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The microscopic mean-field kinetic equation~MFKE! proposed earlier is used to investigate the kinetics of
alloy decomposition in the presence of alloy ordering. A strong interaction between order and concentration
fields results in a number of peculiarities in microstructural evolution. The kinetics of spinodal decomposition
in ordered alloys has a number of distinct features as compared to disordered alloys; in particular, the ampli-
fication factor of the unstable composition fluctuations increases as the distance to the ordering spinodal rather
than as the square of the distance to the usual spinodal for disordered alloys. Microstructural evolution is
studied using computer simulations based on the MFKE. A great variability of transient microstructures as well
as a high sensitivity of the type of evolution to alloy composition, annealing temperature and thermal history
has been found. We describe a peculiar kinetic phenomenon which occurs in the regime of spinodal decom-
position with ordering: Antiphase boundaries ‘‘replicate,’’ generating approximately periodic patterns. We
discuss available experimental indications for this replication of antiphase boundaries.
@S0163-1829~96!07829-0#

I. INTRODUCTION

Ordering of alloys is often accompanied by phase separa-
tion. Such is the case, for example, when an initially homo-
geneous alloy is quenched into the region of two-phase equi-
librium between the ordered and disordered phases in the
concentration-temperature (c-T) phase diagram. Kinetic fea-
tures of such transformations received recently much atten-
tion: see, e.g., Refs. 1–5. The character of the microstruc-
tural evolution is determined by the relative position in the
phase diagram of the initial pointc,T relative to the ordering
spinodalTos(c), i.e., the instability limit of the disordered
phase with respect to ordering. WhenT.Tos(c) @area~c! in
Fig. 1#, decomposition into the ordered and disordered
phases is realized via the usual nucleation and growth
mechanism, with no qualitative difference with other first-
order phase transitions, e.g., the decomposition of an alloy
into two disordered phases. However, atT,Tos(c) @area~d!
or ~e! in Fig. 1#, the kinetic evolution becomes complex and
peculiar, due to the presence of a number of simultaneous
kinetic processes with different relaxation times: ordering,
formation, and growth of antiphase domains, precipitation of
ordered and disordered phases, etc.

Kinetic features of such phase transformations have been
qualitatively discussed by Allen and Cahn1 ~AC! in their
study of the Fe-Al alloy, the phase diagram of which is simi-
lar to that presented in Fig. 1 in a certain range of concen-
trations and temperatures. AC noted that the transformation
kinetics here should have a ‘‘two-step’’ character. First, for a
relatively short timet;t, wheret is the effective time for
one intersite atomic exchange, the degree of orderh
achieves its equilibrium value with the local concentration
c: h5h0(c,T), where the functionh0(c,T) corresponds to
the equilibrium homogeneous alloy. Further changes of the
alloy state correspond to variations of the local concentration

c. They are realized via diffusion of atoms for considerable
distances, which needs many intersite jumps for each atom
and thus much longer timestd@t. Therefore, if we have
some expression for the Landau-type homogeneous free en-
ergy F(c,h,T), it is natural to define the adiabatic~or
‘‘conditional’’ 1! free energyFa(c,T)5F@c,h0(c,T),T# that
can be used to describe these slowly varying ‘‘partially
equilibrated’’ or ‘‘macrononequilibrium’’ states~see Ref. 6,
Sec. 4! being equilibrated only over the ‘‘rapid’’ variable
h. Using these considerations, AC defined together with
Fa the conditional spinodal lineTcs(c), defined in thec,T
plane by the equation (]2Fa /]c

2)T50, similarly to the defi-
nition of usual spinodals for disordered alloys.7 Then stan-

FIG. 1. Equilibrium phase diagram (T8,c)5(T/Tc ,c) for the
alloy model used. Solid lines, boundaries of the disordered~a! and
homogeneous ordered~b! fields; areas~c!, ~d!, and~e! correspond to
the two-phase region. Dashed line, ordering spinodalTos(c); dot-
dashed line, conditional spinodalTcs(c); both lines cross at the
tricritical point Tt ,ct . Pointsa, b, g, andd show the alloy com-
positions and temperatures chosen for the computer simulations de-
scribed in Sec. III.
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dard arguments show that at temperatures belowTcs(c) the
homogeneous alloy is unstable with respect to long-wave
concentration fluctuations: Spinodal decomposition~SD!
should occur. Therefore, when the initial pointc,T lies be-
low bothTos(c) andTcs(c) @area~d! in Fig. 1#, the alloy can
decompose via SD, while atTcs(c),T @area~e! in Fig. 1# the
decomposition is realized via nucleation and growth.

AC also noted that the presence of antiphase boundaries
~APB’s! in the initial state~once the first-step local ordering
has been accomplished! should have a significant effect on
the decomposition kinetics. This effect is related to segrega-
tion at APB’s of the major component in nonstoichiometric
alloys.8,9 Such a segregation, combined with the depletion of
the order parameter within the APB, makes the APB a pos-
sible embryo for the formation of the disordered phase.
Therefore, one more important parameter determining the
transformation kinetics is the density of APB’s or the char-
acteristic sizel of the ordered domains in the initial state.
The type of microstructural evolution under SD is deter-
mined by the relation betweenl and the wavelengthlc of the
fastest growing concentration waves, to be called the ‘‘criti-
cal’’ concentration waves. The value oflc determines the
characteristic period of the microstructure at the first stages
of SD.7,10 When l@lc , the presence of APB’s should have
little effect on SD, while forl&lc , the precipitation of the
disordered phase starts mainly on APB’s. Similarly, in area
~e! of Fig. 1, APB’s can serve as embryos for nucleation of
the disordered phase.

The qualitative considerations of AC have been supported
by a number of experiments; see, e.g., Refs. 1,2, and 4. In
particular, transient microstructures typical of SD have been
observed in Fe-Al alloys after quenching toc,T values sup-
posed to correspond to area~d! in Fig. 1.1,2 At the same time,
a minor variation of c and T, from c15c1

Al50.247,
T15841 K toc250.249,T25843 K, drastically changed the
type of microstructural evolution, converting it into that
characteristic of nucleation growth.2 This can be naturally
explained if one supposes that the transition fromc1 ,T1 to
c2 ,T2 corresponds to the transition from area~d! to ~e! in
Fig. 1.

In their work1 AC discussed only the most general fea-
tures of phase transformations, using mainly thermodynamic
arguments. Thus they did not consider details of the kinetic
processes. In particular, they did not present the linear sta-
bility analysis for the ordered homogeneous alloy in the un-
stable region, similar to that given by Cahn7 for the disor-
dered phase. Such an analysis would provide, in particular,
explicit expressions for the main kinetic characteristics of the
first stage of SD, the wavelengthlc(c,T), and the amplifi-
cation factor~increment! pc(c,T) of the critical concentra-
tion waves.7,10AC discussed neither the variation of transient
morphologies with concentrationc and temperatureT within
each area of Fig. 1 nor the evolution of isolated APB’s under
SD, nor other microscopic details of the evolution. To treat
these problems, elaboration of microscopic kinetic models is
evidently needed.

Later some of the considerations of AC were illustrated
by Chen and Khachaturyan3–5 ~CK! with computer simula-
tions based on a simplified kinetic equation. The latter cor-
responds to some arbitrary extrapolation of the phenomeno-
logical Onsager equation~see Ref. 6, Sec. 120!, describing

the relaxation of weakly nonequilibrium systems, to the es-
sentially nonequilibrium region. CK discussed mainly the
quencha→d in Fig. 1 at l&lc , illustrating the above-
mentioned two-step character of the evolution and precipita-
tion of the disordered phase along APB’s at first stages of
SD. CK also simulated thea→e type quench,3 but it seems
that the decomposition stage has not been achieved in this
simulation~see below!.

Recently we proposed a mean-field kinetic equation
~MFKE! to treat the configurational kinetics of alloys at an
arbitrary degree of nonequilibrium.9–11As in other statistical
problems, the mean-field approach~MFA! correctly de-
scribes the main qualitative features of phenomena, while for
systems with long-range interactions its results can be true
even quantitatively.12,13 As was discussed in Ref. 10, the
above-mentioned equation of CK~Refs. 3–5! corresponds to
a partial linearization of the MFKE, and will therefore be
referred to as the ‘‘partially linearized kinetic equation’’
~PLKE!. Unlike the PLKE, the MFKE takes into account the
dependence of microscopic kinetic coefficients on local val-
ues ofh and c. Thus the MFKE can be used to study not
only general trends of structural evolution, but also strictly
kinetic problems, such as the concentration, temperature, and
time dependence of kinetic characteristics. This was illus-
trated in Ref. 9 with a microscopic investigation of the APB
motion. Here we apply the MFKE to study kinetic features of
alloy decomposition under ordering.

In Sec. II we present the above-mentioned stability analy-
sis for the ordered alloy quenched into area~d! of Fig. 1, to
illustrate and specify the general considerations of AC~Ref.
1! about the features of ‘‘conditional’’ SD. We found a num-
ber of peculiarities in the kinetics of these SD, due to the
presence of a strong coupling between local fluctuations of
c andh. In particular, the dependences of incrementsp of
the concentration waves for this SD, onc, T and the wave
numberk, differ noticeably from those for conventional SD
in disordered alloys,7 particularly whenc,T values are close
to the ordering spinodalTos(c).

In Sec. III we investigate the features of microstructural
evolution after various type of quenches: (a)→(d),
(b)→(d), and (a)→(e) in Fig. 1. We use simulations based
on the MFKE for the same two-dimensional alloy model as
that in Refs. 3–5. Our results illustrate a significant sensitiv-
ity of the type of evolution to the quenching conditions, in
particular, to the position of the initialc,T point in the phase
diagram. We also discuss a number of features of evolution
not mentioned earlier: the respective importance of the
‘‘coagulation’’10 and ‘‘evaporation-condensation’’14 mecha-
nisms of precipitation at different stages of coarsening,
growth of a disordered single-connected precipitate from the
initial APB-shaped embryo, etc. To estimate the scale and
character of errors brought about by using the PLKE instead
of the full MFKE, we also compare our results with those of
Refs. 3–5 and conclude that the errors can be significant.

In Sec. IV we discuss an unusual type of microstructural
evolution under SD that can arise near an isolated APB. It
may occur, for example, when the alloy first annealed in area
~b! is quenched into area~d! in Fig. 1. We show that certain
approximately periodic structures replicating the initial APB
shape can be formed here at intermediate stages of evolution.
We also discuss possible evidence of this peculiar self-
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organization phenomenon in available experimental data.1,2

In Sec. V we discuss the accuracy of our MFKE in de-
scribing phase transformation kinetics. To this end we apply
this equation to the problem of transient ordered states under
phase separation into disordered phases, which has been
studied earlier by CK using the PLKE,15 and also by Rein-
hardt and Turchi using Monte Carlo simulation.16 Our
MFKE results show good qualitative agreement with those
of Ref. 16, which seems to support the applicability of the
MFKE to problems treated in the present work. Our main
conclusions are summarized in Sec. VI.

II. SPINODAL DECOMPOSITION OF THE ORDERED
ALLOY

In this section we investigate the time evolution of small
fluctuations in the local concentration and order parameter
values for the ordered homogeneous alloy. This analysis gen-
eralizes that given by Cahn7 in his discussion of SD in dis-
ordered alloys~SDDA!. The initial stage of SD described by
linear equations in this section will be called for brevity the
‘‘Cahn stage.’’

We consider a binaryA-B alloy and use the ‘‘thermally
activated direct exchange’’ model12,17 to describe intersite
jumps of atoms. The time evolution of the mean occupation
numberci of lattice sitei by an atomA is described by the
MFKE as10

dci
dt

5(
s

g is@ci8csexp~ws
A1w i

B!2cs8ciexp~w i
A1ws

B!#.

~1!

Here g is5gsi is the ci-independent part of the jump prob-
ability, ci8512ci , w i

p5b(vpc) i , b51/T is the reciprocal
temperature, (vpc) i5( jv i j

p cj is the MF potential acting on a
p species located at sitei , andv i j

A andv i j
B are related to the

configurational potentialv5VAA1VBB22VAB and the
‘‘asymmetric’’ one u5VAA2VBB as vA5 1/2 (u1v),
vB5 1/2 (u2v). Both the jump probabilityg i j and the in-
teraction potentialsv i j , ui j are supposed to depend only on
the intersite distancer i j5r i2r j : g i j5g(r i j ), v i j5v(r i j ),
andui j5u(r i j ). The potentialsu andv are supposed to have
a finite range of interaction: Specific effects of long-ranged
elastic interactions4,5 are not discussed in this work.

First, we consider the case of a disordered alloy, to com-
pare the MFKE results with those of the phenomenological
approach.7 For such an alloy the initial mean occupation
^ci&5c is the same for all sitesi . To study the time evolu-
tion of small fluctuationsdci5ci2c, we linearize the
MFKE ~1! in dci5dc(r i) and proceed to their Fourier com-
ponents dck5( rdc(r )exp(ikr ). Writing dck5dck(t) as
dck

0exp(pt), we obtain after standard manipulations

p5p~k!5mg0k~2z2wk!, ~2a!

m5cc8exp~bu0c!. ~2b!

Here and belowz51/cc8, c8512c, g0k5g02gk , and
wk5bvk . The factorm in Eqs. ~2! determines the concen-
tration dependence of the mobilityM ,17 while gk , g05

gk50 , vk , andu05uk50 are the Fourier components of the
functionsg(r ), v(r ), andu(r ):

gk5(
r

g~r !exp~ ik–r !, vk5(
r
v~r !exp~ ik–r !,

uk5(
r
u~r !exp~ ik–r !.

The reduced free energyf5bF ~per site! in the MFA
used here has the form~see, e.g., Ref. 10!

f5clnc1c8lnc81 1
2 w0c

2. ~3!

The spinodal curveTs(c) is defined by the equation
]2f /]c2[ f cc50; below Ts , f cc is negative. In our case
f cc5z1w0; thus Eq.~2a! can be written as

p~k!5mg0k~2fcc2wk0!, ~4!

wherewk05wk2w0 . As the interactionvk is most attractive
~negative! at k50, the differencewk0 in ~4! is positive; such
is also the case for the factorg0k which is the sum of posi-
tive termsg(r )(12coskr ). In the case of smallk in the
cubic lattice~treated in Ref. 7! Eq. ~4! takes the form

p~k!5M 8k2~2 f cc2Lk2!, ~5!

whereM 8k2 and Lk2 mean expansions of the difference
mg0k and, respectively,wk0 at small k. Equation ~5! for
p(k) coincides with that of Cahn7 and provides the micro-
scopic expression for his phenomenological parametersM ,
2k andM 8T, LT, respectively, in our notation. According
to this equation, the wave numberkc52p/lc and the incre-
mentpc5pmax for critical concentration waves are given by

kc5~2 f cc/2L!1/2, pc5M 8 f cc
2 /4L. ~6!

The full equation~4! extends the results of Ref. 7 to arbitrary
wave numbersk in the Brillouin zone, and thus to not nec-
essarily smallf cc and largelc values at SD.

For the ordered phase withn different sublatticesa, the
site numbersi , j in Eq. ~1! are replaced with a pair of indices:
i→ma, v i j→vmn

ab , wherem or n now number differentn
atomic cells. As in Refs. 1–5,9, for simplicity we consider
only structures made of two equivalent sublattices 1 and 2,
such as theB2 or L10 ordered phases. Then it is convenient
to define the local ‘‘cell’’ values of the concentration and the
order parameter, cm and hm , by the relations
c1m5cm1hm , c2m5cm2hm . Under perfect ordering, the
quantitiescm5c(Rm) and hm5h(Rm) are periodic in the
cell coordinateRm with periods of the ordered structure.
These periods exceed those of the original, disordered lattice;
for example, periods of the cubicB2 phase exceed those of
the underlying bcc lattice.

In the stability analysis we writec(R) or h(R) as the sum
of the lattice average,c5^c(R)& or h5^h(R)&, and of
small fluctuations that we write as Fourier series:
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c~R!5c1(
k

dckexp~2 ikR!,

h~R!5h1(
k

dhkexp~2 ikR!. ~7!

Proceeding in Eq.~1! from variablesc1m and c2m to cm
andhm , using Eqs.~7!, and expanding the resulting kinetic
equations indck anddhk , we obtain the zero-order equation
for the long-range order parameterh(t) and the set of linear
equations fordck and dhk that describe fluctuation waves
with kÞ0.

To write these equations, it is convenient to simplify the
notation of Fourier components of the functionsgab(R),
uab(R), andvab(R). To this end, instead of the intersublat-
tice potentialsuab(R) and vab(R), we define their linear
combinationsu, ũ, v, and ṽ:

u5u111u12, ũ5u112u12,

v5v111v12,

ṽ5v112v12. ~8!

Fourier components of potentials~8! and of functions
gab(R) are sums over cell coordinatesR in the ordered
phase. We rewrite these components as sums over true inter-
site distances, i.e., over lattice vectorsr in the disordered
phase. Let us define the ordered phase superstructure vector
ks by the relations exp(iksr )51 when the lattice vectorr
connects sites of the same sublattice, 1 and 1 or 2 and 2, and
exp(iksr )521 whenr connects different sublattices, 1 and
2. For example, for theB2 phase,ks5(1,1,1)2p/a where
a is the bcc lattice constant. Then the Fourier components
gk

ab , uk , vk , ũk , and ṽk can be written in a ‘‘covariant’’
form:

gk
115gk

225
1

2(r g~r !@11exp~ iksr !#exp~ ikr !,

gk
125gk

215
1

2(r g~r !@12exp~ iksr !#exp~ ikr !,

$uk ,vk%5(
r

$u~r !,v~r !%exp~ ikr !,

$ũk ,ṽk%5(
r

$u~r !,v~r !%exp~ iksr1 ikr !.

Using this notation we can write the above-mentioned
zero-order equation forh(t):

dh

dt
52g0

12ebu0c~c1c28e
w̃0h2c18c2e

2w̃0h!, ~9!

where c1,25c6h and c1,28 5c87h, while g0
12, u0 , and

w̃0~13! are k50 values of Fourier componentsgk
12, uk ,

and w̃k5b ṽk . Equation~9! describes the relaxation of the
long-range order parameterh.

The MFA expression for the reduced free energyf5bF
per site, generalizing Eq.~3! to the ordered phase, has the
form10

f5
1

2
~c1lnc11c2lnc21c18lnc181c28lnc28!1

1

2
w0c

21
1

2
w̃0h

2,

~10!

wherew0 is the same as in Eq.~3!. Using Eq.~10! we can
rewrite Eq.~9! as

dh

dt
52g0

12exp~bu0c!~c1c18c2c28!1/22sinh~] f /]h!,

~11!

which is a particular case of the general MFKE~Ref. 18! for
the uniform ordering relaxation. Equations~9!–~11! show
that the stationary statedh/dt 50 corresponds to the ther-
modynamical equilibrium valueh5h0(c,T) determined by
the minimum of f condition (] f /]h)c[ f h50, as it should
be. These equations also show that the timet0 for relaxation
to this equilibrium value is of the order of that for one inter-
site atomic exchange,t0;1/g0

12, in accordance with the con-
siderations of AC.1 Let us also note that the uniform ordering
kinetics was discussed in more detail by Gschwendet al.19

with the use of a cluster-type approximation, more sophisti-
cated than the MFKE.

In the discussion of nonuniform fluctuations withkÞ0
we suppose for simplicity that partial equilibrium in the
long-range order parameterh has been achieved:
h5h0(c,T). As mentioned in Sec. I~and as seen from the
results below!, this is true, for example, for the long-wave
fluctuations corresponding to concentration variations. Writ-
ing the wave amplitudes in~7! as dck5dck

0exp(pt),
dhk5dhk

0exp(pt), we obtain after manipulations the follow-
ing set of equations fordck

0 anddhk
0

@Acc~k!2p#dck
01Ach~k!dhk

050, ~12a!

Ahc~k!dck
01@Ahh~k!2p#dhk

050. ~12b!

Here the matrix with coefficientsAab(k) generalizes the
right-hand side~RHS! of Eq. ~2a! to the two-sublattice case
under consideration:

Acc~k!52
1

2
@~m12g0k

121m11g0k
11!d1k

1~m12g0k
121m22g0k

11!d2k#, ~13!

Ach~k!52
1

2
@~m12g0k

121m11g0k
11!d̃1k

2~m12g0k
121m22g0k

11!d̃2k#,

Ahc~k!52
1

2
$@m12~g0

121gk
12!1m11g0k

11#d1k

2@m12~g0
121gk

12!1m22g0k
11#d2k%,
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Ahh~k!52
1

2
$@m12~g0

121gk
12!1m11g0k

11#d̃1k

1@m12~g0
121gk

12!1m22g0k
11#d̃2k%,

where d1k5z11wk , d2k5z21wk , d̃1k5z11w̃k , and
d̃2k5z21w̃k , with z151/c1c18 , z251/c2c28 and wk5bvk ,

while g0k
125g0

122gk
12 and g0k

115g0
112gk

11. The factorsmab

determine thec,h dependence of mobilities, similarly tom
in Eq. ~2b!:

m125~c1c2c18c28!1/2exp~bu0c!,

m115c1c18exp@b~u0c1ũ0h!#,

m225c2c28exp@b~u0c2ũ0h!#. ~14!

In deriving Eqs.~13! and ~14! we took into account the
equivalence of sublattices 1 and 2, as well as the partial
equilibrium in the order parameterh, i.e., vanishing RHS in
Eq. ~9!.

Two possible values of the increment,p1(k) and
p2(k), are determined from the solubility condition for sys-
tem ~12!:

p6~k!5Bk6~Bk
22Dk!

1/2, ~15!

whereBk5(Acc1Ahh)/2, andDk5AccAhh2AchAhc .
The explicit expression forDk is relatively simple. It fac-

torizes into two factors, the ‘‘kinetic’’ oneM k that depends
on the functionsmab andgk

ab , and the ‘‘thermodynamic’’
oneDk that depends on the reduced interactionswk and w̃k
and can also be expressed in terms of the derivatives of the
free energyf in ~10! over c or h:

Dk5M kDk , ~16a!

M k5m12
2 g0k

12~g0
121gk

12!1m12~m111m22!g0k
11g0

12

1~m12g0k
11!2, ~16b!

Dk5
1

2
~d1kd̃2k1d2kd̃1k!5 f cc

a f hh1 f hhwk01 f ccw̃k0

1wk0w̃k0 . ~16c!

Herew̃k05w̃k2w̃0 , f cc
a 5 f cc2 f ch

2 / f hh is the full concentra-
tional derivative of the adiabatic~or ‘‘conditional’’ 1! free
energyf a5 f @c,h0(c)#, f cc

a 5d2f a/dc2, found by taking into
account the conditionf h50 ath5h0(c), andf cc , f hh , and
f ch are the formal partial derivatives of the function
f (c,h) in ~10! at h5h0(c):

f cc5S ]2f

]c2D
h

5z11w0 , f hh5S ]2f

]h2D
c

5z11w̃0 ,

f ch5
]2f

]c]h
5z2 , ~17!

wherez65 1
2 (z16z2). The explicit expression forBk in ~15!

is more cumbersome:

Bk52m12@g0
12~ f hh1w̃k0!1 1

2g0k
12~wk2w̃k!#

2 1
4g0k

11@~m111m22!~ f cc1 f hh1wk01w̃k0!

1~m112m22!~z12z2!#. ~18!

Relations~12!–~18! provide the general solution for the
stability problem. The relations can be simplified if one ac-
cepts the usual assumption that the intersite atomic exchange
is dominated by the nearest-neighbor jumps of atoms in the
crystal lattice. For example, for theB2 phase this implies
that the quantitiesgk

11 in Eqs.~13! and~16! can be neglected
as compared togk

12, so thatM k andBk reduce to the first
terms in Eqs.~16b! and ~18! only.

Let us discuss the signs of the derivativesf hh , f cc , and
f cc
a in Eqs. ~16!–~18!. The derivativef hh is positive for all

h0Þ0, i.e., for allT,Tos(c), as the ‘‘partial equilibrium’’
valueh5h0(c) corresponds to the minimum off (c,h) over
h. When thec,T point under consideration approaches the
ordering spinodalTos(c), bothh0(c) and f hh(c,T) tend to
zero, since the curveTos(c) is determined by the equation
f hh50 at h50. The differencef cc2 f hh according to Eq.
~17! is w02w̃0 , and is thus positive; otherwise SD into two
disordered phases would take place rather than alloy order-
ing. Therefore, the quantityf cc is positive, too, and it is
generally not small. The conditional spinodalTcs(c) is deter-
mined by the equationf cc

a 50, so that f cc
a is negative at

T,Tcs, i.e., in region~d! of Fig. 1, and it is positive at
T.Tcs. Thus the productf cc

a f hh in Eq. ~16c! is negative in
area~d! of Fig. 1, and it vanishes at either borderline of this
area,Tos(c) andTcs(c).

For simplicity below we consider only long-wave fluctua-
tions with smallk, as in most treatments of SD in disordered
alloys.7,11 Let us first discuss the physical meaning of two
fluctuation modes in Eqs.~12!, corresponding top5p1 and
p5p2 , in the limit k→0. In this limit Eq. ~12b! takes the
form

f hcdc61~ f hh1p6/2m12g0
12!dh650 ~19!

where the index1 or 2 marks the mode withp5p1 or
p5p2 . The expressions forp2 andp1 at k→0 are

p2522m12g0
12f hh , ~20a!

p15~2 f cc
a !M 8k2. ~20b!

Here M 8k2 is the small-k expansion for the sum
g0k
12m121g0k

11(m111m22)/2, which generalizes the similar ex-
pansion in Eq.~5! to the casehÞ0.

Equations~19! and~20a! show that in the ‘‘minus’’ mode,
the concentrational amplitudedc2 vanishes. Therefore, this
mode describes the uniform relaxation of the order parameter
h at the ‘‘frozen’’ concentrationc, and the valuep2 , Eq.
~20a!, corresponds just to linearizing the relevant equation
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~11! in the small differencedh25h2h0(c). On the con-
trary, the ‘‘plus’’ mode describes the diffusion of concentra-
tion. At T higher than the ordering spinodalTos(c) it corre-
sponds to the relaxation of fluctuations, while atT,Tos(c) it
describes the uphill diffusion corresponding to SD. For
k→0 ~the case under consideration here! diffusion occurs
adiabatically slowly, and relation~19! betweendc1 and
dh1 corresponds to varying the concentration along the
‘‘adiabatic’’ partial equilibrium line f h50:
f hcdc11 f hhdh150.
To study SD at finitek, in particular, atk5kc correspond-

ing to critical waves, one should keep higher powers ofk2 in
the small-k expansions of Eqs.~12!–~18!. The increment
p1(k) takes the form

p1~k!5m12g0
12$@~ f hh1lk2!222mk2~ f cc

a f hh1nk2!#1/2

2~ f hh1lk2!%. ~21!

Herem5M 8/m12g0
12, while lk2 or nk2 corresponds to the

small-k expansion ofBk or Dk in Eq. ~18! or ~16b!:

lk25$w̃k01@g0k
12~ f cc2 f hh!1g0k

11f cc#/2g0
12%k→0 ,

~22a!

nk25~ w̃k0f cc1wk0f hh!k→0 . ~22b!

Explicit expressions for the wave numberk5kc and the
incrementp5pc of critical waves can be found from Eq.
~21! and the condition ofp1 maximum:]p1 /]k50. These
expressions can be simplified if one takes into account the
fact thatkc is small~and the small-k expansion used above is
valid! only if either f cc

a or f hh is small, i.e., if thec,T point
under consideration is close to either the conditional or the
ordering spinodal in Fig. 1. We consider below these two
particular cases.

~i! Point c,T is close to the conditional spinodal. Here
f cc
a is small,kc

2 is proportional tof cc
a , and the RHS of Eq.

~21! can be expanded ink2. Then expressions forp1(k),
kc , andpc become similar to Eqs.~5! and~6! for disordered
alloys, differing only by the replacement off cc by f cc

a and by
the presence of renormalizing factors:

kc
25~2 f cc

a ! f hh/2n, pc5M 8~ f cc
a !2f hh/4n. ~23!

To make Eqs.~23! more transparent, we also express the
coefficient n in terms of the mean interaction lengthsxv
and x̃v for the interaction potentialsv and ṽ. Supposing for
simplicity both the ordered and disordered phases to be cubic
~as is the case forB2 ordering on the bcc lattice!, we define
xv and x̃v by

xv
25

1

3v0
(
r
v~r !r 2, x̃v

25
1

3ṽ0
(
r
v~r !eiksrr 2. ~24!

Then expression~22b! for n can be written as

n52bTc~ f ccx̃v
21 f hhrxv

2!, ~25!

wherer5v0 / ṽ0 , and we use the MFA relationTc52 ṽ0/4
for the critical ordering temperatureTc .

Let us discuss the sign ofn in Eq. ~25!. As mentioned,
f cc. f hh , and the presence of a tricritical point in the phase

diagram implies that the ratior lies within the interval9

21/2,r,1. Therefore, for usual interaction potentials with
xv; x̃v , n is positive: This was implicitly assumed in writing
Eqs.~23!. However, if for some specific system the quantity
n turns out to be negative@which in our model would corre-
spond to small values of (x̃v /xv) andr,0#, then increment
p1(k), Eq. ~21!, for finite k is positive even atT.Tcs(c),
i.e., in region~e! of Fig. 1. This implies an instability of the
homogeneous ordered state and a tendency to the formation
of an incommensurate phase in this area; in the present work
we will not address this exotic possibility.

For the normal casen.0, Eqs.~23! show that at small
distancesz between the pointc,T and the conditional spin-
odalTcs(c), the values ofkc(z) andpc(z) vary with z simi-
larly to those in Eqs.~6! for SDDA: kc;z, pc;z2. There-
fore, the effect of ordering on the kinetic characteristics
reduces here to the appearance of some renormalization fac-
tors in Eqs.~23! as compared with~6!.

~ii ! Point c,T is close to the ordering spinodal. Here the
derivative f hh is small ~while f cc

a can be not small!,
kc
2; f hh , and atk;kc all terms in Eq.~21! have the same
order of magnitude. The dependencep1(k) becomes more
complex than in~5!. The expressions forkc and pc can be
written as

kc
25 f hh@~11a!1/221#

T

2Tcx̃v
2, ~26a!

pc5mg0
12f hh f cc@21a22~11a!1/2#

Txg
2

4Tcx̃v
2
. ~26b!

Herem is the same as in~2b!, while quantitiesa and
xg are defined by the relations

a52 f cc
a / f cc , xg

25(
r

g~r !r 2/3g0
12. ~27!

In the derivation of Eqs.~26! we supposed the ratio
xg
2/ x̃v

2 to be small, as the ‘‘mean atomic jump distance’’xg in
~27! is of the order of the intersite distancer nn, while the
formal condition for the applicability of the MFA implies the
inequality x̃v

2@r nn
2 .13,12

Equations~26! show that near the ordering spinodal the
kinetic characteristics of SD differ markedly from those for
the disordered alloy, unlike case~i! discussed above. This is
due to the strong coupling between fluctuations ofc andh at
small values ofh0 . In particular, the maximal increment
pc here varies linearly with the distancez from c,T to the
ordering spinodalTos(c), instead of the quadratic depen-
dence in Eq.~6! or ~23!. Thus critical fluctuations here grow
much faster than those under SDDA with a similar distance
z to the spinodal.

Near the tricritical point bothf cc
a and f hh become small,

and Eqs.~23! and~26! turn into each other. Explicit expres-
sions forkc andpc here can be obtained setting in Eqs.~23!:
n52bTcf ccx̃v

2 , M 85mg0
12xg

2/2. If we denote the distance
from the pointc,T to the conditional and ordering spinodal
aszcs andzos, respectively, thenkc andpc in this area vary
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with zcs and zos as kc;zcszos, pc;zcs
2 zos. Therefore, the

critical fluctuations here have a large wavelength and grow
with time very slowly.

The above analysis shows that the presence of a strong
coupling between the fluctuations of concentration and de-
gree of order results in a number of peculiarities in the ki-
netic characteristics of SD under ordering. Below we show
that the possibility of APB’s to be present in the initial state
can lead to additional specific effects in the kinetics of such
SD.

III. MICROSTRUCTURAL EVOLUTION IN THE COURSE
OF DECOMPOSITION WITH ORDERING

In this section we investigate transient morphologies aris-
ing under alloy decomposition with ordering. Let us note that
experimentally such morphologies can be studied directly,
taking advantage of dark-field images in transmission elec-
tron microscopy. This type of observation can provide richer
information, in particular, for comparison with results of the
present study, than structural factorsS(k,t) as measured by
standard diffraction experiments. This was demonstrated, in
particular, by experiments in Refs. 1 and 2 for FeAl alloys.
Therefore, comparison of the theoretical results for micro-
structural evolution under SD in ordered and disordered al-
loys, being combined with experimental studies of SD under
ordering, can provide significant information about the ad-
equacy of the currently used models of SD.20

In the present study we use computer simulations based
on the MFKE~1!. For simplicity and convenience of presen-
tation, we consider the same two-dimensional~2D! model on
the square lattice as CK,3–5 at the same temperature
T50.424Tc , whereTc is the critical ordering temperature,
and the same or similar compositionsc equal to 0.175,
0.25, 0.325, or 0.415. The as-quenched states corresponding
to thesec,T points will be called for brevity thea, b, g, or
d state; see Fig. 1. The asymmetric potentialu for this model
is zero, while the configurational interactionsv(r ) for first,
second, and third neighbors arev151, v2520.8, and
v3520.5. The intersite atomic jumps are supposed to occur
only between nearest neighbors,g(r )5gnn, and we use the
‘‘reduced’’ time variablet85tgnn. The superstructure vector
ks for the ordered 2D ‘‘B2 phase’’ is (1/2,1/2)2p/a, and the
perfectly ordered state corresponds tocord51/2. In accor-
dance with the ‘‘lever rule,’’ the portionxord of the ordered
phase in the two-phase alloy~at moderate temperatures under
consideration! can be estimated asxord.2c. Therefore, the
results of the present simulations forc5ca50.175
(xord.0.35) andc5cg50.325 (xord.0.655120.35) can
be naturally compared with those for SDDA atc50.35 pre-
sented in Ref. 10. The extension of the MFKE-based com-
puter simulations to three-dimensional lattices, such as the
bcc or fcc ones, does not present any difficulty, as was dem-
onstrated, e.g., in Ref. 9.

Keeping in mind the comparison with Refs. 3–5, we first
consider SD in the absence of APB’s~i.e., in the case
l@lc), since the presence of APB’s brings about certain
peculiarities in the microstructural evolution. For stateg,
such ‘‘homogeneous’’ SD~HSD! can be realized if the alloy
has been annealed prior to quench in some state in area
~b!.1,2. Then we investigate quenches~a!→(d) in a more

typical casel&lc , i.e., in the presence of APB’s. We show
that the transient morphologies sharply change when the
c,T point is shifted from left to right in area~d!: for states
a, b, andg the morphologies are quite different. Finally, we
discuss quench (a)→(e) and show that nucleation on APB’s
results in specific features of evolution.

The simulations have been made on a square lattice of
1283128 sites with periodic boundary conditions. The simu-
lation methods were the same as in Refs. 10 and 9. The
as-quenched distributionci(0) was characterized by its mean
valuec and small random fluctuationsdci ; usually we used
dci560.01. In simulations of HSD we also imposed the
initial uniform ordering h(0)50.04, to create a single-
domain state.

The results of our simulations are illustrated in Figs. 2–6.
Below we discuss them, indicating for each simulation~i! the
type of quench,~ii ! the type of initial ordering, i.e., the pres-
ence of a single or of several AP domains, which will be
abbreviated as the ‘‘HSD,’’ ‘‘SD with APB’s,’’ or ‘‘nucle-
ation with APB’s’’ case, respectively, and~iii ! the initial
compositionc. The reduced temperatureT85T/Tc in all
simulations is 0.424.

~3.1! (b)→(d); HSD,c5cg50.325, Fig. 2. The stateg in
Fig. 1 is close to the conditional spinodal; i.e., the distance
z between pointg andTcs(c) is small. As mentioned in Sec.
II, the kinetic characteristics of the Cahn stage of SD,
p(k), kc(z), andpc(z), are, in this case, similar to those for
SDDA. Thus it is natural to expect that also for the later~i.e.,
coarsening! stages of SD, the evolution type will be similar
to that for SDDA.

It was mentioned earlier10 that precipitation and coarsen-
ing processes under SDDA can usually be divided into three
stages.

~A! The ‘‘droplet formation’’ stage, where Cahn concen-
tration waves begin to coalesce, and primary precipitates, or
‘‘droplets,’’ are formed.

~B! The ‘‘coagulation’’ or ‘‘fusion’’ stage, where the
dominant mechanism for droplet growth is their coalescence
via the ‘‘bridge’’ mechanism discussed in Ref. 10.

FIG. 2. Temporal evolution of mean occupationsci5c(r i) for
the alloy model used under spinodal decomposition of a single-
domain ordered state, atT85T/Tc50.424, c50.325, and the fol-
lowing values of reduced timet85tgnn: ~a! 500, ~b! 1000, ~c!
2000,~d! 2500,~e! 3000, and~f! 10 000. The insert in~a! shows the
relation between the darkness level andci values, which vary lin-
early from 0 to 1 with the distance from bottom to top.
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~C! The final stage, where coarsening is dominated by the
evaporation-condensation~EC! mechanism,14 by which
larger droplets grow owing to the evaporation of smaller
ones.

In simulations of SDDA atc50.35 ~Ref. 10! the division
into stages~A!, ~B!, and~C! was found to be rather clear.

The similar division has been revealed in the present
simulation of HSD of the stateg. Stage~A! here approxi-
mately corresponds to the time interval 300,t8,1000. Fig-
ure 2~a! illustrates the formation of an approximately peri-
odic array of minima ofc(r ) via the superposition of
nonlinear critical waves withl.lc ; this distribution is
analogous to the ‘‘hill-like’’ profile ofc(r ) shown in Fig. 1
in Ref. 10. Stage~B! approximately corresponds to the time
interval 1000,t8,4000, when 14 droplets out of 48 coa-
lesce, and 7 evaporate; and stage~C!, to t8.4000: For
4000,t8,10000, 3 droplets out of 27 coalesce and 6 evapo-
rate. These mechanisms are illustrated in Figs. 2~c!–2~f!
where both fusion and evaporation processes can be seen.
Note, in particular, the double fusion of three droplets in the
upper right part of Fig. 2~c!, realized via the formation of
two bridges with a length of the order of the droplet diam-
eters. However, the borderline between stages~B! and ~C!
under this SD is less distinct than that for SDDA in Ref. 10.
For example, duringt852000–4000, 8 droplets coalesce and
5 evaporate; i.e., both mechanisms make similar contribu-
tions to coarsening, while Fig. 2~f! shows a fusion event that
happened at rather larget8.9000, when the EC mechanism
is generally dominant.

~3.2! (a)→(d), SD with APB’s,c5ca50.175, Fig. 3. As
mentioned in Sec. I, due to the depletion of both the order
parameter and the alloy minority component within the APB
the latter can act as an embryo for the disordered phase at
phase separation. Under SD, the presence of such embryos
induces the formation of critical concentration waves that
replicate the initial APB shape and have periodsl;lc . This
APB replication phenomenon is discussed in more details in
Sec. IV. As a consequence, at the beginning of stage~A! the
concentrationc(r ) and the order parameterh(r ) profiles
have a ‘‘ridge-valley’’-like pattern, rather than the hill-like
one observed for SDDA.10 This is illustrated by Figs. 3~a!
and 3~b! and results in a significant difference in microstruc-

ture of stage~A! as compared to that for HSD discussed
above@point ~3.1! above#.

Stage ~A! now approximately corresponds to
t8550–300, being accelerated as compared to HSD~3.1! by
the presence of APB’s as embryos for the decomposition.
Figures 3~b!–3~d! show that the formation of droplets from
initial stripes with enhanced concentrationc(r ) proceeds via
two mechanisms:~i! splitting of these stripes into shorter
pieces that later on spheroidize@see, e.g., droplets 1 and 2 in
Figs. 3~c!–3~f!#, and ~ii ! ‘‘consumption’’ of some of these
new-born droplets by their neighbors via the bridge mecha-
nism discussed in Ref. 10. The latter occurs for droplet 3 in
Fig. 3~c!, and it also happens for droplets 4 and 5 at
t8.750.

As soon ast851000, the microstructure shown in Fig.
3~d! does not differ qualitatively anymore with that for HSD
in Fig. 2~d!. However, the coagulation stage~B! now is rela-
tively short: It lasts approximately fort85300–1000, when
9 droplets among 43 coalesce and none evaporates. At
t8.1000, the EC mechanism becomes dominant: For
t851000–10 000, only 3 droplets coalesce while 22 evapo-
rate. This stage~C! is illustrated by Figs. 3~e! and 3~f!; the
latter figure also shows one of the rare fusion events for this
stage.

~3.3! (a)→(d), SD with APB’s,c5cb50.25, Fig. 4. Mi-
crostructural evolution atc50.25 under HSD~i.e., in the
absence of APB’s! is similar to that under SDDA atc51/2
shown, for example, in Ref. 21 so that we do not describe it
here. The presence of APB’s brings about new features in the
evolution. Unlike the case ofc50.175 discussed in simula-
tion ~3.2!, the initial ‘‘APB-replicated’’ structure here is not
destroyed for a short timet8&100, but is clamped by the
precipitation of the disordered phase. Comparison of Fig.
3~a! with Fig. 4~a! or 4~b! shows that the structure is basi-
cally preserved up to significant times (t8*2000). As the
proportion of both phases in the mixture is similar,
xord;xdisord;1/2, the evolution is mainly realized via the
growth of initially ordered and disordered layers and the for-
mation of droplets of either phase within the other one. Later
on the droplets evaporate@Figs. 4~c! and 4~d!#, and the mor-
phology begins to evolve to that of interconnected interpen-
etrating domains characteristic of SDDA atc51/2.21

FIG. 3. Temporal evolution ofci5c(r i) after quenching the
alloy from a disordered state with randomly distributed fluctuations
dci560.01 toT850.424, atc50.175 and followingt8: ~a! 50, ~b!
100, ~c! 200, ~d! 1000,~e! 4000, and~f! 9000.

FIG. 4. Same as in Fig. 3, but atc50.25 and followingt8: ~a!
1000,~b! 2000,~c! 4000, and~d! 6000.
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~3.4! (a)→(d), SD with APB’s, c5cg50.325, Fig. 5.
Unlike for HSD, an approximate topological symmetry be-
tween SD of statesa andg in the presence of APB’s@com-
pare Figs. 3~a! and 5~a!# is observed at early stages only
(t8&50). Later on at largerc5cg50.325, the initial APB
becomes a center of precipitation that clamps its contour~as
was the case forc50.25), while at relatively small
c5ca50.175, APB’s coalesce to form a continuous disor-
dered phase around the ordered droplets. Figures 5~a!–5~d!
show that precipitate growth at APB’s occurs due to the
evaporation of isolated droplets; as a consequence APB’s
thicken and play the role of ‘‘larger droplets’’ in the EC
mechanism. Further evolution of these precipitates to single-
connected ones is similar to that shown in Fig. 6 below and
needs considerable timet8*(2–3)3104. Until this final
stage is reached, the morphologies under such SD are quite
different from those under HSD~i.e., in the absence of
APB’s! with the samec50.325~Fig. 2!.

~3.5! (a)→(e), nucleation with APB,c5cd50.415, Fig.
6. In area~e! decomposition only proceeds via nucleation
and growth, and APB’s become embryos of the disordered
phase. As there is no spinodal instability here, local concen-
tration fluctuations do not grow with time, and no APB rep-
lication occurs either. Thus the number of initial disordered
droplets here is significantly less than under SD, which is

seen from comparison of Fig. 5~a! or 5~b! with Figs. 6~a!–
6~c!. The only mechanism for creating such droplets~in the
MFA used that neglects thermal fluctuations in occupation
numbers12,13! is the possible collapse of AP domains.9 For
illustrating this mechanism, the simulation shown in Fig. 6
was started with an initial distribution of fluctuationsdci
~different from that in other simulations! chosen to generate
several initial AP domains of comparable size. The primary
AP domain structure is established after a short timet8;1;
later APB’s begin to move, mainly to shrink in order to
decrease the interface energy. Whenever an antiphase do-
main has a time to collapse before the precipitation on its
APB damps its motion, near the collapse point both the order
parameter and the alloy minority concentration are depleted,
and this area becomes an embryo for the disordered phase.9

This is illustrated in Fig. 6~c!: Droplets 1 and 2 originate
from the collapses of AP domains 1 and 2 in Fig. 6~b!.

Later on these droplets evaporate with condensation on
precipitates formed at APB’s. Further stages illustrated by
Figs. 6~d!–6~f! correspond to the evolution from initial APB-
shaped precipitates to more compact, single-connected ones.
It is realized, first, via smoothening the most curved parts of
the contour@see Figs. 6~c! and 6~d!#, and then via shrinkage
and thickening of a disordered shell embracing the inner or-
dered area, due to diffusion of atoms from this area across
the shell. In the course of the process the inner droplet be-
comes almost spherical@Fig. 6~e!#, and finally evaporates. As
the total timet t8 for this process is determined by diffusion
along or across APB’s, it should vary with the initial AP
domain sizel approximately quadratically:t t8; l 2.

Now let us compare our simulation results with those of
CK ~Refs. 3–5! for the same model. As mentioned in Sec. I,
CK used the partially linearized kinetic equation~PLKE! in-
stead of the full MFKE; therefore, the comparison can pro-
vide information on errors brought about by the ‘‘partial lin-
earization’’ of MFKE in describing the alloy evolution. CK
made their simulations for the quench discussed in point
~3.2! above, using lattices of 64364 and 1283128 sites,3–5

and also for quenches discussed in points~3.3! and ~3.5!,
using a lattice of 64364 sites. Their PLKE corresponds to
replacing the occupation-dependent termsg isci8cs and
g iscs8ci in ~1! by a constantL1 . To have coincident results at
early timest→0 ~where linearization of the MFKE is justi-
fied!, we should putL15g nncc8 with c andc8 correspond-
ing to the initial homogeneous alloy. It implies that our re-
duced time t85gnnt is related to t*5L1t in CK by
t85t* /cc8.

The comparison of our results with Refs. 3–5 reveals the
following differences.

~i! In simulation~3.2!, there is a significant distortion of
the time scale in the PLKE relative to the MFKE: Evolution
in the PLKE occurs much more slowly. For example, Figs.
3~b! and 3~c! show fusion of initial APB’s already at
t85100–200, while in Refs. 4 and 5 it begins only at
t**100~i.e., t8*700). Fort8*4000, Fig. 3~e! demonstrates
the advanced stage~C! of SD dominated by the EC mecha-
nism, characterized by a significantly reduced number of
droplets and large nonuniformity in their sizes and positions,
while results of CK ~Refs. 3–5! for t*5500 and 1000
(t8.3500 and 8000! rather correspond to the beginning of

FIG. 5. Same as in Fig. 3, but atc50.325 and followingt8: ~a!
50, ~b! 1000,~c! 3500, and~d! 10 000.

FIG. 6. Same as in Fig. 3, but atc50.415 and followingt8: ~a!
1, ~b! 10, ~c! 1000,~d! 9000,~e! 23 000, and~f! 25 000.
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stage~B! (t8;1000), with the presence of many small uni-
formly distributed droplets.

~ii ! No discussion of the relative importance of the coagu-
lation and EC mechanisms under SD~3.2! is presented in
Refs. 3–5. However, results4,5 for t*5500 (t8.3500) seem
to show a great number of fusion processes, while in our
analysis we mentioned the suppression of this mechanism for
SD ~3.2!. Therefore, PLKE can also qualitatively distort the
evolution mechanism.

~iii ! Simulation~3.4! was made in Ref. 3 on a small lattice
of 64364 sites. Therefore, a detailed comparison with our
results is hindered by the scarcity of droplets and probable
effects of periodic boundary conditions in the work reported
in Ref. 3. However, our Fig. 4 reveals a much more dis-
persed and nonuniform distribution of precipitates than that
shown in Ref. 3 for t*5200 (t8.1100) and t*51000
(t8.5300). It is not clear whether the discrepancy is due to
errors of the PLKE or due to the small size of the simulation
box in Ref. 3; the same thing can be said about the results
discussed in point~iv! below.

~iv! The structural evolution under quench~3.5! in Ref. 3
is quite different from that shown in our Fig. 6. In particular,
the final statet*5500 in Ref. 3 shows two straight ‘‘frozen’’
APB’s, with no sign of further evolution: As we mentioned
in point ~3.5!, decomposition in area~e! can be realized ei-
ther via evaporation of small droplets~that are absent at
t*5500 in Ref. 3!, or via changes of the APB shape, which
do not occur for straight APB’s either. Thus the decomposi-
tion stage appears not to be reached in Ref. 3 for this simu-
lation.

Therefore, the comparison of our results with those of
Refs. 3–5 seems to imply that the PLKE can significantly
distort the description of the microstructural evolution. How-
ever, a more detailed comparison is hindered by the scarcity
of results presented in Refs. 3–5.

IV. REPLICATION OF ANTIPHASE BOUNDARIES
UNDER SPINODAL DECOMPOSITION WITH ORDERING

As mentioned in Sec. I, the depletion of both the order
parameter and the alloy minority component within APB’s
~Ref. 9! makes APB’s possible embryos of the disordered
phase under SD. In Sec. III we showed that after direct
quench of a disordered alloy into area~d! in Fig. 1, the initial
AP domains have usually small sizesl&lc , and transient
morphologies under SD have a chaotic character. However,
if before quenching into area~d! the alloy is annealed in the
ordered phase~b!, the AP domains grow, so that after the
subsequent quench~b!→~d! the relationl@lc can be satis-
fied. The APB’s can then be well separated, and peculiar
quasi-periodic structures replicating the initial form of the
APB’s can develop. Examples of such structures have been
presented in Fig. 4 in Ref. 5 and in Fig. 1~c! in Ref. 22, but
their physical origin and possible relevance to actual experi-
ments have not been discussed.

To study this APB replication phenomenon, we simulated
the above-mentioned two-step quench in our 2D model. First
we annealed an initially disordered alloy for timeta at tem-
peratureTa corresponding to area~b! in Fig. 1, and then
quenched the annealed alloy to the final temperatureT in
area ~d!. In our simulations we employedta85100,

Ta5Tt50.753Tc , andT50.424Tc .
Our results are illustrated in Figs. 7–9. Figs. 7 and 8 show

a well-defined replication of APB’s. The mean local compo-
sition c̄(R) in Fig. 8 is obtained by averagingci over four
sites of an elementary square in the 2D lattice.9 As discussed
earlier,9 lowering the temperature toT,Ta results in lower-
ing the local concentration minimum within APB~‘‘deepen-
ing the c well’’ !.9 As a consequence, the solute atoms ex-
pelled from thec well build the ‘‘concentration bank’’ (c
bank! adjacent to this well. Since the alloy state is in the SD
instability area, thec bank does not relax but rises with time,
unlike the case treated in Ref. 9 where the alloy was in the
stable ordered state. This increase inc requires an additional
flow of solute atoms not only from the originalc well where
the concentration has been already depleted, but also from
adjacent outer regions. As a result a second local minimum
in c̄(R) appears, etc. Thus a wavelike distributionc̄(R) is
spreading over the entire crystal, being accompanied with the
relevant modulations of the local order parameter
h(R).h0@ c̄(R)#. The distribution has a characteristic
wavelengthl;lc , while its front replicates the initial APB
form. Therefore, transient quasiperiodic structures arise.

FIG. 7. Temporal evolution of the alloy model after the disor-
dered state withc50.26 is annealed atTa85Tt850.753 for
t85100, and then quenched toT850.424, for the following times
t8 after the quench:~a! 0 ~as quenched!, ~b! 100, ~c! 200, ~d! 500,
~e! 1000, and~f! 3000.

FIG. 8. Profile of the mean local compositionc̄(R) along the
vertical line AB indicated in Fig. 7~b!. Dotted line, t850. Solid
curves,~1! t8510, ~2! t85100, and~3! t85200.
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Later on the usual coarsening process starts, by splitting or
fusion of some of the stripes and evaporation of smaller pre-
cipitates; see Figs. 7~c!–7~f!.

Figure 9 shows that this phenomenon is rather sensitive to
the value of the compositionc. When the difference in pro-
portions of different phases in the mixture,
xord2xdisord.4c21, becomes important, the breaking of dis-
ordered layers with the formation of droplets starts compet-
ing with the replication mechanism, and replicated structures
do not develop.

When looking for experimental manifestations of APB
replication, we should keep in mind that homogeneous SD
induced by thermal fluctuations in local occupationsni is
competing with replication. Such fluctuations are neglected
in the MFA, in particular, in the MFKE where only ‘‘aver-
aged over distribution’’ quantitiesci5^ni& are considered;

10

however, these fluctuations are present in reality. The contri-
bution of fluctuations to the patterning in the SD regime
should be particularly important near the conditional or or-
dering spinodal, where the amplification of the above-
discussed unstable concentration waves is slow. Therefore,
in the c,T states close to spinodals, the APB replication un-
der SD should be less pronounced.

Unfortunately, previous structural studies of SD under or-
dering known to us1,2 seem to be performed just in the vicin-
ity of the conditional spinodal. These studies do not reveal
any distinct APB replication. However, Okiet al.2 men-
tioned that ‘‘some of the disordered phase appears in a layer
along APB,’’ while in the upper right part of Fig. 5~c! in Ref.
1 one can see a family of broken layers of the disordered
phase that are approximately parallel to the adjacent APB.

In order to simulate the contribution of thermal fluctua-
tions to the formation of embryos, we introduced in our
simulation additional random fluctuationsdcf i just after an-
nealing~i.e., att850). For simplicity we supposeddcf i to be
random ~just as the fluctuationsdci introduced before an-
nealing!, while the actual embryo-creating fluctuations near
spinodals seem to have considerable correlation lengths.23 In
our simulations, a significant competition between homoge-
neous SD and replication at APB’s occurs only at relatively
large fluctuation amplitudesudcf i u*0.05–0.1. However,
these amplitudes can be made much smaller if we allow for

space correlations of the fluctuations.
In Fig. 10 we present the results of simulations for the

same model and parameter values as in Fig. 7, but introduc-
ing at t850 the above-described random fluctuations
dcf i560.1 near a straight APB. In order to facilitate the
comparison with the dark-field micrographs presented in
Refs. 1 and 2, in Fig. 10 we invert the color code used up to
now in the present paper: the most disordered area is com-
pletely dark, while the most ordered one is completely white.
The simulated microstructures reveal a striking similarity
with the observed ones.1,2 Note, in particular, the presence of
an ordered layer adjacent to APB’s~the above-mentionedc
bank! in Fig. 10, which is also distinctly seen in micrographs
5~b! and 5~c! in Ref. 1, or Fig. 1~b! and 1~c! ~middle column!
in Fig. 2. Later on in our simulation, dark ‘‘branches’’ of the
disordered phase begin to grow from APB’s almost normal
to it @Figs. 10~c! and 10~d!#, which corresponds to the coagu-
lation of nearby disordered precipitates with the APB. Such
morphologies are also clearly seen experimentally, e.g., Figs.
1~c! and 1~d! ~middle column! in Ref. 2. We repeated the
above-described simulation with lower fluctuation ampli-
tudesdcf i560.04, and obtained microstructures with bro-
ken layers of the disordered phase near the APB, similar to
those in the upper right part of the micrograph 5~c! in Ref. 1.

Further structural studies of APB evolution under SD with
ordering, in particular, forc,T values as far from spinodals
as possible, can reveal clearer manifestations of the APB
replication phenomenon.

V. APPLICATION OF THE MFKE TO A DESCRIPTION
OF TRANSIENT ORDERED STATES UNDER

DECOMPOSITION INTO DISORDERED PHASES

The possible formation of transient ordered phases under
SDDA was considered by CK~Ref. 15! using the PLKE, and
later on by Reinhardt and Turchi16 ~RT! using Monte Carlo
~MC! simulations. The physical aspects and main features of

FIG. 9. Same as in Fig. 7, but atc50.3 and followingt8: ~a! 0,
~b! 500, ~c! 1000, and~d! 2000.

FIG. 10. Same as in Fig. 7 with the following modification:
After the second quench (T850.424) random fluctuationsd f i are
introduced near the straight APB~see text!; the pictures correspond
to following t8 values:~a! 100,~b! 500,~c! 1000, and~d! 2000. The
completely dark area corresponds to the minimum concentration
c̄ (R) and to most disordered regions; the completely white, to the
maximum c̄(R) and to most ordered regions; in between,c̄(R)
varies linearly with darkness.
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this phenomenon have been discussed by these authors. Be-
low we address this problem with the aim of estimating the
accuracy of the MFKE, taking MC simulation16 as a refer-
ence for the same model.

Possible shortcomings of mean-field-type approaches in
describing the transient ordered states kinetics have been dis-
cussed by RT.16 They noted that the main qualitative features
of evolution found by CK,15 such as precipitation of the dis-
ordered phase on APB’s, the presence of ordered interfaces
between the disordered product phases, etc., have been con-
firmed by the MC simulations.16 However, two differences
have been found.~i! The ordering spinodal in the MF
approach15 delineates regions with distinctly different kinetic
behavior, while MC simulations show a gradual change of
evolution under variation ofc andT, and ~ii ! MC simula-
tions show a coexistence near APB’s of three phases,
A-rich disordered,B-rich disordered, and ordered phases,
while CK ~Ref. 15! did not observe such microstructures. RT
ascribed the differences to inherent limitations of the MFA.

Discrepancy~i! is analogous to that for spinodals in usual
SDDA where MC simulations do not show sharp changes in
kinetic behavior when thec,T point crosses the spinodal
curve,20 while in the MFA this curve limits the infinitesimal
fluctuation instability area. The discrepancy is usually be-
lieved to be due to inaccuracies in the MFA.20 However,
experiments2 mentioned in Sec. I appear to show that the
borderline in thec,T plane between areas of the different
decomposition kinetics is rather sharp, indeed. Therefore, at
least for the FeAl alloys studied in Ref. 2, the spinodal curve
~in this case, the conditional spinodal! can apparently be de-
fined with a sufficient accuracy.

To clarify the origin of discrepancy~ii !, we made simula-
tions based on the MFKE for the same model and parameter

values as those in Ref. 16:c50.5, T5 1
3 T0 whereT0 is the

critical temperature for SDDA. In our results the discrepancy
~ii ! is absent. For example, Fig. 11 shows both creation of
disordered islands along APB’s and coexistence at interme-
diate times of three phases, ordered, gaslike, and liquidlike,
with the ordered interfaces between the latter two phases.
The morphologies shown in Figs. 11~a! and 11~b! are rather
similar to those in Figs. 4~b! and 4~c! in Ref. 16 and look like
their ‘‘averaged over thermal fluctuations’’ versions, in ac-
cordance with the averaged character of the MFKE and a
sufficiently large interaction range in the model15 used.

Therefore, the discrepancy~ii ! is not inherent to the MFA
as RT supposed, but can be connected either with the differ-
ence in compositions (c50.175 or 0.25 in Ref. 15, while

c50.5 in Ref. 16!, or with possible shortcomings of the
PLKE used in Ref. 15.

VI. CONCLUSIONS

This work investigates the decomposition kinetics under
alloy ordering with the use of the earlier derived mean-field
kinetic equation.10 To describe the first stage of decomposi-
tion, we present the linear stability analysis for small fluc-
tuations in local concentration and order parameter in the
homogeneous ordered alloy. The analysis generalizes that
given by Cahn7 for the disordered alloys; it provides explicit
expressions for incrementsp of fluctuation waves, as well as
for the maximum valuepmax5pc and for the corresponding
wave numberk5kc that correspond to the fastest growing,
critical waves. The strong interaction between the concentra-
tion and the order parameter results in a number of differ-
ences in the functional formp(k,c,T), pc(c,T), and
kc(c,T) as compared to disordered alloys. In particular,
when the initialc,T point is close to the ordering spinodal,
critical fluctuations grow with time much faster than in the
disordered alloys with the same distancez to the spinodal,
while near the conditional spinodal defined in Ref. 1, the
dependencesp(k,z), pc(z), andkc(z) are similar to those
for the disordered alloy.

We also studied the microstructural evolution under de-
composition with ordering for various types of quenches to
the two-phase equilibrium region. Our results illustrate and
specify general considerations of Allen and Cahn1 about the
variability and features of this evolution. We found, in par-
ticular, that for the single-domain ordered initial state, the
evolution under such SD is generally similar to that for dis-
ordered alloys. However, when the initial AP domain size is
of the order of the characteristic critical lengthlc52p/kc ,
transient microstructures under SD become sensitive to the
initial compositionc. In particular, at largec*ct wherect is
the composition at the tricritical point, the initial AP domain
structure is basically preserved at large time, and morpholo-
gies for these later times are determined by the initial struc-
ture. We also considered the quench (a)→(e) into the meta-
stable area~e! in Fig. 1 and studied the features of the
evolution from the initial APB-shaped precipitate to the final
single-connected one.

A peculiar phenomenon of APB replication, i.e., the for-
mation of quasiperiodic structures replicating the form of the
initial APB form, can arise near isolated APB’s under SD
with ordering. We discuss possible experimental evidence
thereof: Some available experimental data@1,2# seem to sup-
port the theoretical findings.

Finally, we compare the description of transient ordered
states under SD given by our MFKE with that obtained in a
Monte Carlo study.16We find that the two descriptions are in
good qualitative agreement. This seems to confirm the appli-
cability of the MFKE to studies of phenomena treated in the
present work.
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FIG. 11. Temporal evolution of the same 2D model as in Refs.
15 and 16 for a square lattice of 1283128 sites, atc50.5,

T5
1
3T0 and following t8: ~a! 400 and~b! 1900.
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