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The paper presents a self-consistent mean-field theory for a lattice-dynamical model that exhibits a first-
order structural phase transition. In this model the phase transition is produced because the high-energy
structure has lower vibrational frequencies than those of the low-energy structure. This mechanism produces
higher entropy in the higher-energy structure and thereby drives a phase transition. These structure-dependent
frequencies are produced by anharmonicity in the interparticle interaction. The approximate theory of the
transition given here reduces the exact coupled equations of motion to a single mean-field equation by replac-
ing coupling terms between neighbors with appropriate averages. This step produces an effective potential that
is used to calculate self-consistently the averages that appear in it. Thermodynamic properties calculated by
this method show that the system has a first-order phase transition for sufficiently large strength of the
interparticle anharmonicity. Further properties of the system obtained by this method include a discontinuous
change in the shape of the average displacement and free-energy vs temperature relations as a function of the
anharmonicity strength. This feature may be related to the hysteresis seen in previously performed computer
simulations on the model. The effective potential also determines the displacement probability distribution
function. For the parameter values studied here this distribution has a single maximum with only small
asymmetry about this maximurfS0163-18206)07729-§

[. INTRODUCTION in the structure with higher energy, thereby increasing the
entropy associated with that structure. Thus for sufficiently
The microscopic mechanisms responsible for macrostrong anharmonicity, when the temperature is increased to a
scopic features observed at first-order structural phase trawritical temperature, the structure with the higher internal
sitions continue to warrant and receive further attention. Thignergy achieves the lower free energy and a discontinuous
paper is the third in a seri&$in which a specific mechanism change to that structure occurs.
for causing these transitions has been put forward and its Paper | presented extensive molecular dynaniid®)
consequences examined. The introductory sections of papetalculations based on this model, but only a small portion of
I and Il survey the relevant history of the field and the mo-the parameter space could be covered by those calculations.
tivations of our specific model. We refer the reader to thosdaper Il presented an approximate theory, with the intention
papers and do not repeat that material here. In this Introdude survey qualitative features of the model over more of the
tion we will summarize the salient points and concentrate orparameter space. The theory presented in the second paper
the new work presented in this paper. was a mean-field theofMFT) with the additional assump-
The essential features of our lattice-dynamical model ard¢ion that the probability distribution functioPDF for dis-
that (i) each particle moves in an asymmetrical double-wellplacements is a Gaussian function. The justification for that
potential and(ii) the interparticle interactions are anhar- additional assumption was an appeal to the simulations,
monic. Consequently, nonlinear forces acting on each pawhich, over their limited parameter range, gave single-
ticle arise from both the on-site potential and the interactionpeaked, nearly symmetrical distributions. Since the purpose
with neighboring particles. The phase transition which oc-of paper Il was to explain features seen in those simulations,
curs in this model doesot have symmetry-breaking charac- this reasoning was somewhat circular. Nevertheless, by mak-
ter; there is no symmetry to break due to the asymmetry oing that one additional assumption, the theory in paper Il was
the on-site potential. Rather, we have characterized the tramble to elucidate other features seen in the simulations.
sition as beingentropy driven The idea we want to convey The present paper gives an improved approximate theory
derives from an explanation by ZeRAeof transitions in for the statistical mechanics of this model. This theory is a
B-phase alloys which showed the importance of the vibrageneralization of a theory for second-order structural phase
tional contribution to the entropy. The asymmetry of the on-transitions described in a review article by Brdde.is also
site potential provides an ordering tendency in the systema mean-field theory but without additional assumptions. As a
since the lower well of this potential is always energeticallyresult of this extended generality, we can calculate the dis-
preferred. A competing tendency arises from the anharmoplacement PDF rather than make an assumption about its
nicity of the interparticle forces. These forces are structureshape. Thus this method can either justify or show the limi-
dependent in a way that causes lower vibrational frequencigations of the assumption made in paper Il. The ability to
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ample, the particle mass in Eq2.1) is M = 1.] For
a9=2/9, V,(u) is a symmetric double-well potential with
] degenerate minima at=0 andu=2/3 and a maximum at
1 u=1/3. For this case and fdrarmonicinterparticle interac-
. tions (see beloy, the system is known to have second-
] order transition? For 0<a,<2/9, it has a metastable mini-
mum atu,,s, 8 maximum au,,,, and a stable minimum at
Umin, Which are given by

1 1
Uns=0, umaxzi[l— V1-— 4a0]<§,

a, = 0.1895
_____ a, = 2/9

0.02

0.00}

V,(u) (dimensionless)

—0.01: . ! 1 ] 1 2
-0.5 0.0 0.5 1.0 1.5 umin=§[1+ \/1—4a0]>§. (2.3

u {dimensionless)

The pair interaction energy is
FIG. 1. The on-site potentidEq. (2.2)] for the symmetric case P 9y

a, = 2/9 and the asymmetric case for the valye= 0.1895 used 1

in the calculations. The arrows mark the metastable minimum, the Vo(u,u’)= E[k+ a(u+u’)]J(u—u")?, (2.9
maximum, and the stable minimum for the asymmetric d&sp

(2.3]. where k is the interparticle harmonic force constant. The

) ] parametera is referred to as the anharmonicity parameter
calculate this PDF is useful because one of the features Qfroughout the paper; our major concern is to see how the

structural p_hase trans?tiq_ns that we are able to analyze W'tE‘ystem properties change with increasing anharmonicity
t_hls model is the p035|b|I|.ty of precursors of the transforma-strength_ The motivation for choosing this model potential
tion. These would be regions of the “wrong” phase appear-gnergy function is given in detail in papers | and Il to which
ing within a background of the phase corresponding to thgne reader is referred. The essential idea is to stabilize the
eX|st_|ng temp_eratL_lre value_z. Such precursors W(_)uld appear §fgher-energy structure at higher temperatures by having
multiple maxima in the displacement PDF. It is obviously pigher vibrational entrop§.The functionV,(u,u’) achieves
impossible to find such features with a Gaussian assumptiofpis effect by decreasing the effective force “constant” of
about the PDF. _ _ _ the interparticle interaction when the particles are near the
In order to achieve the increased generality of this MFT,jyetastable minimum of the on-site potential. The weaker

we must do self-consistetSC) calculations of quantities  forces produce lower vibrational frequencies, which leads to
appearing in the equation of motion for the system. For thaf,creased entropy.

reason we refer to this theory as the self-consistent mean- The phase transition occurring in this model fgy<2/9

field theory(SCMFT). , . anda#0 is non-symmetry-breaking, because of the asym-
We give a brief description of the model in Sec. I, derive metry of the on-site potential. Another model based on the
the SCMFT equations in Sec. lll, present some special casggme physical idea but for symmetry-breaking transitions has
of solutions in Sec. 1V, and give low- and high-temperaturepaan studied by Gooding and MorfisThat model utilizes
asymptotic solutions in Sec. V before presenting solutiongpe 6 potential and a symmetric interparticle interaction.

for the general case in Sec. VI. We give our conclusions in - The exact equations of motion obtained from the Hamil-
Sec. VIl and discuss some numerical issues in the AppendiXgnian in Eqs{(2.D), (2.2, and(2.4) are

Il. MODEL d?u, » 3
?z—(a0+2Dk)un+(1—3Da)un—un+k2 Uns 5
The lattice-dynamical model exhibiting the phase transi- t o
tion is the same as was used for the computer simulations in 1
paper | and the approximate theory in paper Il. It is defined + —az uﬁ+5+ aung Unt 5- (2.5
by the Hamiltonian 25 o

1 1 We used the fact that the coordination number of a
H=E Epﬁ+2 Vi(u,) + 52 Vo(Up,Ups g). (2.0 D—dimensional hypercubic lattice i§[2t_o write this equa-
n n n.é tion, and we separated terms which involve only titl
Heren denotes the sites of R-dimensional hypercubic lat- Particle from terms which also involve its neighbors.
tice, & denotes the set of nearest-neighbor lattice vectors, and 1€ Parameter values used heredgr D, andk are the

u, is a scalar displacement variable at tik lattice site. The ~SaMe as those used for the simulations in paper I; their de-
on-site potential energy, (u) is (see Fig. 1 termination is described in detail there. The values were cho-

sen so that the model would represent the phase transition in
1 1 1 Zr between the bcc phase and thephase. The structural
Vi(u)= anuz— §U3+ ZU4- (2.2 distortion which occurs at this transformation is related to a
particular low-lying phonon mode, making this transition a
[All quantities in this paper are scaled to dimensionless valeandidate for the mechanism considered in this paper. Be-
ues, using the factors given in Table Il of paper I. For ex-cause the focus of our enquiry into the model is to find how
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the properties of the system change with the strength of this the single-particle configurational partition function. In
interparticle anharmonicity, we present results for many dif-particular, when this distribution is applied to calculate the
ferent o values. The value used for the interparticle har-averages which appear W, we obtain theself-consistent
monic force constark is rather large, corresponding to the mean-field-theorySCMFT) equations:

so-called displacive regime where site-dependent variables

change slowly witm and a continuum approximation would 1 (- q _ Ver(U;{(u) (u?)) 3
be valid for the equation of motion. (u)= ZA(M ) - uuex T » 37
Ill. SELF-CONSISTENT MEAN-FIELD THEORY <u2>= 1 ® duuzex;{ B Veﬁ(u;<u>,<u2>))
Mean-field theory(MFT) assumes that the particles move Z(T) )= T ’
independently, so that the phase space PDF factors into (3.8

single-particle functionS,i.e., These are a set of equations to smvedfor (u) and(u?)

o pd2T rather than merely evaluated.
Fadpn unh) =11 Fipn,up) =11 —=P;(u,). The integration constar@(T) of Eq. (3.4) factors out of
N({Pn.Un} R o n \2wT B the integrals in Egs(3.5 and (3.6) and therefore cancels

(3.1)  from the ratio in Eq.3.9); it is not necessary to know this
_quantity to compute the averages. Accordingly we define a

In the last step we introduced the Maxwell-Boltzmann dis-1> ; ,
shifted effective potential

tribution for the momenta at temperatuffe (Boltzmann’s
constant is unity in our dimensionless uit®;(u) is the ). oy ) 2
single-particle displacement PDF. Because of this factoriza- Vet (Ui{U),(U)) = Ver(uiu) (u) = C(T). (3.9
tion of Fy, the conditional PDF for all other particles, given Corresponding to this shift, we defing®(T) by using
prescribed values for the variables of thi particle, is ob- v in Eq. (3.6. The averagegu) and(ug) can be calcu-
tained by omitting the factor for thath particle from the Iaigd using the SCMFT equations witH) andZ(®

N

product. We average EQ.5), the exact equation of motion, . . ) .
over this conditional distribution to obtain the MFT equation Frpm Eq.(_3.5) we identify the displacement probability
eden5|ty function of Eq(3.1) as

of motion. The resulting single-particle equation is the sam
for all particles, and so we replacg by a generic displace-

. . 1 Ver(u;{u),(u?))
ment variableu; the result is - _ e
Py(u) Z.M eXp( T (3.10
d?u
e ="lao+ 2Dk—2Da(u)Ju+(1-3Da)u?—u? (or the same equation using?) andz(?)). Once the solu-
t tions for (u) and(u?) are obtained from the SCMFT equa-
+2Dk(u)+Da(u?). (3.2  tions for given values of the parameteas, D, k, a, and

. ) ) ) T, this probability density is determined. This capability to
The force on the right-hand side of E.2) is derivable  caicylateP,(u) is one of the major improvements of this

from a potential, and so we write self-consistent theory over the method presented in paper II,

d2u N which assumed th&,(u) is Gaussian. Specifically, we note
— = _e“; (3.3  thatif V¢4 comes out to be a double-well potential for some
dt ou particular parameter values or temperature, then there are
the temperature-dependent effective potential is two maxima inP,(u).
We will show that the SCMFT equations typically have
Veir(U;(u),{u?)) =C(T)—[2Dk(u) + D a(u?)]u multiple solutions for a giverl. To discriminate among
1 these solutions, we introduce the free energy functjer
+ E[ao+2Dk—2Da<u)]u2 particle valug
1
1 1 f=—=TIN(27T)—-TInZL(T 3.1
-3(1-3Da)t+ Juh, (34 5 TIN(27T) = TinZ(T) 319
whereC(T) is a temperature-dependent integration constant. 1 0) _
Averages are computed from the effective potential ac- - ETIn(ZWT)_Tanc (M+C(T);
cording to the usual Gibbs distribution (3.12
1 (= Verr(U;{(u),{u?)) the first term is the kinetic energy contribution. The physical
j— eﬁ . . . . - .
(A)= 7.0 __duAlexp - ———F |, solution of the SCMFT equations is the one with the mini-

(3.5) mum free energy. This functiodoesdepend on the integra-
' tion constantC(T) in Eq. (3.4). ThusC(T) must be deter-
where mined if we are to use Eq3.11) or (3.12) to determine the
. _ ) equilibrium phase at each and the transition temperature
— _ Ver(u;{u),(u%)) T.. To determineC(T) we use an alternative formula for the
Z.(T) duex (3.6 )
— T free energy per particle,
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f=e—Ts, (3.13 (V@ (u;(u),(u?))y=—[2Dk(u)+Da(u?{u)

1
in terms of the internal energy and entropys. The internal + 5[a0+ 2Dk—2D a(u){u?)
energy is obtained from the average value of the Hamiltonian

in Eq. (2.1, e=(H)/N, and the entropy from the distribution 1 1
function in Eq.(3.1), s= —(InFy)/N. These averages can be - 5(1—3Da)<u3>+ Z(u“).
obtained using Eq(3.5) calculated withv(% andz{®) so that
C(T) does not appear. By requiring that the two ways to (3.19
calculatef be equivalent, we obtain the integration constantysing the result for the average kinetic energy in By14),
C(T). o _ the entropy per particls is
The average kinetic energy is
_ 41 1I 27T ! 2Dk-2D (v
s=+5+5N2aT)+ 5[ap+2Dk- a<u)]?
> (3pD)=3NT, (3.14 5 4
" +|nz<°>(T)—5(1—3Da)@+EM
¢ 3 T 4T
and the average on-site potential energy is (u)
—[2Dk<u)+Da(u2>]?. (3.20
1 1 1 . .
=Nl = 2y i3y + Z(u? Combining Egs.(3.14), (3.15, and (3.17 for the internal
;(Vl(un)) N| Sao(u?)— g(u¥)+ Z(u®) |. g9 Egs( (3.19 (3.17)

energye and(3.20 for the entropys, we obtain for the free
(3.19  energy per particle,

To compute the average of the pair interaction terms, we first ¢_ _ ETIn(ZwT)—TInZ(O)(TH Dk(u)2+ D a(u2)(u).
separate each pair interaction into single-particle and “irre- 2 ¢
ducible” pair terms (3.21

Comparing the two formulas for the free energy in Egs.
1 (3.12 and(3.21), we see that the integration constant in Eq.
<V2(un Un+ 5)>: Ek[<uﬁ>+<ur21+ 5>_ 2<Unun+ 6>] (3'4) IS
1 C(T)=Dk(u)?+ D a(u?){u). (3.22
- 3 3 02
* 2 al{Un) (Un+ 5 = (Unlin+ 5 The single-particle effective potential is obtained by com-
) bining Egs.(3.4) and(3.22. This function can be written in
— (Ul 5]- 318 gifferent ways that illustrate different aspects of its behavior.
One way is, using Eq2.2),
Since we assumed factorization of the distribution in Eqg. _ oy 2
(3.1), the averages of products involving different particles Veri(ui(u),{u%)) =V1(u) + Dk(u—(u))
in Eq. (3.16 factor into products of averages. Then the av- +Da(u—(u))(u?—(u?)). (3.23

erage pair interaction energy is . ) ) .
This form emphasizes that the difference between the micro-

scopic on-site potential and the effective potential is due to
1 1 the interparticle interactions and is determined by the fluc-
— I 2\ __ 2
ZnE,ﬁ (Va(Un,Uns 9)= 5 N(2D){k[(u) —(u)“] tuations in bothu andu?. By some manipulation¥¢ can
also be written in terms of both the microscopic on-site and
+al{u®)—(u?)(u)]}. (3.17 interparticle potentials, as

Ves(U; 2))=V;(u)+(2D)V
The internal energy of the system is the sum of E§sl4), ef(Us (W), (U") =Va(U) +(2D)Va(u{u))

(3.19, and(3.17. 1 ) )
To compute the entropy we need, from E¢3.1) and _(ZD)EQ(U_W))[(U )= (w1
(3.10,
(3.29
1 1 This equation has been written to emphasize that the coordi-
(INFy)=— T<%p2>_%'”(2ﬂ)_ f(Vfﬁf)(U;(U%(Uz))) nation number of the lattice is2 One might have written

the first two terms intuitively from Eq2.1) by asking for the
potential energy that one particle experiences assuming that
its neighbors are all displaced k). This last equation
shows that such a procedure would omit the contribution
and from Egs(3.4) and (3.9), arising from the fluctuations in?.

—InzO(T), (3.18
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An alternate method to calculate these properties is the 0.8 [ T e T ARARRAREA
self-consistent phonon theof@CPT). This method takes the D=2
Fourier amplitudes of the displacement field as the funda- 0 = 2/9
mental variables. Its central assumptions are that the phase k = 02110

space PDF factors into a product of individual mode PDF’s 0.6
and that the factor for each Fourier mode is Gaussian. This
assumption is exact for a purely harmonic Hamiltonian; for
anharmonic systems the SCPT gives the liasi variational
sensg harmonic approximation. For the case of no anharmo-
nicity (e« = 0) and a symmetric on-site potentia{ = 2/9),

it is known' that the SCPT predicts a first-order transition, in
contradiction to the known occurrence of a second-order
transition. Thus for this limiting case, our MFT gives the
more accurate descriptiofsee Sec. IY. The product of
Gaussian factors for the Fourier amplitudes transforms to a
multivariate Gaussian in terms of the displacements, i.e., a
function of the form expf{Zj;uA;u;). When this is inte-
grated over all but one of the displacements to obtain the 0.00 0.01 0.02 0.03 0.04

single particle PDF, the result is again a Gaussian. This is the T (dimensionless)

same form that was assumed for the displacement PDF in _ _
paper Il. However, the parameters in these Gaussians are FIG. 2. Average displacement vs temperature for the symmetric
determined by different prescriptions, and so it is impossiblé)n's'te potential and zero interparticle anharmonicity. The solid

to compare further the results of the two theories Withoutlc_“r"f3 ishthe stabLeI brolier_l-syrt?nlwemtlry SOC:Utkilon b?@’v Th_e dastI:ed
dOing the SCPT calculations. ine iIs the unstable solution beloW, and the only solution above

T [Eq. (4.4].

a = 0.0000

0.4

(u} (dimensionless)

0.2

IV. ZERO INTERPARTICLE ANHARMONICITY o
JZ dxxexp —

2 1 ? 2
X —§) /4T—Dk(x—(x>) /T}

We first describe the solutions of the SCMFT equations (x)=

5 )
[Egs.(3.7) and(3.8)] for the special case of no interparticle * w2 E _ _ 2
anharmonicity, in order to set the stage for the more compli- _mdxex X9 AT=DkOXx=0)T
cateda#0 case to follow. Wherx=0, the effective poten- 4.3

tial simplifies to ) ]
On the right-hand side of Eq4.3), we put(x) = 0; the

resulting numerator integral vanishes because of the odd par-
Veir(U;{u),(u?)) =V, (u)+Dk(u—(u))2. (4.1) ity of the integrand. Sgx) = 0 or

This function no longer containg?), and so in this limit (uy= E 0=<T<os, (4.4)
there is only one SCMFT equation to be solved, viz., Eq. 3
(3.7).

is one solution of the SCMFT equation for all temperatures,
or these parameter values.

Now suppose that some other val2¢ >0 is a solution
of Eqg. (4.3). On the right-hand side, we substitute the value
—(x)<0 into the integrals and then change the integration
A. ay=2/9 variables tax’ = — x. The resulting ratio of integrals is equal
to —(x), proving that—(x) solves Eq.(4.3) if (x) does. In
terms of(u), solutions other than Ed4.4) appear in pairs,
symmetrically located about the life) = 1/3.
1 ( 2)2 Figure 2 shows the numerical solution of E§.7) for a

There are two cases of interest here: the symmetric on-si
potential forag=2/9 and the asymmetric casg<<2/9. We
discuss each in turn.

With ag=2/9 the on-site potential can be written

Vi(u)= Zuz u-z (4.2 particular set of parameters. The solid curves are solutions
symmetrically located about the lifet) = 1/3, as described
above. They shoyu) developing out of either of the degen-

This is a double well with degenerate minimauat= 0 and  erate minima of the on-site potential @sis increased. The
u = 2/3; it is symmetric about the maximumuat= 1/3 (see dashed line is the other solution, which satisfies the SCMFT
Fig. 1). If the origin is shifted tau = 1/3, then one sees that equation for all temperatures, BE¢.4). As expected we get a
this model is a lattice version of the much-studigfi field  second-order, symmetry-breaking transition with
theory. It is knowfl to have a second-order phase transitionT,~0.0337. The MFT in paper Il, based on the assumption
forD= 2. of a Gaussian distribution fd?,(u), gaveT.~0.031. Figure

In Eq. (3.7), evaluated for the parameter values of this3 shows the free energy for this case, evaluated from Eq.
section, we change the integration variable by(3.21). The solid line is the equilibrium free energy for
u=1/3+x, {(u)=1/3+(x); the result is T<T,., since it is the minimum value over that temperature
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0.06 [T REEENRRRR IRRERSRERE T

O‘OG T T T T T T T T T T T T
D=2
a, = 2/9 -t

0051 = 02110 i
. o = 0.0000
& oal ] —~ 0.04
& 7 o
< r=
@ 9
£ /5 o
S 0.03f Y 1 ®
% / £
2 / B 0.02
L ’ S~
b y >
2 0.02f - &
® / 3
- l/ L‘CJ )

/ o f D=2
; i ) 0
0.01 5 ool a, = 0.1895
' k = 0.2110
0.00 biuneiiny [T, [ [ a = 0.0000
0.00 0.01 0.02 0.03 0.04
T (dimensionless)
FIG. 3. Free energy vs temperature for the solution shown in —002L 1 b L
Fig. 2. The solid curve is the free energy for both the top and 0.00 0.0z . %.04 V0~(|36 0.08  0.10
bottom halves of the solid curve in Fig. 2, and the dashed curve is (dimensionless)

the free energy for the dashed fine in Fig. 2. FIG. 5. Free energy vs temperature for the solution shown in

. . Fig. 4. The solid curve corresponds to the top branch, and the
interval. It is the free energy for both the top and bOttomdashed curve is a very narrow loop corresponding to the bottom

parts (_Jf th_e solid curve fo{u) vs T in Fig. 2. _The dashed branch. The two intercepts of the dashed curve withTthe 0 axis
curve in Fig. 3 corresponds to the other solution{foy, EQ.  are the valued/,(0) andV;(u,..) [Eq. (5.18].
(4.4). At T, the two solutions join continuously with continu-

ous first derivative(entropy and discontinuous second- .
derivative (specific heat shows the branches of the free energy corresponding to the

(u) vsT graph. The character of the solution is very different
from the previous subsection.
B. 8< 2/9 The physical solution fofu) is the top branch in Fig. 4. It
Figure 4 shows the numerical solution of £8.7) for the  evolves out of the stable minimum &f;(u) and smoothly
asymmetrical double well in the on-site potential, and Fig. 5approaches an asymptote Béncreases. There is no discon-
tinuity or singularity in the{u) vs T graph. Making the on-
0.8 T T site potential asymmetric destroys the phase transition that is
D=2 present for the symmetric case. This result was seen earlier
in papers | and Il and is discussed in those papers.

b= 0.1895 There is another branch to tHe) vs T relation, which
k= 02110 itself is double valuedthe lower branch It intercepts the
0.6 « = 0.0000 -

T = 0 axis at both{u)=u,,s=0 and(u)=Uup. The corre-
sponding free energy values form a very narrow loop on the
f(T) graph(Fig. 5); at eachT this solution lies above the one
described in the previous paragraph, and so this branch is
never the physical solution.

Some features of thege) vs T and free energy graphs
persist when the interparticle anharmonicity describedvby
is included. For example, on tH&l) vs T graphs, there are
intercepts at all of the extrema of thg (u) function: Uy,

{u) (dimensionless)
o
~
T
1

0.2k ] Umax, @ndupmi,. Additional foldings and unfoldings occur as
« is included, and we now turn to an analysis of those fea-
tures.

S — V. ASYMPTOTIC EXPANSIONS

0.00 0.02 0.04 0.06 0.08 0.10

T (dimensioniess) We showed some examples of average displacefignt
FIG. 4. Average displacement vs temperature for the asymmet/S T and_ free energy vs T g_raphs for simple_cases with no
ric on-site potential and zero interparticle anharmonicity. The shorinterparticle anharmonicity in Sec. IV. Section VI contains
horizontal line on the right is the linéu) = 1/3, which is the results for the case including the interparticle anharmonicity.
horizontal asymptote of the solutidiq. (5.34)]. The evolution of the properties with increasing obtained
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from numerical solution of the SCMFT equatioii=ys.(3.7) (5.2 assures that the square root factor is real. After cancel-
and(3.8)], is somewhat intricate. To follow this evolution, it ling common factors, the SCMFT equations become

is helpful to have analytic asymptotic results for low- and
high-temperature limits. The derivation of these results is
outlined in this section.

The effective potential/eq in Eq. (3.4) approachest e where the low-temperature reduced moments are defined by

for u— =+, and so it has an absolute minimum at some
Vo)
U+ \ 55—V
P V/e,ff(up;<u>)

value of the displacement which we cal}(T). From Eq. w )

(3.10, up(T) is also the absolute maximum of the displace- mn=f dye™Y
23/2(up—U3) T3
Vei(Upi(u))]%

m m
<u>=ﬁj, <u2>=m—§, (5.6

ment probability density; i.e., it is the most likely displace-
ment. It is the solution of the equation
Vi (Up(T); (), 0) =0 or xeXp{ -

V;(up) +2DK(up—(u)) + D 3u5—2uy(u) —(u?1=0, L
(5. _
[vgﬁ<up;<u>>]2”4]' 57

. . This variable change has moved all explicit factorS'dhto

Veri(Up:(u))=Vi(up) +2Dk+2Da[3u,—(W)]>0.  (5.2)  nymerators. For low we expand the last exponential factor

Note thatV/(u,;(u)) does not depend ofu?). Since Eq. in Eg. (5.7) and evaluate the resulting Gaussian integrals.

(5.1) is cubic inu,(T), it may have either one or three real The results are

roots; in either case,(T) denotes the location of the abso-

lute minimum ofV . Mo _ 1+ E - -
We now change variables by shifting the origin according /7 4 [Vig(upi(uy)]?

to u=uy(T)+Xx; the quartic polynomiaV is then exactly

which has the property

—1+10——
Veff(up;<u>)

(up—ug)? }T

expressed as +.., (5.9
Ve Up +Xi(U).{U%)) = Vet U3 (U, (07)) m, [ 3_(Sup=duy) 15 Up(Up—Uy)” }
_:u _—— —
1 Ve L A TVer(upi(uD]® 2 [Ver(upi(u)]®
+ EVgﬁ(Up§<U>)X2
+ ..., (59)
1
+[up(T) — ug(@) ]+ x4 and
(5.3 EIUS—F{ 1 3 up(gup_8U3)2
we introduced here a constant displacement defined by Vm Vei(Upi(u)) 4 [Ver(Upi(u))]
15 u2(u,—us)?
1 i - N O
Us(@)=3(1=3Da), 64 T2 [Vgﬁ(up;<u>)]3]-r+ ' (5.10

which appears in the coefficient of the cubic term. Because Even though these expansions appear to be in powers of
up(T) is an extremum oV, there is no linear term in Eq. T, they are actually more complicated because the variables
(5.3). Since the displacement probability dendiy(u) [Eq.  Up(T) and(u) appearing in them ar€ dependent. However,
(3.10] is proportional to expt Vey/T), Eq. (5.3 shows that We can use these equations in an iterative fashion. First, we
asymmetry of this distribution about its maximum is gov- note that the denominators remain nonzerd at 0, and so
erned by the magnitude and sign[ef,(T) —uz(a)]. Using  the values of the reduced momentsTat O are just the first

Eq. (5.3, the SCMFT equations can then be written as ratioderms. We substitute these into E§.6) and get

of “moments,” (UY)=M,/M,, {(U¥=M,/M,, where
=M Mo, (5 =M2/Mo (Wr-0=Up(T=0), (U)7_o=u3(T=0). (5.1

Mn:e—veﬁ(up;<u>,<u"‘>>/Tfoc dx(up+x)” With these results, Eq5.1) determininguy(T) reduces to

Vi(uy(T=0))=0. (5.12

This equation has three solutions which are the three extrema
We obtain both low- and high-temperature expansions of thef the on-site potentidicf. Fig. 1 and Eq(2.3)]:
SCMFT equations from Ed5.5).

Xe—[vgﬁ(up;<u>)x2/2+(up—u3)x3+x4/4]/T_ (5.5

Up(T=0)=0, Umax, O Umin- (5.13
A. Low-temperature expansion Then Eq.(5.19) gives three solutions fofu) at T = 0,
For low temperature we scale the coefficient of the qua- (Ur—0=0, Unmax OF Unin, (5.14

dratic term in the exponent of E¢.5) to unity by changing
the integration variable toy=[Veg(up (u))/2T1Y%; Eq.  and correspondingly fofu?),
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(u?)=0, u2_. oru? (5.15 e.g., U, denotes any of the three extrema ¥&f(u),

) . e ] m ) Ue=Ums; Umax OF Uyin. IN addition the constantk, (one
In agreement with this result, Figs. 2 and 4 in Sec. IV forfor each extremumare defined as

(u) vs T (and related figures in the next sectidrave three

intercepts along th& = 0 axis. Note that these intercepts Ke=lim_oVeg(Up;{(u)) =Vi(ue)+2D(k+2au,);
depend only on the on-site potential and are independent of (5.22
.
The physicalsolution is the one with the lowest free en- they are the effective zero-temperature force constants for
ergy. It is intuitively clear that, of these three solutions, themoving one particle away from the extrema\of (recall that
stable one isi,;,,. To obtain this result formally, we deter- 2D is th_e coordination numbgrThe first term_s on the right-
mine which solution gives the minimum result in §§.11).  hand sides of Egs(5.20 and (5.21) require the low-

Since temperature values ofuy(T). We write this as
up(T)=ue+SE)e)T+~-, where the coeﬁicienSE)e) is un-
Veﬁ(up;<u>,(u2>)> 2T known, and we write similar expansions ftu) and (u?).
Z(T)=exp — T V Vgﬁ(up;<u))m°’ These low-temperature expansions can then be combined

(5.1  With Eq. (5.1) defining uy(T) and Eq.(5.6) to obtain the

] o coefficients of the first-order temperature terms. The results
the low-temperature expansion of the free energy is, includs, e

ing the kinetic energy contribution and using £§.23,

2D
f:Vﬂupy+Dku%—(u»2+Dau%—<u»uﬁ—xu%)2 UAT)ZUg—VWGS??[$k+2aUQﬂ@—UQ
1 e e
L in2am 41 ——EZI——) 1
2 n@mn*in Veir(Up:{(u)) —-EaVIu@)T+~~', (5.23
_[_E 1 +1_5 (up—u3)2 ]Tz
4 [Ver(up(un1? 2 [Vgg(up (u)]? (U)=Ug— ————— (Ug—U) T+ - - - (5.24
® Vi(ugKe ° ’
o, (5.17)
and

where we used In(#x)~x for |x|<1 to get the last term. At
T = 0, all terms but the first term vanish, leaving 1
2\ _,2 "
f(T=0)=V,(uy(T=0)). 1y (U7t Gri K Vit T BuUm U IT
This result confirms that the minimum free energylat 0 (5.2
is obtained for the solution,(T=0)=(u)t—o=Umin. These In Eq. (5.23—(5.25 we introduced another constant dis-
threeT=0 solutions can be seen in Figh). placement
Having obtained th& = 0 solutions, the first-order cor-
rections inT for the momentsn,, are obtained by evaluating 1
the quantities in braces in Eq&.9—(5.10 at theirT = 0 Up(a@)= §(1_2Da)' (5.26
values. The results are
Equations (5.23—(5.25 are actually three sets of equations,
corresponding to the three valueswyf. They describe how
T+ up(T), (u), and(u?) deviate from theilT = 0 values. For
(5.19 example, the slope at each of the thilee= O intercepts in
' Fig. 2 is given by Eq(5.24. These results can be used in Eq.
(5.17 to obtain a low-temperature expansion of the free en-
T ergy.
J The quantityK, appearing in these lowW-expansions sug-
gests two different regions in parameter space. The quantity
T (5.20 T(Ue=Una) IS negative, but has the positive quantity
and 2D (k+2aup,,) added to it. The value of the harmonic force
constantk used in the simulations in paper | and for the
calculations here is sufficiently large théf(u,,) +2Dk is
Ue(9ue—8us) positive. This is one region of parameter space. The other
region is for a smaller value ofk such that
T(Umay) T2D(k+2auy,) remains negative over the
T+ (5.21)  range of interest. The slope of tHe) vs T graph at the
Umax iNtercept would have the opposite sign, according to Eq.
Since there are threk = 0 solutions, Eqs(5.19—(5.21) are  (5.24). This change in the shape of tie) vs T graph sug-
actually three sets of equations, one set for each of the zergests the possibility of different properties for weaker values
temperature solutions. The subscriptdenotes extremum; of the harmonic force constant. We do not pursue this pos-

1

—1+3
ST ak2

1 2
—1+10—(Ug—Us)
Ke

Mg
Jr

m;
——==Uup(T)+

31 151 )
- Z F(Sue_ 4U3)+ ? Fue(ue_ US)
e e

|

Bl W

m
—Z=u3(T)+

J

1
Ke 4K

o N

151 , ,
+ ? K_gue(ue_ U3)




3192 W. C. KERR AND E. N. BUTLER 54

sibility in this paper, but instead continue with the parameter 21(3/4 13
. . . . H 2\\1/3 ( ) 1/6
values used in the simulations in paper I. lim up(T)=(Da(u?)) "= T (1/2)
Tow

B. High-temperature expansion (5.33

Expanding Eq(5.5) directly in powers of I gives di- These results, together with the first of £§.6) (using the
vergent integrals, and so we need to find a convergence fadigh-temperature momenidinally give
tor. First, we rewrite Eq(5.5) so that the integration is over

the interval G<x<«; then we change integration variables . _ 2I°(3/4)]2
to y=x*/4T and obtain TI'_TC<U>ZU°°(Q)ZU3(Q)+ T4 | ¢
1 2 2
M :_efveff(up;(u),(u >)/T(4T)1/4M ' (5.27) _ E _ _ 2F(3/4)
nT4 n 3 1 T Da;. (5.39

where the high-temperature reduced moments are N ] ) o )
The coefficient ofD« in this equation is negative, and so

N , y1/2 u..(«) decreases with increasirg and even becomes nega-
Mn=(4T) fo dye Yy ™ “exp — Ver(Up {U)) 7172 tive for sufficiently largee. The valueu..(a=0)=1/3 was
seen in Sec. IV as the high-temperature asymptote in Fig. 4.

U, val" o 3/4 Note that this value depends only on the paramdieisnd
X @nym Y| eX 27(up—Uz)Tma « and is independent af, andk.
Equation(5.32 for (u?) is the same as the mean-square
u " y4 displacement of a single particle moving in a purely quartic
+| ==L+ vy expg —2¥%(u,—us) i 4
(41-)174 y p Y314 - potential V,(u) =u®/4. Therefore Eq(5.32 shows that for

T—o this particular property depends only on the high-
(5.28 energy part of the on-site potential; it becomes insensitive to

This variable change has moved all explicit factorsToin ~ Other details, e.g., the shape of the double Weditermined
the integrand into denominators. In termswof the SCMFT by @o) and the strength of the interparticle interactidds-
equations are the same as E§.6) with m, replaced by termined byk anda). In contrast to this result for the second
wn. Thee™ factor in u,, provides convergence when the moment of the PDF, Eqg5.33 and (5.34 show that the
other factors are expanded inT1/As in the previous sub- limiting values of themeanvalue (u) and themost likely
section, to obtain the correct asymptotic expansion in powergalueu,(T) depend only on the strength of the interparticle

of 1/T, the implicit dependence af,(T) and{u) on T must anharmonicitya and are independent of the other param-
be included. eters. In the high-temperature limit these different properties

The dominantT—o behavior ofu, is obtained by ex- of the PDF are described by disjoint parameter sets. These
panding the exponentials in the previous equation for smaquations also show thgt) approaches a constafds as-

arguments. To lowest order, sumed above whereasu,(T) moves out to infinity, as
T— . The situation of the most likely value and the average
=214+ ---, (5.29 value being markedly different is unusual in statistical me-
chanics, where one often assumes that the average and most
=20 (14 uz+2I'(3/4)[ Veg(up 3 (u)) (2u,— 3us3) likely values are indistinguishable. Finally, we note that
1 since the PDF is normalized at dlland since the separation
2 . between its peak and its mean diverge§ asc, it becomes
(U= U (AU T Jrzp + - (530 very flat in this limit. Equation(3.10 then shows that the

same is true for the effective potential.
wa=A4T (3T ... (5.31 Continuing the expansion of the SCMFT equations to
higher order in IT shows that the expansion parameter here
is /T8, Thus, the approach to the asymptotic limits is quite
slow.

where omitted terms are higher order ifTf HndI'(x) is the
gamma function. The second part of Ef.6) (but using the
high-temperature momentgives explicitly

2I(3/4
<u2>: ( )T1/2+ . (5.32 VI. NONZERO INTERPARTICLE ANHARMONICITY

L4 In this section we present the solutions of the SCMFT
This unbounded behavior ¢ti) with increasingT is quite  equationdEgs.(3.7) and(3.8)] including interparticle anhar-
reasonable. monicity, «# 0, which demonstrate that first-order phase

With this result, we return to Ed5.1) to obtain the high-  transitions occur for sufficiently large values @f First we

temperature behavior af,(T). We assume, subject to veri- show the results for the average displacement and free en-
fication, that(u) approaches a constant @s-«. Since the ergy; then we show the results for the displacement PDF.
Da(u?) term grows without bound a§—, Up(T) must  The solutions fora=0 in Sec. IV and the small- and large-
also become large, and so tb%(T) term inVi(up) domi- T asymptotic results in Sec. V provide limiting cases for
nates. The highest-order term wf(T), the most likely dis-  following how the properties change with increasing strength
placement, is then of the interparticle anharmonicity.
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FIG. 6. Average displacement vs temperature dor= 0.045. 0.0 0.2 0.4 0.6 0.8 1.0

The three intercepts going up tfle= 0 axis are at Oy, and T

Umin [EQ. (5.14)]. The short horizontal line at the right is the high
temperature asymptote,(«) [Eq. (5.34]. The arrow shows the
equilibrium states followed by the system for increasing

FIG. 7. Average displacement vs temperaturedor 0.0615.
The top panel shows the low-temperature range. The arrows on the
curve show the equilibrium states followed by the system for in-
creasingl. The vertical line cutting across the top branch shows the
discontinuity in{u) at T.. The bottom panel has a compressed
The last graphs in Sec. I¥Figs. 4 and bshowed there is temperature scale, and an expanded scaléifpr The short hori-
no phase transition with an asymmetric on-site potential andontal line on the right is the high-temperature asymptotéa)
a = 0. Figure 6 shows the result of increasing the anharmotEa. (5.34], and the longer horizontal line ig;,,, the upper inter-
nicity strength; fora = 0.045, the top branch @iy vs T has  cept of the bottom branch at = 0 [Eq. (5.14)].
become steeper. The free eneffgfpr this case has the same
general shape as in Fig. 5. The brancif @orresponding to  der Waals theory of the nonideal gigThe loop occurs near
the top branch ofu) vs T (Fig. 6) always has lower values the maximum in Fig. &) and is shown on an expanded scale
than the branch of corresponding to the lower branch of in Fig. 8b).] Since the thermal equilibrium state is the one of
(u) vs T, and so it is the equilibrium solution. The equilib- minimum f, the transition is at the temperatufg where the
rium state of the system, i.e., the state of minimum free enfree energy graph intersects itself. At this temperature the
ergy, follows the arrow in Fig. 6 for increasing (and the  system undergoes a discontinuous changéuin The en-
reversed path for decreasiiiy. There are no discontinuities tropy is s= — df/dT, and so it increases discontinuously at
or singularities and thus still no phase transition for this the transition, as expected from the argument in the Introduc-
value. tion. The transition temperature is marked by a vertical line
For further increases i, the top branch ofu) vs T on the(u) vs T graph(Fig. 7); the line shows the disconti-
becomes even steeper. One can visualize from Fig. 6 that atity in (u). For thisa value the jump is between two points
a critical value « the top branch develops an infinite slope on the same solution branch of the SCMFT equations. The
at a certainT. We do not have an analytic method to deter-arrows on the top branch d¢fi) vs T show the sequence of
mine a., but numerically we have found.=0.05% ... .  equilibrium states followed by the system. For increasing
The critical value found in MD wasx{™™~0.124. (The T, the system evolves out of the stable minimum of the
value obtained in paper Il was,=0.053 ... ) These val- on-site potential, follows the curve until it reaches the verti-
ues of course depend on the values of the other parametetal line atT,., and then jumps to the lower part of the same
D, ag, andk. curve. The points on the loops cut off by the vertical line are
For largera values the top branch of thel) vs T graph  solutions of the SCMFT equations, but they are inaccessible
folds back and becomes multivalued over a certain temperder thermal equilibrium states. Parts of these loops may be
ture interval, so that a first-order transition develops. Figuranetastable states achievable by superheating or supercool-
7 shows the solution foir = 0.0615, where the multivalued ing.
nature is evident. The corresponding free energy function is The bottom panel of Fig. 7 shows) vs T with an ex-
shown in Fig. 8. On the temperature interval where the topanded vertical scale and a compressed horizontal scale. In
branch of(u) vs T is multivalued, the free energy also de- contrast to the case in Fig. 6, the approach to the figh-
velops a loop, similar to the free energy function in the vanasymptote here is nonmonotoni¢y) goes belowu,,(«)

A. Average displacement and free energy
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006 T T T T T T T Ty T T T T T — T
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a, = 0.1895
k = 0.2110
o = 0.06175 4
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0.02

Free Energy (dimensionless)

! D=2
i
4y = 0.1895
0.00
k = 0.2110
o = 0.06150
_0.0Z 1 1 1 I 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1
0.00 0.02 0.04 0.06 0.08 0.10 0.0 0.2 0.4 0.6 0.8 1.0
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00580 T r T v r v T T r [ r T 1 T 1 T T 7
F FIG. 9. Average displacement vs temperaturedor 0.061 75,

D=2z | just below the switchover value. The arrows on the top panel and
a, = 0.1895 ] the horizontal lines on the bottom panel are defined as in Fig. 7.
k = 0.2110

and metastable wells. Since all points on the upper branch of
(u) vs T are greater than,,, the jump in{u) at T, occurs
between a position of low on-site potential energy and a
higher-energy position, and both are in the stable well of the
on-site potential. This observation is interesting from the
point of view of understanding the mechanism which drives
T the transition. Even though this discontinuity ¢n) for in-

1 creasingT results in the particles moving into a region of
higher on-site potential energy, this jump(n) is thermo-
dynamically preferred. The reason that the transition is ther-
modynamically preferred must be that the entropy of the
] system substantially increases with this jump.

The slope of théu) vs T graph at the thre& = 0 inter-
cepts is given in Eq(5.24). For the intercept au,y,
Vi(Uuma is negative, and for the value df used here,

I ] Kmax[EQ. (5.22)] is positive for alla. For increasingy, this
0.0560 L 0 vy slope changes sign from negative to positive whgfix)
0.045 0.050 0.055 [Eg. (5.26] decreases throughu,.,, which occurs at
(b) T (dimensionless) a=0.059}... .This change in slope ai,, is evident in
Fig. 6 and the bottom panel of Fig. 7. The details of these

FIG. 8. The free energy corresponding to the solution in Fig. 7.SIOpe Changes and the interplay _Of the asymptonc vglue
(@) Free energy for both branches of Fig. 7. The solid curve correY=(@) With the extrema of the on-site potential is more in-
sponds to the top branch of Fig. 7 and contains the equilibriunfricate in this self-consistent theory than was found in paper
solution. The dashed curve is a very narrow loop corresponding tdl-
the lower branch of Fig. 1b) Expanded view near the maximum of For further increases im, the top branch ofu) vs T
(@), showing the loop in the free energy., the temperature at bends back more sharply, and the high-temperature asymp-
which this curve intersects itself, is transferred to Fig. 7. tote u..(a) [Eq. (5.34] decreases. At another critical value,

which we call theswitchovervalue, «g, the two branches of
(marked with the short horizontal lineand then approaches the(u) vs T graph come into contact and then reconnect in a
it from below. The longer horizontal line on the bottom paneldifferent shape. Figures 9—-11 show the situation just below
of Fig. 7 marksu,,.x, the maximum of the on-site potential; and just above this switchover. Just as &, we have not
it may be considered the dividing point between the stabldound an analytical evaluation ats, but numerically we

0.0575F « = 0.06150 b

0.0570

Free Energy (dimensionless)

0.0565
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1 0.0575 y 8
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FIG. 10. Average displacement vs temperature for = FIG. 11. The expanded piece of the free energy graph corre-

0.061 77, just above the switchover value, showing that pieces dggponding to Fig. 10, showing how the curves for the two branches

the solution curves have reconnected, and that the jump at the tragross at the transition. The solid curve corresponds to the top branch

sition is now between different branches of the curves. The arrowef Fig. 10, and the dotted curve to the bottom branch. There is no

and horizontal lines have the same meaning as in Fig. 7, except thigop in the free energy graph far above the switchover value.

Umax IS Now the lower intercept of the top branch. The points on the

top branch which are lower than the highest point on the vertical The high-temperature asymptote («) [Eq. (5.34)] de-

line showing the jump &t . are solutions of the SCMFT equations creases with increasing, and so eventually it becomes less

but are not accessible in thermal equilibrium. The same is true ofhanu,,,; then the jump infu) at T, is between points in

the points on the bottom branch which are to the left of the verticaldifferent wells of the on-site potential. Figure 12 Shm

line. vs T for « = 0.074, where this situation has occurred. As in
the previous figures, the arrows show the thermal equilib-

have found that it lies in the interval 0.061 76 as< rium states followed for increasiny The parts of the curves

0.061 77(for the given values of the other paramejefor ~ Not reached by following the arrows are solutions of the SC-

the average displacement curves, there is actually littdFT €quations, but are not accessible in thermal equilib-

change in their “local” shapes, but they change “globally.” "um- o

For a>ay, the jump afT, is between different branches of _ F0F @ final case, in Fig. 13 we shofu) vs T for a =

the solution, but the magnitude of the discontinuity ir} is 10_'28' At this valufe,hthe slo_peoof the Iowe_r branch_(uﬁEvs

a continuous function ofxr through this switchover. The Sgomln%_louthoh_t §<u> = 0 intercept Is negafuvé g-

change in the shape of the free energy graph is more prq: 4], while the high-temperature asymptatg(a) is posi-

nounced. For< there is a loop in one branch of the free lve. This means that the jump {u) atT, is from the stable
' Uss 1T P . well of the on-site potential to a point on the negative side of
energy curve, and this loop has upper and lower stabilit

F here i I | dth %he metastable well. Thefu) moves across the metastable
temperatures. Far> as, there is no longer a loop, and there ¢ 14 the positive side a% is increased. Increasing fur-

is only an upper stability temperature. The authors of papef,er eventually decreases(«) to negative values, and then
Il speculated that the existence of these stability temperature(%> remains negative for all>T..

is related to the hysteresis seen in the computer simulations ‘|, Fig. 14 we show the dependence Tf on @, along

in paper I. The more complicated self-consistent theory inyjth the results of the MD simulations from papet These

this paper has the same shapes for the solution curves and §&MFT results are shifted horizontally relative to the simu-

supports the same speculation. lation results, i.e., the critical value af according to the
The lower panels of Figs. 9 and 10 show the same nonsimulations isx.~ 0.124(this is the MD point at the smallest

monotonic approach to the high-temperature asymptote thaf), whereas the SCMFT gives,=0.05% ... . Thesimu-

was observed in Fig. 7. In Fig. 10 the region of the vs lations were done before the existence of the switchover in

T graph near the point where the two branches approacthe shape of théu) vs T graphs was known, and so there is

each other is multivalued in both directions, i.e., with eitherno comparison available for those values. The decrease in

T or (u) considered as the independent variable. T, with increasingx is reasonable from the assertion that the
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FIG. 12. Average displacement vs temperaturedor 0.074, FIG. 13. Average displacement vs temperature dor= 0.28.
whereu,,(a)=0.253 isbelow U....= 0.254 For this« value, the bottom branch starts from zerdrat 0 with
w 253 .. ma=0.254 ... .

negative slopéEq. (5.24)], butu.,(a)=0.022 . .. ispositive.

transition is entropy driven; an increase in the anharmonicity ) 4
strength allows the disordering effect to occur at a lower K[P ]:f du(u—<u>) P (u)—3.
temperature. ). o 1

(6.2

Here o is the standard deviation of the distribution. The
skewness measures the asymmetry of the distribution, and
From the solutions of the SCMFT equations, we obtainthe kurtosis measures its peakedness or flafffeBssitive
the displacement PDP,(u) from Eq.(3.10. We show this skewness indicates an asymmetric tail extending toward
function for o = 0.074 in Fig. 15. The results for all of the Positiveu (and the reverse for negative skewneSsmilarly,
othera values considered in this section have the same gerositive kurtosis denotes a more peaked distribution,
eral features. The arrows on the graph locate the three ex¢hereas negative kurtosis denotes a flatter distribuftieia-
trema of the on-site potentidEq. (2.3)]. The graphs show tive to a Gaussian, which has zero kurtosis
that the PDF is localized in the stable well at |Gw The The skewness and kurtosis far = 0.074 are shown as
second and thirdl' values are just below and just above functions ofT in Flg 16. The skewness shows that the dis-
TC' and so the distribution jumpsl Corresponding to the dis.tr.ibutions have SubStantiglly more We|ght towards smaller
continuity in (u) shown in Fig. 12(The magnitude of this displacements below,; this feature indicates the tendency
jump increases with increasing, as can be inferred from Of the particles to move away from the strongly repulsive
the magnitude of the discontinuity {1y shown in Figs. 7,9, Part of the on-site potential toward the less repulsive region.
10, 12, and 13.Sincea> a in Fig. 15, for highT values the ~Above T¢ the distributions have a somewhat more weight
distribution shifts towards positive values, corresponding tgowards smaller displacements, but not to the degree as be-
the increase iqu) for T>T, shown in Fig. 12. The bottom low T, . The kurtosis indicates that the distributions are more
curve in Fig. 15, at a considerably highEr shows that the Peaked belowf; and flatter above .. o
maximum in the curve, which is the quantity,(T) dis- From this PDF we can analyze the possibility of transfor-
cussed at length in Sec. V, continues to increase while thE"ation precursors, i.e., clusters of particles displaced into the
average valuéu) remains finitdsee Eqs(5.33 and(5.34].  Structure which is “wrong” compared to the equilibrium
The shapes of these PDFs can be characterized by two §tructure at the ambient temperature. Clusters which are suf-
their moments: the skewness ficiently large or numerous would produce multipeaked
PDF's. However, only single-peaked PDF's were found for
3 the parameter values and temperatures used in these calcula-
) P,(u) (6.1 fions. But that does not mean there are no particles displaced
into such regions, and in fact Fig. 15 shows the PDF'’s ex-
tending into both wells of the on-site potential for all but the
and the kurtosis lowestT values. One characterization of this possibility is to

B. Displacement probability distribution functions

u—{u)

[oa

spa= [ a
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FIG. 14. Dependence of the transition temperature on the anhar-
monicity parameter. The SCMFT values for the minimum value
to have a transitiom, and the switchover valueg are marked. The
approximate value of. determined from the MD is also marked.
The three isolated points shown are the results from the MD calcu
lations in paper I.

FIG. 16. Skewness and kurtosis of the displacement probability
distributions fora = 0.074. The discontinuity occurs &t .

consider the fraction of particles in one of the wells, e.g., the
metastable well. That fraction is

Umax
P(u<umax)=f duP;(u), (6.3
[ D=2 ] and is a function ok andT. This number is given in Table
[ a = 0.1895 ] | for different a values and for two temperatures just below
sL k =0.2110 3 and just above th&_ value for thate. For T just belowT,
F = 0.07400 ] and for the rangex. < a<ag, the fraction of particles in the
LT = 0.0093 metastable well is around 0.15. Fdrjust aboveT,., the
= 0.0435 ] fraction in the metastable wefthe “correct” phase for this
A 12 00442 E T) increases to a value around 0.5 or more. However, we
L 1= 0.0710 . found no situation where these fluctuations are large enough
Fo ] to produce a second maximum i (u).
— [ T=07321 _.. ] ) . .
3 st ] For a> a4 the fraction of particles in the “wrong” phase
a” l l ] (both below and abov&.) decreases rapidly. This indicates
; that the PDF’s narrow quite rapidly for increasing anharmo-
L ] nicity strength. Partly this is because the transition tempera-
2r A ] ture T, decreases with increasing However, the widths of
' SN ] P,(u) decrease more rapidly thah. does(see Fig. 14
s “\f
, s 2 ] TABLE |. P(u<unay, the probability that the displacements
r FERAY are in the metastable well, for different values and for tempera-
J Y ] tures just below and just aboWe(«). (E.g., the row fora = 0.074
f;;*’r N ] corresponds to the two curves in Fig. 15Tat 0.0435 and 0.044p.
(0] S AN ST
-0.5 0.0 0.5 1.0 1.5 2.0 a T<T, T>T,
u (dimensionless)
0.0615 0.155 0.489
FIG. 15. Displacement probability distributions far= 0.074,  0.06175 0.155 0.494
for different temperatures. The second and thirdalues are just 0.074 0.0669 0.648
below and just abov&,=0.043® . .. forthis « value. The vertical 0.28 7.21x10°7 0.985

arrows denote the three extrema of the on-site poteligl (2.3).]
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indicating that increasing the anharmonicity strength tends tthem with the simulations in paper I. All of the qualitative
localize the particles into the “correct” well. The PDF's features of the theory also appear in the simulations. The
obtained in the simulation exhibit this same narrowing withresults are the following(1) A critical strengtha, of the
increasinge; see Figs. 14 and 15 of paper |I. interparticle anharmonicity is needed for a phase transition to
Another characterization of the lack of transformationoccur. This feature agrees with the simulations, but the MFT
precursors is obtained by applying to this system the criteang the simulations disagree about the valuerof (2) Ac-
rion used by Gooding and Morris.Their method, applied to cording to this MFT there are two intervals of interparticle
this model, is to follow the value oPy(uyi) as T ap-  anharmonicity strength above the critical value, within which
proachesT from above, i.e., to follow thd dependence of  the thermodynamic properties are different. For the interval
the probability for a particle to be displaced into the low- of \eaker strength, the free energy has a van der Waals—type
temperature structure when the system is in the highioon in it. For the interval of greater strengthich is a
temperature phase and approaching the transition. F.|gure YRuch larger intervalthere is no such loop. The free energy
shows thaP,(umin) decreasegor T—T.+. The probability \yas not calculated in the simulations, but they exhibited a
concentrates more into the metastable well, and fluctuationgstyre which we speculate is related to this change in the
into the low-temperature structure decrease agcreases to shape of the MFT free energy function. The simulations
Te. Go_oding and Morris reached the same conclusion basggere mostly performed for a large value af and they
on their model and method of analysis. However, we notgyhibited hysteresis. The hysteresis loops were “open,” in
that for our model this conclusion applies only to cooling. the sense that a transition was obtained only for heating and
Figure 15 shows that the probability of displacement to theot for cooling(see Fig. 3 of papei! We speculate that this
metastable minimun®,(ung increases fofT approaching feature is related to the presence or absence of a loop in the
T from below. _ free energy. The existence of a loop, as in Figp) 8implies
In Sec. V A we argued that the system properties wouldthe existence of upper and lower stability limits for tempera-
be different with a weaker force constakit This change tyre. If the system is heated or cooled into the metastable
would increase the importance of the on-site potential relaregion beyondr,, it cannot be heated or cooled beyond the
tive to the interparticle interactions, and so multipeakedend points of the loop without changing phase. Conversely,
PDF's seem to be more likely in this regime. Since the paif there is no loop, as in Fig. 11, then there is a stability limit
rameters were chosen to represent the experimentally refor heating the system from low temperature, but there is no
evant case of Zfsee Sec. )| we have not analyzed this other stapjlity limit for cooling it from high temperature. This sec-
possibility in this paper. ond situation is the one that obtained in the simulations. We
are presently performing simulations at smakewvalues to
see if closed hysteresis loops are obtaitfe@®) This theory
and the simulations agree that the displacement PDF’s are
In this paper we have presented a self-consistent meamearly symmetric and have only one maximum for the pa-
field theory for a lattice-dynamical model that exhibits arameter values used by both methods. The MFT indicates
first-order structural phase transition. The essential featureg$at this feature persists over a wider range of anharmonicity
of the model ard(i) each particle moves in an asymmetric strength than was studied by the simulations. The possibility
double-well on-site potential ani) anharmonicity is in- to have multiple maxima is equivalent to having multiple
cluded in the interpatrticle interactions. The second feature iginima in the effective potential. Since this function is a
crucial: Without this anharmonicity there is no phase transi-quartic polynomial with temperature-dependent coefficients,
tion. This anharmonicity provides a mechanism that in-having several extrema is possible, but we did not find such
creases the entropy of the high-energy structure relative ta situation for the parameters studied here. However, we ar-
the low-energy structure and thereby achieves a lower fregued that such PDF’s might be found for weaker interparticle
energy at sufficiently high temperatures. forces where the effect of the on-site potential would be rela-
We obtained the mean field in the following way. In the tively larger.(4) This MFT predicts that for quite large tem-
exact equation of motion for a particular particle, all occur-perature, the displacement PDF becomes asymmetric in a
rences of any quantity associated with a neighboring particl@articular way: The mean value of the distribution remains
are replaced by the average value of that quantity. This refinite whereas the most likely value moves out to infinity.
placement is equivalent to assuming that the phase spaddis feature depends only on the interparticle anharmonicity
PDF factors into a product of single-particle PDF’s. It givescontrolled by the parameter. The simulations in paper | did
rise to an effective potential governirigpproximately the  not go to high enougfi to see this effect.
motion of any one particle. The averages are then obtained Next we compare the results of the present theory with the
self-consistently through the Gibbs distribution determinedesults in paper I, which also presented a MFT of this
by the effective potential. The resulting solutions are used tanodel. That earlier MFT made an additional assumption that
survey thermodynamic properties in a portion of the paramthe displacement PDF is Gaussian. The results of the present
eter space. The regions of parameter space studied here cdkieory show how accurate that assumptiorisise Figs. 15
ered a wide range of strength for the interparticle anharmoand 16, for the parameter values used in both papers. The
nicity but for only a single value for the harmonic force quantitative results of this theory are similar to those in paper
constant. This value is in the so-called displacive regimdl; e.g., there are only small shifts in the “critical” and
where local quantities change slowly with respect to lattice‘switchover” values of «. The value ofe, in the present
site. theory is somewhat closer to the simulation value. There are
We summarize the results of this theory and compardwo major qualitative differences between these two mean-

VIl. SUMMARY



54 SELF-CONSISTENT MEAN-FIELD THEORY OF ... 3199

field theories. The first, discussed in the paragraph above, is APPENDIX

that the pre§ent theory allqws the possibility of double- We mention briefly the numerical techniques we used to
peakeql PDF's. The .se(.:ond IS that the shapes of thevs solve the SCMFT equations, Eq8.7) and(3.9). To evalu-
T relation are more intricate in the present theory. The nonz;a the integrals, we used the formula for the reduced mo-
monotonic approach to the high-temperature asymptote Seghents obtained for the low-temperature expansion in Eq.
in Fig. 9, the overlapping of the two branches of the relations 7 This form is suitable for numerical evaluation by the
seen in the bottom panel of Fig. 10, and the change in sign agauss-Hermite method. Similarly, the form used for the
<U> vs T seen in Flg 13 are features that could not be Ob-high-temperature expansion in E(@_ZS) is suitable for nu-
tained with the method in paper I1. merical evaluation by the Gauss-Laguerre method. We
To conclude, we suggest a possible experimental meanostly used the former method, except for those parts of the
surement based on the observation about the different behait) vs T graphs that extend out to the highest temperatures.
ior of (u) andu,(T) at high temperaturgitem (4) above. For the Gauss-Hermite method we found that we could
The Fourier transform of the displacement PDF isachieve convergence of the integrals to higher temperatures
(exp(ku)), which is the Debye-Waller factor measured by if we did not shift the origin of the integration variable to the
x-ray diffraction or Mwssbauer spectroscopy. In principle, peak of the probability distribution, as we did for the asymp-
the displacement PDF can be measured by these techniquéfic expansions in Sec. {see Eq(5.3)]. Instead we found
If an experiment on a Structura”y transforming system ob_that a Sma"er Sh|ft WOI’kS better. SUCh a Sh_|ft IeaVeS a.“nef_ir
tained a PDF with asymmetry as described above, that rest'™M in the exponent, but the Gauss-Hermite method is still

would be evidence that the mechanism driving the transitiotPPlicable. _
is the one utilized in this model. We solved the SCMFT equations by Newton’s method.

For very low or very high temperatures, the initial guesses
were obtained from the asymptotic expansions in Sec. V. For
subsequent increments of the independent variable, the result
This work was supported in part by NSF Grant No. DMR- from the previous step was used as the guess for the new
9403009 to Wake Forest University. W.C.K. thanks the Constep. Because of the nonmonotonicity of thwe vs T curves,
densed Matter and Statistical Physics Group of the Theoretie.g., the bottom panel of Fig) e found it useful to have
cal Division at Los Alamos National Laboratory for their two procedures; one tooku) as the independent variable
hospitality during a sabbatical leave. The Laboratory is supand solved forT, and the other reversed those variables.
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