T (T an intersite electron transfer matrix element! for a
low electron density or\V/EF (EF Fermi energy! for a high
electron density are not too small. In high-Tc oxides, e.g.,
there is a typical local Jahn-Teller~JT! configuration:1 a de-
generate electron level at each Cu21 ion lattice site sur-
rounded by a high-symmetry O22 ionic configuration. A
similar, although a little more complicated situation is also in
C60 compounds which indicates the necessity to investigate
nonadiabatic effects in the electron-phonon interaction in a
Jahn-Teller system.2 Recently, a theory of nonadiabatic su-
perconductivity by Pietronero and co-workers appeared
which emphasized the role of nonadiabatic effects due to
very small Fermi energy in all high-Tc superconductors.

3

In contrast to the lattice of Jahn-Teller molecules, the
quantum effects inE^e Jahn-Teller system and in an

equivalent two-site~dimer! one are well understood: A fully
exact analytical treatment of theE^e Jahn-Teller effect has
not yet been done and only a combination of unitary trans-
formations and the variational principle was applied.4 There
is a similar state of affairs also in the analysis of the electron-
~or molecular-exciton-! phonon interaction in a periodic lat-
tice in spite of a long-standing effort since the early days of
solid states physics:5,6 The analytical results on the ground
state of the electron-~exciton-! phonon system in a one-
dimensional lattice have been achieved by a combination of
variational principle and unitary transformations.7–11

Fulton and Gouterman12 ~FG! obtained important new re-
sults on two-level and equivalent two-site~dimer! problems
with a reflection symmetry by applying a nonlinear unitary
transformation. It has been used in exciton-phonon and
dimer problems starting from the pioneering work by Shore
and Sander7 in combination with the variational principle.
The FG transformation exactly diagonalizes two-level
Hamiltonians of the above-mentioned problems13 and re-
duces substantially the transfer probability between levels. In
a combination with the variational approach it yields the
lowest ground states,7,14,15e.g., also for local problems with
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a coherent two-phonon~squeezed! phonon trial wave func-
tion ~Ref. 16 and references therein!. It leads to a peculiar
structure of the excited-spectra–exotic states15,17,18 for pho-
non subsystems. The generalization of the FG approach to
problems with translation symmetry done by Wagner19 ap-
peared to be equivalent to the Bloch formalism. It has been
applied, e.g., to the formulation of the theory of excitonic
solitons.14,20

We shall investigate a model system specified in the Sec.
II: a degenerate electron level at each lattice site interacting
with optical phonons~i! via coupling to the respective elec-
tron densities and~ii ! via phonon-assisted transitions be-
tween the levels. Due to the presence of interaction~i!, our
model contains intrinsically the problem of the Holstein po-
laron in one dimension~1D! ~in the adiabatic approximation
a soliton of a nonlinear Schro¨dinger equation! and, in addi-
tion, there is ane-ph term responsible for the coupling of the
split JT levels.

The aim of the present study is~a! to specify the physical
mechanism which makes the JT model qualitatively different
from the case yielding a soliton and to find conditions for the
existence of a soliton ground state and~b! to investigate the
nonadiabatic effects in a soliton ground state for the
Holstein-like extended Jahn-Teller model.

In this respect we shall focus on~i! a modification of the
self-trapping due to the complex displacements and complex
squeezing parameters~the variational functions for the dis-
placements are supposed to account for the electron effect!,
~ii ! a modification of the soliton ground state of our model
for the case of phonons weakly scattered during their transfer
at the distance of the soliton width, and~iii ! an investigation
of the stability of the soliton ground state against the quan-
tum fluctuations included in~i! and ~ii ! ~Sec. IV!.

In Sec. III, we shall investigate the physical mechanism of
the channel coupling when applying the transformations of
the Fulton-Gouterman type to the extended Jahn-Teller
Hamiltonian. We shall generalize the FG transformation in
such a way that the dominating diagonal part of the trans-
formed Hamiltonian will then represent the problem of a
modified Holstein polaron suitable for variational calcula-
tions of the ground state. The condition for neglecting the
nondiagonal part will be specified.

Investigations of the coherent and squeezing phenomena
by Zheng21 and Feinberget al.9 within the Holstein model
brought interesting new features for the transfer probability
of electrons: While the transfer probability was reduced by
the self-trapping effect,T̃,T ~the ratioV/T̃ therefore in-
creased and the system became more sensitive to quantum
fluctuations!, the squeezing effect enhanced the transfer
probability for real displacements of the coherent states.

We shall treat this problem using a generalized variational
ansatz for the coherent and squeezed phonons, taking com-
plex displacements as variational functions and complex
squeezing parameters. The variational ansatz for the electron
wave function is chosen to be compatible with known ana-
lytical results of the adiabatic approach to the related
electron-phonon problem. The soliton ground state of the
electron-~molecular-exciton-! phonon problem in the adia-
batic approximation was found to be a soliton of the nonlin-
ear Schro¨dinger equation.6,8,11,14,22,23We shall use the re-
spective soliton solution as an electron variational wave

function with the inverse width of the soliton as a variational
parameter. At a certain stage of the calculations it is neces-
sary to specify the electron dispersion law, for our case of
small electron density as a quadratic one near the bottom of
the conduction band. The case of high electron density is of
interest for high-Tc superconductors mentioned above and
will not be investigated here.

In general, quantum fluctuations are known to play a sig-
nificant role for a weak electron-phonon coupling:24 They
destroy the adiabatic ground state. Therefore, in our case,
one can expect nonadiabatic effects to play a significant role
for weak electron-phonon couplings.

II. HAMILTONIAN

The Hamiltonian of the Jahn-Teller electron-phonon sys-
tem on a 1D lattice is

H5(
n

FVS (
i51,2

bin
† bin11D 1

a

2
~c2n

† c2n2c1n
† c1n!

3~b1n
† 1b1n!2

b

2
~c1n

† c2n1c2n
† c1n!~b2n

† 1b2n!

2T~c1,n11
† c1n1c2,n11

† c2n1H.c.!G[H01HT . ~1!

Here, the optical phononsi51,2 are dispersionless,cjn ,cjn
†

are electron annihilation and creation operators related to
two degenerate levels,j51,2, respectively, and\51. The
first interaction term related to the difference of the electron
densities at two levels causes the splitting of the degenerate
level; the second interaction term represents phonon-assisted
transitions between the levels. Transitions between levels 1
and 2 of two neighbor sitesc1,n11

† c2n1H.c. are not allowed.
It is evident that the respective one-level problem turns to the
problem of the Holstein polaron.6

It is convenient to rewrite Hamiltonian~1! in the ‘‘spin’’
representation of electrons:

H5(
n

FVS (
i51,2

bin
† bin11D 1a~b1n

† 1b1n!szn

2b~b2n
† 1b2n!sxn2T~R11R21!I nG , ~2!

wherec1n
† c1n1c2n

† c2n5I n , and

sxn5
1

2
~c1n

† c2n1c2n
† c1n!,

syn5
1

2i
~c2n

† c1n2c1n
† c2n!, ~3!

szn5
1

2
~c2n

† c2n2c1n
† c1n!.

The Pauli matricesskn are related by@s in ,s jn#5 isk,n ,
i , j ,k5x,y,z; I n is a unit 232 matrix.Rn is an operator of
translation in a lattice space; it is defined byRnOm5Om1n
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andR1
N5I , Rnfn(k)5exp(ikn)fn(k).

19 Hamiltonian~2! is
a two-level multisite two-phonon Hamiltonian with transla-
tion symmetry.

III. GROUND STATE

A. Extended Fulton-Gouterman transformation

The FG transformations will be applied in three steps:~1!
a transformation which diagonalizes the local two-level
e-ph problem, ~2! a transformation which diagonalizes a
dominant term of the transfer part of the Hamiltonian, and
~3! the generalized FG~Bloch! transformation for the diago-
nalization of the translation-invariant electron lattice prob-
lem.

The ground state of the system given by the model above
will be chosen in the form of the translation-invariant Fulton-
Gouterman variational ansatz

CFG~k!5N21/2(
n

exp~ ikna!UnD~n!S~n!F~n!u0&,

~4!

whereF(n) is an electron amplitude vector of a two-level
local state,

F~n!5S f ~n!

g~n!D . ~4a!

The amplitudesf (n),g(n) are variational functions which
are to be determined. In Eq.~4!, u0& is the electron and
phonon vacuum state. Bloch electron wave vectors are
k5(2p/L)n, n561, . . . ,6N/2, L5Na, wherea is a lat-
tice constant. Further,D(n) andS(n) are phonon parts of the
variational ansatz representing unitary operators for coherent
states,

D~n!5exp
1

AN (
q,i51,2

@g iq~n!biq
† 2g iq* ~n!biq#, ~5a!

and for squeezed states,

S~n!5exp
1

AN (
q,i51,2

@z i~n!biq
†22z i* ~n!biq

2 #. ~5b!

Here, the displacementsg iq(n) and the parameters of
squeezingz i(n)5r iexp(2 iu i), i51,2, and their complex
conjugates are variational functions which are to be deter-
mined as well. Then dependence ofz i will be neglected:
This dependence is expected to be much weaker than that of
g iq(n) and would make the variational problem too compli-
cated. The ansatz~4a! is a generalization of the adiabatic
ansatz of the polaron theory with eitherg iq n independent or
periodically n dependent. Then dependence ofg iq(n) ac-
counts for an effect of electrons on the phonon variational
parameters. Further, the operatorUn[Un2Un1 with

Uni5
1

A2
S 1 1

Gni 2Gni
D , Gni5exp~ ipbin

† bin!, ~6!

is a unitary operator of a local Fulton-Gouterman transfor-
mation,Gni

2 51. Evidently,Un1 diagonalizes the local part of
the Hamiltonian~2!,

H̃0n5Un1
21H0nUn15VS (

i51,2
bin
† bin11D 1a~b1n

† 1b1n!I n

2b~b2n
† 1b2n!Gn1szn , ~7!

due to s̃xn[Un1
21sxnUn15Gn1szn , s̃zn[Un1

21sznUn1

5sxn , and Un1
21(b1n

† 1b1n)Un15(b1n
† 1b1n)sxn , where

s in , i5x,y,z are Pauli matrices, related to the siten. Be-
sides the shifts of the phonon operators related toa andb,
the effect ofe-ph interactions is represented by a highly
nonlinear way through the operatorGn1 , Eq. ~6! in the last
term of ~7!. This indicates the presence of many-phonon ef-
fects respected by the ansatz for the wave function, Eqs.~4!
and~5!. The nonlinear periodic term mediates multiple oscil-
lations of an electron between two levels due to the assis-
tance of phonons 1 and coupling to phonons 2.

The respective transformation of the hopping term of the
lattice Jahn-Teller Hamiltonian in~2!,

Vn,1[Un1
21R1Un15Un1

21Un11,15
1

2
~11Gn1Gn11,1!I n

1
1

2
~12Gn1Gn11,1!sxn5Vn,21 , ~8!

yields a nondiagonal form. When applying further the uni-
tary transformationUn2 we get for the terms of the local
Hamiltonian~7!

Un2
21~b2n

† 1b2n!Un25~b2n
† 1b2n!sxn ,

s̃zn5Un2
21sznUn25sxn ,

and for the transfer part~8!

Ṽn15Un2
21Vn1Un11,25

1

4
@~11Gn1Gn11,1!I n

1~12Gn1Gn11,1!Gn2szn#@~11Gn2Gn11,2!I n

1~12Gn2Gn11,2!sxn#5Ṽn,21[Ṽn . ~9!

According to~9! channels 1 and 2 are coupled due to the
participation of phonons 2 in the transfer introduced by the
Fulton-Gouterman transformation~9!. While in the initial
Hamiltonian~2! phonons 2 mediate local transitions between
channels 1 and 2~for givenn) due to the transformation~9!
the nondiagonality is revealed due to the hopping transfer of
phonons 2. However, the dominant contribution of phonons
2 in ~9! is diagonal.

In the continuum approximation the nondiagonal term in
~9! yields, under account ofG2

2(x)51,

12G2~x!SG2~x!1
dG2~x!

dx
a1

1

2

d2G2~x!

dx2
a2D

52
1

2
G2~x!

d2G2~x!

dx2
a252

1

2
G2~ x̄!

d2G2~ x̄!

dx̄2
k2.

~10!
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Here, we introduced the dimensionless quantitiesx̄5sx and
k5as as defined below@Eqs.~22a! and~22b!#. s is an extent
of the localization of a soliton used here as a relevant length
measure and defined by the ansatz~20! for the electron am-
plitude. Expression~10! is negligibly small if the change of
the phonon wave vector due to the scattering at the electron
at the distance of a soliton widthk21 fulfills the condition
(Dq̄k)2!1. This condition forDq̄ is respectively weakened
by the fact that the inverse soliton widthk!1. Then, the

nondiagonal part~10! can be neglected and the diagonal part
of Eq. ~9! in this case yields

Ṽn'
1

2
~11Gn,1Gn11,1!I n1

1

2
~12Gn,1Gn11,1!Gn,2szn .

~98!

In the momentum representation we get, with the use of~7!–
~9!, the Hamiltonian~2! in the form

H5(
q

FVS (
i51,2

biq
† biq11D 1

1

AN(
n

$a@b1q
† exp~ iqna!1b1qexp~2 iqna!#I n2b@b2q

† exp~ iqna!

1b2qexp~2 iqna!#Gn,1I n%G2T
1

AN(
n

$Ṽn†R1
~ph!exp@ i ~pn112pn!#1R21

~ph!exp@2 i ~pn112pn!#‡%. ~11!

Here,q5(2p/N)m, m561,62, . . .6N/2, andbiq5 1/AN (nexp(iqna)bin , i51,2. In Eq.~11! we introduced the electron
momentum operatorspn which apply to the electron amplitudesf n , exp@ i (pn112pn)# f n5 f n11 . The operatorsR61

(ph) apply to
the phonon part of the wave function.

B. Self-trapping effect with complex displacement and squeezing parameters

The aim of this section is to calculate the ground state energy of the Hamiltonian~11! with the reduced phonon transfer term
~98! for weakly scattered phonons 2 and find an effective self-trapping in the framework of the Fulton-Gouterman variational
ansatz ~4!. Let us first transform the Hamiltonian~11! by the unitary operatorsD(n) and S(n) defined by ~5a,b!;
H̃(n)5S(n)21D(n)21HD(n)S(n). The result for the Hamiltonian densityH̃(n) reads as follows:

H̃~n!5(
q

S V (
i51,2

H cosh~4r i !Fbiq† biq1
1

2
1ug̃ iq~n!u21g̃ iq~n!biq

† 1g̃ iq* ~n!biqG1
1

2
sinh~4r i !$e

2 iu i@biq1g̃ iq~n!#21H.c.%J
1

a

AN
ˆ$cosh~2r 1!~b1q

† 1g̃1q* !1e2 iu1sinh~2r 1!@b1q1g̃1q~n!#%exp~ iqna!1H.c.‰I n2
b

AN
ˆ$cosh~2r 2!~b2q

† 1g̃2q* !

1e2 iu2sinh~2r 2!@b2q1g̃2q~n!#%exp~ iqna!1H.c.‰G̃n,1I nD 2TṼn$R̃1
~ph!exp@ i ~pn112pn!#

1R̃21
~ph!exp@2 i ~pn112pn!#%. ~12!

In Eq. ~12! we defined

g̃ iq~n!5g iq~n!cosh2r i1g iq* ~n!eiu isinh2r i . ~13a!

Evidently, the respective inverse transformation reads

g iq~n!5g̃ iq~n!cosh2r i2g̃ iq* ~n!eiu isinh2r i , i51,2. ~13b!

For the evaluation of expression~12! we used formulas~A1!–~A5! of Appendix A. Further,R̃61
(ph) is given by~A5!–~A7!.

Using formulas~A5!–~A8! for the averaging of the transfer term in~12! over the phonon part of the wave function~4!, we
obtain exactly

T̃~n!5T^0phuṼnR̃61
ph u0ph&5

T

4
exp@2W~n!#H F11

1

2
@e1~n!1e1* ~n!#G I n1F12

1

2
@e1~n!1e1* ~n!#Gexp~22ug2n~n!u2!sznJ

3H F11
1

2
@e2~n!1e2* ~n!#G I n1F12

1

2
@e2~n!1e2* ~n!#GsxnJ , ~14!

where, in the continuum representation, we have according to~A6! and ~A7!,

W~x!5
1

2AN
a2 (

q,i51,2
H FReS e2 i u i /2

dg iq

dx D G2e24r i1F ImS e2 i u i /2
dg iq

dx D G2e4r iJ . ~14a!
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and, according to~A8!,

e i~n!5expF2
1

2
„ug̃ i ,n~n!u21ug̃ i ,n~n11!u21ug̃ i ,n11~n!u21ug̃ i ,n11~n11!u2…2g̃ i ,n~n11!g̃ i ,n* ~n!2g̃ i ,n11~n11!g̃ i ,n11* ~n!G .

~14b!

Here, g̃ i ,m(n)5(1/AN)(qg̃ i ,q(n)exp(iqma) is a nonlocal expression. In the continuum limit it becomes local ase i(n), Eq.
~14b!, tends to

e i~n!→e i~x!5e i* ~x!5exp@24ug̃ i~x!u2#. ~14c!

From Eq.~14!, it is evident that the participation of phonons in the transfer opens a gapD5^ f uD(x)u f &, where

D~x!5
T

2
exp@2W~x!#$12exp@24ug̃1~x!u2#%exp@22ug̃2~x!u2#$11exp@24ug̃2~x!u2#%. ~15!

The gapD represents a joint effect of phonons 1 and 2, coupled to the electron transfer term, to the band splitting in the
extended Jahn-Teller model. Both bands are coupled due to the participation of phonons 2 in the transfer@Eq. ~10!#, unless this
contribution could be neglected for weakly scattered phonons.

In what follows we shall investigate the case of a soliton, i.e., either the one-level case of a Holstein polaron,b50, or a
qualitatively equivalent reduced case with negligible coupling~10! of channels 1 and 2~a modified Holstein polaron!.

We shall go over to the continuum (pn112pn→pa) and expand into series exp(6 ipa) near the bottom of the lower band
@specified bysz151 in ~14!#, neark50. ~For the upper band the expansion would be performed neark5p/a). Then, using
the formulas~A9!–~A12!, we obtain for the effective density of the Hamiltonian~12! as an average in the FG state~4!
@sz151 in ~14!#

^CFGuH̃~x!uCFG&5
V

2(
i
cosh4r i1

1

AN(
i ,q

^ũiquVcosh4r i1T̃a2A†Auũiq&1
V

2
sinh4r i~^ f ug̃ iqe

2 iu iuũiq&1^ũi ug̃ iq* e
u iu f &!

1a
1

AN(
q

$cosh2r 1@^ũ1quexp~2 iqx!u f &1 H.c.#1sinh2r 1@e
iu1^ũ1quexp~ iqx!u f &1H.c.#%

2b
1

AN(
q

$cosh2r 2†^ũ2quexp~2 iqx!exp@22ug̃1~n!u2#u f &1H.c.‡

1sinh2r 2†e
iu2^ũ2qu exp~2 iqx!exp@22ug̃1~n!u2#u f &1H.c.‡%1^ f uT̃~x!u f &^ f u221~ap!2u f &. ~16!

In Eq. ~16! the auxiliary states

uũiq&5ug̃ iq f & ~17!

were defined, whereg̃ iq(n) are given by Eq.~13a!.
The confinement to small electron momentap made it

possible for us to express part of the averaged Hamiltonian
~16! in a convenient compact form by the use of the operator

A5
1

f

d f

dx
2 ip.

An identityAu f &50 is evidently fulfilled: It allows an inter-
pretation ofA as a soliton annihilation operator and simpli-
fies the calculation of the related matrix elements in the next
section. The operatorA was introduced by Nagy22 and was
used with convenience in a variational problem of a free
electron interacting with acoustic phonons.

In the last term of Eq.~16! we decoupled the electron
term, which was approved ifT̃ varies much more slowly
with x than f (x). The reduced transfer matrix element
of T̃, Eqs.~14!–~14c!, reads

TR[^ f uT̃~x!u f &5
T

2
^ f uexp@2W~x!#

3„11exp@24ug̃1~x!u2#1$12exp@24ug̃1~x!u2#%

3exp@22ug̃2~x!u2#…u f &, ~18!

whereW(x) is given by Eq.~14a!. The coefficient ofT, Eq.
~18!, represents the reduction due to the self-trapping polaron
effect modified by the squeezing, Eq.~14a!, and a reduction
by exponential factors stemming from many-phonon effects
if g2Þ0. Consequently, the respective effective mass is
modified according tom*2152a2^ f uT̃(x)u f &. If b50, then
g2(x)50 and TR5T^ f uexp@2W(x)#uf&. Formula ~14a! for
W(x) brings a generalization of the effective self-trapping
effect found by Zheng21 and Feinberget al.9 for the Holstein
polaron in the framework of coherent and squeezed states
with real displacementsg iq and a real parameter of squeez-
ing, u i50. Evidently, the generalization to complex param-
eters brings a new term in the exponent which grows}er i
and introduces au i dependence. For the final effect, how-
ever, an explicit evaluation ofg iq(x) or g̃ iq(x), Eq. ~13!, is
necessary and will be performed in the next section.
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The classical caser i5u i50 reduces to the problem
solved by Brizhiket al.11 This case of a polaron resembles
also the problem of the acoustic polaron as it was presented
by Nagy.22 These facts lead us to the choice of the varia-
tional ansatz for the respective local electron amplitude
f (x), Eq. ~4a!, in a form compatible with the known adia-
batic solution for the ground state of the electron~exciton! in
the Holstein model6 and in the Davydov model8 which imply
the nonlinear Schro¨dinger equation for the electron ampli-
tude f (x). The respective adiabatic solution reads

f ad~sx!5~asad!
1/2

1

A2
sech~sadx!, asad5

aad
2

4V2T
[mad,

~19!

asad being a dimensionless inverse soliton width andT a
bandwidth parameter. The adiabatic approximation in the
above-mentioned models was approved for largeT. An
analogous result for the exciton-acoustic phonon adiabatic
ground state was obtained, e.g., by Venzl and Fischer23 and
by Nagy in his generalized adiabatic variational approach.22

It should be noted that the soliton solution~19! breaks the
translational invariance of the problem. As is known, it can
be restored by introducing an arbitrary constantx0 into the
argument off (sx) as f @s(x2x0)#.

IV. STABILITY OF THE SOLITON AGAINST QUANTUM
FLUCTUATIONS

The aim of this section is to investigate the stability of a
ground state with a localized solution of the type~19! with

respect to quantum phonon fluctuations included in the
Hamiltonian~16! with T(x), Eq. ~14!, diagonal (b̄50) or,
equivalently, with the negligible nondiagonal term~10! when
the related conditions found above are fulfilled. To this pur-
pose, we shall assume the shape of the electron amplitude
f (sx) of the quantum ground state~4a! in a form similar to
~19!,

f ~sx!5~as!1/2
1

A2
sech~sx!, ~20!

taking s as an electron variational parameter, and minimize
the energy~16! with respect to the electron and phonon
variational parametersk5as and g̃ iq(x),g̃ iq* (x).

In view of the form of the averaged energy~16! it is
convenient to minimize it with respect to the auxiliary states
uũiq& Eq. ~17!. This way of minimization is not quite exact as
in expression~16! there occur alsog̃ iq ,g̃ iq* explicitly. How-
ever, this effect can be accounted for by iteration of the
g iq’s at the end. Then, from

]^H/TR&

]^ũiqu
50, ~21!

we get operator equations foruũiq&,

~V̄cosh 4r 11k2Ā†Ā!uũ1q&1āFcosh2r 1expS 2 i q̄
x̄

k D1sinh2r 1e
iu1expS i q̄ x̄k D G u f &50, ~22a!

~V̄cosh4r 21k2Ā†Ā!uũ2q&2b̄Fcosh~2r 2!expS 2 i q̄
x̄

k D1sinh~2r 2!e
iu2expS i q̄ x̄k DexpS 2

i q̄ x̄

k
22ug̃1~ x̄!u2D G u f &50.

~22b!

Here, we went over to dimensionless variables by rescaling the HamiltonianH̃5H/TR , Eq. ~21!, and consequently also the
variablesV̄5V/TR , ā5a/TR , b̄5b/TR , where TR was defined by Eq.~18!. Further, we definesx5 x̄, p5sp̄, and
A5sĀ in order to eliminates from the function f (sx)5 f ( x̄). We introduced also the dimensionless quantitiesk5sa,
q̄5qa. From Eqs.~22! we can findg iq( x̄). The result is

g1q~ x̄!52āexpS 2 i q̄
x̄

k D @V̄cosh4r 11q̄222k2~12tanh2x̄!2 i2q̄ktanhx̄ #21, ~23a!

g2q~ x̄ !5 b̄expS 2 i q̄
x̄

k
22ug̃1~ x̄ !u2D F V̄cosh4r 21q̄222k2~12tanh2 x̄ !12ikS q̄2 ik

d

dx
ug̃1~x!u2D tanhx̄

24ikS q̄ d

dx
ug̃1~x!u22 ik

d2

dx2
ug̃1~x!u2D G21

. ~23b!

The x̄ dependence of the nonperiodic part ofg̃ iq( x̄) represents the localizing influence of a soliton on phonons at the soliton
width scalek21.

There remains to minimize the energy~16! with respect to the electron variational parameterk defined above.
Let us substitute the functions~22! into the mean energy~16!. The result reads, up to orderā2 and b̄2,
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E~k;r 1 ,r 2 ;u1 ,u2 ;ā,b̄,V̄!5^CFGuH̃uCFG&5
V̄

2(i cosh4r i221^ f ua2p̄2u f &2
ā2

V̄AN(
q

^ f uQqu f &

2
b̄2

V̄AN(
q

^ f uexp@22ug̃1~x!u2#Qqexp@22ug̃1~x!u2#u f &. ~24!

In Eq. ~24! we defined

Qq5V̄~V̄1q̄222q̄k p̄1k2Ā†Ā!21. ~25!

This quantity is rewritten into a more suitable form in Appendix B. There its mean value^ f uQqu f & is also calculated, which
appears in Eq.~24!.

The exponential reduction of the last term in~24! enhances the energy of the ground state. This reduction is due to a
decrease of the transition probability between two split levels by the self-trapping due to phononsi51 nonlinearly coupled to
phononsi52.

In order to makeE(k;r 1 ,r 2 ;u1 ,u2 ,ā,b̄,V̄), Eq. ~24!, more suitable for variational calculations, we shall simplify it for
small ā and b̄ or for smallk. We expect a weakx dependence ofW(x) and of ug i(x)u2 given by~23a! and~23b! and write

TR5T^ f uexp@2W~x!# 12 †11exp@24ug̃1~x!u2#1$12exp@24ug̃1~x!u2#%exp@22ug̃2~x!u2#‡u f &

'Texp†2^ f uW~x!2 ln1
2 „$11exp@24ug̃1~x!u2#%1$12exp@24ug̃1~x!u2#%exp@22ug̃2~x!u2#…u f &b‡[Texp~2G!.

~26!

Here, the dominant term ofG is k independent@see Eqs.~23!# and the remaining terms are slowly varying withk for k small;
therefore we shall considerG ask independent. Evidently, forb50, G5^ f uW(x)u f &. Similarly, we assume

^ f u(
q

exp@22ug̃1~x!u2#Qqexp@22ug̃1~x!u2#u f &'(
q

^ f uQqu f &exp@24^ f uug̃1~x!u2u f &#. ~27!

In Eq. ~27! the integration overq can be performed by the use of the relation

1

AN
ā2

V̄V
(
q

5
a2

V2TR

a

2pE2p/a

p/a

dq[
mR

p E
2p

p

dq̄, mR5
a2

2V2TR
[mexpG, ~28!

G was given by~26! andm5a2/2V2T.
In Eq. ~27!, g̃1(x) is given by~14a! and ~23a!. Evidently, the exponential reduction factor in~27! reads

ug̃1qu25ug1qu2cosh4r 12
1

2
sinh4r 1~g1q*

2eiu1g1q
2 e2 iu!, ~28a!

where

ug1qu25ā2$@V̄1q̄222k2~12tanh2x̄!#214q̄2k2tanh2x̄ %21, ~28b!

g1q
2 5ā2expS 22i

q̄x̄

k D @V̄1q̄222k2~12 tanh2x̄!2 i2q̄ktanhx̄ #22, ~28c!

and

g1q*
2eiu1g1q

2 e2 iu52ā2$@V̄1q̄222k2~12tanh2x̄!#214q̄2k2tanh2x̄ %22

3„cos~2q̄x̄/k2u1!$@V̄1q̄222k2~12tanh2x̄!#224q̄2k2tanh2x̄ %

12sin~2q̄x̄/k2u1!q̄ktanhx̄ @V̄1q̄222k2~12 tanh2x̄!#…. ~28d!

In the case of the Holstein polaron,b50, Eq.~23b! impliesg2(x)50 ande2(x)51 @Eqs.~15b! and~23b!#, and, according to
Eq. ~14!, the problem becomes diagonal exactly. Then, with the use of Eqs.~25!–~28!, Eq. ~24! yields

E~k;r 1 ,r 2 ;u1 ,u2 ;m,V̄!2
V̄

2(i cosh4r i125
1

3
k22

m̄

pE2p

p

dq̄^ f uQqu f &. ~29!
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Here, m̄5mexp(G). The matrix element̂ f uQqu f & is calculated in Appendix B. Details of the integration overq̄ in ~29! are
presented in Appendix C.

According to Appendix C, Eq.~29! yields finally

Emin[E~k;r 1 ,r 2 ;u1 ,u2 ;m,V̄!2
V̄

2 (
i51,2

cosh4r i12

5
1

3
k22

2m̄

~11V̄/k2!1/2
H k

3
1

d

k
1

d2

2k
2

d2

~p21d2!
1
2d

p
arctan

p

d
1

1

4p
@S~k,d!2S~k,2d!#J . ~30!

We defined@see~C3!#

S~k,d![S~1,k,d!5F4k
k1d

2k1d
1~d12k!S 11

d

k D1
d2

2k1dGarctan p

d12k
,

and d5d(k,V̄)5(k21V̄)1/22k. Numerical evaluations of
E(k,V̄,m̄), Eq. ~30!, are plotted in Figs. 1~a!, 1~b! and 2,
with m̄ defined in ~29! and V̄5V/TR as parameters, and
r i5u i50. E(k,V̄,m̄) exhibits a minimum for
k5kmin(V̄,m̄) only for a sufficiently largem̄, m̄.mcrit(V̄).
As we utilized the soliton bare ansatz~20! for the evaluation
of ~29!, the terms withd there are considered as perturba-

tions,d, 1
3 k2 or V̄, 2

3 k31 1
9 k4.

The dependence ofkmin[k(V̄,m̄) is plotted in Fig. 3.
The phase diagram (m̄,V̄) is shown in Fig. 4. A line
m̄crit(V̄) of critical coupling parameters results: At
m̄(V̄).mcrit(V̄) the electron-phonon interaction gives rise to
a finite soliton widthl(V̄)5k21(V̄). If m̄(V̄),mcrit(V̄),
then the quantum fluctuations destabilize the soliton.

In order to get the adiabatic limit of~30! and compare it
with the Holstein result~19! we have to have a clear defini-
tion of m in Eq. ~29! for the adiabatic case. If in the classical
Hamiltonian the coefficient of the interaction term isaad,
then by transformation to quantum normal phonons it be-
comesa→aad/A2. Our choicea/2 as the respective coeffi-
cient in~1! yieldsaad/2→a/(2A2). Then, the adiabatic limit
of Eq. ~30! yields

Ead~k,m̄ad!125^ f uk2p̄22m̄ad(
q

Qqu f &5
1

3
k22

2

3
m̄adk.

~31!

By minimization of~31! with respect tok, we obtain for the
adiabatic ground state finally

kad5asad5m̄ad5a2exp~Gad!/4V2T5
m

2
exp~Gad!

5madexp~Gad!, ~32!

There, Eqs.~14a! and ~26! imply

FIG. 1. ~a! EnergyE(k,m̄), Eq. ~27!, in the adiabatic case and
in the quantum case fork3.V̄5V/T, V̄50.001, m̄50.1,
0.2,. . . ,0.9, r i5u i50, i51,2. For the adiabatic curves
E(k50,m̄)50. The term exp(22J) in ~27! contributes for
2k2,V̄, i.e., beyond the scope of validity of the perturbation
theory, V̄,k3. The curves are not plotted in this region.~b! The
same forV̄50.005.

FIG. 2. Energy E(k,m̄) for m̄51.8 and V̄50.5, 0.005,
r i5u i50.
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Gad5
1

2AN
a2(

q,i
K fUU dg iq

dx U2U f L .
Using ~32! we obtain for the dimensionless adiabatic

ground state energy~31!

Ead~mad!12exp~2Gad!52
mad
2

3
exp~Gad!

52
a4

48V4T2
exp~Gad!. ~33!

The preexponential term is identical with the corresponding
result by Holstein.6 It is evident that the self-trapping effect
lowers the soliton ground state energy~33! and increases
k, Eq. ~32!; i.e., it lowers the soliton width which means
increasing of the soliton stability.

If bÞ0, then instead ofm̄ in Eq. ~30! we have

m̄→mRS 11
b̄2

ā2 exp~22mRJ! D , ~34!

where

J[J~k,V̄,r 1 ,u1!5
V̄T

p E
2`

` dx̄

cosh2x̄
E
0

p

dq̄S H F11
q̄2

V̄
2
2k2

V̄
~12tanh2x̄!G21 4k2q̄2

V̄
tanh2x̄J 21

cosh4r 1

2
1

2
sinh4r 1H F11

q̄2

V̄
22

k2

V̄
~12tanh2x̄!G214

q̄2k2

V̄
tanh2x̄J 22

3S cos~2q̄x̄/k2u1!H F11
q̄2

V̄
22

k2

V̄
~12tanh2x̄!G224

q̄2k2

V̄
tanh2x̄J

12sin~2q̄x̄/k2u1!q̄ktanhx̄F11
q̄2

V̄
2
2k2

V̄
~12tanh2x̄!G D D . ~35!

The integralJ, Eq. ~35! diverges (J→1`) for V̄,2k2;
therefore in the region relevant for the nonadiabatic contri-
butions to the soliton ground state the contribution of the
exponential term in~34! is zero. On the other hand, this
contribution is finite forV̄.2k2, i.e., out of the region of
soliton stability.

V. CONCLUSION

Generally, the extended Jahn-Teller Hamiltonian~1! does
not admit the Fulton-Gouterman ground state with a local-
ized ~soliton! electron amplitude. The reason is that phonons
2 which in the original Hamiltonian~1! couple the JT levels
participate also in the transfer of electrons due to many-

phonon effects. If the change of the phonon wave vector due
to their scattering at electrons during the transfer at a dis-
tance of a soliton width is small, then this effect was shown
to be negligible. Then the problem becomes effectively a
one-level problem qualitatively equivalent to the problem of
a Holstein polaron with parameters renormalized due to
phonons 2: The reduction factor exp@2W(x)# is additionally
reduced@see Eq.~26!#. For this case, one can summarize
following results.

~i! Expression~15! related to the band splitting implies
that the gap is opened by the interaction of the electron states
with phonons 1 during their transfer in the lattice and a si-
multaneous coupling to phonons 2. The gap is narrowed by

FIG. 3. Inverse width of the solitonk vs m̄ andV̄. Note that the
adiabatic curve (V̄50) starts atm̄crit

adÞ0.

FIG. 4. Phase diagramm̄ vs V̄. View of the surface in Fig. 3
from above. The dark region of the soliton instability is separated
from the region of stability by the curvemcrit(V̄).

54 3281NONADIABATIC EFFECTS IN A SOLITON GROUND . . .



the self-trapping effect—the self-trapping is further modified
by the quantum effects discussed next.

~ii ! The soliton ground state is affected by quantum fluc-
tuations: The measure of the influence is the ratio of the
phonon and electron energy scales,V̄5V/TR . This ratio is
modified by the self-trapping effect determined by the com-
plex displacements and complex squeezing parameters: The
self-trapping polaron effect given by Eqs.~26! and ~14a!
reduces the bandwidthT by a factor which includes a joint
effect of electrons on the phonon displacementsg iq(n) and
of the squeezing. It consists of two competing contributions
~14a!: ~1! a term

FReS dg iq

dx
e2 iu i /2D G2e24r i

weakens the self-trapping, and~2! a term

F ImS dg iq

dx
e2 iu i /2D G2e4r i

competing with~i! enhances the self-trapping.
Evidently, the effect~2! is present if at least one of

Img iq(x) or u i is nonzero. Equations~23a! and ~23b! imply
that Img iq contributes ifkÞ0 andqÞ0, simultaneously.

Nonadiabatic effects due toV̄ become evident if one
compares the result~30! with the adiabatic one~31!. In Eq.
~30!, there are nonadiabatic contributions related tod(k,V̄)
(d→0 if V̄→0). The perturbation theory used for the calcu-
lation of the energy~30! is valid only ford,k2/3, i.e., when
accounting for the definition of d, Eq. ~30!, for

V̄, 2
3 k31 1

9 k4. From the numerical evaluation of the for-
mula ~30! plotted in Figs. 1~a! and 1~b! we see that the
curves exhibit local minima which represent soliton ground
states. These minima disappear for smallm̄5mexp(G). As
G enhances the effective interactionm̄, it stabilizes the soli-
ton due to the respective decrease of the soliton width
l5k21, (k}m̄). In the Figs. 1~a! and 1~b! the energies in
the region of smallk are not plotted as this region is beyond
the validity of our perturbation theory.

Nonadiabatic effects compete the self-trapping: For a
weak effectivee-ph couplingm̄,mcrit they destroy the sta-
bility of the soliton: the minimum of the ground state energy
disappears@Figs. 1~a! and 1~b!#. Above the critical coupling
they shift the minimum of the ground state energyE(k), Eq.
~30!, to lower values ofkmin ~higher values of the width of
the solitonl).

~iii ! Further, the contribution of the many-phonon effects,
}b̄2 in ~34!, is zero forV̄,2k2. On the other hand, they are
shown to contribute forV̄.2k2, i.e., out of the region of the
stability of the soliton against the quantum fluctuations dis-
cussed above.

From Fig. 3 and from the phase diagram at Fig. 4 we see
also a shift of themcrit(V̄) to higher values with increasing
V. There exists a line ofmcrit(V̄) increasing withV̄ above
which the soliton remains stable~Fig. 4!. Let us note that we
did not perform a numerical analysis of the ground state
energy forr i , u i50 as the respective set of equations for the
ground state would be too complicated and the respective
corrections relatively very small.
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APPENDIX A

For calculation of the mean value of the Hamiltonian~11!
in the state~4! we need the following transformations:

D~g!S~z!5S~z!D~ g̃ !, g̃5gcosh~2r !1g* eiu sinh~2r !,

z5reiu, ~A1!

D21
„g̃ iq~n!…biqD„g̃ iq~n!…5biq1g̃ iq~n!, i51,2,

~A2!

S21~z i !biqS~z i !5biqcosh2r i1biq
† eiusinh2r i , ~Ref. 25!,

~A3!

S21
„z i~n!…D21

„g iq~n!…pnD„g iq~n!…S„z i~n!…

5pn1 i
1

AN(
q

(
i51,2

Fdg iq

dn
cosh2r i

2
dg iq*

dn
e2 iu sinh2r i Gbiq† 1H.c., ~A4!

R̃1
~ph!5S21

„z i~n!…D21
„g iq~n!…R1

~ph!D„g iq~n!…S„z i~n!…

5S21
„z i~n!…D„g iq~n!…21D„g iq~n11!…S„z i~n!…S21

„z i~n!…S„z i~n11!…, ~A5!
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where

S21
„z i~n!…D21

„g iq~n!…D„g iq~n11!…S„z i~n11!…

5expS 2
1

2AN(
q,i

H 14 @e2 iu/2G iq~n!1H.c.#2e24r i2
1

4
@e2 iu/2G iq~n!2H.c.#2e4r iJ D

3exp
1

AN(
i ,q

$@@G iq~n!2G iq* ~n!e2 iu#biq
† 1@G iq~n!eiu2G iq* ~n!#biq#e2r i

1@@G iq~n!1G iq* ~n!e2 iu#biq
† 2@G iq~n!eiu1G iq* ~n!#biq#e22r i% ~A6!

and

^0uS„z i~n!…21S„z i~n11!…u0&5expH 2
a2

AN(
i

F S dridxD 21r i
2S du i

dx D 2G J 51, ~A7!

as we supposer i andu i to be independent ofx.
In ~A6! we definedG iq(n)5g iq(n11)2g iq(n).
Calculation of the phonon mean value of~14! leads to

e1~n![^0n11,0nuDn
21
„g̃1n~n!…Dn11

21
„g̃1n~n!…Sn

21Sn11
21 ~21!b1,n11

† b1,n11~21!b1,n
† b1,nSnSn11Dn„g̃1n~n11!…

3Dn11„g̃1n11~n11!…u0n ,0n11&

5 (
mn50

`

~21!mnug^g̃1n~n!umn&u2 (
l n1150

`

~21! l n11
g^g̃1,n11~n!u l n11&^ l n11ug̃1,n11~n11!&g

5expH 2
1

2
@ ug̃1n~n!u21ug̃1n~n11!u21ug̃1,n11~n!u21ug̃1,n11~n11!u2#2g̃1n~n11!g̃1n* ~n!

2g̃1,n11~n11!g̃1,n11* ~n!J , ~A8!

where

g̃m~n!5
1

AN(
q

g̃q~n! exp~ iqma!.

Evaluation of expression~A8! has been obtained using the
formulas~A9!–~A11!. They read25

^0uD21S21~21!b
†bSDu0&[g^gu~21!b

†bug.g

5 (
n50

`

~21!nu^nug&gu2,

~A9!

whereug&g5SDu0&5Sug& and,26

^nug&g5
1

~n!m!1/2S n

2m D n/2HnS g

~2mn!1/2D
3expS 2

ugu2

2
1

n* g2

2m D . ~A10!

Here m5cosh2r , n5e2 iusinh2r , umu22unu251, and Hn

are Hermitian polynomials.@The squeezing parameterm
used in the formula~A10! does not occur more so that it does
not interfere with the parameter of effective interactionm
defined by Eq.~28!#.

By the calculation of~A9! with the use of~A11!, the
following formula is necessary:27

(
k50

`
tk

k!
Hk1m~x!Hk1n~y!5~124t2!2~m1n11!/2expF4txy24t2~x21y2!

124t2 G (
k50

min~m,n!

22kk! Smn D
3S nkD tkHm2kS x22ty

A124t2
DHn2kS y22tx

A124t2
D , utu,

1

2
. ~A11!
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In our calculations we use continuum versions of the above
formulas when replacingna→x,

g iq~n11!2g iq~n!→
dg iq~x!

dx
a. ~A12!

APPENDIX B

In Eq. ~25! we defined an operatorQq which can be re-
written as

Qq5V̄~V̄1k222q̄k p̄1k2Ā†Ā!21

512
q̄2

~V̄1k2!1/2
ReE

0

`

dtexp$2t@~k21V̄!1/2

1 i ~ q̄2k p̄!#%. ~B1!

This form is suitable for calculation of the mean value of
~B1! which appears in Eqs.~24!, ~27!, and~28!, with the use
of a simple formula ^ f ueiktpu f &5kt/sinh(kt), where
f (x)5(1/A2)sechx. It yields

^ f uQqu f &512
q̄2

2k~V̄1k2!1/2

3ReC~1!S 11
~k21V̄!1/22k1 i q̄

2k D ~B2!

512
q̄2

2k~V̄1k2

3ReF 1

2z2
2

p2

2sinh2~pz!
2 iz(

l51

`
l

~ l 21z2!G ,
where z5$q̄2 i @(k21V̄)1/22k#%/2k. The digamma func-
tion C (1)(11x) Ref. 28 in Eq.~B2! was rewritten by using
the following identities

C~1!~11x!52C~1!~2x!2p2/sinh2~px!, ~B3!

C~1!~2x!5
1

x2
1(

l51

`
1

~x1 l !2
, ~B4!

p2

sinh2~px!
5

1

x2
22(

l51

`
1

~x21 l 2!
14x2(

l51

`
1

~x21 l 2!2
,

~B5!

and

(
l51

`
1

x21 l 2
5S cothx2

1

pxD p

2x
. ~B6!

APPENDIX C

In Eq. ~24! there is to evaluate*2p
p dq̄^ f uQqu f & where the

integrand is given by~B2!–~B6!. It is possible to perform it
exactly:

1

pE2p

p

dq̄^ f uQqu f &5
1

pE2p

p

dq̄F12
q̄2

2k~V̄1k2!1/2
ReH 2k2

~ q̄2 id!2
2

p2

2sinh2@~p/2k!~ q̄2 id!#

2 i S q̄2 id

2k D (
l51

`
l

$ l 21@~ q̄2 id!/2k#2%2
J G

5
1

pE2p

p

dq̄F12
q̄2

2k~V̄1k2!1/2
H 2k2

q̄21d2
2

4k2d2

~ q̄21d2!2
p

2
Re

1

sinh2@p~ q̄2 id!/2k#

1
1

2
ReS i q̄1d

2k D (
l51

`
d

dl

1

$ l 21@~ q̄2 id!/2k#2%
J G , ~C1!

FIG. 5. Ground state energyE(kmin ,m̄) for V̄,k3.
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whered5@(k21V̄)1/22k#. Expression~C1! except for the
last term is easy to obtain as

2S 11
V̄

k2D 21/2F d

k
1
2d

p
arctan

p

d
2

d2

p21d2
1

d2

2k
1

k

3G .
The integration of the last term of~C1! can be performed
exactly by simple but lengthy calculations. We obtain

2
1

2p S 11
V̄

k2D 21/2

(
l51

`
d

dl
@S~ l ,k,d!2S~ l ,k,2d!#,

~C2!

where

S~ l ,k,d!5F4k l 2
k l1d

2k l1d
1S l1 d

k D ~d12k l !1
ld2

2k l1dG
3arctan

p

d12k l
.

If we use the convenience of expression~C2! for integration
over l instead of the summation, we obtain

~C2!'
1

2p S 11
V̄

k2D 21/2

@S~1,k,d!2S~1,k,2d!#.

~C3!
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