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Mobility and diffusivity in a generalized Frenkel-Kontorova model
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Molecular dynamics simulations are used to investigate the atomic mobility and diffusivity of a generalized
Frenkel-Kontorova model which takes into account anharm@iponential interaction of atoms subjected to
a three-dimensional substrate potential periodic in two dimensions and nonddheese in the third dimen-
sion. The numerical results are explained by a phenomenological theory which treats a system of strongly
interacting atoms as a system of weakly interacting quasipartikielss). Model parameters are chosen close
to those for the K-W112) adsorption systen{S0163-18206)00826-0

[. INTRODUCTION provide a reasonable description of a real system. This is the
aim of this paper, which studies a two-dimensional general-
Experimental studies of transport coefficients in systemdézed FK model and also discusses some experimental results
of strongly interacting atoms adsorbed on a crystalline surin the same perspective.
face show a very rich and complicated behavior, especially The original FK model was introduced to analyze the dy-
as functions of the atomic concentration. The variation of thé"amics of dislocations in crystdlsy considering a chain of
diffusion coefficient versus coverage is particularly impor-interacting particles subjected to a periodic subst(ate
tant for adsorbed layers where the concentration may vary ifilté) potential. It can describe, for example, a closely packed
wide limits from zero(diffusion of isolated adsorbed atojns oW Of atoms in a crystal,a chain of atoms adsorbed on
to very high values(for example, in some adsystems the ftepped 9r furrowed.crystal' surfa'(?ea, chain of ions in a
interatomic distance in a monolayer of adatoms is lower thanchannel” of a quasi-one-dimensional conductBrhydro-
that in the corresponding massive crysfaThe theoretical 9€N atoms in hydrogen-bonded _systé_rlnsgtc. In all the
study of mass and charge transport in such systems is a ve ses _me_\ntloned above, the cha|r_1 of interacting partlcle_s is
difficult problem: however, it was studied for various kinds &N intrinsic part of the whole physical system under consid-
of interactions by Gomer and co-work2tssing Monte Carlo eration. The role of the remaynder of the system is played by
simulations. At high temperatures, transport coefficients cag” extérmnal substrate potential and a thermal bath. Although
be found with a perturbation technique starting from the casé IS Still oversimplified, thegeneralizedFK model that we
of noninteracting atom$.At low temperatures, the case of consider here provides a rather complete_ description of a
interacting atoms has been studied by a numerical calculd2ye" Of atoms adsorbed on a two-dimensional crystal sur-
tion of the transport properties of the standard Frenkell2Ce: I_t includes reahstu(expc_mentl{a)l interactions of par-
Kontorova(FK) model, which describes a chain of harmoni- ticles instead of the harmonic springs of the standard FK
cally interacting atoms subjected to a one-dimensionafnodelz a_nd the substrate _potentlal is three dimensional. It is
sinusoidal external potenti4P Recently, the low- periodic in the tvx_/o dlmen_5|on$ par_allel to the surface and has
temperature behavior of a system of strongly interacting at2 Morse shape in the third direction, orthogonal to the sur-
oms in a more general one-dimensional model has been afff€: _ ,
proximately treated with a phenomenological approach 'N€ transport properties of the system are described by
which introduces weakly interacting quasiparticiehis two coefﬁmen';g, the moblht)B and the chemical diffusivity
method provides analytical estimates for the transport coef2c- The mobility defines the response of the system to an
ficients, but it requires many approximations. In particular, nfinitesimal dc forcef,
the properties of the quasiparticles involved in the theory are J=pBF (1)
deduced from results of the standard FK model, which pro- '
vides only a simplified picture. Therefore it was necessary tavhereJ is the atomic flux caused by the force apds the
check the validity of the theoretical approach by numericalaverage atomic concentration. On the other hand, the chemi-
simulations of a model which is sufficiently complicated to cal diffusion coefficientD, connects the fluxJ(x,t) in a
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nonequilibrium state to the gradient of the atomic concentragradient of atomic concentration automatically produces a
tion whenp(x,t) slightly deviates from its equilibrium value. corresponding gradient of kink concentration. In the standard

According to Fick’s law FK model, where the elastic constant does not depend on
and where the parameters of kinks and antikinks are the

J same,D.(0) is the ratio of two quantities which vary simi-
((Ix,0))==De({p(X,1))), @ larly so that it should be approximately constant and coincide

with the kink (or antikink) diffusion coefficient. In the gen-
eralized FK model the situation is different because the an-
harmonicity of the interatomic interaction destroys the kink-
antikink symmetry*® The effective interatomic forces for a

where ({---)) stands for the averaging over macroscopic
distancex>>a,, anda, is the average interatomic distance.
These two coefficients are coupled through the relation

keTB kink, which corresponds to a local contraction of the chain,

D.= , 3 exceed those for an antikink, which is associated with a re-

X gion of a local extension. Thus, in comparison with an anti-

wherekg is Boltzmann’s constanfl the temperature, and kink, a kink is characterized by a larger value of the rest
x the dimensionless susceptibility of the system. energy and by lower values of effective mass and activation

The predictions of the phenomenological appr8acin  energy for its motiort> When the coverage passes through a
be summarized as follows. The mass transport is caused pmmensurate valué,, the geometrical-kink density van-
kinks which describe localized compressions or expansionishes; ford< g, the system has geometrical antikinks while
of the chain and therefore the mobiliB/can be expected to for 6> 6, the system has geometrical kinks. Therefore, when
be proportional to the kink concentration. The kinks havethe coverageé increases through a commensurate value
two different origins, “geometrical” and thermal. We call 6y, the activation energy for the chemical diffusion should
geometrical kinks the kinks which result from the value of jump to a smaller value. Simultaneously, the valueDqf
the coverag&®=N/M, whereN is the number of atoms and should rise sharply when the coveragesxceeds the value
M the number of wells of the substrate potential on a givend, that characterizes a “well-defined” commensurate struc-
length. For6=1/q, with integerq (q=1,2,...), thesystem ture and one could expe€i (6) to exhibit the shape of a
has a trivial ground state with one atom at the bottom of thedevil's staircase. The abrugjumplike) increase ofD.(6)
substrate wells evergith well. When 6 deviates slightly  will only exist in the T—0 limit and, for anyT#0, these
from such a value, the difference is accommodated by th@umps will be smoothed owing to corrections from thermally
system by forming localized discommensurations which arexcited kink-antikink pairs.
the geometrical kinkgcalled also “trivial kinks” in the no- In the present paper we check these predictions by mo-
tation of Ref. 6. As the kink density increases wheéhde-  lecular dynamics investigations of the low-temperature mo-
viates from 1¢, the theory predicts th& () should exhibit  bility and diffusivity of a generalized FK model in one and
local minima for any trivial ground stat@&S) of the system, two dimensions. In Sec. Il, we describe the model and define
such asf#=1, 6=1/2, 6=1/3, etc. Whend=p/q is a its parameters. Kink parameters are calculated in Sec. Ill.
rational number with a larger numerator, suchgas2/3, the  Simulation results for the mobility are presented in Sec. 1V,
density of geometrical kinks becomes very large and oneénd those for the chemical diffusivity are described in Sec.
could expect to get a high mobilit. The picture is, how- V. Section VI discusses known experimental results in the
ever, more complicated because, due to their high densitffamework of these studies and Sec. VII concludes the paper.
the geometrical kinks interact strongly and, when tempera-

ture is sufficiently low with respect to their interaction en- Il. THE MODEL
ergy, they tend to form a regular lattice which is weakly _ )

deviation fromé= p/q appears as discommensurations in theof atoms adsorbed on a periodic substrate. The displacement
kink lattice, i.e., “kinks in a kink lattice,” which are called ©Of €ach atom is characterized by three variablesind y
superkinks in Ref. 6. These topological excitations of thedescribe its motion parallel to the surface, wtildescribes
kink lattice contribute to mass transport exactly as the triviafts deviation orthogonal to the substrate. For the substrate
kinks do, so that the mobility is expected to exhibit local Potential, we take the function

minima for #=p/q such as#=2/3. In the limit T—0 the .
function B(6) should therefore have minima at any rational VsudX,¥,2) =[VpdX;8sx,85x,Sx) + Vol Vi 8sy 1 85y,Sy) [€7 7

0. When temperature increases, the secondary minima dis- +V,(2) 4
appear because the kink lattice “melts” and, moreover, ther- e

mal fluctuations create kink-antikink pairs which are ther-To model the substrate potentia| a|ong the Surface’ we use a

mally activated. Consequently, at high enough temperaturgeformable periodic potential which can be adjusted to de-
the mobility is expected to exhibit broad maxima betweenscribe an actual crystal fiefd,

the primary minima at9=1/q. Such a behavior has been
observed in one-dimensional mod&is!* veq esx (1+5)1—cog2mx/as,)]
The behavior of the diffusion coefficie. is simpler pr{ X sx,€sx,Sx) = 5~ 2
than the variation oB( ) as predicted in Ref. 15. According 2 1ts-2scod2mx/asy) )
to Fick's law (2), D, is the proportionality coefficient be-
tween the(infinitesima) gradient of the atomic concentration Thus e, corresponds to the activation energy for diffusion
and the flux of atoms caused by this gradient. However, @f a single atom along th& direction, as, to the lattice
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constant, and the paramety (|s,|<1) controls the shape We use a dimensional system of units adapted to the
of the substrate potential. The frequeneyof a single-atom scales of the problem. Distance is measured in angstro
vibration along thex direction is connected to the shape energy and temperature in eV. The mass of an adatom is

parameters, by the relationshipw,= wy(1+s,)/(1—5,), chosen as our mass uninE 1). This imposes a time scale.
where wo=(e/2m)¥427/as) andm is the atomic mass. We measure time in units of the characteristic time interval
The potentiaV,(y;asy,€sy,Sy) has the same form. to=2m/wy. In the remainder of the paper, the measures of
The potential perpendicular to the surface is modeled byther dimensional physical quantities will be omitted, but
the Morse function they are all expressed in terms of the above-defined units.
In order to be close to real physical systems, let us take

V,(2)=g4(e” "~ 1), (6)  the adsystem K-W112 as an example to define the model

parameters: the {12 surface is characterized by a strong
anisotropy of the atomic relief because it has close-packed
rows of substrate atoms separated by furrows of atomic
depth. Namely, in the simulation, we pa§,=2.74 A and
sy=4.47 A, which are, respectively, the distances between
e neighboring wells along and across the furrows on the
W(112) surface, and:,=0.46 eV andes,=0.76 eV for the
Vgorresponding barrierghese values were taken from Ref.
18). To model the shape of the substrate potential, we have
to define the parametesg ands, . They can be estimated to
%e within the rangg0.2,0.4.° For the sake of concreteness
we tooks,=0.2 ands,=0.4, which leads to the following
_ _ frequencies of adatom vibrationai,=1.65 andw,=2.02.
Vind1) = VoeXp( = Bol), @ The experimental value for the adsorption energyy of Kon W
whereV, is the amplitude an(ﬁal determines the typical IS eq=2.54 eV28 For the vibration frequency normal to the
range of the interaction. This potential is adapted to describgurface we took w,=3(w,+ w,)=1.84, which gives
rather high coverages such that the atoms interact through=0.813. For the interatomic potentiéd), we took the pa-
the repulsive branch of the interatomic potential. In numerifameters/o= 10 eV andg,=0.85 A ~*. These choices give
cal simulations, we can only include the interaction of areasonable values for adsysteffighe interaction energies
given adatom with a finite number of neighbors. Thereforebetween two adatoms occupying the nearest wells along the
we use the standard approach of molecular dynaihti)  furrow and across are equal td,(as)~0.98 eV and
simulations and introduce a cutoff distance We account Vin(asy)~0.22 eV, respectively. Finally, we have to define
only for the interactions between the atoms separated by dighe rate of energy exchange between the adatoms and sub-
tances lower tham*, and to reduce errors caused by thisstrate: we took the typical valé »=0.1w,=0.165. Note

which tends to the adsorption energy when z goes to
infinity. The anharmonicity parametsris related to the fre-
guencyw, of a single-atom vibration in the normal direction
by the relationw?=2y?e4/m.

Finally, the exponential factor after the square brackets o
the right-hand side of Ed4) takes into account the decrease
of the influence of the surface corrugation as the atoms mo
away from the surface, so tha¥y,{X,y,z)—e4 when
Z— 0,

For the interaction between the atoms we take the exp
nential repulsion

procedure the interaction potentid) is truncated as that although some of the parameters are chosen rather arbi-
trarily, they are typical for metal atoms adsorbed on metal
v _ ' &H the model is still oversimplified to
Vind 1) = Vi) = Vil 1*) = Vi (r*)(r—r*),  (8)  Substrates: However, as P

describe a real adsystem, we have to say that our choice of
so that the interaction potential and force vanish at the cutofparameters does not claim to provide a quantitative interpre-
distance Vin(r*) =V (r*)=0 (the tilde will be omitted in  tation of the K-W112) adsystem. We do nevertheless be-
what follows. In addition, because we are using the repul-lieve in the qualitative description of the effects under inves-
sive interatomic interaction, we have to fix the atomic con-tigation and claim that typical adsystems on anisotropic
centration. It is imposed by periodic boundary conditions insurfaces[e.g., lithium and strontium on the molybdenum

x andy. We placeN atoms in the fixed ared, XLy, (112 surface, for which experimental data on the detailed
Ly=M,as, Ly=M,ag,, so that the dimensionless atomic coverage dependencies of diffusion characteristics are
concentration is equal t§=N/M, whereM =M M, . availablé®] should exhibit a similar behavior. Finally, for

To model the energy exchange of the atoms with a thernumerical solution of the Langevin equatioi®, we use the
mal bath, we use the Langevin equations for atomic coordistandard fourth-order Runge-Kutta method with the time step
natesx; , At=1t,/20=0.19, and the cutoff radius was taken as

r*=2a,,=894A.

) d -
MX+muyXi+ | Vsud Xi Vi )+ 2 Vi1 =1])
i 7 1. KINKS
=F®+ sFM(1), 9) As the kinks are the main objects of the phenomenologi-
. _ cal approach, let us first calculate their parameters. We re-
and similar equations foy; andz . Here, 7 corresponds t0 ¢4 that kinks can be defined for any commensurate atomic
the rate of the energy exchange with the substrategy,ciyreg,=s/q, wheres andgq are relative prime integers;
F={F,0,0 to the dc driving force, andF is a Gaussian the kink (antikink) describes then the minimally possible to-
random force with correlation function pologically stable compressidexpansioh of the commen-
surate structure. The kink is a quasiparticle, characterized by
(SF{()SFP (1)) =29mkg T 3,58, 8(t—t'). (10)  an effective massn,, a rest energy,, and the Peierls-
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Nabarro (PN) amplitudeepy, corresponding to the barrier ~ TABLE I. Parameters of kinksNo is the number of atoms,
for the kink translation along the chain. These parameters afdo the number of minima of the substrate potential for one period

determined by the dimensionless elastic consgaptlefined of the system along, &, the creation energy of a kink-antikink
pair, andepy the amplitude of the Peierls-Nabarro potential.

as
22 Structure No My e (8Y)  epy(eV)
SX

9ei=5 2, Vind@n)- (1D Antikink[1/2) 21 43 0.378

X 6o=1/2 21 42 0.759
Analytically, the kink parameters may be found in the Kink[1/2] 21 4 0.0849
low-coupling limit geg<<1 or in the strong-couplingsine-  Antikink[3/5] 22 37 0.0848

Gordon limit® ge= 1; however, the usual real physical sys- 6,=3/5 21 35 0.007
tems are characterized by the elastic consgapt-1, so that  Kink[3/5] 20 33 0.0813

both approximations are too crude to be applied to our case-

For our choice of model parameters, we hayg~0.6 for ~ Antikink[2/3] 21 32 0.0812
6,=1. Therefore we will calculate the kink parameters nu-fo=2/3 20 30 0170
merica”y_ Kink[2/3] 21 31 0.0192
The Qlél‘[ner]cal method was descrlbed'ln detail in preY'Ou%ntikink[3/4] 20 27 00184
papers:>2* Briefly, we have to choose first an appropriate 0-—3/a 21 28 0.055
size of the finite chain in order to insert a single kink into the ° '
- _ ) Kink[3/4] 22 29 0.0087
0o=s/q commensurate background structure; the integers
N andM must satisfy the equatidn®® Antikink[4/5] 19 24 0.0086
0p=4/5 20 25 0.018
qN=sM+ ¢, (12 Kink[4/5] 21 26 0.0071
Antikink[1] 21 22 0.0071

where the kink topological charge is equal too=+1 for
the kink ando= —1 for the antikink. In the simulation, we
restrict ourselves to the concentration raf@es,1] because .
for lower concentrations the interatomic interaction is tooT_<8pa"{_99}/ kg the Concem”ig',‘;” of thermally nucleated
weak and its effects would be hardly observable, while afink-antikink pairs is equal 6
higher concentrations the atoms begin to escape from the
first adlayer’*?° As background structures, we chose the fol-
lowing coverages:6y=1/2, 0,=3/5, 67,=2/3, 6,=3/4,
0o=4/5, andfy=1. The corresponding values for the num-
ber of atomd\, and the number of minima of the substrate
potentialM for every 6, are summarized in Table I.

We start with an appropriate initial configuration and al-
low the atoms to reach the minimum energy configuration
(see details in Refs. 26 and)2This determines the structure Bo= 172 3/5 2/3 3/4 4/5 !
of a kink in its minimal energy state. Then, in order to cal- 0.5
culate the parameters that characterize the kink translation, :
we choose a given atom in the kink regi@ee Ref. 1band
move it to the right by small steps by imposing xtsoordi-
nate while all other degrees of freedom of the chain remain
free to adjust to every new position of the constrained atom.
This process allows us to find the saddle configuration and
therefore the amplitude of the PN barriggy as the differ-
ence of the saddle and GS energies. In addition, the energy
of creation of the kink-antikink pair is determined
as & pair= E{KINK[ 5]} + E{antikinK 6,1} —2E{GY 6,1},
whereE{-} is the energy of the corresponding configuration
(notice that it must satisfy the relatiomN{kink[ 6,]}
+ N{antikin 6,1} =2N{GY 4]} which is imposed by the
total length of the atomic chains alomxy. The kink param-
eters obtained by this method are summarized in Table I, and
t_he erendence gf the PN energy on the atgmlc concentra- 05 06 07 08 09 1.0
tion is presented in Fig. 1. Note that the functiog(6) has COVERAGE
the shape of a devil's stairca&e.

From the kink parameters, the phenomenological FIG. 1. Peierls-Nabarro energy versus coverage. Coverages cor-
approach describes approximately the low-temperature beresponding to simplest commensurate structures are shown with
havior of the system as follows. Forf=1 and dashed lines.

(Opain ~C exp(— €pail2kgT), (13

where C~(2Myw2aZ/wkgT)¥? and m,=(mm )2 For
lower coveragesd=0,=s/q Eq. (13) should be properly
renormalized, which results in an additional factog i its
right-hand side.

Peierls—Nabarro Energy (eV)
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When the concentratioé slightly deviates from the com-  (g,)= (6, and (i) = Ogeom™ (Opaiy- Finally, the chain
mensurate valu®,, the thermal kinks are supplemented by mobility may be found asB=yD.. These predictions
geometrical kinkgif 6> 6,) or antikinks(if §<<6y) with a  should be now compared with the results of simulation and

concentrationdge,n=q|6— bo|. In the close vicinity of6y, this is the subject of the following section.
the total kink concentration can be found as
< 0t01> ~ ggeom"" 2< 0pair>- (14 IV. MOBILITY
The dimensionless susceptibiligy To study the mobility, we use an algorithm where we look
first for the minimum energy configuration of the system.
x={(6i00/q%6 (15  Then we increase the temperature up to a given temperature

T by small steps AT=T/50 during the time
Linerm= 100 o= 381. At that point, we apply a small dc force
=0.01 which is gradually increased fronk=0 to
F=0.01 during the time 1G9, and wait during

can then easily be obtained from E§$3) and (14).

Let us now examine the phenomenology of subsequentl
melted kink superlatticesIn order to describe the atomic
mobility in terms of collective excitations, we must first de- . ;
fine the type of excitations that have to be considered. As afyait= 100, in order to _aIIow th? system to reach a stationary
example, let us select a concentratidm the neighborhood state. Then, fqr the discrete “m‘*”?o' we measure the
of 6o=2/3. For lowT, T<e,{2/3}/2kg, we have to use average velocityv,) of the atoms durind,,,=10Q,, and,

the superkinks defined on the background of #he=2/3 fi_naIIy, _the p.roce_dure is_rgpe_ate@v times (1a=>5 in the
structure in the expression&3—(15). However, in the simulation with different initializations of the random num-
intermediate temperature range, i.€epud2/3H/2kg<T be[rgegerator Itn (t)rd'?hr to fefstl:na;etrt]heterror bars. | f
<e&pain 1/21/2kg , when the superkinks are destroyed by ther- 0 demonstrate he efliect ol Ine lransverse degrees o
mal fluctuations while the trivial kinkgdefined on the freedom on the atomic ”_‘Ob"'ty' we considered three differ-
0o=1/2 backgroungare not yet destroyed, we have to sub- ent cases of the gengrallzeq Frenkel—l_(ontorpva '.“Ode“ .
stitute the parameters of the trivial kinks in Eq$3) and (i) a thJrert c_)r}[eadLmingnal t_ato(q\:;:).cham with atomic
(14). In particular, we should takg=3 for low T but movement restricted to e directionttby,

g=2 for intermediate temperatures. In the latter case, how- (i) a quasi-one-dimensional atomic cha!n with t.WO trans-
ever, the parameters of trivial kinks may seriously differvﬁrasg_ld[;a%f:; of freedom and z (we will call it the
from those calculated for the ideal case, because the concef (iii) a true two-dimensional extension of the FK model
tration of trivial kinks at thef=2/3 coverage is very large

- o O 2D).
and their interaction is not negligible. ( . .
When the amplitude of the activation barrier for the kink Note that the interaction between the atoms always has

motion is known, the diffusion coefficierd, for a single- thueagf;grgln?rzng)faggg)’ .e., it has a 3D character in the
kink random walk may be approximately calculated with the’ '

; . The quasi-1D case can be easily obtained from the gen-
Kramers theory. Folf <zpy/ke this approach gives eral case by choosing a period of one lattice constant in the

D= DyoeXp —epn/ksT), (16) Y direction; namely, we putl,=1 so that all chains move in
the same way and chod€=5Ny{6} and M,=5Mq{6},
where where the integerdl, and M, are taken from Table | for
each coveragé in order to have five kinks or antikinks over
) _ (17) the length under investigation. The results of the simulations
a?wp2my if 7> wpy. are presented in Fig. 2. As expected from the phenomeno-
logical theory, at low temperature3(6#) does have local
minima not only for the trivial concentrationg=1/2 and
#=1, but also at the commensurate concentrati@rs?/3
and 6= 3/4. These two minima, which involve a kink lattice,
' disappear when the temperature is increased, while the
minima for the trivial structures survive at any temperature.
In the simulation, minima do not appear for the other com-

azpr/27T if 77|< 77< WpN
Do~

Here wpy=(7agy)(2e pn/m)Y2  a=qgag, and
= wppNKg T2mepy.

If the interatomic interaction is strong enough, the in-
equality epy<ep, mMay easily be fulfilled. In this case
within the temperature intervadpy<KgT <ep,y, the kink
diffusion coefficient is approximately equal t@.g., see

Refs. 33-3p plicated GS structurese.g., #=3/5 and #=4/5) because
keT 1{epy)|2 these higher-order structures correspond to too low “melt-
Dy —|1-5| = (18  ing” temperatures of the kink lattice.
mk77 8 kBT

In order to check completely the phenomenological
theory® it would be interesting to see if these extra minima

Knowing the kink diffusion coefficient, we can find the S
appear at very low temperature, but the mobility is then too

chemical diffusion coefficient with the phenomenological

approach by the formula s_maII to allow us to obt_ain accurate resu_lts in a n_umerical
simulation. As the “melting” temperature is determined by
(0D +{(0,)D the magnitude of the effective elastic constant of the kink

c~ T (190 Iattice, one could attempt to increase the paramégen Eq.

(7). But in that case, the repulsion between the atoms is too
where for > 6, we should take(6y)= Ogeonit (paiy @and  large and they begin to escape from the minima of the sub-
(Ok) =(Opain, While in the /< 6, case, we have to substitute strate potential in the direction orthogonal to the cHaimo
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perature is increased, while the minimuméat 2/3 survives

in the whole range of investigated temperatures, since it has
a greater melting temperature. However, the minima at
#=3/5 and #=4/5, where the kink lattice has the period
5a.,, are not found even for this very strong interatomic
repulsion. Note also that in real physical systems, such as
adsorbed layers, the observation of local minima for these
complicated structures is unlikely due to the existence of
transverse degrees of freedom.

In a one-dimensional model at high enough temperature
(T>epair/kg), the mobility can be calculated with a pertur-
bative approach starting from a system of noninteracting at-
oms. The functiorB(6) is given by?~4

MOBILITY

1 £sx/KgT)sinn(kgT/e 21
B~B1+= (esx/kgT)sinh(kgT/es,9a) ’
8| coslikgT/es,ga) — COS27map /agy)
(20
0.5 0.6 0.7 0.8 0.9 1.0
COVERAGE whereB;=1/my, ay=a.,/ 0 is the average interatomic dis-

FIG. 2. The mobilityB of the quasi-1D FK model with trans- '21C€, and - the elastic constarg, is defined by
verse degrees of freedom as a function of the coveéeafeselected ga=2a5.Vin(@a)/27 85x. Note that the functiori20) has lo-

temperatures T=0.0025 eV [curve (1)], T=0.005 eV (2), cal minima for trivial configurations only, in agreement with
T=0.020 eV(3), andT=0.050 eV(4). the phenomenological theory in the high-temperature range.

The chemical diffusivityD. could be obtained by replacing
},he prefactorB; in Eq. (20) by aiVi(as)/m. Figure 3

prevent this escape and allow the study of higher-orde . ) .
minima, we artificially restricted the atomic displacements toShOWS that Eq(20) describes the high-temperature simula-

the x dimension. This allowed us to také=100 eV. This tion results of the purely one-dimensional FK model with
: ' 8od accuracy(except in the vicinity of the coverage

case corresponds to the so-called 1D case. The results %:2/3’ wheres ooy /ks>T even for the highest studied tem-

shown on Fig. 3. ! . ) i
: . peraturg. For this model, the highest possible mobility
As seen from Fig. 3, in the 1D case the functi3v) has B;=1/mn=~6.0, which corresponds to the case of noninter-

pronounced local minima a#=2/3 and #=3/4 at much ting free atoms. is reached in the middle of the interval
higher temperatures than in the quasi-1D case. One can no 85'<%<1 0 ! ! ' interv

also that the minimum af=3/4 disappears when the tem- The high-temperature mobility for the quasi-1D chain

with transverse degrees of freeddourve (4) in Fig. 2] is
approximately two times lower than the values calculated
with Eqg. (20) for corresponding parameters. Note that, for
the chosen set of parameters in a quasi-1D mobel).05
eV is the highest temperature for which the determination of
the mobility in the first monolayer of atomis possible. At
higher temperatures the atoms start to escape from the first
layer to the second one, which may seriously distort the re-
sults[the curve(4) in Fig. 2 is not plotted at>0.8 for this
reasorn. Even if one takes into account the fact that the high-
temperature range required for the validity of E20) is not
reached, the disagreement between ) and the simula-
tion results is large in the quasi-1D case. This shows that the
presence of the transverse degrees of freedom has the same
effect on the mobility as an additional friction in the system.
This can be understood because some part of the work done
by the external force is used to excite the transverse degrees
of freedom.
0506 07 08 09 1.0 Finally, we also simulated the 2D Frenkel-Kontorova sys-
COVERAGE tem with My =30, M,=M{6}, andN=30Ny{6}. The re-
FIG. 3. The mobilityB versus coveragé for a purely 1D model 39“3- presented in Fig. 4, show that.there is no estentiaI
with V=100 eV at different temperaturds=0.005 eV(diamonds  difference between thB(6) dependencies for the quasi-1D
and dotted ling T=0.05 eV (asterisks and dashed lipeand ~ and 2D systems except that 2D dependencies are systemati-
T=0.10 eV(triangles and solid line For a better presentation, the cally lower. The role of the transverse degrees of freedom,
data for the two lower temperatures are plotted only withinalready noticed for the quasi-1D model, show up again here.
0.72< #<0.8, because at other coverages they are the same as flris interesting to notice that Fig. 4 shows for the 2D model
T=0.10 eV. The dash-triple-dotted line is HRO) for T=0.10eV. at T<0.01 eV the additional small minimum d(6) at

6.0

=
=
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walls. With the short-rangéexponential interaction studied
in our simulations, two kinks belonging to neighboring chan-
nels attract each other with a potentig,(x) «|x|, contrary
to the usual lawV,(x) = x2. As a consequence, the stiffness
of the domain walls vanishes and they can be destroyed by
thermal fluctuations or external forces for amy-0 or F
#0. This is confirmed by the observation of snapshots of the
atomic configuration in the 2D model. During the time evo-
lution a domain wall of kinks is destroyed as soon as the
temperature is high enough to provide a noticeable value of
the mobility. For example, Fig. 7 demonstrates the evolution
of such a domain wall defined on the background of the
#=1/2 commensurate structure. This case was chosen be-
cause its kinks have the simplest structure and are more vis-
ible than kinks defined on the background of any other more
complex commensurate structure. The initially well-defined
, kink wall (relaxed configuration fof =0) is smeared out at
0.5 0.6 0.7 0.8 0.9 1.0 T=0.02 eV and-=0.01, although these values of tempera-
COVERAGE ture and external force provide a very low value of the
atomic mobility 8~0.03) at the chosen coverage. This in-
FIG. 4. The mobilityB versus coverag® for a 2D model at  stapjlity of the kink domain walls explains why the true 2D
selected temperaturés=0.005 eV[curve (1)], T=0.010 eV(2),  model gives results which are not fundamentally different
T=0.020 eV(3), T=0.030 eV(4), andT=0.050 eV (). from the results of the quasi-1D case. Nevertheless, the in-

) ) ) teraction between atoms and kinks in the nearest neighbor
0=4/5 predicted by the phenomenological theory, which renannels does contribute to the dynamics of the system. It
flects the existence of the kinks/antikinks on the backgrounqiesuhs, in particular, in the lowered values of mobility for

of this coverage. N . the 2D case in comparison with those for a 1D system. How-
The plots of the mobilityB versus inverse temperature eyer, in more realistic 2D models with long-range inter-
shown in Fig. 5 for the 2D model at selected coverages showiomic forces such as elastic or dipole-dipole forces due to

that the atomic mobility has an activated character in thgpe substrate, the role of the domain walls might be more
investigated range of temperatures and coverages. The sag&sential.

gualitative behavior was found for the 1D case. Using an
Arrhenius formB(T) =Bgexp(—E,/T), we can calculate the
activation energ¥, and the prefactoB,. Their dependence
on coverage is shown in Fig. 6. The activation endegyhas The chemical diffusion coefficient is more difficult to cal-
a sharp maximum at the coverage 2/3, which corresponds culate by MD simulations than the mobility. It can be deter-
to a well-defined commensurate structure, while activatiormined in two ways. First, the susceptibiligy can be calcu-
barriers on both sides af=2/3 are much lower due to the lated with one of the methods described in Ref. 5 and then
presence of residual kinks/antikinks; the barrier for “kink” D, could be derived from the relatiob.=B/y. However,
coveragef=2/3+ § is lower than that for “antikink” cov- this approach relies on the accuracy of the two factors. In the
eraged=2/3— 5. On the other hand, the maximalgf at the  present work, we use a direct approach based on the Fick law
higher-order commensurabilite®#=3/4 and #=4/5 are (2). We start from a nonuniform initial concentration profile
much less pronounced. This is consistent with the fact tha6(x) and observe its evolution with time at a given tempera-
these higher-order commensurabilities hardly show up in théure T (we will now use the notatioft instead of(p)) in the
mobility curves of Fig. 4. diffusion laws, assuming the existence of local equilibrium
The main difference between the quasi-1D system and th&he variations of the chemical diffusion coefficiddt with
true 2D model is due to the interactions of kinks in the near-concentration determine the diffusion profii&or instance,
est neighboring channels. For the repulsive interatomic interfor an approximately constant fluk= —D_.d6/dx, flat sec-
action studied in the present work, kinks in the nearest neightions of the observed concentration profilew 76/dx) cor-
boring channels repel each other at thel coverage, while respond to enhanced diffusivify., while sharp changes of
for any #<1 they attract each other and tend to form domainconcentration within some concentration intervéligh

MOBILITY

V. DIFFUSION

1.00

FIG. 5. The mobility B of the two-
dimensional model versus the inverse tempera-
ture: (a) for coveragesd=0.51 (diamond$ and
6#=0.60(triangles; (b) kinks (squarey antikinks
(diamond$, and the background commensurate
structure(triangles for 6,=2/3; (c) for coverages
6#=0.72 (diamond$ and 6= 0.80 (triangles.
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FIG. 7. Snapshot pictures for two-dimensional model at
FIG. 6. The activation energl, and prefactoiB, for the mo-  g—0.51, (Top) The initial relaxed configurationT(=0) and (bot-
bility versus coverage in the case of the two-dimensional FK  tom) the atomic configuration after the evolution tirtre 1600 at
model. T=0.02 eV.

261x) indicate a lower diffusion coefficierD. . ried out byfree diffusion of kinks and the main variations of
Quantitative data on the variation versaf the diffu- ~ chemical diffusion coefficient will arise from the prefactor
sion coefficientD. can be obtained by studying the concen-DPo-

tration profiles given by the one-dimensional diffusion equa- ©One should keep in mind that the phenomenological equa-
tion tions (13)—(19) can be used only for those kinks which are

well defined as quasiparticles for a given temperature and a
given coverage interval, i.e., the conditi®r< e,/ kg must
JO(X,t) be satisfied. In other words, the concentration of thermally
o ) (21)  excited kink/antikink pairs(13 for a given structure
0p=s/q cannot exceed the maximal possible valug. For
the present study, it means that the quasiparticles which
The simplest case is the diffusion of an initially stepwiseshould be taken into account @t=0.025 eV are the trivial
profile in a spatially infinite system, which gives an explicit kinks/antikinks of the trivial G9,=1/2 andd,=1 and su-
expression for th®(6) function by the Boltzmann-Matano perkinks defined on the background@y= 2/3 structure. We
formula(see, e.g., Ref.)LHowever, with periodic boundary pointed out in Sec. Il that, for our model parameters, accu-
conditions, computational limitations do not allow us to rate kink parameters can only be determined numerically.
choose a period large enough to observe such a profil@ut in order to solve Eq(21) we need some expression for
Therefore we first derive an approximate expression othe kink masses. Since the maximum value of the dimension-
D.(6) using the phenomenological equatidd8)—(19), and less elastic constamf; defined by Eq(11) approximately
then solve Eq(21) with this D;(#) and periodic boundary equals 0.6 for the chosen set of model parameters, the best
conditions. Finally, we compare the calculated profiles withestimate is given by the low-coupling-limit expression
those obtained from MD simulation for the same initial dis- m,~m,~m/qg?.
tribution. Theoretically, the application of the Eq4.3)—(19) for the
Let us first apply the kink-gas phenomenology to the de-determination oD, is only strictly valid in the close vicinity
termination ofD.. We have chosen the room temperatureof commensurate structures, where the concentration of re-
T=0.025 eV (290 K since it divides the whole investigated sidual kinks is low (in our case, near the coverages
coverage intervgl0.5,1.9 into two parts which differ by the  0,=1/2, 6,=2/3, andf,=1). Since we nee® () for all
mechanism of kink diffusion. For the coverage rangeintermediated values, we have to interpolate between these
0.5<0<0.66 where the conditioT<epy/kg is satisfied specificd values. We calculated the values@f (indicated
(see Fig. 1 the diffusion of kinks has aactivatedcharacter by the plus signs in Fig.)8up to the middle points between
and, in terms of the Arrhenius representation of the chemicathese specific coverages and used a weighting coefficient,
diffusion coefficientD.=Dgexp(—E,/T), this means that plotted them in the inset in Fig. 8, to mark the significance of
the D(#) dependence is determined mainly by the varia-each point in the subsequent interpolation procedure. The
tions of the activation energynote thatE,~epy according  final form of D (6) is taken as a superposition of tafj(
to Eg. (16)]. On the other hand, for 0.666<1.0, where functions chosen to provide a good fit of the value deduced
T>epn/kg and where the Peierls-Nabarro enesgy, shows  from the phenomenological theory around the coverages
only minor changes with coverage, the mass transport is caby=1/2, 6,=2/3, andf,= 1, where it is accurate. Although

Dc(6)

9 aix.t)=
ot I D=5
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FIG. 8. Chemical diffusion coefficierD. versus coverage for
T=0.025 eV. Crosses correspond to g values calculated with
phenomenological equatiori$3)—(19); the full curve corresponds
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energy E,. which can be deduced from Fig,,1while at
higher coverageb . start to decrease. THegh-temperature
behavior of D, at high coverages is given in the kink-gas
approach by the variation of kink mass. It can be also inter-
preted in terms of the Arrhenius formulaD,
=Dyexp(—E,/T). GenerallyD, andE,. change in a simi-
lar manner(the so-calledcompensation effebt At high
enough temperatures, the slow decreadg ght 6> 2/3 (see
Fig. 1 leads only to a slow change of the exponential term of
the Arrhenius formula. The fast drop &, must thus be
attributed to the prefactdd,.

OnceD. is known, the second step is to solve EB1)
with this D, dependence and compare with the MD simula-
tions. To deduce a local coverage from the MD atomic con-
figuration at a given timet, we calculate the occu-
pation numbersn(iy,i,;t) (where i,=1,... M, and
iy=1,... M,) defined as the number of atoms in the given
elementary cellil,i,). The results of the simulations for the
2D model M,=84,M,=60, andN=3780) are presented in
Fig. 9. We started with an artificially prepared stepwise ini-
tial configuration: concentratiof= 1 in the central region of
the lattice(for iy,=M,/4+1, ... ,3M,/4) and#=0.5 outside

to theD () dependence, interpolated with the help of the weight-this region. The system is then allowed to evolve according
ing coefficient presented in the inset.

to the Langevin equation$9). The concentration profile
6?(ix,tn)=2i'v'iln(ix,iy;tn)/My is recorded at times
y

this procedure cannot avoid some arbitrariness, we keep it tg,=nt,. The simulation was repeated five times in order to
a minimum by putting the weighting factor to zero whereveraverage the profiles and decrease statistical fluctuations. The

the theoretical formula foD.(6) is not valid. The general

simulation profiles for different times are shown in Fig. 9

shape of the interpolatdd ( 6) reflects the expected general with symbols. They have a flatter section in the middle of the
variations of the chemical diffusivity versus coverage. Westudied coverage interval, corresponding to the coverage re-
see that this function monotonically increases in the regiomion with enhanced diffusivity. Moreover, in the same figure,
1/2< #<2/3 (corresponding to the decrease of the activationwe plot with solid lines the theoretical profiles obtained from

COVERAGE

COVERAGE

COVERAGE

COVERAGE

FIG. 9. Evolution of the coverage profile ver-
sus time:t=0 (a), t=190 (b), t=763 (c), and

50 t=1715 (d). The triangles correspond to the
simulation of the 2D model withM,=84,
M,=60, and N=3780 at room temperature

1.00

0.90F

0.50F

T=0.025 eV, and the full curves are the solution
of the diffusion equatiori21). The coordinate is
indicated in lattice units,.
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the numerical solution of the diffusion equati¢®l) with  and#=1), which is close to the behavior ey in Fig. 1. It
Dc(0) plotted in Fig. 8. The data presented in Fig. 9 showis giso interesting to notice that B.(6) is plotted at tem-
that the theoretical and simulation results are in very googeratures higher than 300 K from the values of the prefactor
agreement, which validates the phenomenological approaqjj0 and activation energ,. measured in Ref. 23, it shows a

used for determining the diffusion coefficient. nonmonotonic behavior with a minimum arou@ie 1, which
is very similar to the behavior oD. at T=300 K in the
VI. DISCUSSION IN RELATION TO EXPERIMENTS two-dimensional FK model considered hésee Sec. V.

Finally, preliminary results of the diffusion study in Sr-

It is important to examine the applicability of the theoreti- Mo(112) systend® have demonstrated that diffusivity in-
cal results to real physical systems such as atomic layersreases sharply at coverage-0.5 which correspond to the
adsorbed on crystal surfaces. Although experiments cann@ommensuraté4x 2) structure of strontium atom@vhile at
provide results as detailed as the numerical simulations, BRigher coverages Sr atoms form incommensurate strugtures
comparison is possible. Our model is oversimplified to de-One may speculate that this enhanced diffusivity is provided
scribe quantitatively a real adsystem — although we chos@y the fast kink diffusion.
some model parameters close to those available for the

K-W (112 adsystem — mainly because the interatomic inter- VIl. CONCLUSION
action in real adsystems is much more complicated than the
exponential interaction used in the present wirkn the The aim of this paper was to check the predictions of the

case of adsorption on isotropic surfaces, diffusion is affectedtink-gas approach with the help of molecular dynamics
by the formation of domain walls, especially when the inter-simulations. The validity of the kink-gas approach ought to
atomic interaction is long range. Our results are more suitbe questioned because it is based on one-dimensional models
able to describe highly anisotropic surfaces for which thewhile real adsystems are 2@r even 3D taking into account
interaction between neighboring channels is sufficientlythe possible motion of adatoms orthogonal to the sujface
weak to reduce the role of two-dimensional domain walls. First, we compared the kink-gas approddtys. (13)—
We obtain a qualitative agreement with experiments on dif{19)] and high-temperature formul20) for mobility B and
fusion of atoms adsorbed on highly anisotropic furrowed surchemical diffusivity D.=kgTB/x with the results of our
faces. simulation of FK models with transverse degrees of freedom.
There are very few experimental data on the variatioWe have found only ajualitative agreement between the
versus coverage of the diffusion coefficient for atoms ad-B(6) dependencies obtained in MD simulation of 2D and 1D
sorbed on highly anisotropidurrowed surfaces. Some data models with transverse degrees of freedom and those pre-
have been obtained using the field emission fluctuationslicted by the kink-gas approach. In Sec. IV, we showed that
method® for K-W(112) and the diffusivity was found to in- the mobility B is strongly reduced when additional trans-
crease strongly in the region of the commensurateverse dimensions are involved in the systemguantitative
incommensurate transition: this was interpreted in terms oéstimation oB using Eqs(13)—(19) shows that the kink-gas
fast diffusion ofsolitons® approach overestimates the mobility significantly unless we
Detailed dependenci€s () andE,{ 6) in the wide cov- artificially introduce a higher effective friction;. This can
erage interval[0.05,1.3 are availabl€ for Li-Mo(112), be understood because some part of the energy brought into
where the interaction between Li adatoms on(M®) is  the system by the external force is absorbed by extra degrees
long range and anisotropic. Besides the short-range forcesf freedom. For example, in the simplest case of harmoni-
the interaction between the adatoms includes also a dipolesally interacting atoms at high temperatures, the mobility has
dipole repulsion and an oscillating part due to substrateto be renormalized by a factor 1(Be., 7.4=37) due to the
mediated electron exchan@This is responsible for the ex- presence of two additional degrees of freedom, since the en-
istence of peculiar chainlike structurep(1x4) and ergy is redistributed uniformly€kgT/2) between all three
p(1x?2), formed by first-order transitions, for coveragesdegrees of freedom. But in our case, where interaction be-
6<0.53" In this range off, the diffusivity D, was found to  tween atoms is anharmonic and mobility is investigated at
depend only weakly on coverage. At higher coveragedow temperatures, a reliable determination of the effective
6>0.5, the repulsion between Li adatoms starts to play driction 7. is not possible.
larger role. This results first in the formation of one- By contrast, the study of chemical diffusiaisec. V)
dimensional incoherent structures @t2/3, and then the demonstrategualitativeandquantitativeagreement between
adlayer exhibits a one-dimensional compression along th®D simulation data and the kink-gas approach. The reason
direction of furrows®’ In this coverage rangd) (#) was is thatin the case of thermal diffusion, the chemical diffusion
found to increase strongly and monotonically with coveragecoefficientD.=kgTB/x does not change with additional de-
at low temperatures. The sharpest increases of diffusivity agrees of freedom since the “external force” is provided by
low temperatures <250 K) appear for the commensurate the thermal energy of the system and is proportional to the
coveragesy=2/3 and#=1. This behavior oD, coincides gradient of the chemical potentigd. As the Fick law(2)
qualitatively with the predictions of the kink-gas approach may be rewritten as J=pBVu=pB(du/dp)Vp
and our numerical simulations. Moreover, the activation en=kgTB/xVp, where y=(dInp)/(du/kgT), it is clear that an
ergy E,. for chemical diffusion, obtained in Ref. 23 from the additional transverse dimension to the system leads simulta-
slopes of Arrhenius plots db., exhibits a monotonic de- neously to an increase of free energy and chemical potential
crease as coverage increasescept for small maxima at u. In other words, the decrease of the system’s mobility due
coverages slightly above the commensurate val#e®/3 to an extra transverse dimension of the system is compen-
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sated by a corresponding decrease of the susceptiildf  tions and the presence of surface defects.
the system, so thdd. remains approximately the same.

Our results allow us to co_nclude that the p_her_mmenologi- ACKNOWLEDGMENTS
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