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Kinetic features of phase separation under alloy ordering
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The microscopic mean-field kinetic equatiiFKE) proposed earlier is used to investigate the kinetics of
alloy decomposition in the presence of alloy ordering. A strong interaction between order and concentration
fields results in a number of peculiarities in microstructural evolution. The kinetics of spinodal decomposition
in ordered alloys has a number of distinct features as compared to disordered alloys; in particular, the ampli-
fication factor of the unstable composition fluctuations increases as the distance to the ordering spinodal rather
than as the square of the distance to the usual spinodal for disordered alloys. Microstructural evolution is
studied using computer simulations based on the MFKE. A great variability of transient microstructures as well
as a high sensitivity of the type of evolution to alloy composition, annealing temperature and thermal history
has been found. We describe a peculiar kinetic phenomenon which occurs in the regime of spinodal decom-
position with ordering: Antiphase boundaries “replicate,” generating approximately periodic patterns. We
discuss available experimental indications for this replication of antiphase boundaries.
[S0163-18286)07829-0

[. INTRODUCTION c. They are realized via diffusion of atoms for considerable
distances, which needs many intersite jumps for each atom

Ordering of alloys is often accompanied by phase separaand thus much longer timeis> 7. Therefore, if we have
tion. Such is the case, for example, when an initially homo-some expression for the Landau-type homogeneous free en-
geneous alloy is quenched into the region of two-phase equirgy F(c,»,T), it is natural to define the adiabati®r
librium between the ordered and disordered phases in thiconditional” ) free energyF ,(c,T)=F[c, 70(c,T),T] that
concentration-temperature-T) phase diagram. Kinetic fea- can be used to describe these slowly varying “partially
tures of such transformations received recently much atterequilibrated” or “macrononequilibrium” stateésee Ref. 6,
tion: see, e.g., Refs. 1-5. The character of the microstrucSec. 4 being equilibrated only over the “rapid” variable
tural evolution is determined by the relative position in the#. Using these considerations, AC defined together with
phase diagram of the initial pointT relative to the ordering F, the conditional spinodal lind.{c), defined in thec, T
spinodal To4c), i.e., the instability limit of the disordered plane by the equationstF ,/dc?)+=0, similarly to the defi-
phase with respect to ordering. Whee-To{(c) [area(c) in  nition of usual spinodals for disordered alldyShen stan-

Fig. 1], decomposition into the ordered and disordered
phases is realized via the usual nucleation and growth
mechanism, with no qualitative difference with other first-
order phase transitions, e.g., the decomposition of an alloy
into two disordered phases. However,Tat T {c) [area(d)

or (e) in Fig. 1], the kinetic evolution becomes complex and
peculiar, due to the presence of a number of simultaneous
kinetic processes with different relaxation times: ordering,
formation, and growth of antiphase domains, precipitation of
ordered and disordered phases, etc.

Kinetic features of such phase transformations have been
qualitatively discussed by Allen and CahfAC) in their
study of the Fe-Al alloy, the phase diagram of which is simi- 0.0
lar to that presented in Fig. 1 in a certain range of concen- '
trations and temperatures. AC noted that the transformation 5 ¢ Equilibrium phase diagranir(,c)=(T/T,,c) for the

kinetics here should have a “two-step” character. First, for a5, model used. Solid lines, boundaries of the disordéaednd
relatively short timet~ 7, wherer is the effective time for  ,,mogeneous orderdt) fields; areagc), (d), and(e) correspond to

one intersite atomic exchange, the degree of orger the two-phase region. Dashed line, ordering spinddgic); dot-
achieves its equilibrium value with the local concentrationdashed line, conditional spinoddl.{c); both lines cross at the

c: 7= no(c,T), where the functionyy(c,T) corresponds to tricritical point T, ,c,. Pointsa, B, y, and & show the alloy com-

the equilibrium homogeneous alloy. Further changes of th@ositions and temperatures chosen for the computer simulations de-
alloy state correspond to variations of the local concentratioscribed in Sec. lil.
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dard arguments show that at temperatures bélgfic) the  the relaxation of weakly nonequilibrium systems, to the es-
homogeneous alloy is unstable with respect to long-waveéentially nonequilibrium region. CK discussed mainly the
concentration fluctuations: Spinodal decompositi(®D) quencha—d in Fig. 1 atl<\., illustrating the above-
should occur. Therefore, when the initial pomfT lies be- mentioned two-step character of the evolution and precipita-
low both T4 c) andT.{c) [area(d) in Fig. 1], the alloy can tion of the disordered phase along APB’s at first stages of
decompose via SD, while at{c)<T [area(e) in Fig. 1]the ~ SD. CK also simulated tha—e type quencH,but it seems
decomposition is realized via nucleation and growth. that the decomposition stage has not been achieved in this

AC also noted that the presence of antiphase boundariggmulation(see below
(APB's) in the initial state(once the first-step local ordering Recently we proposed a mean-field kinetic equation
has been accomplishedhould have a significant effect on (MFKE) to treat the configurational kinetics of alloys at an
the decomposition kinetics. This effect is related to segregaarbitrary degree of nonequilibriuth! As in other statistical
tion at APB’s of the major component in nonstoichiometric problems, the mean-field approadMFA) correctly de-
alloys®® Such a segregation, combined with the depletion ofcribes the main qualitative features of phenomena, while for
the order parameter within the APB, makes the APB a possystems with long-range interactions its results can be true
sible embryo for the formation of the disordered phaseeven quantitatively?'® As was discussed in Ref. 10, the
Therefore, one more important parameter determining thabove-mentioned equation of QRefs. 3—5 corresponds to
transformation kinetics is the density of APB'’s or the char-a partial linearization of the MFKE, and will therefore be
acteristic sizel of the ordered domains in the initial state. referred to as the “partially linearized kinetic equation”
The type of microstructural evolution under SD is deter-(PLKE). Unlike the PLKE, the MFKE takes into account the
mined by the relation betwedrand the wavelength, of the  dependence of microscopic kinetic coefficients on local val-
fastest growing concentration waves, to be called the “criti-ues of  andc. Thus the MFKE can be used to study not
cal” concentration waves. The value af, determines the only general trends of structural evolution, but also strictly
characteristic period of the microstructure at the first stagekinetic problems, such as the concentration, temperature, and
of SD."*®WhenlI>\., the presence of APB’s should have time dependence of kinetic characteristics. This was illus-
little effect on SD, while fol <A\, the precipitation of the trated in Ref. 9 with a microscopic investigation of the APB
disordered phase starts mainly on APB’s. Similarly, in areamotion. Here we apply the MFKE to study kinetic features of
(e) of Fig. 1, APB’s can serve as embryos for nucleation ofalloy decomposition under ordering.
the disordered phase. In Sec. Il we present the above-mentioned stability analy-

The qualitative considerations of AC have been supportedis for the ordered alloy quenched into afdaof Fig. 1, to
by a number of experiments; see, e.g., Refs. 1,2, and 4. liflustrate and specify the general considerations of (R&f.
particular, transient microstructures typical of SD have beeri) about the features of “conditional” SD. We found a num-
observed in Fe-Al alloys after quenchingdgl values sup- ber of peculiarities in the kinetics of these SD, due to the
posed to correspond to aré in Fig. 1% At the same time, presence of a strong coupling between local fluctuations of
a minor variation ofc and T, from c1=c’l*'=0.247, ¢ and 5. In particular, the dependences of incrementsf
T,=841Ktoc,=0.249,T,=843 K, drastically changed the the concentration waves for this SD, onT and the wave
type of microstructural evolution, converting it into that numberk, differ noticeably from those for conventional SD
characteristic of nucleation growthThis can be naturally in disordered alloy$,particularly whenc, T values are close
explained if one supposes that the transition fromT, to  to the ordering spinodal,{c).

c,, T, corresponds to the transition from aréd to (e) in In Sec. lll we investigate the features of microstructural
Fig. 1. evolution after various type of quenches: {ajd),

In their work! AC discussed only the most general fea- (b)— (d), and (a)-(e) in Fig. 1. We use simulations based
tures of phase transformations, using mainly thermodynamion the MFKE for the same two-dimensional alloy model as
arguments. Thus they did not consider details of the kinetithat in Refs. 3—5. Our results illustrate a significant sensitiv-
processes. In particular, they did not present the linear staty of the type of evolution to the quenching conditions, in
bility analysis for the ordered homogeneous alloy in the unparticular, to the position of the initia, T point in the phase
stable region, similar to that given by Cdhior the disor- diagram. We also discuss a number of features of evolution
dered phase. Such an analysis would provide, in particulanot mentioned earlier: the respective importance of the
explicit expressions for the main kinetic characteristics of the‘coagulation™'® and “evaporation-condensatiok* mecha-
first stage of SD, the wavelengiy(c,T), and the amplifi- nisms of precipitation at different stages of coarsening,
cation factor(incremeny p.(c,T) of the critical concentra- growth of a disordered single-connected precipitate from the
tion waves’*° AC discussed neither the variation of transientinitial APB-shaped embryo, etc. To estimate the scale and
morphologies with concentratianand temperatur@ within character of errors brought about by using the PLKE instead
each area of Fig. 1 nor the evolution of isolated APB’s underof the full MFKE, we also compare our results with those of
SD, nor other microscopic details of the evolution. To treatRefs. 3—5 and conclude that the errors can be significant.
these problems, elaboration of microscopic kinetic models is In Sec. IV we discuss an unusual type of microstructural
evidently needed. evolution under SD that can arise near an isolated APB. It

Later some of the considerations of AC were illustratedmay occur, for example, when the alloy first annealed in area
by Chen and Khachaturyam (CK) with computer simula-  (b) is quenched into are@l) in Fig. 1. We show that certain
tions based on a simplified kinetic equation. The latter corapproximately periodic structures replicating the initial APB
responds to some arbitrary extrapolation of the phenomenshape can be formed here at intermediate stages of evolution.
logical Onsager equatiofsee Ref. 6, Sec. 120describing We also discuss possible evidence of this peculiar self-
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organization phenomenon in available experimental Hata. Yk-0, Uk, andug=u,_, are the Fourier components of the
In Sec. V we discuss the accuracy of our MFKE in de-functions y(r), v(r), andu(r):

scribing phase transformation kinetics. To this end we apply

this equation to the problem of transient ordered states under

phase separation into disordered phases, which has been ykzg y(ryexp(ik-r), vkzz v(r)exp(ik-r),

studied earlier by CK using the PLK®,and also by Rein- r r

hardt and Turchi using Monte Carlo simulatibh.Our

MFKE results show good qualitative agreement with those

of Ref. 16, which seems to support the applicability of the U=, u(r)exp(ik-r).

MFKE to problems treated in the present work. Our main r

conclusions are summarized in Sec. VI. o
The reduced free energly=BF (per sitg in the MFA

used here has the for(see, e.g., Ref. 20
Il. SPINODAL DECOMPOSITION OF THE ORDERED

ALLOY
f=clnc+c’Inc’ + % ¢oc?. ®)
In this section we investigate the time evolution of small
fluctuations in the local concentration and order parameter The spinodal curveT¢(c) is defined by the equation
values for the ordered homogeneous alloy. This analysis gengf/jc2=f_.=0: below T, f.. is negative. In our case
eralizes that given by Cahin his discussion of SD in dis- foe=2+ ¢o; thus Eq.(28) can be written as
ordered alloy§SDDA). The initial stage of SD described by

linear equations in this section will be called for brevity the
“Cahn stage.” P(K)=myok(—fec— @ko), 4

o e ooty Whefecio= gy . A he ineracton, i mos atactve
jumps of atoms. The time evolution of the mean occupation(negatlve atk=0, the differencapio in (4) is positive; such

numberc; of lattice sitei by an atomA is described by the IS also the case for the factgg which is the sum of posi-

MEKE as® tive terms y(r)(1—cokr). In the case of smalk in the
cubic lattice(treated in Ref. YEq. (4) takes the form
dg;
gt =2 VLol csexpel+ of) —cleiexp(¢f' + ¢B)]. P(k)=M"K*(—foc— AK?), )
S

(1)  where M’k? and Ak? mean expansions of the difference
myg and, respectivelyg,, at small k. Equation(5) for
p(k) coincides with that of CaHnand provides the micro-

) , . scopic expression for his phenomenological parameters
temperature,°c); = Zjvfic; is the MF potential acting ona 5, andM'T, AT, respectively, in our notation. According
p species located at site andvﬁ andvj; are related to the ¢ this equation, the wave numbley=2=/\. and the incre-
configurational potentialv =V*"*+VE®—2VA® and the mentp =p,., for critical concentration waves are given by
“asymmetric’ one u=VAA-VBB as yA=1/2 (u+v),
vB=1/2 (u—v). Both the jump probabilityy; and the in-
teraction potentials;; , u;; are supposed to depend only on

the intersite distance;, =i % (ry), vy =v(ry), The full equation(4) extends the results of Ref. 7 to arbitrary
andu;; =u(r;;). The potentialss andv are supposed to have ; o

. ] . L o wave numberk in the Brillouin zone, and thus to not nec-
a finite range of interaction: Specific effects of long-ranged

elastic interactiorfs’ are not discussed in this work. esslzeg:l){hzmgléf;e%nd rllgrsgee)\:vcit;/]ﬂ::‘feesrear:tsslablatticem the
First, we consider the case of a disordered alloy, to com- ite numbers. i in E P (1) are replaced with a pair of irlldiceS'
pare the MFKE results with those of the phenomenologicaF' ) d- P b '

. ap i
approach. For such an alloy the initial mean occupation ' M@ Vij—Umn, Wherem or n now number differents
(c;)=c is the same for all sites To study the time evolu- atomic cells. As in Refs. 1-5,9, for simplicity we consider
tioln of small fluctuationssc.=c.—c. we linearize the only structures made of two equivalent sublattices 1 and 2,
| 1 1

MFKE (1) in &c,= sc(r;) and proceed to their Fourier com- such as th®2 orL1, ordered phases. Then it is convenient
ponents 8¢, =3, dc(r)expikr). Writing Sc,= o (t) as to define the local “cell” values of the concentration and the

. . . der parameter, c,, and by the relations
5clex w in after standard manipulation or » &m m :
CkexppY), we obtain after standard manipulations Cim=Cm™* 7m, Com=Cm— 7m. Under perfect ordering, the

quantitiesc,=c(R,, and n,= n(R,,) are periodic in the

Here y,s= v, is the ¢;-independent part of the jump prob-
ability, ¢/=1—c;, ¢P=p(vPc);, B=1/T is the reciprocal

ke=(—fcd2A)Y2  pe=M'fZJ4A. (6)

p=p(k)=myo(—2= ¢, (28 cell coordinateR,, with periods of the ordered structure.
These periods exceed those of the original, disordered lattice;
m=cc’exp BuoC). (2p)  for example, periods of the cubB2 phase exceed those of
the underlying bcc lattice.
Here and belowz=1/cc’, c'=1-c, you=vo— Yk, and In the stability analysis we write(R) or »(R) as the sum

o= PBvy. The factorm in Egs.(2) determines the concen- of the lattice averagec=(c(R)) or n=(%(R)), and of
tration dependence of the mobilityl,*” while y,, yo=  small fluctuations that we write as Fourier series:
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and ¢, = Bv\. Equation(9) describes the relaxation of the
long-range order parameter.

The MFA expression for the reduced free enefgyBF
per site, generalizing E(3) to the ordered phase, has the

77(R)=7;+§k: Snexp —ikR). ) form?°

c(R)=c+; ocexp —ikR),

I\)IH

1 1_
Proceeding in Eq(1) from variablesc,,, andc,, to ¢, f==(c4Inc,+ culnc, +cqincy + coInch) + = e+ = 0o 72,
. . ! om o 2 2
and 7,,, using Eqs(7), and expanding the resulting kinetic (10)
equations inéc, and 87y, we obtain the zero-order equation
for the long-range order parametgft) and the set of linear Wwhere ¢, is the same as in E¢3). Using Eq.(10) we can
equations fordc, and 87, that describe fluctuation waves rewrite Eq.(9) as

with k#0.
To write these equations, it is convenient to simplify the dn 12 NN
notation of Fourier components of the function&?(R), i Yo XP(BUeC)(C1C1C2Co)  2sint(at/ ),
u“’(R), andv*#(R). To this end, instead of the intersublat- (12)

tice potentialsu*(R) and U“B(R) we define their linear

combinationsu, T, v, andy" which is a particular case of the general MFKEef. 18 for

the uniform ordering relaxation. Equatiori8)—(11) show
12 that the stationary statén/dt =0 corresponds to the ther-
modynamical equilibrium valugy= 7¢(c,T) determined by
the minimum off condition (9f/d7).=f,=0, as it should
be. These equations also show that the titpéor relaxation
to this equilibrium value is of the order of that for one inter-
T=p1-p12 (8)  site atomic exchange,~ 1/yg?, in accordance with the con-
siderations of AC.Let us also note that the uniform ordering
Fourier components of potential®) and of functions inetics was discussed in more detail by Gschwendl®

y*#(R) are sums over cell coordinaté® in the ordered with the use of a cluster-type approximation, more sophisti-
phase. We rewrite these components as sums over true intefated than the MEKE.

site distances, i.e., over lattice vectardn the disordered In the discussion of nonuniform fluctuations wikh O
phase. Let us define the ordered phase superstructure vecigé suppose for simplicity that partial equilibrium in the
ks by the relations exjksr)=1 when the lattice vector  |ong-range order parametery has been achieved:
connects sites of the same sublattice, 1 and 1 or 2 and 2, an,;lz 70(c,T). As mentioned in Sec. (and as seen from the
exp(ksr)=—1 whenr connects different sublattices, 1 and results below this is true, for example, for the long-wave
2. For example, for thd&2 phaseks=(1,1,1)2m/a where  flyctuations corresponding to concentration variations. Writ-
a |s the bcc lattice constant. Then the Fourier componentﬁ]g the wave amplitudes in(7) as &c,=sclexp(t),

Y’ U, vk, Tg, andvy can be written in a “covariant” S7= 6nexp(t), we obtain after manipulations the follow-

u=u't+u?? T=ull-

v=v+0v??

form: ing set of equations fosc and 677
1 _ 0 0_
Y= 7P=52 YL+ expliksn) Jexplikr), [Ace(k) —p1oci+ A, (K) 57¢=0, (129
r
Ac(K) Sci+[A,,(K) = p] o7 =0. (12b
Yit=yE ——2 y(r)[1—expikgr)]explikr), Here the matrix with coefficient®\,;(k) generalizes the

right-hand sidgRHS) of Eq. (2a) to the two-sublattice case
under consideration:

{uk,vk}=2 {u(r),v(r)}exglikr),

P S
cc(K) 2[(m1270k M11Yok) A1k

+(My2Yoe+ Ma2yeo) dakl, (13

(U, D=2 {u(r),v(r)}expliker +ikr).

1 ~
Using this notation we can write the above-mentioned Acy(K)=— 5[(m1273ﬁ+m1173bd1k
zero-order equation fog(t): _
— (M2Yge+ M2¥gi) okl
dr __ 126500 (¢, che07— ¢l c e 907 9 1
dt 70 (e . : © A, c(k)=— E{[m12( Yoo+ i) + My ygeldiy
where ¢, ,=c* 7 and cj,=c'+ 7, while y&?, U, and
?0(13) arek=0 values of Fourier componeni;'i2 Uy, — My ¥+ 7)) + Mooyl



1 _
A, (k)=— E{[le( Yoo+ ¥id) + My ygrldy

+My Y57+ YD) + Mazyicldag},

where d1k221+‘Pk! d2k222+¢k’ alk:zl+5k, and
dok=2,+ ¢y, With z;=1/c,cq, z,=1/c,C; and ¢ = Buy,

while ygz=v5°— %’ and y5,=¥5'— ¥i"- The factorsm,
determine thec, » dependence of mobilities, similarly 1o
in Eq. (2b):

M;=(C1C,C1Ch) Y2exp( Buge),
my=C;C1eXf B(UoC+Ugn) ],

Myp= CoCexH B(UgC—Ug7)]. (14

In deriving Egs.(13) and (14) we took into account the
equivalence of sublattices 1 and 2, as well as the parti
equilibrium in the order parametey, i.e., vanishing RHS in
Eq. (9).

Two possible values of the incremenp,(k) and
p_(k), are determined from the solubility condition for sys-
tem(12):

p-(K)=By=(Bi—Dy)? (15)

whereBy=(Ac.+A,,)/2, andD=AcA,,—Ac,A -

The explicit expression fdb, is relatively simple. It fac-
torizes into two factors, the “kinetic” oné/, that depends
on the functionsm,; and yﬁﬁ, and the “thermodynamic”

one A, that depends on the reduced interactigpsand ¢,

and can also be expressed in terms of the derivatives of th

free energyf in (10) overc or 7:

Dy=MiAy, (163

_ 2 12, 12, 12 1112
M =ML yoi( Yo ™+ v + My Mg+ May) ¥5ic Yo

+(My2y502, (16b)

1 - ~ -
Akzi(dlkd2k+ dady) = fecF,,+ kot focio

+ ProPro- (160

Here o= 6x— %o, foc=Tfoc—fe,/f,, is the full concentra-
tional derivative of the adiabati¢or “conditional”?) free
energyf@=f[c,7o(c)], f3,=d?f3/dc?, found by taking into
account the conditiof, =0 at 7= 7,(c), andf, f,,, and
f., are the formal partial derivatives of the function
f(c,7) in (10) at 7= 70(c):

2

o°f
fec=

ac?

02f> _
—3| =2+t ¢g,
an c

:Z++(P0| fy]y]:(
7

9°f

fcfm: (17)
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wherez. = 3(z,*+2,). The explicit expression fd, in (15)
is more cumbersome:

B=—my v oot Pko) + 3 Vorlek— @) ]
— 2 YorL(Myg+ M) (f et f,nT @kot Gko)

+(Myy—My) (23— 25) ]. (18
Relations(12)—(18) provide the general solution for the

stability problem. The relations can be simplified if one ac-
cepts the usual assumption that the intersite atomic exchange
is dominated by the nearest-neighbor jumps of atoms in the
crystal lattice. For example, for thB2 phase this implies
that the quantitieg/:* in Egs.(13) and(16) can be neglected
as compared to;?, so thatM, and B, reduce to the first
terms in Egs(16b and(18) only.

Let us discuss the signs of the derivativigg,, f ., and
f2.in Egs.(16)—(18). The derivativef , , is positive for all
1707 0, i.e., for all T<T,{c), as the “partial equilibrium”
value = ny(c) corresponds to the minimum éfc, ) over
n. When thec, T point under consideration approaches the
ordering spinodall ,(c), both n(c) andf,,(c,T) tend to
zero, since the curvé {c) is determined by the equation
f,,=0 at n= 0. The differencef..—f,, according to Eq.
(17) is ¢g— ¢g, and is thus positive; otherwise SD into two
disordered phases would take place rather than alloy order-
ing. Therefore, the quantity.. is positive, too, and it is
generally not small. The conditional spinodal(c) is deter-
mined by the equatiorfi,=0, so thatfZ, is negative at
T<Tg, i.e., in region(d) of Fig. 1, and it is positive at
T>T.. Thus the product?cf,],7 in Eq. (160 is negative in
%rea(d) of Fig. 1, and it vanishes at either borderline of this
area,T,{c) andT.{c).

For simplicity below we consider only long-wave fluctua-
tions with smallk, as in most treatments of SD in disordered
alloys/*! Let us first discuss the physical meaning of two
fluctuation modes in Eq$12), corresponding tp=p, and
p=p_, in the limit k—0. In this limit Eq. (12b) takes the
form

fc0C. + (), +Pe/2Mypys?) 87.=0 (19

where the index+ or — marks the mode wittp=p. or
p=p_. The expressions fgp_ andp, atk—0 are

p-=—2my,y5°f (209
p,=(—f2IM'K2 (20b)
Here M’'k? is the smallk expansion for the sum

Yeimy+ yar(my+ My, /2, which generalizes the similar ex-
pansion in Eq(5) to the casep+0.

Equationg19) and(20a show that in the “minus” mode,
the concentrational amplitudéc_ vanishes. Therefore, this
mode describes the uniform relaxation of the order parameter
n at the “frozen” concentratiorc, and the valugp_, Eq.
(209, corresponds just to linearizing the relevant equation
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(12) in the small differencedn_=n— 7o(c). On the con- diagram implies that the ratip lies within the interval
trary, the “plus” mode describes the diffusion of concentra- —1/2<p<1. Therefore, for usual interaction potentials with
tion. At T higher than the ordering spinodaj{c) it corre-  x,~X, , v is positive: This was implicitly assumed in writing
sponds to the relaxation of fluctuations, whileTat T (c) it Egs.(23). However, if for some specific system the quantity
describes the uphill diffusion corresponding to SD. Fory turns out to be negativigvhich in our model would corre-
k—O0 (the case under consideration Hediffusion occurs spond to small values of( /x,) andp<0], then increment
adiabatically slowly, and relatioril9) betweendéc, and p.(k), Eqg. (21), for finite k is positive even al>T.{c),
87, corresponds to varying the concentration along thd.e., in region(e) of Fig. 1. This implies an instability of the

“adiabatic” partial equilibrium line f,=0: homogeneous ordered state and a tendency to the formation
f,coc,+f,,6n,=0. of an incommensurate phase in this area; in the present work
To study SD at finiték, in particular, ak= k. correspond- we will not address this exotic possibility.
ing to critical waves, one should keep higher powerkZin For the normal case>0, Egs.(23) show that at small
the smallk expansions of Egs(12)—(18). The increment distances, between the point, T and the conditional spin-
p. (k) takes the form odal T {c), the values ok ({) andp.({) vary with ¢ simi-
larly to those in Eqs(6) for SDDA: k.~ ¢, pe.~{?. There-
P+ (K)=myyod[(F,,+Nk?)2=2uk?(f3 f,, + vk?) ]2 fore, the effect of ordering on the kinetic characteristics
(f, FAKD)) 21) reduces here to the appearance of some renormalization fac-
nn : tors in EQs.(23) as compared witti6).
Here u=M //mlﬁé{ while Ak? or vk? corresponds to the (ii) Point ¢, T is close to the ordering spinodaHere the
smallk expansion oB, or A, in Eq. (18) or (16b): derivative f,, is small (while f3. can be not smal
_ ki~f,,, and atk~k. all terms in Eq.(21) have the same
NKZ={Bro+ [ Vg Fee— F ) + YaFecl 1295 k0. order of magnitude. The dependenge(k) becomes more
(228 complex than in(5). The expressions fdk, and p, can be
5~ written as
vk“= (@rofcct ¢xof yn)k—0- (22b
_ Explicit expression_s_ for the wave numbler k. and the kngw[(lJra)l/z_ iy — (263
incrementp=p, of critical waves can be found from Eg. 2T X,

(21) and the condition op, maximum:dp, /dk=0. These

expressions can be simplified if one takes into account the T2

fact thatk, is small(and the smalk expansion used above is Pe=mysf, fod2+a—2(1+a)—= (26b)
. . . a . . . . C 0 "nn'cc ~2"

valid) only if either ¢, or f,, is small, i.e., if thec, T point ATex,

under consideration is close to either the conditional or the
ordering spinodal in Fig. 1. We consider below these two Here m is the same as ifi2b), while quantitiese and
particular cases. x,, are defined by the relations
(i) Point ¢, T is close to the conditional spinodaHere
fa. is small,k? is proportional tof2_, and the RHS of Eq.
(21) can be expanded ik?. Then expressions fop_ (k), a=—fSJfc, X2y=2 y(N)r2i3yge. (27)
k., andp. become similar to Eqg5) and(6) for disordered '
alloys, differing only by the replacement &f; by f2. and by

the presence of renormalizing factors: In the derivation of Eqs(26) we supposed the ratio

x2/X2 to be small, as the “mean atomic jump distanoe'in
k2=(—12)f,,/2v, P=M'(f3)%, /4v. (23  (27) is of the order of the intersite distancg,, while the
formal condition for the applicability of the MFA implies the

To make Eqgs(23) more transparent, we also express theinequalityX?>r2,. 1312
coefficient v in terms of the mean interaction lengths Equations(26) show that near the ordering spinodal the
andX, for the interaction potentials andv. Supposing for  kinetic characteristics of SD differ markedly from those for
simplicity both the ordered and disordered phases to be cubige disordered alloy, unlike cagg discussed above. This is
(as is the case fdB2 ordering on the bcc lattigewe define  due to the strong coupling between fluctuations ahd 7 at
X, andx, by small values ofzg. In particular, the maximal increment

1 1 p. here varies linearly with the distandefrom c,T to the
2__— 2 wo2__ T ikery.2 ordering spinodalT{c), instead of the quadratic depen-
X”_3v0§r: o(r% Xy _3?]02 v(netsrs. (24 dence in Eq(6) or (Zosig). Thus critical fluctuations here grow
) ) much faster than those under SDDA with a similar distance
Then expressiof22h) for v can be written as { to the spinodal.

Near the tricritical point botH?, andf,, become small,
and Eqgs(23) and(26) turn into each other. Explicit expres-
wherep=v,/v,, and we use the MFA relatiof,=—vy/4  sions fork, andp. here can be obtained setting in E¢&3):
for the critical ordering temperatufe, . v=2BTfcX;, M'=my;x%/2. If we denote the distance

Let us discuss the sign of in Eq. (25). As mentioned, from the pointc, T to the conditional and ordering spinodal
fe>f and the presence of a tricritical point in the phaseas {.s and{,s, respectively, thek. andp. in this area vary

v=28T(fcX,2+1,,px2), (25)

nn?
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With {cs and ¢os as ke~ Lelos: Pe~ {2dos. Therefore, the
critical fluctuations here have a large wavelength and grow
with time very slowly.

The above analysis shows that the presence of a strong
coupling between the fluctuations of concentration and de-
gree of order results in a number of peculiarities in the ki-
netic characteristics of SD under ordering. Below we show
that the possibility of APB'’s to be present in the initial state
can lead to additional specific effects in the kinetics of such
SD.

IIl. MICROSTRUCTURAL EVOLUTION IN THE COURSE
OF DECOMPOSITION WITH ORDERING

In this section we investigate transient morphologies aris- FIG. 2. Temporal evolution of mean occupatians-c(r;) for
ing under alloy decomposition with ordering. Let us note thatthe alloy model used under spinodal decomposition of a single-
experimentally such morphologies can be studied directlydomain ordered state, at =T/T;=0.424,¢=0.325, and the fol-
taking advantage of dark-field images in transmission eleclowing values of reduced time’ =ty,,: (a) 500, (b) 1000, (c)
tron microscopy. This type of observation can provide richer2000.(d) 2500, (e) 3000, andf) 10 000. The insert iita) shows the
information, in particular, for comparison with results of the rélation between the darkness level andzalues, which vary lin-
present study, than structural fact®gk,t) as measured by early from 0 to 1 with the distance from bottom to top.
standard diffraction experiments. This was demonstrated, in
particular, by experiments in Refs. 1 and 2 for FeAl alloys.typical casd <\, i.e., in the presence of APB’s. We show
Therefore, comparison of the theoretical results for microthat the transient morphologies sharply change when the
structural evolution under SD in ordered and disordered ale, T point is shifted from left to right in areéd): for states
loys, being combined with experimental studies of SD undek, 3, andy the morphologies are quite different. Finally, we
ordering, can provide significant information about the ad-discuss quench (a}(e) and show that nucleation on APB’s
equacy of the currently used models of $D. results in specific features of evolution.

In the present study we use computer simulations based The simulations have been made on a square lattice of
on the MFKE(1). For simplicity and convenience of presen- 128x 128 sites with periodic boundary conditions. The simu-
tation, we consider the same two-dimensio2i) model on  |ation methods were the same as in Refs. 10 and 9. The
the square lattice as CK’ at the same temperature as-quenched distributionj(0) was characterized by its mean
T=0.424T;, whereT, is the critical ordering temperature, valuec and small random fluctuationsc; ; usually we used
and the same or similar compositiomsequal to 0.175, §¢;==+0.01. In simulations of HSD we also imposed the
0.25, 0.325, or 0.415. The as-quenched states correspondifigtial uniform ordering 7(0)=0.04, to create a single-
to thesec, T points will be called for brevity ther, 8, v, or  domain state.

o state; see Fig. 1. The asymmetric potenti&br this model The results of our simulations are illustrated in Figs. 2—6.
is zero, while the configurational interactionér) for first, Below we discuss them, indicating for each simulatiorihe
second, and third neighbors awg =1, v,=—0.8, and type of quench(ii) the type of initial ordering, i.e., the pres-
v3=—0.5. The intersite atomic jumps are supposed to occuence of a single or of several AP domains, which will be
only between nearest neighbosgyr) = v,,, and we use the abbreviated as the “HSD,” “SD with APB’s,” or “nucle-
“reduced” time variablet’ =tvy,,. The superstructure vector ation with APB’s” case, respectively, andii) the initial

ks for the ordered 2D B2 phase” is (1/2,1/2)#/a, and the  compositionc. The reduced temperatufe’=T/T. in all
perfectly ordered state correspondsdgy=1/2. In accor- simulations is 0.424.

dance with the “lever rule,” the portiox,,4 of the ordered (3.1) (b)—(d); HSD,c=c,=0.325, Fig. 2. The statg in
phase in the two-phase allégt moderate temperatures under Fig. 1 is close to the conditional spinodal; i.e., the distance
consideratiop can be estimated ag,q~=2c. Therefore, the (¢ between pointy andT.{(c) is small. As mentioned in Sec.
results of the present simulations foc=c,=0.175 |l, the kinetic characteristics of the Cahn stage of SD,
(Xorg=0.35) andc=c,=0.325 (Kq¢=0.65=1—-0.35) can p(k), kc({), andp.({), are, in this case, similar to those for
be naturally compared with those for SDDA@+ 0.35 pre-  SDDA. Thus it is natural to expect that also for the Igie.,
sented in Ref. 10. The extension of the MFKE-based comeoarseniny stages of SD, the evolution type will be similar
puter simulations to three-dimensional lattices, such as th& that for SDDA.

bce or fcc ones, does not present any difficulty, as was dem- It was mentioned earli&? that precipitation and coarsen-

onstrated, e.g., in Ref. 9. ing processes under SDDA can usually be divided into three
Keeping in mind the comparison with Refs. 3-5, we firststages.
consider SD in the absence of APB(ge., in the case (A) The “droplet formation” stage, where Cahn concen-

I>\.), since the presence of APB’s brings about certaintration waves begin to coalesce, and primary precipitates, or
peculiarities in the microstructural evolution. For state  “droplets,” are formed.

such “homogeneous” SMHSD) can be realized if the alloy (B) The “coagulation” or “fusion” stage, where the
has been annealed prior to quench in some state in areBminant mechanism for droplet growth is their coalescence
(b).1% Then we investigate quenchéa)—(d) in a more via the “bridge” mechanism discussed in Ref. 10.



3234 V. YU. DOBRETSOQV, V. G. VAKS, AND G. MARTIN 54

FIG. 3. Temporal evolution ot;=c(r;) after quenching the |
alloy from a disordered state with randomly distributed fluctuations
oc;=+0.01toT'=0.424, atc=0.175 and following’: (a) 50, (b) FIG. 4. Same as in Fig. 3, but at=0.25 and followingt’: (a)
100, (c) 200, (d) 1000, (e) 4000, andf) 9000. 1000, (b) 2000, (c) 4000, and(d) 6000.

(C) The final stage, where coarsening is dominated by théure of stage(A) as compared to that for HSD discussed
evaporation-condensatiofEC) mechanisnt? by which  above[point (3.1) abovd.
larger droplets grow owing to the evaporation of smaller Stage (A) now approximately corresponds to
ones. t'=50-300, being accelerated as compared to HSD by

In simulations of SDDA at=0.35(Ref. 10 the division the presence of APB’s as embryos for the decomposition.
into stageqA), (B), and(C) was found to be rather clear.  Figures 3b)—3(d) show that the formation of droplets from

The similar division has been revealed in the presentinitial stripes with enhanced concentratiofr) proceeds via
simulation of HSD of the state. Stage(A) here approxi- two mechanisms(i) splitting of these stripes into shorter
mately corresponds to the time interval 300 <1000. Fig-  pieces that later on spheroidiggee, e.g., droplets 1 and 2 in
ure Za) illustrates the formation of an approximately peri- Figs. 3¢)—3(f)], and (ii) “consumption” of some of these
odic array of minima ofc(r) via the superposition of new-born droplets by their neighbors via the bridge mecha-
nonlinear critical waves witth=\.; this distribution is nism discussed in Ref. 10. The latter occurs for droplet 3 in
analogous to the “hill-like” profile ofc(r) shown in Fig. 1  Fig. 3(c), and it also happens for droplets 4 and 5 at
in Ref. 10. StagéB) approximately corresponds to the time t'=750.
interval 1008<t’ <4000, when 14 droplets out of 48 coa- As soon ast’=1000, the microstructure shown in Fig.
lesce, and 7 evaporate; and sta@®, to t’>4000: For 3(d) does not differ qualitatively anymore with that for HSD
4000<t’ < 10000, 3 droplets out of 27 coalesce and 6 evapoin Fig. 2(d). However, the coagulation stag@) now is rela-
rate. These mechanisms are illustrated in Figs)-2(f)  tively short: It lasts approximately fdr =300-1000, when
where both fusion and evaporation processes can be segh.droplets among 43 coalesce and none evaporates. At
Note, in particular, the double fusion of three droplets in thet’>1000, the EC mechanism becomes dominant: For
upper right part of Fig. @), realized via the formation of t’=1000-10 000, only 3 droplets coalesce while 22 evapo-
two bridges with a length of the order of the droplet diam-rate. This stageC) is illustrated by Figs. @) and 3f); the
eters. However, the borderline between sta@@sand (C) latter figure also shows one of the rare fusion events for this
under this SD is less distinct than that for SDDA in Ref. 10.stage.
For example, during’ = 2000—-4000, 8 droplets coalesce and  (3.3) (a)—(d), SD with APB’s,c=cz=0.25, Fig. 4. Mi-
5 evaporate; i.e., both mechanisms make similar contribuerostructural evolution at=0.25 under HSD(i.e., in the
tions to coarsening, while Fig(f shows a fusion event that absence of APB)sis similar to that under SDDA at=1/2
happened at rather largé~=9000, when the EC mechanism shown, for example, in Ref. 21 so that we do not describe it
is generally dominant. here. The presence of APB’s brings about new features in the

(3.2 (a)—(d), SD with APB's,c=c¢,=0.175, Fig. 3. As  evolution. Unlike the case af=0.175 discussed in simula-
mentioned in Sec. |, due to the depletion of both the ordetion (3.2), the initial “*APB-replicated” structure here is not
parameter and the alloy minority component within the APBdestroyed for a short timé&' <100, but is clamped by the
the latter can act as an embryo for the disordered phase ptecipitation of the disordered phase. Comparison of Fig.
phase separation. Under SD, the presence of such embryd6) with Fig. 4@ or 4(b) shows that the structure is basi-
induces the formation of critical concentration waves thatcally preserved up to significant times’£2000). As the
replicate the initial APB shape and have periadsA.. This  proportion of both phases in the mixture is similar,
APB replication phenomenon is discussed in more details ixXgq~ Xgisora™ 1/2, the evolution is mainly realized via the
Sec. IV. As a consequence, at the beginning of stAgehe  growth of initially ordered and disordered layers and the for-
concentrationc(r) and the order parametey(r) profiles  mation of droplets of either phase within the other one. Later
have a ‘“ridge-valley”-like pattern, rather than the hill-like on the droplets evaporaf€igs. 4c) and 4d)], and the mor-
one observed for SDDA? This is illustrated by Figs. @) phology begins to evolve to that of interconnected interpen-
and 3b) and results in a significant difference in microstruc- etrating domains characteristic of SDDA &t 122
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seen from comparison of Fig(& or 5b) with Figs. Ga)—
6(c). The only mechanism for creating such droplétsthe
MFA used that neglects thermal fluctuations in occupation
number$?13 is the possible collapse of AP domarth&or
illustrating this mechanism, the simulation shown in Fig. 6
was started with an initial distribution of fluctuationik;
(different from that in other simulationghosen to generate
several initial AP domains of comparable size. The primary
AP domain structure is established after a short tilme1;
later APB’s begin to move, mainly to shrink in order to
decrease the interface energy. Whenever an antiphase do-
main has a time to collapse before the precipitation on its
APB damps its motion, near the collapse point both the order
parameter and the alloy minority concentration are depleted,
and this area becomes an embryo for the disordered phase.
FIG. 5. Same as in Fig. 3, but at=0.325 and following’: (a) This is illustrated in Fig. &): D,rOpletS 1 a'?d 2 originate
50, (b) 1000, (c) 3500, and(d) 10 000. from the collapses of AP domains 1 and. 2 in Figh)6 .
Later on these droplets evaporate with condensation on

(3.4 (a)—(d), SD with APB's, c=c,=0.325, Fig. 5. precipitates formed at APB's. Further' stages 'illg'strated by
Unlike for HSD, an approximate topological symmetry be- Figs. 6{d)—6(f_) porrespond to the evolut|o_n from initial APB-
tween SD of states andy in the presence of APB’Ecom- shaped precipitates to more compact, single-connected ones.
pare Figs. &) and 5a)] is observed at early stages only It is realized, first, via smoothening the most curved parts of
(t'=50). Later on at largec=c,=0.325, the initial APB ~ the contoursee Figs. &) and d)], and then via shrinkage
becomes a center of precipitation that C|amps its Cormr and th|Cken|ng of a disordered shell embraCIng the inner or-
was the case forc=0.25), while at relatively small dered area, due to diffusion of atoms from this area across
c=c,=0.175, APB’s coalesce to form a continuous disor-the shell. In the course of the process the inner droplet be-
dered phase around the ordered droplets. Figuf@s-5d) comes almost sphericgFig. 6€)], and finally evaporates. As
show that precipitate growth at APB’s occurs due to thethe total timet,; for this process is determined by diffusion
evaporation of isolated droplets; as a consequence APB@long or across APB's, it should vary with the initial AP
thicken and play the role of “larger droplets” in the EC domain sizeé approximately quadraticallyt; ~12.
mechanism. Further evolution of these precipitates to single- Now let us compare our simulation results with those of
connected ones is similar to that shown in Fig. 6 below andCK (Refs. 3-5 for the same model. As mentioned in Sec. |,
needs considerable timg=(2-3)x10% Until this final CK used the partially linearized kinetic equatitfPLKE) in-
stage is reached, the morphologies under such SD are quisead of the full MFKE; therefore, the comparison can pro-
different from those under HSDi.e., in the absence of Vide information on errors brought about by the “partial lin-
APB’s) with the samec=0.325(Fig. 2). earization” of MFKE in describing the alloy evolution. CK

(3.5 (a)—(e), nucleation with APBg=c;s=0.415, Fig. made their simulations for the quench discussed in point
6. In area(e) decomposition only proceeds via nucleation (3.2 above, using lattices of 6464 and 12& 128 sites)®
and growth, and APB’s become embryos of the disordere@nd also for quenches discussed in poi@s3) and (3.9,
phase. As there is no spinodal instability here, local concendsing a lattice of 6% 64 sites. Their PLKE corresponds to
tration fluctuations do not grow with time, and no APB rep- replacing the occupation-dependent termgc/cs and
lication occurs either. Thus the number of initial disorderedy;sc.c; in (1) by a constant ;. To have coincident results at
droplets here is significantly less than under SD, which isearly timest—0 (where linearization of the MFKE is justi-
fied), we should put ;= vy ,,cc’ with c andc’ correspond-
ing to the initial homogeneous alloy. It implies that our re-
duced timet’'=1y,t is related tot*=L;t in CK by
t'=t*/cc’.

The comparison of our results with Refs. 3—-5 reveals the
following differences.

(i) In simulation(3.2), there is a significant distortion of
the time scale in the PLKE relative to the MFKE: Evolution
in the PLKE occurs much more slowly. For example, Figs.
3(b) and 3c) show fusion of initial APB’s already at
t’'=100-200, while in Refs. 4 and 5 it begins only at
t*=100(i.e.,t’=700). Fort’ =4000, Fig. 3e) demonstrates
the advanced stag€) of SD dominated by the EC mecha-
nism, characterized by a significantly reduced number of
droplets and large nonuniformity in their sizes and positions,

FIG. 6. Same as in Fig. 3, but at=0.415 and following’: (8  while results of CK(Refs. 3-5 for t* =500 and 1000
1, (b) 10, (c) 1000, (d) 9000, (e) 23 000, andf) 25 000. (t'=3500 and 800prather correspond to the beginning of
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stage(B) (t'~1000), with the presence of many small uni- Bl
formly distributed droplets. -

(ii) No discussion of the relative importance of the coagu-
lation and EC mechanisms under §B.2) is presented in
Refs. 3—5. However, resuft3for t* =500 (t’=3500) seem
to show a great number of fusion processes, while in our
analysis we mentioned the suppression of this mechanism for
SD (3.2). Therefore, PLKE can also qualitatively distort the
evolution mechanism.

(iii) Simulation(3.4) was made in Ref. 3 on a small lattice
of 64X 64 sites. Therefore, a detailed comparison with our
results is hindered by the scarcity of droplets and probable
effects of periodic boundary conditions in the work reported
in Ref. 3. However, our Fig. 4 reveals a much more dis-
persed and nonuniform distribution of precipitates than that FIG. 7. Temporal evolution of the alloy model after the disor-
shown in Ref. 3 fort*=200 (t'=1100) andt*=1000 dered state withc=0.26 is annealed aff,=T,=0.753 for
(t"=5300). It is not clear whether the discrepancy is due ta'=100, and then quenched 16 =0.424, for the following times
errors of the PLKE or due to the small size of the simulationt’ after the quench(a) 0 (as quenched (b) 100, (c) 200, (d) 500,
box in Ref. 3; the same thing can be said about the results) 1000, andf) 3000.
discussed in pointiv) below.

(iv) The structural evolution under quenthb) in Ref. 3 T,=T,=0.753T., andT=0.424T .
is quite different from that shown in our Fig. 6. In particular,  Our results are illustrated in Figs. 7—9. Figs. 7 and 8 show
the final state* =500 in Ref. 3 shows two straight “frozen” a well-defined replication of APB’s. The mean local compo-
APB’s, with no sign of further evolution: As we mentioned sition c(R) in Fig. 8 is obtained by averaging over four
in point (3.5), decomposition in areée) can be realized ei- sites of an elementary square in the 2D latfides discussed
ther via evaporation of small dropletshat are absent at earlier? lowering the temperature f6<T, results in lower-

t* =500 in Ref. 3, or via changes of the APB shape, which ing the local concentration minimum within APBdeepen-
do not occur for straight APB’s either. Thus the decomposiing the ¢ well”).° As a consequence, the solute atoms ex-
tion stage appears not to be reached in Ref. 3 for this simyselled from thec well build the “concentration bank” ¢
lation. bank adjacent to this well. Since the alloy state is in the SD

Therefore, the comparison of our results with those ofinstability area, the bank does not relax but rises with time,
Refs. 3-5 seems to imply that the PLKE can significantlyunlike the case treated in Ref. 9 where the alloy was in the
distort the description of the microstructural evolution. How- stable ordered state. This increase irequires an additional
ever, a more detailed comparison is hindered by the scarcitfiow of solute atoms not only from the originalwell where
of results presented in Refs. 3-5. the concentration has been already depleted, but also from
adjacent outer regions. As a result a second local minimum
in c(R) appears, etc. Thus a wavelike distributiofR) is
spreading over the entire crystal, being accompanied with the
relevant modulations of the local order parameter

As mentioned in Sec. |, the depletion of both the ordern(R)=no[c(R)]. The distribution has a characteristic
parameter and the alloy minority component within APB’s wavelengthh ~\., while its front replicates the initial APB
(Ref. 9 makes APB’s possible embryos of the disorderedform. Therefore, transient quasiperiodic structures arise.
phase under SD. In Sec. lll we showed that after direct
qguench of a disordered alloy into areh in Fig. 1, the initial
AP domains have usually small sizes\., and transient
morphologies under SD have a chaotic character. However, _
if before quenching into are@) the alloy is annealed in the CI
ordered phaséb), the AP domains grow, so that after the
subsequent quendl)—(d) the relationl>\. can be satis-
fied. The APB’s can then be well separated, and peculiar
guasi-periodic structures replicating the initial form of the
APB’s can develop. Examples of such structures have been
presented in Fig. 4 in Ref. 5 and in Figiclin Ref. 22, but
their physical origin and possible relevance to actual experi-
ments have not been discussed.

IV. REPLICATION OF ANTIPHASE BOUNDARIES
UNDER SPINODAL DECOMPQOSITION WITH ORDERING

0.50

0.25

To study this APB replication phenomenon, we simulated 0.00 . .
the above-mentioned two-step quench in our 2D model. First 1 y/a 128
we annealed an initially disordered alloy for tirhgat tem-
peratureT, corresponding to areéb) in Fig. 1, and then FIG. 8. Profile of the mean local compositi@fR) along the

quenched the annealed alloy to the final temperalui@  vertical line AB indicated in Fig. Th). Dotted line,t’=0. Solid
area (d). In our simulations we employed,=100, curves,(1) t'=10,(2) t’=100, and(3) t'=200.
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FIG. 9. Same as in Fig. 7, but e=0.3 and followingt’: (a) 0,

(b) 500, (¢) 1000, and(d) 2000 After the second quenchl(=0.424) random fluctuations;; are

introduced near the straight ARBee texk, the pictures correspond
to following t’ values:(a) 100, (b) 500, (c) 1000, andd) 2000. The
Later on the usual coarsening process starts, by splitting afompletely dark area corresponds to the minimum concentration
fusion of some of the stripes and evaporation of smaller pree(R) and to most disordered regions; the completely white, to the
cipitates; see Figs.(@—7(f). maximum c(R) and to most ordered regions; in betwee(R)
Figure 9 shows that this phenomenon is rather sensitive tgaries linearly with darkness.
the value of the composition. When the difference in pro-
portions of different phases in the mixture, space correlations of the fluctuations.
Xord— Xdisor™=4C— 1, becomes important, the breaking of dis- In Fig. 10 we present the results of simulations for the
ordered layers with the formation of droplets starts competsame model and parameter values as in Fig. 7, but introduc-
ing with the replication mechanism, and replicated structuregng at t'=0 the above-described random fluctuations
do not develop. o6cs;=*0.1 near a straight APB. In order to facilitate the
When looking for experimental manifestations of APB comparison with the dark-field micrographs presented in
replication, we should keep in mind that homogeneous SORefs. 1 and 2, in Fig. 10 we invert the color code used up to
induced by thermal fluctuations in local occupatiamsis  now in the present paper: the most disordered area is com-
competing with replication. Such fluctuations are neglecteletely dark, while the most ordered one is completely white.
in the MFA, in particular, in the MFKE where only “aver- The simulated microstructures reveal a striking similarity
aged over distribution” quantities;=(n;) are considered?  with the observed on€s: Note, in particular, the presence of
however, these fluctuations are present in reality. The contrian ordered layer adjacent to APBthe above-mentioned
bution of fluctuations to the patterning in the SD regimebanK in Fig. 10, which is also distinctly seen in micrographs
should be particularly important near the conditional or or-5(b) and 5c) in Ref. 1, or Fig. 1b) and Xc) (middle column
dering spinodal, where the amplification of the above-in Fig. 2. Later on in our simulation, dark “branches” of the
discussed unstable concentration waves is slow. Therefordjsordered phase begin to grow from APB’s almost normal
in thec, T states close to spinodals, the APB replication un-to it [Figs. 1@c) and 1@d)], which corresponds to the coagu-
der SD should be less pronounced. lation of nearby disordered precipitates with the APB. Such
Unfortunately, previous structural studies of SD under or-morphologies are also clearly seen experimentally, e.g., Figs.
dering known to us? seem to be performed just in the vicin- 1(c) and Xd) (middle column in Ref. 2. We repeated the
ity of the conditional spinodal. These studies do not reveahbove-described simulation with lower fluctuation ampli-
any distinct APB replication. However, Olét al> men-  tudesdc;;==+0.04, and obtained microstructures with bro-
tioned that “some of the disordered phase appears in a layden layers of the disordered phase near the APB, similar to
along APB,” while in the upper right part of Fig(6) in Ref.  those in the upper right part of the microgrape)5n Ref. 1.
1 one can see a family of broken layers of the disordered Further structural studies of APB evolution under SD with
phase that are approximately parallel to the adjacent APB. ordering, in particular, foc,T values as far from spinodals
In order to simulate the contribution of thermal fluctua- as possible, can reveal clearer manifestations of the APB
tions to the formation of embryos, we introduced in ourreplication phenomenon.
simulation additional random fluctuatio®&;; just after an-
nealing(i.e., att’ =0). For simplicity we supposeéc;; to be
random (just as the fluctuationgc; introduced before an-
nealing, while the actual embryo-creating fluctuations near
spinodals seem to have considerable correlation lerfgtins.
our simulations, a significant competition between homoge- The possible formation of transient ordered phases under
neous SD and replication at APB’s occurs only at relativelySDDA was considered by CKRef. 15 using the PLKE, and
large fluctuation amplitudeg cy;|=0.05—0.1. However, later on by Reinhardt and Turcfi(RT) using Monte Carlo
these amplitudes can be made much smaller if we allow fofMC) simulations. The physical aspects and main features of

V. APPLICATION OF THE MFKE TO A DESCRIPTION
OF TRANSIENT ORDERED STATES UNDER
DECOMPOSITION INTO DISORDERED PHASES
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c=0.5 in Ref. 16, or with possible shortcomings of the
PLKE used in Ref. 15.

VI. CONCLUSIONS

This work investigates the decomposition kinetics under
alloy ordering with the use of the earlier derived mean-field
kinetic equatiort’ To describe the first stage of decomposi-
tion, we present the linear stability analysis for small fluc-

FIG. 11. Temporal evolution of the same 2D model as in Refsfuations in local concentration and order parameter in the
15 and 16 for a square lattice of 12828 sites, atc=0.5, homogeneous ordered alloy. The analysis generalizes that

=17, and followingt’: (a) 400 and(b) 1900. given by Cahﬁfqr the disordered aIIo_ys; it provides explicit

expressions for incremenpsof fluctuation waves, as well as

for the maximum value,,,,= p. and for the corresponding
wave numbek=Kk. that correspond to the fastest growing,
Beitical waves. The strong interaction between the concentra-
&ion and the order parameter results in a number of differ-
ences in the functional formp(k,c,T), p.(c,T), and
k.(c,T) as compared to disordered alloys. In particular,
When the initialc, T point is close to the ordering spinodal,
itical fluctuations grow with time much faster than in the
disordered alloys with the same distantéo the spinodal,
while near the conditional spinodal defined in Ref. 1, the
%%pendencep(k,g), p.(&), andk(¢) are similar to those
90F the disordered alloy.

We also studied the microstructural evolution under de-
composition with ordering for various types of quenches to
fthe two-phase equilibrium region. Our results illustrate and
specify general considerations of Allen and Cahhout the
variability and features of this evolution. We found, in par-
Yicular, that for the single-domain ordered initial state, the
'evolution under such SD is generally similar to that for dis-

ascribed the differences to inherent limitations of the MFA. ordered alloys. However, when the initial AP domain size is

Discrepancy(i) is analogous to that for spinodals in usual of the order of the characteristic critical length=2/k.,
P 9 P . transient microstructures under SD become sensitive to the

EDDtA vgh(ra]re .MC s;lmula:ﬂon_sr do pc:t show sh:;:p Changgsl'qnitial compositionc. In particular, at large=c; wherec; is
Inetic benavior when h&, 1 point crosses the spinoaal y,q composition at the tricritical point, the initial AP domain

;u?’ieét';v:l!ﬁsl?aéhret M;é;h'%fgr;il'g'tzgze '.rslf'n'ste::{natl)e_structure is basically preserved at large time, and morpholo-
Iigvelii tlo b(le duel ;g inacc.uracieslin tklloe Mé%l\H(L)jWLtjave)i gies for these later times are determined by the initial struc-

experiments mentioned in Sec. | appear to show that theture' We also considered the guench ((E) into the meta-

borderline in thec.T ol bet f the diff tstable areale) in Fig. 1 and studied the features of the
orderiine In thec, 1 plane between areas of the difterent o, tion from the initial APB-shaped precipitate to the final
decomposition kinetics is rather sharp, indeed. Therefore, %’ngle-connected one
least for the FeAl alloys studied in Ref. 2, the spinodal curve '

S g . A peculiar phenomenon of APB replication, i.e., the for-
;;Eetg';ﬁﬁsae’Sﬂ}ﬁcci:g:tdggﬁ;?noﬁahn apparently be de- mation of quasiperiodic structures replicating the form of the

. . . .. . initial APB form n arise near isol APB’s under SD
To clarify the origin of discrepancii), we made simula- ta orm, can arise near isolated S under S

with ordering. We discuss possible experimental evidence

tions based on the MFKE for the same model and parametgf ... ot Some available experimental dgit2] seem to sup-

values as those in Ref. 16=0.5, T=3 T, whereT, is the port the theoretical findings.

critical temperature for SDDA. In our results the discrepancy  Finally, we compare the description of transient ordered
(i) is absent. For example, Fig. 11 shows both creation oktates under SD given by our MFKE with that obtained in a
disordered islands along APB’s and coexistence at intermevionte Carlo study® We find that the two descriptions are in
diate times of three phases, ordered, gaslike, and liquidlikegood qualitative agreement. This seems to confirm the appli-
with the ordered interfaces between the latter two phasesgability of the MFKE to studies of phenomena treated in the
The morphologies shown in Figs. (Bl and 11b) are rather  present work.

similar to those in Figs. @) and 4c) in Ref. 16 and look like

this phenomenon have been discussed by these authors.
low we address this problem with the aim of estimating th
accuracy of the MFKE, taking MC simulatithas a refer-
ence for the same model.

Possible shortcomings of mean-field-type approaches i
describing the transient ordered states kinetics have been d
cussed by R They noted that the main qualitative features
of evolution found by CKL® such as precipitation of the dis-
ordered phase on APB'’s, the presence of ordered interfac
between the disordered product phases, etc., have been ¢
firmed by the MC simulation® However, two differences
have been found(i) The ordering spinodal in the MF
approaclr delineates regions with distinctly different kinetic
behavior, while MC simulations show a gradual change o
evolution under variation o€ and T, and (ii) MC simula-

A-rich disordered,B-rich disordered, and ordered phases
while CK (Ref. 15 did not observe such microstructures. RT

their “averaged over thermal fluctuations” versions, in ac-
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