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Molecular dynamics simulations are used to investigate the atomic mobility and diffusivity of a generalized
Frenkel-Kontorova model which takes into account anharmonic~exponential! interaction of atoms subjected to
a three-dimensional substrate potential periodic in two dimensions and nonconvex~Morse! in the third dimen-
sion. The numerical results are explained by a phenomenological theory which treats a system of strongly
interacting atoms as a system of weakly interacting quasiparticles~kinks!. Model parameters are chosen close
to those for the K-W~112! adsorption system.@S0163-1829~96!00826-0#

I. INTRODUCTION

Experimental studies of transport coefficients in systems
of strongly interacting atoms adsorbed on a crystalline sur-
face show a very rich and complicated behavior, especially
as functions of the atomic concentration. The variation of the
diffusion coefficient versus coverage is particularly impor-
tant for adsorbed layers where the concentration may vary in
wide limits from zero~diffusion of isolated adsorbed atoms!
to very high values~for example, in some adsystems the
interatomic distance in a monolayer of adatoms is lower than
that in the corresponding massive crystal!.1 The theoretical
study of mass and charge transport in such systems is a very
difficult problem; however, it was studied for various kinds
of interactions by Gomer and co-workers2 using Monte Carlo
simulations. At high temperatures, transport coefficients can
be found with a perturbation technique starting from the case
of noninteracting atoms.3 At low temperatures, the case of
interacting atoms has been studied by a numerical calcula-
tion of the transport properties of the standard Frenkel-
Kontorova~FK! model, which describes a chain of harmoni-
cally interacting atoms subjected to a one-dimensional
sinusoidal external potential.4,5 Recently, the low-
temperature behavior of a system of strongly interacting at-
oms in a more general one-dimensional model has been ap-
proximately treated with a phenomenological approach
which introduces weakly interacting quasiparticles.6 This
method provides analytical estimates for the transport coef-
ficients, but it requires many approximations. In particular,
the properties of the quasiparticles involved in the theory are
deduced from results of the standard FK model, which pro-
vides only a simplified picture. Therefore it was necessary to
check the validity of the theoretical approach by numerical
simulations of a model which is sufficiently complicated to

provide a reasonable description of a real system. This is the
aim of this paper, which studies a two-dimensional general-
ized FK model and also discusses some experimental results
in the same perspective.

The original FK model was introduced to analyze the dy-
namics of dislocations in crystals7 by considering a chain of
interacting particles subjected to a periodic substrate~on-
site! potential. It can describe, for example, a closely packed
row of atoms in a crystal,8 a chain of atoms adsorbed on
stepped or furrowed crystal surfaces,9 a chain of ions in a
‘‘channel’’ of a quasi-one-dimensional conductor,10 hydro-
gen atoms in hydrogen-bonded systems,11 etc. In all the
cases mentioned above, the chain of interacting particles is
an intrinsic part of the whole physical system under consid-
eration. The role of the remainder of the system is played by
an external substrate potential and a thermal bath. Although
it is still oversimplified, thegeneralizedFK model that we
consider here provides a rather complete description of a
layer of atoms adsorbed on a two-dimensional crystal sur-
face. It includes realistic~exponential! interactions of par-
ticles instead of the harmonic springs of the standard FK
model, and the substrate potential is three dimensional. It is
periodic in the two dimensions parallel to the surface and has
a Morse shape in the third direction, orthogonal to the sur-
face.

The transport properties of the system are described by
two coefficients, the mobilityB and the chemical diffusivity
Dc . The mobility defines the response of the system to an
infinitesimal dc forceF,

J5rBF, ~1!

whereJ is the atomic flux caused by the force andr is the
average atomic concentration. On the other hand, the chemi-
cal diffusion coefficientDc connects the fluxJ(x,t) in a
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nonequilibrium state to the gradient of the atomic concentra-
tion whenr(x,t) slightly deviates from its equilibrium value.
According to Fick’s law

^^J~x,t !&&'2Dc

]

]x
^^r~x,t !&&, ~2!

where ^^•••&& stands for the averaging over macroscopic
distancesx@aA , andaA is the average interatomic distance.
These two coefficients are coupled through the relation

Dc5
kBTB

x
, ~3!

where kB is Boltzmann’s constant,T the temperature, and
x the dimensionless susceptibility of the system.

The predictions of the phenomenological approach6 can
be summarized as follows. The mass transport is caused by
kinks which describe localized compressions or expansions
of the chain and therefore the mobilityB can be expected to
be proportional to the kink concentration. The kinks have
two different origins, ‘‘geometrical’’ and thermal. We call
geometrical kinks the kinks which result from the value of
the coverageu5N/M , whereN is the number of atoms and
M the number of wells of the substrate potential on a given
length. Foru51/q, with integerq (q51,2, . . . ), thesystem
has a trivial ground state with one atom at the bottom of the
substrate wells everyqth well. When u deviates slightly
from such a value, the difference is accommodated by the
system by forming localized discommensurations which are
the geometrical kinks~called also ‘‘trivial kinks’’ in the no-
tation of Ref. 6!. As the kink density increases whenu de-
viates from 1/q, the theory predicts thatB(u) should exhibit
local minima for any trivial ground state~GS! of the system,
such asu51, u51/2, u51/3, etc. Whenu5p/q is a
rational number with a larger numerator, such asu52/3, the
density of geometrical kinks becomes very large and one
could expect to get a high mobilityB. The picture is, how-
ever, more complicated because, due to their high density,
the geometrical kinks interact strongly and, when tempera-
ture is sufficiently low with respect to their interaction en-
ergy, they tend to form a regular lattice which is weakly
pinned, giving a low mobility for any rationalu. A slight
deviation fromu5p/q appears as discommensurations in the
kink lattice, i.e., ‘‘kinks in a kink lattice,’’ which are called
superkinks in Ref. 6. These topological excitations of the
kink lattice contribute to mass transport exactly as the trivial
kinks do, so that the mobility is expected to exhibit local
minima for u5p/q such asu52/3. In the limit T→0 the
functionB(u) should therefore have minima at any rational
u. When temperature increases, the secondary minima dis-
appear because the kink lattice ‘‘melts’’ and, moreover, ther-
mal fluctuations create kink-antikink pairs which are ther-
mally activated. Consequently, at high enough temperature
the mobility is expected to exhibit broad maxima between
the primary minima atu51/q. Such a behavior has been
observed in one-dimensional models.12–14

The behavior of the diffusion coefficientDc is simpler
than the variation ofB(u) as predicted in Ref. 15. According
to Fick’s law ~2!, Dc is the proportionality coefficient be-
tween the~infinitesimal! gradient of the atomic concentration
and the flux of atoms caused by this gradient. However, a

gradient of atomic concentration automatically produces a
corresponding gradient of kink concentration. In the standard
FK model, where the elastic constant does not depend onu
and where the parameters of kinks and antikinks are the
same,Dc(u) is the ratio of two quantities which vary simi-
larly so that it should be approximately constant and coincide
with the kink ~or antikink! diffusion coefficient. In the gen-
eralized FK model the situation is different because the an-
harmonicity of the interatomic interaction destroys the kink-
antikink symmetry.16 The effective interatomic forces for a
kink, which corresponds to a local contraction of the chain,
exceed those for an antikink, which is associated with a re-
gion of a local extension. Thus, in comparison with an anti-
kink, a kink is characterized by a larger value of the rest
energy and by lower values of effective mass and activation
energy for its motion.15 When the coverage passes through a
commensurate valueu0 , the geometrical-kink density van-
ishes; foru,u0 the system has geometrical antikinks while
for u.u0 the system has geometrical kinks. Therefore, when
the coverageu increases through a commensurate value
u0 , the activation energy for the chemical diffusion should
jump to a smaller value. Simultaneously, the value ofDc
should rise sharply when the coverageu exceeds the value
u0 that characterizes a ‘‘well-defined’’ commensurate struc-
ture and one could expectDc(u) to exhibit the shape of a
devil’s staircase. The abrupt~jumplike! increase ofDc(u)
will only exist in the T→0 limit and, for anyTÞ0, these
jumps will be smoothed owing to corrections from thermally
excited kink-antikink pairs.

In the present paper we check these predictions by mo-
lecular dynamics investigations of the low-temperature mo-
bility and diffusivity of a generalized FK model in one and
two dimensions. In Sec. II, we describe the model and define
its parameters. Kink parameters are calculated in Sec. III.
Simulation results for the mobility are presented in Sec. IV,
and those for the chemical diffusivity are described in Sec.
V. Section VI discusses known experimental results in the
framework of these studies and Sec. VII concludes the paper.

II. THE MODEL

As for the standard FK model, we consider the dynamics
of atoms adsorbed on a periodic substrate. The displacement
of each atom is characterized by three variables:x and y
describe its motion parallel to the surface, whilez describes
its deviation orthogonal to the substrate. For the substrate
potential, we take the function

Vsub~x,y,z!5@Vpr~x;asx ,«sx ,sx!1Vpr~y;asy ,«sy ,sy!#e
2g8z

1Vz~z!. ~4!

To model the substrate potential along the surface, we use a
deformable periodic potential which can be adjusted to de-
scribe an actual crystal field,17

Vpr~x;asx ,«sx ,sx!5
«sx
2

~11sx!
2@12cos~2px/asx!#

11sx
222sxcos~2px/asx!

.

~5!

Thus «sx corresponds to the activation energy for diffusion
of a single atom along thex direction, asx to the lattice
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constant, and the parametersx (usxu,1) controls the shape
of the substrate potential. The frequencyvx of a single-atom
vibration along thex direction is connected to the shape
parametersx by the relationshipvx5v0(11sx)/(12sx),
wherev0[(«sx/2m)

1/2(2p/asx) andm is the atomic mass.
The potentialVpr(y;asy ,«sy ,sy) has the same form.

The potential perpendicular to the surface is modeled by
the Morse function

Vz~z!5«d~e
2gz21!2, ~6!

which tends to the adsorption energy«d when z goes to
infinity. The anharmonicity parameterg is related to the fre-
quencyvz of a single-atom vibration in the normal direction
by the relationvz

252g2«d /m.
Finally, the exponential factor after the square brackets of

the right-hand side of Eq.~4! takes into account the decrease
of the influence of the surface corrugation as the atoms move
away from the surface, so thatVsub(x,y,z)→«d when
z→`.

For the interaction between the atoms we take the expo-
nential repulsion

Vint~r !5V0exp~2b0r !, ~7!

whereV0 is the amplitude andb0
21 determines the typical

range of the interaction. This potential is adapted to describe
rather high coverages such that the atoms interact through
the repulsive branch of the interatomic potential. In numeri-
cal simulations, we can only include the interaction of a
given adatom with a finite number of neighbors. Therefore
we use the standard approach of molecular dynamics~MD!
simulations and introduce a cutoff distancer * . We account
only for the interactions between the atoms separated by dis-
tances lower thanr * , and to reduce errors caused by this
procedure the interaction potential~7! is truncated as

Ṽint~r !5Vint~r !2Vint~r * !2Vint8 ~r * !~r2r * !, ~8!

so that the interaction potential and force vanish at the cutoff
distance,Ṽint(r * )5Ṽint8 (r * )50 ~the tilde will be omitted in
what follows!. In addition, because we are using the repul-
sive interatomic interaction, we have to fix the atomic con-
centration. It is imposed by periodic boundary conditions in
x and y. We placeN atoms in the fixed areaLx3Ly ,
Lx5Mxasx , Ly5Myasy , so that the dimensionless atomic
concentration is equal tou5N/M , whereM5MxMy .

To model the energy exchange of the atoms with a ther-
mal bath, we use the Langevin equations for atomic coordi-
natesxi ,

mẍi1mh ẋi1
d

dxi
FVsub~xi ,yi ,zi !1(

jÞ i
Vint~ urW i2rW j u!G

5F ~x!1dFi
~x!~ t !, ~9!

and similar equations foryi andzi . Here,h corresponds to
the rate of the energy exchange with the substrate,
FW 5$F,0,0% to the dc driving force, anddF is a Gaussian
random force with correlation function

^dFi
~a!~ t !dF j

~b!~ t8!&52hmkBTdabd i jd~ t2t8!. ~10!

We use a dimensional system of units adapted to the
scales of the problem. Distance is measured in angstro¨ms,
energy and temperature in eV. The mass of an adatom is
chosen as our mass unit (m51). This imposes a time scale.
We measure time in units of the characteristic time interval
t052p/vx . In the remainder of the paper, the measures of
other dimensional physical quantities will be omitted, but
they are all expressed in terms of the above-defined units.

In order to be close to real physical systems, let us take
the adsystem K-W~112! as an example to define the model
parameters: the W~112! surface is characterized by a strong
anisotropy of the atomic relief because it has close-packed
rows of substrate atoms separated by furrows of atomic
depth. Namely, in the simulation, we putasx52.74 Å and
asy54.47 Å, which are, respectively, the distances between
the neighboring wells along and across the furrows on the
W~112! surface, and«sx50.46 eV and«sy50.76 eV for the
corresponding barriers~these values were taken from Ref.
18!. To model the shape of the substrate potential, we have
to define the parameterssx andsy . They can be estimated to
be within the range@0.2,0.4#.19 For the sake of concreteness
we took sx50.2 andsy50.4, which leads to the following
frequencies of adatom vibrations:vx51.65 andvy52.02.
The experimental value for the adsorption energy of K on W
is «d52.54 eV.18 For the vibration frequency normal to the
surface we took vz5

1
2(vx1vy)51.84, which gives

g50.813. For the interatomic potential~7!, we took the pa-
rametersV0510 eV andb050.85 Å 21. These choices give
reasonable values for adsystems:20 the interaction energies
between two adatoms occupying the nearest wells along the
furrow and across are equal toVint(asx)'0.98 eV and
Vint(asy)'0.22 eV, respectively. Finally, we have to define
the rate of energy exchange between the adatoms and sub-
strate: we took the typical value21 h50.1vx50.165. Note
that although some of the parameters are chosen rather arbi-
trarily, they are typical for metal atoms adsorbed on metal
substrates.22 However, as the model is still oversimplified to
describe a real adsystem, we have to say that our choice of
parameters does not claim to provide a quantitative interpre-
tation of the K-W~112! adsystem. We do nevertheless be-
lieve in the qualitative description of the effects under inves-
tigation and claim that typical adsystems on anisotropic
surfaces@e.g., lithium and strontium on the molybdenum
~112! surface, for which experimental data on the detailed
coverage dependencies of diffusion characteristics are
available23# should exhibit a similar behavior. Finally, for
numerical solution of the Langevin equations~9!, we use the
standard fourth-order Runge-Kutta method with the time step
Dt5t0/2050.19, and the cutoff radius was taken as
r *52asy58.94 Å .

III. KINKS

As the kinks are the main objects of the phenomenologi-
cal approach,6 let us first calculate their parameters. We re-
call that kinks can be defined for any commensurate atomic
structureu05s/q, wheres andq are relative prime integers;
the kink ~antikink! describes then the minimally possible to-
pologically stable compression~expansion! of the commen-
surate structure. The kink is a quasiparticle, characterized by
an effective massmk , a rest energy«k , and the Peierls-
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Nabarro~PN! amplitude«PN, corresponding to the barrier
for the kink translation along the chain. These parameters are
determined by the dimensionless elastic constantgeff defined
as

geff5
asx
2

2p2«sx
Vint9 ~aA!. ~11!

Analytically, the kink parameters may be found in the
low-coupling limit geff!1 or in the strong-coupling~sine-
Gordon! limit 6 geff@1; however, the usual real physical sys-
tems are characterized by the elastic constantgeff;1, so that
both approximations are too crude to be applied to our case.
For our choice of model parameters, we havegeff'0.6 for
u051. Therefore we will calculate the kink parameters nu-
merically.

The numerical method was described in detail in previous
papers.15,24 Briefly, we have to choose first an appropriate
size of the finite chain in order to insert a single kink into the
u05s/q commensurate background structure; the integers
N andM must satisfy the equation15,25

qN5sM1s, ~12!

where the kink topological charges is equal tos511 for
the kink ands521 for the antikink. In the simulation, we
restrict ourselves to the concentration range@0.5,1# because
for lower concentrations the interatomic interaction is too
weak and its effects would be hardly observable, while at
higher concentrations the atoms begin to escape from the
first adlayer.24,26As background structures, we chose the fol-
lowing coverages:u051/2, u053/5, u052/3, u053/4,
u054/5, andu051. The corresponding values for the num-
ber of atomsN0 and the number of minima of the substrate
potentialM0 for everyu0 are summarized in Table I.

We start with an appropriate initial configuration and al-
low the atoms to reach the minimum energy configuration
~see details in Refs. 26 and 27!. This determines the structure
of a kink in its minimal energy state. Then, in order to cal-
culate the parameters that characterize the kink translation,
we choose a given atom in the kink region~see Ref. 15! and
move it to the right by small steps by imposing itsx coordi-
nate while all other degrees of freedom of the chain remain
free to adjust to every new position of the constrained atom.
This process allows us to find the saddle configuration and
therefore the amplitude of the PN barrier«PN as the differ-
ence of the saddle and GS energies. In addition, the energy
of creation of the kink-antikink pair is determined
as «pair5E$kink@u0#%1E$antikink@u0#%22E$GS@u0#%,
whereE$•% is the energy of the corresponding configuration
~notice that it must satisfy the relationN$kink@u0#%
1N$antikink@u0#%52N$GS@u0#% which is imposed by the
total length of the atomic chains alongx). The kink param-
eters obtained by this method are summarized in Table I, and
the dependence of the PN energy on the atomic concentra-
tion is presented in Fig. 1. Note that the function«PN(u) has
the shape of a devil’s staircase.15

From the kink parameters, the phenomenological
approach6 describes approximately the low-temperature be-
havior of the system as follows. Foru51 and

T!«pair$u0%/kB the concentration of thermally nucleated
kink-antikink pairs is equal to28–32

^upair&'C exp~2epair/2kBT!, ~13!

where C'(2m̃kvx
2asx

2 /pkBT)
1/2 and m̃k5(mkmk̄)

1/2. For
lower coveragesu5u05s/q Eq. ~13! should be properly
renormalized, which results in an additional factor 1/q in its
right-hand side.

TABLE I. Parameters of kinks:N0 is the number of atoms,
M0 the number of minima of the substrate potential for one period
of the system alongx, «pair the creation energy of a kink-antikink
pair, and«PN the amplitude of the Peierls-Nabarro potential.

Structure N0 M0 «pair ~eV! «PN ~eV!

Antikink@1/2# 21 43 0.378
u051/2 21 42 0.759
Kink@1/2# 21 41 0.0849

Antikink@3/5# 22 37 0.0848
u053/5 21 35 0.007
Kink@3/5# 20 33 0.0813

Antikink@2/3# 21 32 0.0812
u052/3 20 30 0.170
Kink@2/3# 21 31 0.0192

Antikink@3/4# 20 27 0.0184
u053/4 21 28 0.055
Kink@3/4# 22 29 0.0087

Antikink@4/5# 19 24 0.0086
u054/5 20 25 0.018
Kink@4/5# 21 26 0.0071

Antikink@1# 21 22 0.0071

FIG. 1. Peierls-Nabarro energy versus coverage. Coverages cor-
responding to simplest commensurate structures are shown with
dashed lines.
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When the concentrationu slightly deviates from the com-
mensurate valueu0 , the thermal kinks are supplemented by
geometrical kinks~if u.u0) or antikinks~if u,u0) with a
concentrationugeom5quu2u0u. In the close vicinity ofu0 ,
the total kink concentration can be found as

^u tot&'ugeom12^upair&. ~14!

The dimensionless susceptibilityx

x5^u tot&/q
2u ~15!

can then easily be obtained from Eqs.~13! and ~14!.
Let us now examine the phenomenology of subsequently

melted kink superlattices.6 In order to describe the atomic
mobility in terms of collective excitations, we must first de-
fine the type of excitations that have to be considered. As an
example, let us select a concentrationu in the neighborhood
of u052/3. For lowT, T,«pair$2/3%/2kB , we have to use
the superkinks defined on the background of theu052/3
structure in the expressions~13!–~15!. However, in the
intermediate temperature range, i.e.,«pair$2/3%/2kB,T
,«pair$1/2%/2kB , when the superkinks are destroyed by ther-
mal fluctuations while the trivial kinks~defined on the
u051/2 background! are not yet destroyed, we have to sub-
stitute the parameters of the trivial kinks in Eqs.~13! and
~14!. In particular, we should takeq53 for low T but
q52 for intermediate temperatures. In the latter case, how-
ever, the parameters of trivial kinks may seriously differ
from those calculated for the ideal case, because the concen-
tration of trivial kinks at theu52/3 coverage is very large
and their interaction is not negligible.

When the amplitude of the activation barrier for the kink
motion is known, the diffusion coefficientDk for a single-
kink random walk may be approximately calculated with the
Kramers theory. ForT,«PN/kB this approach gives

Dk5Dk0exp~2«PN/kBT!, ~16!

where

Dk0'H a2vPN/2p if h l,h,vPN,

a2vPN
2 /2ph if h.vPN.

~17!

Here vPN'(p/asx)(2« PN/m)
1/2, a5qasx , and h l

5vPNkBT/2p«PN.
If the interatomic interaction is strong enough, the in-

equality «PN,«pair may easily be fulfilled. In this case,
within the temperature interval«PN,kBT,«pair, the kink
diffusion coefficient is approximately equal to~e.g., see
Refs. 33–35!

Dk'
kBT

mkh
F12

1

8 S «PN
kBT

D 2G . ~18!

Knowing the kink diffusion coefficient, we can find the
chemical diffusion coefficient with the phenomenological
approach6 by the formula

Dc'
^uk&Dk1^u k̄&D k̄

^u tot&
, ~19!

where for u.u0 we should takê uk&5ugeom1^upair& and
^u k̄&5^upair&, while in theu,u0 case, we have to substitute

^uk&5^upair& and ^u k̄&5ugeom1^upair&. Finally, the chain
mobility may be found asB5xDc . These predictions
should be now compared with the results of simulation and
this is the subject of the following section.

IV. MOBILITY

To study the mobility, we use an algorithm where we look
first for the minimum energy configuration of the system.
Then we increase the temperature up to a given temperature
T by small steps DT5T/50 during the time
t therm5100t05381. At that point, we apply a small dc force
F50.01 which is gradually increased fromF50 to
F50.01 during the time 100t0 , and wait during
twait5100t0 in order to allow the system to reach a stationary
state. Then, for the discrete timestn5nt0 , we measure the
average velocitŷvx& of the atoms duringt run5100t0 , and,
finally, the procedure is repeatednav times (nav55 in the
simulation! with different initializations of the random num-
ber generator in order to estimate the error bars.

To demonstrate the effect of the transverse degrees of
freedom on the atomic mobility, we considered three differ-
ent cases of the generalized Frenkel-Kontorova model:

~i! a purely one-dimensional atomic chain with atomic
movement restricted to thex direction ~1D!;

~ii ! a quasi-one-dimensional atomic chain with two trans-
verse degrees of freedomy and z ~we will call it the
quasi-1D case!;

~iii ! a true two-dimensional extension of the FK model
~2D!.

Note that the interaction between the atoms always has
the general form of Eq.~7!, i.e., it has a 3D character in the
quasi-1D and 2D cases.

The quasi-1D case can be easily obtained from the gen-
eral case by choosing a period of one lattice constant in the
y direction; namely, we putMy51 so that all chains move in
the same way and choseN55N0$u% and Mx55M0$u%,
where the integersN0 andM0 are taken from Table I for
each coverageu in order to have five kinks or antikinks over
the length under investigation. The results of the simulations
are presented in Fig. 2. As expected from the phenomeno-
logical theory, at low temperaturesB(u) does have local
minima not only for the trivial concentrationsu51/2 and
u51, but also at the commensurate concentrationsu52/3
andu53/4. These two minima, which involve a kink lattice,
disappear when the temperature is increased, while the
minima for the trivial structures survive at any temperature.
In the simulation, minima do not appear for the other com-
plicated GS structures~e.g., u53/5 and u54/5) because
these higher-order structures correspond to too low ‘‘melt-
ing’’ temperatures of the kink lattice.

In order to check completely the phenomenological
theory,6 it would be interesting to see if these extra minima
appear at very low temperature, but the mobility is then too
small to allow us to obtain accurate results in a numerical
simulation. As the ‘‘melting’’ temperature is determined by
the magnitude of the effective elastic constant of the kink
lattice, one could attempt to increase the parameterV0 in Eq.
~7!. But in that case, the repulsion between the atoms is too
large and they begin to escape from the minima of the sub-
strate potential in the direction orthogonal to the chain.27 To
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prevent this escape and allow the study of higher-order
minima, we artificially restricted the atomic displacements to
the x dimension. This allowed us to takeV05100 eV. This
case corresponds to the so-called 1D case. The results are
shown on Fig. 3.

As seen from Fig. 3, in the 1D case the functionB(u) has
pronounced local minima atu52/3 and u53/4 at much
higher temperatures than in the quasi-1D case. One can note
also that the minimum atu53/4 disappears when the tem-

perature is increased, while the minimum atu52/3 survives
in the whole range of investigated temperatures, since it has
a greater melting temperature. However, the minima at
u53/5 andu54/5, where the kink lattice has the period
5asx , are not found even for this very strong interatomic
repulsion. Note also that in real physical systems, such as
adsorbed layers, the observation of local minima for these
complicated structures is unlikely due to the existence of
transverse degrees of freedom.

In a one-dimensional model at high enough temperature
(T.«pair/kB), the mobility can be calculated with a pertur-
bative approach starting from a system of noninteracting at-
oms. The functionB(u) is given by12–14

B'Bf H 11
1

8 F ~«sx /kBT!sinh~kBT/«sxgA!

cosh~kBT/«sxgA!2cos~2paA /asx!
G2J 21

,

~20!

whereBf51/mh, aA5asx/u is the average interatomic dis-
tance, and the elastic constantgA is defined by
gA5asx

2 Vint9 (aA)/2p2«sx . Note that the function~20! has lo-
cal minima for trivial configurations only, in agreement with
the phenomenological theory in the high-temperature range.
The chemical diffusivityDc could be obtained by replacing
the prefactorBf in Eq. ~20! by aA

2Vint9 (aA)/mh. Figure 3
shows that Eq.~20! describes the high-temperature simula-
tion results of the purely one-dimensional FK model with
good accuracy~except in the vicinity of the coverage
u52/3, where«pair/kB.T even for the highest studied tem-
perature!. For this model, the highest possible mobility
Bf51/mh'6.0, which corresponds to the case of noninter-
acting free atoms, is reached in the middle of the interval
0.5,u,1.0.

The high-temperature mobility for the quasi-1D chain
with transverse degrees of freedom@curve ~4! in Fig. 2# is
approximately two times lower than the values calculated
with Eq. ~20! for corresponding parameters. Note that, for
the chosen set of parameters in a quasi-1D model,T50.05
eV is the highest temperature for which the determination of
the mobility in the first monolayer of atomsis possible. At
higher temperatures the atoms start to escape from the first
layer to the second one, which may seriously distort the re-
sults@the curve~4! in Fig. 2 is not plotted atu.0.8 for this
reason#. Even if one takes into account the fact that the high-
temperature range required for the validity of Eq.~20! is not
reached, the disagreement between Eq.~20! and the simula-
tion results is large in the quasi-1D case. This shows that the
presence of the transverse degrees of freedom has the same
effect on the mobility as an additional friction in the system.
This can be understood because some part of the work done
by the external force is used to excite the transverse degrees
of freedom.

Finally, we also simulated the 2D Frenkel-Kontorova sys-
tem withMy530, Mx5M0$u%, andN530N0$u%. The re-
sults, presented in Fig. 4, show that there is no essential
difference between theB(u) dependencies for the quasi-1D
and 2D systems except that 2D dependencies are systemati-
cally lower. The role of the transverse degrees of freedom,
already noticed for the quasi-1D model, show up again here.
It is interesting to notice that Fig. 4 shows for the 2D model
at T<0.01 eV the additional small minimum ofB(u) at

FIG. 2. The mobilityB of the quasi-1D FK model with trans-
verse degrees of freedom as a function of the coverageu at selected
temperaturesT50.0025 eV @curve ~1!#, T50.005 eV ~2!,
T50.020 eV~3!, andT50.050 eV~4!.

FIG. 3. The mobilityB versus coverageu for a purely 1D model
with V05100 eV at different temperaturesT50.005 eV~diamonds
and dotted line!, T50.05 eV ~asterisks and dashed line!, and
T50.10 eV~triangles and solid line!. For a better presentation, the
data for the two lower temperatures are plotted only within
0.72,u,0.8, because at other coverages they are the same as for
T50.10 eV. The dash-triple-dotted line is Eq.~ 20! for T50.10 eV.
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u54/5 predicted by the phenomenological theory, which re-
flects the existence of the kinks/antikinks on the background
of this coverage.

The plots of the mobilityB versus inverse temperature
shown in Fig. 5 for the 2D model at selected coverages show
that the atomic mobility has an activated character in the
investigated range of temperatures and coverages. The same
qualitative behavior was found for the 1D case. Using an
Arrhenius formB(T)5B0exp(2Ea /T), we can calculate the
activation energyEa and the prefactorB0 . Their dependence
on coverage is shown in Fig. 6. The activation energyEa has
a sharp maximum at the coverageu52/3, which corresponds
to a well-defined commensurate structure, while activation
barriers on both sides ofu52/3 are much lower due to the
presence of residual kinks/antikinks; the barrier for ‘‘kink’’
coverageu52/31d is lower than that for ‘‘antikink’’ cov-
erageu52/32d. On the other hand, the maxima ofEa at the
higher-order commensurabilitiesu53/4 and u54/5 are
much less pronounced. This is consistent with the fact that
these higher-order commensurabilities hardly show up in the
mobility curves of Fig. 4.

The main difference between the quasi-1D system and the
true 2D model is due to the interactions of kinks in the near-
est neighboring channels. For the repulsive interatomic inter-
action studied in the present work, kinks in the nearest neigh-
boring channels repel each other at theu51 coverage, while
for anyu,1 they attract each other and tend to form domain

walls. With the short-range~exponential! interaction studied
in our simulations, two kinks belonging to neighboring chan-
nels attract each other with a potentialVkk(x)}uxu, contrary
to the usual law9 Vkk(x)}x

2. As a consequence, the stiffness
of the domain walls vanishes and they can be destroyed by
thermal fluctuations or external forces for anyTÞ0 or F
Þ0. This is confirmed by the observation of snapshots of the
atomic configuration in the 2D model. During the time evo-
lution a domain wall of kinks is destroyed as soon as the
temperature is high enough to provide a noticeable value of
the mobility. For example, Fig. 7 demonstrates the evolution
of such a domain wall defined on the background of the
u51/2 commensurate structure. This case was chosen be-
cause its kinks have the simplest structure and are more vis-
ible than kinks defined on the background of any other more
complex commensurate structure. The initially well-defined
kink wall ~relaxed configuration forT50) is smeared out at
T50.02 eV andF50.01, although these values of tempera-
ture and external force provide a very low value of the
atomic mobility (B'0.03) at the chosen coverage. This in-
stability of the kink domain walls explains why the true 2D
model gives results which are not fundamentally different
from the results of the quasi-1D case. Nevertheless, the in-
teraction between atoms and kinks in the nearest neighbor
channels does contribute to the dynamics of the system. It
results, in particular, in the lowered values of mobility for
the 2D case in comparison with those for a 1D system. How-
ever, in more realistic 2D models with long-range inter-
atomic forces such as elastic or dipole-dipole forces due to
the substrate, the role of the domain walls might be more
essential.

V. DIFFUSION

The chemical diffusion coefficient is more difficult to cal-
culate by MD simulations than the mobility. It can be deter-
mined in two ways. First, the susceptibilityx can be calcu-
lated with one of the methods described in Ref. 5 and then
Dc could be derived from the relationDc5B/x. However,
this approach relies on the accuracy of the two factors. In the
present work, we use a direct approach based on the Fick law
~2!. We start from a nonuniform initial concentration profile
u(x) and observe its evolution with time at a given tempera-
tureT ~we will now use the notationu instead of̂ ^r&& in the
diffusion laws, assuming the existence of local equilibrium!.
The variations of the chemical diffusion coefficientDc with
concentration determine the diffusion profile.1 For instance,
for an approximately constant fluxJ52Dc]u/]x, flat sec-
tions of the observed concentration profile~low ]u/]x) cor-
respond to enhanced diffusivityDc , while sharp changes of
concentration within some concentration interval~high

FIG. 4. The mobilityB versus coverageu for a 2D model at
selected temperaturesT50.005 eV @curve ~1!#, T50.010 eV ~2!,
T50.020 eV~3!, T50.030 eV~4!, andT50.050 eV~5!.

FIG. 5. The mobility B of the two-
dimensional model versus the inverse tempera-
ture: ~a! for coveragesu50.51 ~diamonds! and
u50.60~triangles!; ~b! kinks ~squares!, antikinks
~diamonds!, and the background commensurate
structure~triangles! for u052/3; ~c! for coverages
u50.72 ~diamonds! andu50.80 ~triangles!.
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]u/]x) indicate a lower diffusion coefficientDc .
Quantitative data on the variation versusu of the diffu-

sion coefficientDc can be obtained by studying the concen-
tration profiles given by the one-dimensional diffusion equa-
tion

]

]t
u~x,t !5

]

]x SDc~u!
]u~x,t !

]x D . ~21!

The simplest case is the diffusion of an initially stepwise
profile in a spatially infinite system, which gives an explicit
expression for theDc(u) function by the Boltzmann-Matano
formula ~see, e.g., Ref. 1!. However, with periodic boundary
conditions, computational limitations do not allow us to
choose a period large enough to observe such a profile.
Therefore we first derive an approximate expression of
Dc(u) using the phenomenological equations~13!–~19!, and
then solve Eq.~21! with this Dc(u) and periodic boundary
conditions. Finally, we compare the calculated profiles with
those obtained from MD simulation for the same initial dis-
tribution.

Let us first apply the kink-gas phenomenology to the de-
termination ofDc . We have chosen the room temperature
T50.025 eV (290 K! since it divides the whole investigated
coverage interval@0.5,1.0# into two parts which differ by the
mechanism of kink diffusion. For the coverage range
0.5,u,0.66 where the conditionT,«PN/kB is satisfied
~see Fig. 1!, the diffusion of kinks has anactivatedcharacter
and, in terms of the Arrhenius representation of the chemical
diffusion coefficientDc5D0exp(2Eac/T), this means that
the Dc(u) dependence is determined mainly by the varia-
tions of the activation energy@note thatEac'«PN according
to Eq. ~16!#. On the other hand, for 0.66,u,1.0, where
T.«PN/kB and where the Peierls-Nabarro energy«PN shows
only minor changes with coverage, the mass transport is car-

ried out byfreediffusion of kinks and the main variations of
chemical diffusion coefficient will arise from the prefactor
D0 .

One should keep in mind that the phenomenological equa-
tions ~13!–~19! can be used only for those kinks which are
well defined as quasiparticles for a given temperature and a
given coverage interval, i.e., the conditionT!«pair/kB must
be satisfied. In other words, the concentration of thermally
excited kink/antikink pairs ~13! for a given structure
u05s/q cannot exceed the maximal possible value 1/q. For
the present study, it means that the quasiparticles which
should be taken into account atT50.025 eV are the trivial
kinks/antikinks of the trivial GSu051/2 andu051 and su-
perkinks defined on the background ofu052/3 structure. We
pointed out in Sec. III that, for our model parameters, accu-
rate kink parameters can only be determined numerically.
But in order to solve Eq.~21! we need some expression for
the kink masses. Since the maximum value of the dimension-
less elastic constantgeff defined by Eq.~11! approximately
equals 0.6 for the chosen set of model parameters, the best
estimate is given by the low-coupling-limit expression6

mk'mk̄'m/q2.
Theoretically, the application of the Eqs.~13!–~19! for the

determination ofDc is only strictly valid in the close vicinity
of commensurate structures, where the concentration of re-
sidual kinks is low ~in our case, near the coverages
u051/2, u052/3, andu051). Since we needDc(u) for all
intermediateu values, we have to interpolate between these
specificu values. We calculated the values ofDc ~indicated
by the plus signs in Fig. 8! up to the middle points between
these specific coverages and used a weighting coefficient,
plotted them in the inset in Fig. 8, to mark the significance of
each point in the subsequent interpolation procedure. The
final form of Dc(u) is taken as a superposition of tanh(u)
functions chosen to provide a good fit of the value deduced
from the phenomenological theory around the coverages
u051/2, u052/3, andu051, where it is accurate. Although

FIG. 6. The activation energyEa and prefactorB0 for the mo-
bility versus coverageu in the case of the two-dimensional FK
model.

FIG. 7. Snapshot pictures for two-dimensional model at
u50.51. ~Top! The initial relaxed configuration (T50) and~bot-
tom! the atomic configuration after the evolution timet'1600 at
T50.02 eV.
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this procedure cannot avoid some arbitrariness, we keep it to
a minimum by putting the weighting factor to zero wherever
the theoretical formula forDc(u) is not valid. The general
shape of the interpolatedDc(u) reflects the expected general
variations of the chemical diffusivity versus coverage. We
see that this function monotonically increases in the region
1/2,u,2/3 ~corresponding to the decrease of the activation

energyEac which can be deduced from Fig. 1!, while at
higher coveragesDc start to decrease. Thehigh-temperature
behavior ofDc at high coverages is given in the kink-gas
approach by the variation of kink mass. It can be also inter-
preted in terms of the Arrhenius formulaDc

5D0exp(2Eac/T). Generally,D0 andEac change in a simi-
lar manner ~the so-calledcompensation effect1!. At high
enough temperatures, the slow decrease ofEac at u.2/3 ~see
Fig. 1! leads only to a slow change of the exponential term of
the Arrhenius formula. The fast drop ofDc must thus be
attributed to the prefactorD0 .

OnceDc is known, the second step is to solve Eq.~21!
with this Dc dependence and compare with the MD simula-
tions. To deduce a local coverage from the MD atomic con-
figuration at a given timet, we calculate the occu-
pation numbers n( i x ,i y ;t) ~where i x51, . . . ,Mx and
i y51, . . . ,My) defined as the number of atoms in the given
elementary cell (i x ,i y). The results of the simulations for the
2D model (Mx584,My560, andN53780) are presented in
Fig. 9. We started with an artificially prepared stepwise ini-
tial configuration: concentrationu51 in the central region of
the lattice~for i x5Mx/411, . . . ,3Mx/4) andu50.5 outside
this region. The system is then allowed to evolve according
to the Langevin equations~9!. The concentration profile
u( i x ,tn)5( i y51

My n( i x ,i y ;tn)/My is recorded at times

tn5nt0 . The simulation was repeated five times in order to
average the profiles and decrease statistical fluctuations. The
simulation profiles for different times are shown in Fig. 9
with symbols. They have a flatter section in the middle of the
studied coverage interval, corresponding to the coverage re-
gion with enhanced diffusivity. Moreover, in the same figure,
we plot with solid lines the theoretical profiles obtained from

FIG. 8. Chemical diffusion coefficientDc versus coverage for
T50.025 eV. Crosses correspond to theDc values calculated with
phenomenological equations~13!–~19!; the full curve corresponds
to theDc(u) dependence, interpolated with the help of the weight-
ing coefficient presented in the inset.

FIG. 9. Evolution of the coverage profile ver-
sus time:t50 ~a!, t5190 ~b!, t5763 ~c!, and
t51715 ~d!. The triangles correspond to the
simulation of the 2D model withMx584,
My560, and N53780 at room temperature
T50.025 eV, and the full curves are the solution
of the diffusion equation~21!. The coordinatex is
indicated in lattice unitsasx .

54 329MOBILITY AND DIFFUSIVITY IN A GENERALIZED . . .



the numerical solution of the diffusion equation~21! with
Dc(u) plotted in Fig. 8. The data presented in Fig. 9 show
that the theoretical and simulation results are in very good
agreement, which validates the phenomenological approach
used for determining the diffusion coefficient.

VI. DISCUSSION IN RELATION TO EXPERIMENTS

It is important to examine the applicability of the theoreti-
cal results to real physical systems such as atomic layers
adsorbed on crystal surfaces. Although experiments cannot
provide results as detailed as the numerical simulations, a
comparison is possible. Our model is oversimplified to de-
scribe quantitatively a real adsystem — although we chose
some model parameters close to those available for the
K-W~112! adsystem — mainly because the interatomic inter-
action in real adsystems is much more complicated than the
exponential interaction used in the present work.20 In the
case of adsorption on isotropic surfaces, diffusion is affected
by the formation of domain walls, especially when the inter-
atomic interaction is long range. Our results are more suit-
able to describe highly anisotropic surfaces for which the
interaction between neighboring channels is sufficiently
weak to reduce the role of two-dimensional domain walls.
We obtain a qualitative agreement with experiments on dif-
fusion of atoms adsorbed on highly anisotropic furrowed sur-
faces.

There are very few experimental data on the variation
versus coverage of the diffusion coefficient for atoms ad-
sorbed on highly anisotropic~furrowed! surfaces. Some data
have been obtained using the field emission fluctuations
method36 for K-W~112! and the diffusivity was found to in-
crease strongly in the region of the commensurate-
incommensurate transition: this was interpreted in terms of
fast diffusion ofsolitons.36

Detailed dependenciesDc(u) andEac(u) in the wide cov-
erage interval@0.05,1.5# are available23 for Li-Mo ~112!,
where the interaction between Li adatoms on Mo~112! is
long range and anisotropic. Besides the short-range forces,
the interaction between the adatoms includes also a dipole-
dipole repulsion and an oscillating part due to substrate-
mediated electron exchange.20 This is responsible for the ex-
istence of peculiar chainlike structuresp(134! and
p(132!, formed by first-order transitions, for coverages
u,0.5.37 In this range ofu, the diffusivityDc was found to
depend only weakly on coverage. At higher coverages
u.0.5, the repulsion between Li adatoms starts to play a
larger role. This results first in the formation of one-
dimensional incoherent structures atu'2/3, and then the
adlayer exhibits a one-dimensional compression along the
direction of furrows.37 In this coverage range,Dc(u) was
found to increase strongly and monotonically with coverage
at low temperatures. The sharpest increases of diffusivity at
low temperatures (T,250 K! appear for the commensurate
coveragesu52/3 andu51. This behavior ofDc coincides
qualitatively with the predictions of the kink-gas approach6

and our numerical simulations. Moreover, the activation en-
ergyEac for chemical diffusion, obtained in Ref. 23 from the
slopes of Arrhenius plots ofDc , exhibits a monotonic de-
crease as coverage increases~except for small maxima at
coverages slightly above the commensurate valuesu52/3

andu51), which is close to the behavior of«PN in Fig. 1. It
is also interesting to notice that ifDc(u) is plotted at tem-
peratures higher than 300 K from the values of the prefactor
D0 and activation energyEacmeasured in Ref. 23, it shows a
nonmonotonic behavior with a minimum aroundu51, which
is very similar to the behavior ofDc at T5300 K in the
two-dimensional FK model considered here~see Sec. V!.

Finally, preliminary results of the diffusion study in Sr-
Mo~112! system23 have demonstrated that diffusivity in-
creases sharply at coverageu'0.5 which correspond to the
commensurate~432! structure of strontium atoms~while at
higher coverages Sr atoms form incommensurate structures!.
One may speculate that this enhanced diffusivity is provided
by the fast kink diffusion.

VII. CONCLUSION

The aim of this paper was to check the predictions of the
kink-gas approach with the help of molecular dynamics
simulations. The validity of the kink-gas approach ought to
be questioned because it is based on one-dimensional models
while real adsystems are 2D~or even 3D taking into account
the possible motion of adatoms orthogonal to the surface!.

First, we compared the kink-gas approach@Eqs. ~13!–
~19!# and high-temperature formula~20! for mobility B and
chemical diffusivity Dc5kBTB/x with the results of our
simulation of FK models with transverse degrees of freedom.
We have found only aqualitative agreement between the
B(u) dependencies obtained in MD simulation of 2D and 1D
models with transverse degrees of freedom and those pre-
dicted by the kink-gas approach. In Sec. IV, we showed that
the mobility B is strongly reduced when additional trans-
verse dimensions are involved in the system. Aquantitative
estimation ofB using Eqs.~13!–~19! shows that the kink-gas
approach overestimates the mobility significantly unless we
artificially introduce a higher effective frictionheff . This can
be understood because some part of the energy brought into
the system by the external force is absorbed by extra degrees
of freedom. For example, in the simplest case of harmoni-
cally interacting atoms at high temperatures, the mobility has
to be renormalized by a factor 1/3~i.e.,heff53h) due to the
presence of two additional degrees of freedom, since the en-
ergy is redistributed uniformly (;kBT/2) between all three
degrees of freedom. But in our case, where interaction be-
tween atoms is anharmonic and mobility is investigated at
low temperatures, a reliable determination of the effective
friction heff is not possible.

By contrast, the study of chemical diffusion~Sec. V!
demonstratesqualitativeandquantitativeagreement between
MD simulation data and the kink-gas approach. The reason
is that in the case of thermal diffusion, the chemical diffusion
coefficientDc5kBTB/x does not change with additional de-
grees of freedom since the ‘‘external force’’ is provided by
the thermal energy of the system and is proportional to the
gradient of the chemical potentialm. As the Fick law~2!
may be rewritten as J5rB¹m5rB(]m/]r)¹r
5kBTB/x¹r, wherex[(] lnr)/(]m/kBT), it is clear that an
additional transverse dimension to the system leads simulta-
neously to an increase of free energy and chemical potential
m. In other words, the decrease of the system’s mobility due
to an extra transverse dimension of the system is compen-
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sated by a corresponding decrease of the susceptibilityx of
the system, so thatDc remains approximately the same.

Our results allow us to conclude that the phenomenologi-
cal kink-gas approach provides a good qualitative explana-
tion not only for molecular dynamics simulation data of mo-
bility and diffusivity versus atomic coverage in the
generalized 2D Frenkel Kontorova model, but also for some
experimental results on the coverage dependence of surface
diffusion. Obviously, for a better description of real adsorp-
tion systems, the Frenkel-Kontorova model should take into
account long-range, anisotropic, realistic interatomic interac-

tions and the presence of surface defects.
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