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The paper presents a self-consistent mean-field theory for a lattice-dynamical model that exhibits a first-
order structural phase transition. In this model the phase transition is produced because the high-energy
structure has lower vibrational frequencies than those of the low-energy structure. This mechanism produces
higher entropy in the higher-energy structure and thereby drives a phase transition. These structure-dependent
frequencies are produced by anharmonicity in the interparticle interaction. The approximate theory of the
transition given here reduces the exact coupled equations of motion to a single mean-field equation by replac-
ing coupling terms between neighbors with appropriate averages. This step produces an effective potential that
is used to calculate self-consistently the averages that appear in it. Thermodynamic properties calculated by
this method show that the system has a first-order phase transition for sufficiently large strength of the
interparticle anharmonicity. Further properties of the system obtained by this method include a discontinuous
change in the shape of the average displacement and free-energy vs temperature relations as a function of the
anharmonicity strength. This feature may be related to the hysteresis seen in previously performed computer
simulations on the model. The effective potential also determines the displacement probability distribution
function. For the parameter values studied here this distribution has a single maximum with only small
asymmetry about this maximum.@S0163-1829~96!07729-6#

I. INTRODUCTION

The microscopic mechanisms responsible for macro-
scopic features observed at first-order structural phase tran-
sitions continue to warrant and receive further attention. This
paper is the third in a series1,2 in which a specific mechanism
for causing these transitions has been put forward and its
consequences examined. The introductory sections of papers
I and II survey the relevant history of the field and the mo-
tivations of our specific model. We refer the reader to those
papers and do not repeat that material here. In this Introduc-
tion we will summarize the salient points and concentrate on
the new work presented in this paper.

The essential features of our lattice-dynamical model are
that ~i! each particle moves in an asymmetrical double-well
potential and~ii ! the interparticle interactions are anhar-
monic. Consequently, nonlinear forces acting on each par-
ticle arise from both the on-site potential and the interactions
with neighboring particles. The phase transition which oc-
curs in this model doesnot have symmetry-breaking charac-
ter; there is no symmetry to break due to the asymmetry of
the on-site potential. Rather, we have characterized the tran-
sition as beingentropy driven. The idea we want to convey
derives from an explanation by Zener3 of transitions in
b-phase alloys which showed the importance of the vibra-
tional contribution to the entropy. The asymmetry of the on-
site potential provides an ordering tendency in the system,
since the lower well of this potential is always energetically
preferred. A competing tendency arises from the anharmo-
nicity of the interparticle forces. These forces are structure
dependent in a way that causes lower vibrational frequencies

in the structure with higher energy, thereby increasing the
entropy associated with that structure. Thus for sufficiently
strong anharmonicity, when the temperature is increased to a
critical temperature, the structure with the higher internal
energy achieves the lower free energy and a discontinuous
change to that structure occurs.

Paper I presented extensive molecular dynamics~MD!
calculations based on this model, but only a small portion of
the parameter space could be covered by those calculations.
Paper II presented an approximate theory, with the intention
to survey qualitative features of the model over more of the
parameter space. The theory presented in the second paper
was a mean-field theory~MFT! with the additional assump-
tion that the probability distribution function~PDF! for dis-
placements is a Gaussian function. The justification for that
additional assumption was an appeal to the simulations,
which, over their limited parameter range, gave single-
peaked, nearly symmetrical distributions. Since the purpose
of paper II was to explain features seen in those simulations,
this reasoning was somewhat circular. Nevertheless, by mak-
ing that one additional assumption, the theory in paper II was
able to elucidate other features seen in the simulations.

The present paper gives an improved approximate theory
for the statistical mechanics of this model. This theory is a
generalization of a theory for second-order structural phase
transitions described in a review article by Bruce.4 It is also
a mean-field theory but without additional assumptions. As a
result of this extended generality, we can calculate the dis-
placement PDF rather than make an assumption about its
shape. Thus this method can either justify or show the limi-
tations of the assumption made in paper II. The ability to
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calculate this PDF is useful because one of the features of
structural phase transitions that we are able to analyze with
this model is the possibility of precursors of the transforma-
tion. These would be regions of the ‘‘wrong’’ phase appear-
ing within a background of the phase corresponding to the
existing temperature value. Such precursors would appear as
multiple maxima in the displacement PDF. It is obviously
impossible to find such features with a Gaussian assumption
about the PDF.

In order to achieve the increased generality of this MFT,
we must do self-consistent~SC! calculations of quantities
appearing in the equation of motion for the system. For that
reason we refer to this theory as the self-consistent mean-
field theory~SCMFT!.

We give a brief description of the model in Sec. II, derive
the SCMFT equations in Sec. III, present some special cases
of solutions in Sec. IV, and give low- and high-temperature
asymptotic solutions in Sec. V before presenting solutions
for the general case in Sec. VI. We give our conclusions in
Sec. VII and discuss some numerical issues in the Appendix.

II. MODEL

The lattice-dynamical model exhibiting the phase transi-
tion is the same as was used for the computer simulations in
paper I and the approximate theory in paper II. It is defined
by the Hamiltonian

H5(
n

1

2
pn
21(

n
V1~un!1

1

2(n,d V2~un ,un1d!. ~2.1!

Heren denotes the sites of aD-dimensional hypercubic lat-
tice,d denotes the set of nearest-neighbor lattice vectors, and
un is a scalar displacement variable at thenth lattice site. The
on-site potential energyV1(u) is ~see Fig. 1!

V1~u!5
1

2
a0u

22
1

3
u31

1

4
u4. ~2.2!

@All quantities in this paper are scaled to dimensionless val-
ues, using the factors given in Table II of paper I. For ex-

ample, the particle mass in Eq.~2.1! is M 5 1.# For
a052/9, V1(u) is a symmetric double-well potential with
degenerate minima atu50 andu52/3 and a maximum at
u51/3. For this case and forharmonicinterparticle interac-
tions ~see below!, the system is known to have asecond-
order transition.4 For 0,a0,2/9, it has a metastable mini-
mum atums, a maximum atumax, and a stable minimum at
umin , which are given by

ums50, umax5
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2
@12A124a0#,

1

3
,

umin5
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2
@11A124a0#.
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3
. ~2.3!

The pair interaction energy is

V2~u,u8!5
1

2
@k1a~u1u8!#~u2u8!2, ~2.4!

where k is the interparticle harmonic force constant. The
parametera is referred to as the anharmonicity parameter
throughout the paper; our major concern is to see how the
system properties change with increasing anharmonicity
strength. The motivation for choosing this model potential
energy function is given in detail in papers I and II to which
the reader is referred. The essential idea is to stabilize the
higher-energy structure at higher temperatures by having
higher vibrational entropy.3 The functionV2(u,u8) achieves
this effect by decreasing the effective force ‘‘constant’’ of
the interparticle interaction when the particles are near the
metastable minimum of the on-site potential. The weaker
forces produce lower vibrational frequencies, which leads to
increased entropy.

The phase transition occurring in this model fora0,2/9
andaÞ0 is non-symmetry-breaking, because of the asym-
metry of the on-site potential. Another model based on the
same physical idea but for symmetry-breaking transitions has
been studied by Gooding and Morris.5 That model utilizes
thef6 potential and a symmetric interparticle interaction.

The exact equations of motion obtained from the Hamil-
tonian in Eqs.~2.1!, ~2.2!, and~2.4! are

d2un
dt2

52~a012Dk!un1~123Da!un
22un

31k(
d
un1d

1
1

2
a(

d
un1d
2 1aun(

d
un1d . ~2.5!

We used the fact that the coordination number of a
D-dimensional hypercubic lattice is 2D to write this equa-
tion, and we separated terms which involve only thenth
particle from terms which also involve its neighbors.

The parameter values used here fora0 , D, andk are the
same as those used for the simulations in paper I; their de-
termination is described in detail there. The values were cho-
sen so that the model would represent the phase transition in
Zr between the bcc phase and thev phase. The structural
distortion which occurs at this transformation is related to a
particular low-lying phonon mode, making this transition a
candidate for the mechanism considered in this paper. Be-
cause the focus of our enquiry into the model is to find how

FIG. 1. The on-site potential@Eq. ~2.2!# for the symmetric case
a0 5 2/9 and the asymmetric case for the valuea0 5 0.1895 used
in the calculations. The arrows mark the metastable minimum, the
maximum, and the stable minimum for the asymmetric case@Eq.
~2.3!#.
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the properties of the system change with the strength of the
interparticle anharmonicity, we present results for many dif-
ferent a values. The value used for the interparticle har-
monic force constantk is rather large, corresponding to the
so-called displacive regime where site-dependent variables
change slowly withn and a continuum approximation would
be valid for the equation of motion.

III. SELF-CONSISTENT MEAN-FIELD THEORY

Mean-field theory~MFT! assumes that the particles move
independently, so that the phase space PDF factors into
single-particle functions,6 i.e.,

FN~$pn ,un%!5)
n
F1~pn ,un!5)

n

e2pn
2/2T

A2pT
P1~un!.

~3.1!

In the last step we introduced the Maxwell-Boltzmann dis-
tribution for the momenta at temperatureT ~Boltzmann’s
constant is unity in our dimensionless units!; P1(u) is the
single-particle displacement PDF. Because of this factoriza-
tion of FN , the conditional PDF for all other particles, given
prescribed values for the variables of thenth particle, is ob-
tained by omitting the factor for thenth particle from the
product. We average Eq.~2.5!, the exact equation of motion,
over this conditional distribution to obtain the MFT equation
of motion. The resulting single-particle equation is the same
for all particles, and so we replaceun by a generic displace-
ment variableu; the result is

d2u

dt2
52@a012Dk22Da^u&#u1~123Da!u22u3

12Dk^u&1Da^u2&. ~3.2!

The force on the right-hand side of Eq.~3.2! is derivable
from a potential, and so we write

d2u

dt2
52

]Veff

]u
; ~3.3!

the temperature-dependent effective potential is

Veff~u;^u&,^u2&!5C~T!2@2Dk^u&1Da^u2&#u

1
1

2
@a012Dk22Da^u&#u2

2
1

3
~123Da!u31

1

4
u4, ~3.4!

whereC(T) is a temperature-dependent integration constant.
Averages are computed from the effective potential ac-

cording to the usual Gibbs distribution

^A&5
1

Zc~T!
E

2`

`

duA~u!expS 2
Veff~u;^u&,^u2&!

T D ,
~3.5!

where

Zc~T!5E
2`

`

duexpS 2
Veff~u;^u&,^u2&!

T D ~3.6!

is the single-particle configurational partition function. In
particular, when this distribution is applied to calculate the
averages which appear inVeff , we obtain theself-consistent
mean-field-theory~SCMFT! equations:

^u&5
1

Zc~T!
E

2`

`

duuexpS 2
Veff~u;^u&,^u2&!

T D , ~3.7!

^u2&5
1

Zc~T!
E

2`

`

duu2expS 2
Veff~u;^u&,^u2&!

T D .
~3.8!

These are a set of equations to besolvedfor ^u& and ^u2&
rather than merely evaluated.

The integration constantC(T) of Eq. ~3.4! factors out of
the integrals in Eqs.~3.5! and ~3.6! and therefore cancels
from the ratio in Eq.~3.5!; it is not necessary to know this
quantity to compute the averages. Accordingly we define a
shifted effective potential

Veff
~0!~u;^u&,^u2&!5Veff~u;^u&,^u2&!2C~T!. ~3.9!

Corresponding to this shift, we defineZc
(0)(T) by using

Veff
(0) in Eq. ~3.6!. The averageŝu& and ^u2& can be calcu-

lated using the SCMFT equations withVeff
(0) andZc

(0) .
From Eq.~3.5! we identify the displacement probability

density function of Eq.~3.1! as

P1~u!5
1

Zc~T!
expS 2

Veff~u;^u&,^u2&!

T D ~3.10!

~or the same equation usingVeff
(0) andZc

(0)). Once the solu-
tions for ^u& and ^u2& are obtained from the SCMFT equa-
tions for given values of the parametersa0 , D, k, a, and
T, this probability density is determined. This capability to
calculateP1(u) is one of the major improvements of this
self-consistent theory over the method presented in paper II,
which assumed thatP1(u) is Gaussian. Specifically, we note
that if Veff comes out to be a double-well potential for some
particular parameter values or temperature, then there are
two maxima inP1(u).

We will show that the SCMFT equations typically have
multiple solutions for a givenT. To discriminate among
these solutions, we introduce the free energy function~per
particle value!

f52
1

2
Tln~2pT!2TlnZc~T! ~3.11!

52
1

2
Tln~2pT!2TlnZc

~0!~T!1C~T!;

~3.12!

the first term is the kinetic energy contribution. The physical
solution of the SCMFT equations is the one with the mini-
mum free energy. This functiondoesdepend on the integra-
tion constantC(T) in Eq. ~3.4!. ThusC(T) must be deter-
mined if we are to use Eq.~3.11! or ~3.12! to determine the
equilibrium phase at eachT and the transition temperature
Tc . To determineC(T) we use an alternative formula for the
free energy per particle,
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f5e2Ts, ~3.13!

in terms of the internal energye and entropys. The internal
energy is obtained from the average value of the Hamiltonian
in Eq. ~2.1!, e5^H&/N, and the entropy from the distribution
function in Eq.~3.1!, s52^ lnFN&/N. These averages can be
obtained using Eq.~3.5! calculated withVeff

(0) andZc
(0) so that

C(T) does not appear. By requiring that the two ways to
calculatef be equivalent, we obtain the integration constant
C(T).

The average kinetic energy is

(
n

^ 1
2pn

2&5 1
2NT, ~3.14!

and the average on-site potential energy is

(
n

^V1~un!&5NS 12 a0^u2&2
1

3
^u3&1

1

4
^u4& D .

~3.15!

To compute the average of the pair interaction terms, we first
separate each pair interaction into single-particle and ‘‘irre-
ducible’’ pair terms

^V2~un ,un1d!&5
1

2
k@^un

2&1^un1d
2 &22^unun1d&#

1
1

2
a@^un

3&1^un1d
3 &2^un

2un1d&

2^unun1d
2 &#. ~3.16!

Since we assumed factorization of the distribution in Eq.
~3.1!, the averages of products involving different particles
in Eq. ~3.16! factor into products of averages. Then the av-
erage pair interaction energy is

1

2(n,d ^V2~un ,un1d!&5
1

2
N~2D !$k@^u2&2^u&2#

1a@^u3&2^u2&^u&#%. ~3.17!

The internal energy of the system is the sum of Eqs.~3.14!,
~3.15!, and~3.17!.

To compute the entropy we need, from Eqs.~3.1! and
~3.10!,

^ lnF1&52
1

T
^ 1
2p

2&2 1
2 ln~2pT!2

1

T
^Veff

~0!~u;^u&,^u2&!&

2 lnZc
~0!~T!, ~3.18!

and from Eqs.~3.4! and ~3.9!,

^Veff
~0!~u;^u&,^u2&!&52@2Dk^u&1Da^u2&#^u&

1
1

2
@a012Dk22Da^u&#^u2&

2
1

3
~123Da!^u3&1

1

4
^u4&.

~3.19!

Using the result for the average kinetic energy in Eq.~3.14!,
the entropy per particles is

s51
1

2
1
1

2
ln~2pT!1

1

2
@a012Dk22Da^u&#

^u2&
T

1 lnZc
~0!~T!2

1

3
~123Da!

^u3&
T

1
1

4

^u4&
T

2@2Dk^u&1Da^u2&#
^u&
T

. ~3.20!

Combining Eqs.~3.14!, ~3.15!, and ~3.17! for the internal
energye and~3.20! for the entropys, we obtain for the free
energy per particle,

f52
1

2
Tln~2pT!2TlnZc

~0!~T!1Dk^u&21Da^u2&^u&.

~3.21!

Comparing the two formulas for the free energy in Eqs.
~3.12! and~3.21!, we see that the integration constant in Eq.
~3.4! is

C~T!5Dk^u&21Da^u2&^u&. ~3.22!

The single-particle effective potential is obtained by com-
bining Eqs.~3.4! and~3.22!. This function can be written in
different ways that illustrate different aspects of its behavior.
One way is, using Eq.~2.2!,

Veff~u;^u&,^u2&!5V1~u!1Dk~u2^u&!2

1Da~u2^u&!~u22^u2&!. ~3.23!

This form emphasizes that the difference between the micro-
scopic on-site potential and the effective potential is due to
the interparticle interactions and is determined by the fluc-
tuations in bothu andu2. By some manipulationsVeff can
also be written in terms of both the microscopic on-site and
interparticle potentials, as

Veff~u;^u&,^u2&!5V1~u!1~2D !V2~u,^u&!

2~2D !
1

2
a~u2^u&!@^u2&2^u&2#.

~3.24!

This equation has been written to emphasize that the coordi-
nation number of the lattice is 2D. One might have written
the first two terms intuitively from Eq.~2.1! by asking for the
potential energy that one particle experiences assuming that
its neighbors are all displaced bŷu&. This last equation
shows that such a procedure would omit the contribution
arising from the fluctuations inu2.
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An alternate method to calculate these properties is the
self-consistent phonon theory~SCPT!. This method takes the
Fourier amplitudes of the displacement field as the funda-
mental variables. Its central assumptions are that the phase
space PDF factors into a product of individual mode PDF’s
and that the factor for each Fourier mode is Gaussian. This
assumption is exact for a purely harmonic Hamiltonian; for
anharmonic systems the SCPT gives the best~in a variational
sense! harmonic approximation. For the case of no anharmo-
nicity (a 5 0! and a symmetric on-site potential (a0 5 2/9!,
it is known7 that the SCPT predicts a first-order transition, in
contradiction to the known occurrence of a second-order
transition. Thus for this limiting case, our MFT gives the
more accurate description~see Sec. IV!. The product of
Gaussian factors for the Fourier amplitudes transforms to a
multivariate Gaussian in terms of the displacements, i.e., a
function of the form exp(2(ijuiAijuj). When this is inte-
grated over all but one of the displacements to obtain the
single particle PDF, the result is again a Gaussian. This is the
same form that was assumed for the displacement PDF in
paper II. However, the parameters in these Gaussians are
determined by different prescriptions, and so it is impossible
to compare further the results of the two theories without
doing the SCPT calculations.

IV. ZERO INTERPARTICLE ANHARMONICITY

We first describe the solutions of the SCMFT equations
@Eqs.~3.7! and ~3.8!# for the special case of no interparticle
anharmonicity, in order to set the stage for the more compli-
catedaÞ0 case to follow. Whena50, the effective poten-
tial simplifies to

Veff~u;^u&,^u2&!5V1~u!1Dk~u2^u&!2. ~4.1!

This function no longer containŝu2&, and so in this limit
there is only one SCMFT equation to be solved, viz., Eq.
~3.7!.

There are two cases of interest here: the symmetric on-site
potential fora052/9 and the asymmetric casea0,2/9. We
discuss each in turn.

A. a052/9

With a052/9 the on-site potential can be written

V1~u!5
1

4
u2S u2

2

3D
2

. ~4.2!

This is a double well with degenerate minima atu 5 0 and
u 5 2/3; it is symmetric about the maximum atu 5 1/3 ~see
Fig. 1!. If the origin is shifted tou 5 1/3, then one sees that
this model is a lattice version of the much-studiedf4 field
theory. It is known4 to have a second-order phase transition
for D> 2.

In Eq. ~3.7!, evaluated for the parameter values of this
section, we change the integration variable by
u51/31x, ^u&51/31^x&; the result is

^x&5

*2`
` dxxexpF2S x22 1

9D
2Y4T2Dk~x2^x&!2/TG

E
2`

`

dxexpF2S x22 1

9D
2Y4T2Dk~x2^x&!2/TG .

~4.3!

On the right-hand side of Eq.~4.3!, we put ^x& 5 0; the
resulting numerator integral vanishes because of the odd par-
ity of the integrand. Sôx& 5 0 or

^u&5
1

3
, 0<T,`, ~4.4!

is one solution of the SCMFT equation for all temperatures,
for these parameter values.

Now suppose that some other value^x&.0 is a solution
of Eq. ~4.3!. On the right-hand side, we substitute the value
2^x&,0 into the integrals and then change the integration
variables tox852x. The resulting ratio of integrals is equal
to 2^x&, proving that2^x& solves Eq.~4.3! if ^x& does. In
terms of^u&, solutions other than Eq.~4.4! appear in pairs,
symmetrically located about the line^u& 5 1/3.

Figure 2 shows the numerical solution of Eq.~3.7! for a
particular set of parameters. The solid curves are solutions
symmetrically located about the line^u& 5 1/3, as described
above. They shoŵu& developing out of either of the degen-
erate minima of the on-site potential asT is increased. The
dashed line is the other solution, which satisfies the SCMFT
equation for all temperatures, Eq.~4.4!. As expected we get a
second-order, symmetry-breaking transition with
Tc'0.0337. The MFT in paper II, based on the assumption
of a Gaussian distribution forP1(u), gaveTc'0.031. Figure
3 shows the free energy for this case, evaluated from Eq.
~3.21!. The solid line is the equilibrium free energy for
T,Tc , since it is the minimum value over that temperature

FIG. 2. Average displacement vs temperature for the symmetric
on-site potential and zero interparticle anharmonicity. The solid
curve is the stable broken-symmetry solution belowTc . The dashed
line is the unstable solution belowTc and the only solution above
Tc @Eq. ~4.4!#.
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interval. It is the free energy for both the top and bottom
parts of the solid curve for̂u& vs T in Fig. 2. The dashed
curve in Fig. 3 corresponds to the other solution for^u&, Eq.
~4.4!. At Tc the two solutions join continuously with continu-
ous first derivative~entropy! and discontinuous second-
derivative~specific heat!.

B. a0< 2/9

Figure 4 shows the numerical solution of Eq.~3.7! for the
asymmetrical double well in the on-site potential, and Fig. 5

shows the branches of the free energy corresponding to the
^u& vsT graph. The character of the solution is very different
from the previous subsection.

The physical solution for̂u& is the top branch in Fig. 4. It
evolves out of the stable minimum ofV1(u) and smoothly
approaches an asymptote asT increases. There is no discon-
tinuity or singularity in thê u& vs T graph. Making the on-
site potential asymmetric destroys the phase transition that is
present for the symmetric case. This result was seen earlier
in papers I and II and is discussed in those papers.

There is another branch to the^u& vs T relation, which
itself is double valued~the lower branch!. It intercepts the
T 5 0 axis at botĥ u&5ums50 and^u&5umax. The corre-
sponding free energy values form a very narrow loop on the
f (T) graph~Fig. 5!; at eachT this solution lies above the one
described in the previous paragraph, and so this branch is
never the physical solution.

Some features of thesêu& vs T and free energy graphs
persist when the interparticle anharmonicity described bya
is included. For example, on the^u& vs T graphs, there are
intercepts at all of the extrema of theV1(u) function: ums,
umax, andumin . Additional foldings and unfoldings occur as
a is included, and we now turn to an analysis of those fea-
tures.

V. ASYMPTOTIC EXPANSIONS

We showed some examples of average displacement^u&
vs T and free energyf vs T graphs for simple cases with no
interparticle anharmonicity in Sec. IV. Section VI contains
results for the case including the interparticle anharmonicity.
The evolution of the properties with increasinga, obtained

FIG. 3. Free energy vs temperature for the solution shown in
Fig. 2. The solid curve is the free energy for both the top and
bottom halves of the solid curve in Fig. 2, and the dashed curve is
the free energy for the dashed line in Fig. 2.

FIG. 4. Average displacement vs temperature for the asymmet-
ric on-site potential and zero interparticle anharmonicity. The short
horizontal line on the right is the linêu& 5 1/3, which is the
horizontal asymptote of the solution@Eq. ~5.34!#.

FIG. 5. Free energy vs temperature for the solution shown in
Fig. 4. The solid curve corresponds to the top branch, and the
dashed curve is a very narrow loop corresponding to the bottom
branch. The two intercepts of the dashed curve with theT 5 0 axis
are the valuesV1(0) andV1(umax) @Eq. ~5.18!#.
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from numerical solution of the SCMFT equations@Eqs.~3.7!
and~3.8!#, is somewhat intricate. To follow this evolution, it
is helpful to have analytic asymptotic results for low- and
high-temperature limits. The derivation of these results is
outlined in this section.

The effective potentialVeff in Eq. ~3.4! approaches1`
for u→6`, and so it has an absolute minimum at some
value of the displacement which we callup(T). From Eq.
~3.10!, up(T) is also the absolute maximum of the displace-
ment probability density; i.e., it is the most likely displace-
ment. It is the solution of the equation
Veff8 (up(T);^u&,^u2&)50 or

V18~up!12Dk~up2^u&!1Da@3up
222up^u&2^u2&#50,

~5.1!

which has the property

Veff9 ~up ;^u&![V19~up!12Dk12Da@3up2^u&#.0. ~5.2!

Note thatVeff9 (up ;^u&) does not depend on̂u2&. Since Eq.
~5.1! is cubic inup(T), it may have either one or three real
roots; in either caseup(T) denotes the location of the abso-
lute minimum ofVeff .

We now change variables by shifting the origin according
to u5up(T)1x; the quartic polynomialVeff is then exactly
expressed as

Veff~up1x;^u&,^u2&!5Veff~up ;^u&,^u2&!

1
1

2
Veff9 ~up ;^u&!x2

1@up~T!2u3~a!#x31
1

4
x4;

~5.3!

we introduced here a constant displacement defined by

u3~a!5
1

3
~123Da!, ~5.4!

which appears in the coefficient of the cubic term. Because
up(T) is an extremum ofVeff , there is no linear term in Eq.
~5.3!. Since the displacement probability densityP1(u) @Eq.
~3.10!# is proportional to exp(2Veff /T), Eq. ~5.3! shows that
asymmetry of this distribution about its maximum is gov-
erned by the magnitude and sign of@up(T)2u3(a)#. Using
Eq. ~5.3!, the SCMFT equations can then be written as ratios
of ‘‘moments,’’ ^u&5M1 /M0 , ^u2&5M2 /M0 , where

Mn5e2Veff~up ;^u&,^u2&!/TE
2`

`

dx~up1x!n

3e2@Veff9 ~up ;^u&!x2/21~up2u3!x31x4/4#/T. ~5.5!

We obtain both low- and high-temperature expansions of the
SCMFT equations from Eq.~5.5!.

A. Low-temperature expansion

For low temperature we scale the coefficient of the qua-
dratic term in the exponent of Eq.~5.5! to unity by changing
the integration variable toy5@Veff9 (up ;^u&)/2T#1/2x; Eq.

~5.2! assures that the square root factor is real. After cancel-
ling common factors, the SCMFT equations become

^u&5
m1

m0
, ^u2&5

m2

m0
, ~5.6!

where the low-temperature reduced moments are defined by

mn5E
2`

`

dye2y2S up1A 2T

Veff9 ~up ;^u&!
yD n

3expH 2
23/2~up2u3!

@Veff9 ~up ;^u&!#3/2
T1/2y3

2
1

@Veff9 ~up ;^u&!#2
Ty4J . ~5.7!

This variable change has moved all explicit factors ofT into
numerators. For lowT we expand the last exponential factor
in Eq. ~5.7! and evaluate the resulting Gaussian integrals.
The results are

m0

Ap
511

3

4

1

@Veff9 ~up ;^u&!#2 H 21110
~up2u3!

2

Veff9 ~up ;^u&! J T
1•••, ~5.8!

m1

Ap
5up1H 2

3

4

~5up24u3!

@Veff9 ~up ;^u&!#2
1
15

2

up~up2u3!
2

@Veff9 ~up ;^u&!#3 J T
1•••, ~5.9!

and

m2

Ap
5up

21H 1

Veff9 ~up ;^u&!
2
3

4

up~9up28u3!

@Veff9 ~up ;^u&!#2

1
15

2

up
2~up2u3!

2

@Veff9 ~up ;^u&!#3 J T1•••. ~5.10!

Even though these expansions appear to be in powers of
T, they are actually more complicated because the variables
up(T) and^u& appearing in them areT dependent. However,
we can use these equations in an iterative fashion. First, we
note that the denominators remain nonzero atT 5 0, and so
the values of the reduced moments atT 5 0 are just the first
terms. We substitute these into Eq.~5.6! and get

^u&T505up~T50!, ^u2&T505up
2~T50!. ~5.11!

With these results, Eq.~5.1! determiningup(T) reduces to

V18„up~T50!…50. ~5.12!

This equation has three solutions which are the three extrema
of the on-site potential@cf. Fig. 1 and Eq.~2.3!#:

up~T50!50, umax, orumin . ~5.13!

Then Eq.~5.11! gives three solutions for̂u& at T 5 0,

^u&T5050, umax, orumin , ~5.14!

and correspondingly for̂u2&,
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^u2&50, umax
2 , orumin

2 . ~5.15!

In agreement with this result, Figs. 2 and 4 in Sec. IV for
^u& vs T ~and related figures in the next section! have three
intercepts along theT 5 0 axis. Note that these intercepts
depend only on the on-site potential and are independent of
a.

The physicalsolution is the one with the lowest free en-
ergy. It is intuitively clear that, of these three solutions, the
stable one isumin . To obtain this result formally, we deter-
mine which solution gives the minimum result in Eq.~3.11!.
Since

Zc~T!5expS 2
Veff~up ;^u&,^u2&!

T DA 2T

Veff9 ~up ;^u&!
m0 ,

~5.16!

the low-temperature expansion of the free energy is, includ-
ing the kinetic energy contribution and using Eq.~3.23!,

f5V1~up!1Dk~up2^u&!21Da~up2^u&!~up
22^u2&!2

2
1

2
TF ln~2pT!1 lnS 2pT

Veff9 ~up ;^u&! D G
2H 2

3

4

1

@Veff9 ~up ;^u&!#2
1
15

2

~up2u3!
2

@Veff9 ~up ,^u&!#3 J T2
1•••, ~5.17!

where we used ln(11x)'x for uxu!1 to get the last term. At
T 5 0, all terms but the first term vanish, leaving

f ~T50!5V1„up~T50!…. ~5.18!

This result confirms that the minimum free energy atT 5 0
is obtained for the solutionup(T50)5^u&T505umin . These
threeT50 solutions can be seen in Fig.~5!.

Having obtained theT 5 0 solutions, the first-order cor-
rections inT for the momentsmn are obtained by evaluating
the quantities in braces in Eqs.~5.8!–~5.10! at theirT 5 0
values. The results are

m0

Ap
511

3

4

1

Ke
2 F21110

1

Ke
~ue2u3!

2GT1•••,

~5.19!

m1

Ap
5up~T!1F2

3

4

1

Ke
2 ~5ue24u3!1

15

2

1

Ke
3ue~ue2u3!

2GT
1•••, ~5.20!

and

m2

Ap
5up

2~T!1F 1Ke
2
3

4

1

Ke
2ue~9ue28u3!

1
15

2

1

Ke
3ue

2~ue2u3!
2GT1•••. ~5.21!

Since there are threeT 5 0 solutions, Eqs.~5.19!–~5.21! are
actually three sets of equations, one set for each of the zero-
temperature solutions. The subscripte denotes extremum;

e.g., ue denotes any of the three extrema ofV1(u),
ue5ums, umax, or umin . In addition the constantsKe ~one
for each extremum! are defined as

Ke[ limT→0Veff9 ~up ;^u&!5V19~ue!12D~k12aue!;
~5.22!

they are the effective zero-temperature force constants for
moving one particle away from the extrema ofV1 ~recall that
2D is the coordination number!. The first terms on the right-
hand sides of Eqs.~5.20! and ~5.21! require the low-
temperature values of up(T). We write this as
up(T)5ue1Sp

(e)T1•••, where the coefficientSp
(e) is un-

known, and we write similar expansions for^u& and ^u2&.
These low-temperature expansions can then be combined
with Eq. ~5.1! defining up(T) and Eq.~5.6! to obtain the
coefficients of the first-order temperature terms. The results
are

up~T!5ue2
2D

V19~ue!Ke
2 F3~k12aue!~ue2u2!

2
1

2
aV19~ue!GT1•••, ~5.23!

^u&5ue2
3

V19~ue!Ke
~ue2u2!T1•••, ~5.24!

and

^u2&5ue
21

1

V19~ue!Ke
@V19~ue!26ue~ue2u2!#T1•••.

~5.25!

In Eq. ~5.23!–~5.25! we introduced another constant dis-
placement

u2~a!5
1

3
~122Da!. ~5.26!

Equations ~5.23!–~5.25! are actually three sets of equations,
corresponding to the three values ofue . They describe how
up(T), ^u&, and ^u2& deviate from theirT 5 0 values. For
example, the slope at each of the threeT 5 0 intercepts in
Fig. 2 is given by Eq.~5.24!. These results can be used in Eq.
~5.17! to obtain a low-temperature expansion of the free en-
ergy.

The quantityKe appearing in these low-T expansions sug-
gests two different regions in parameter space. The quantity
V19(ue5umax) is negative, but has the positive quantity
2D(k12aumax) added to it. The value of the harmonic force
constantk used in the simulations in paper I and for the
calculations here is sufficiently large thatV19(umax)12Dk is
positive. This is one region of parameter space. The other
region is for a smaller value of k such that
V19(umax)12D(k12aumax) remains negative over thea
range of interest. The slope of the^u& vs T graph at the
umax intercept would have the opposite sign, according to Eq.
~5.24!. This change in the shape of the^u& vs T graph sug-
gests the possibility of different properties for weaker values
of the harmonic force constant. We do not pursue this pos-
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sibility in this paper, but instead continue with the parameter
values used in the simulations in paper I.

B. High-temperature expansion

Expanding Eq.~5.5! directly in powers of 1/T gives di-
vergent integrals, and so we need to find a convergence fac-
tor. First, we rewrite Eq.~5.5! so that the integration is over
the interval 0,x,`; then we change integration variables
to y5x4/4T and obtain

Mn5
1

4
e2Veff~up ;^u&,^u2&!/T~4T!1/4mn , ~5.27!

where the high-temperature reduced moments are

mn5~4T!n/4E
0

`

dye2yy1/421expF2Veff9 ~up ;^u&!
y1/2

T1/2G
3S F up

~4T!1/4
2y1/4GnexpF23/2~up2u3!

y3/4

T1/4G
1F up

~4T!1/4
1y1/4GnexpF223/2~up2u3!

y3/4

T1/4G D .
~5.28!

This variable change has moved all explicit factors ofT in
the integrand into denominators. In terms ofmn the SCMFT
equations are the same as Eq.~5.6! with mn replaced by
mn . The e

2y factor in mn provides convergence when the
other factors are expanded in 1/T. As in the previous sub-
section, to obtain the correct asymptotic expansion in powers
of 1/T, the implicit dependence ofup(T) and^u& onT must
be included.

The dominantT→` behavior ofmn is obtained by ex-
panding the exponentials in the previous equation for small
arguments. To lowest order,

m052G~1/4!1•••, ~5.29!

m152G~1/4!u312G~3/4!@Veff9 ~up ;^u&!~2up23u3!

1~up2u3!
2~24up17u3!#

1

T1/2
1•••, ~5.30!

m254G~3/4!T1/21•••, ~5.31!

where omitted terms are higher order in 1/T andG(x) is the
gamma function. The second part of Eq.~5.6! ~but using the
high-temperature moments! gives explicitly

^u2&5
2G~3/4!

G~1/4!
T1/21•••. ~5.32!

This unbounded behavior of^u2& with increasingT is quite
reasonable.

With this result, we return to Eq.~5.1! to obtain the high-
temperature behavior ofup(T). We assume, subject to veri-
fication, that^u& approaches a constant asT→`. Since the
Da^u2& term grows without bound asT→`, up(T) must
also become large, and so theup

3(T) term in V18(up) domi-
nates. The highest-order term ofup(T), the most likely dis-
placement, is then

lim
T→`

up~T!5~Da^u2&!1/35S 2G~3/4!

G~1/4!
Da D 1/3T1/6.

~5.33!

These results, together with the first of Eq.~5.6! ~using the
high-temperature moments!, finally give

lim
T→`

^u&5u`~a![u3~a!1F2G~3/4!

G~1/4! G2Da

5
1

3 H 123S 12F2G~3/4!

G~1/4! G2DDaJ . ~5.34!

The coefficient ofDa in this equation is negative, and so
u`(a) decreases with increasinga, and even becomes nega-
tive for sufficiently largea. The valueu`(a50)51/3 was
seen in Sec. IV as the high-temperature asymptote in Fig. 4.
Note that this value depends only on the parametersD and
a and is independent ofa0 andk.

Equation~5.32! for ^u2& is the same as the mean-square
displacement of a single particle moving in a purely quartic
potentialV1(u)5u4/4. Therefore Eq.~5.32! shows that for
T→` this particular property depends only on the high-
energy part of the on-site potential; it becomes insensitive to
other details, e.g., the shape of the double well~determined
by a0) and the strength of the interparticle interactions~de-
termined byk anda). In contrast to this result for the second
moment of the PDF, Eqs.~5.33! and ~5.34! show that the
limiting values of themeanvalue ^u& and themost likely
valueup(T) depend only on the strength of the interparticle
anharmonicitya and are independent of the other param-
eters. In the high-temperature limit these different properties
of the PDF are described by disjoint parameter sets. These
equations also show that^u& approaches a constant~as as-
sumed above!, whereasup(T) moves out to infinity, as
T→`. The situation of the most likely value and the average
value being markedly different is unusual in statistical me-
chanics, where one often assumes that the average and most
likely values are indistinguishable. Finally, we note that
since the PDF is normalized at allT and since the separation
between its peak and its mean diverges asT→`, it becomes
very flat in this limit. Equation~3.10! then shows that the
same is true for the effective potential.

Continuing the expansion of the SCMFT equations to
higher order in 1/T shows that the expansion parameter here
is 1/T1/6. Thus, the approach to the asymptotic limits is quite
slow.

VI. NONZERO INTERPARTICLE ANHARMONICITY

In this section we present the solutions of the SCMFT
equations@Eqs.~3.7! and~3.8!# including interparticle anhar-
monicity, aÞ0, which demonstrate that first-order phase
transitions occur for sufficiently large values ofa. First we
show the results for the average displacement and free en-
ergy; then we show the results for the displacement PDF.
The solutions fora50 in Sec. IV and the small- and large-
T asymptotic results in Sec. V provide limiting cases for
following how the properties change with increasing strength
of the interparticle anharmonicity.
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A. Average displacement and free energy

The last graphs in Sec. IV~Figs. 4 and 5! showed there is
no phase transition with an asymmetric on-site potential and
a 5 0. Figure 6 shows the result of increasing the anharmo-
nicity strength; fora 5 0.045, the top branch of^u& vsT has
become steeper. The free energyf for this case has the same
general shape as in Fig. 5. The branch off corresponding to
the top branch of̂u& vs T ~Fig. 6! always has lower values
than the branch off corresponding to the lower branch of
^u& vs T, and so it is the equilibrium solution. The equilib-
rium state of the system, i.e., the state of minimum free en-
ergy, follows the arrow in Fig. 6 for increasingT ~and the
reversed path for decreasingT). There are no discontinuities
or singularities and thus still no phase transition for thisa
value.

For further increases ina, the top branch of̂ u& vs T
becomes even steeper. One can visualize from Fig. 6 that at
a critical valueac the top branch develops an infinite slope
at a certainT. We do not have an analytic method to deter-
mine ac , but numerically we have foundac50.0576 . . . .
The critical value found in MD wasac

(MD)'0.124. ~The
value obtained in paper II wasac50.0537 . . . .! These val-
ues of course depend on the values of the other parameters
D, a0 , andk.

For largera values the top branch of thêu& vs T graph
folds back and becomes multivalued over a certain tempera-
ture interval, so that a first-order transition develops. Figure
7 shows the solution fora 5 0.0615, where the multivalued
nature is evident. The corresponding free energy function is
shown in Fig. 8. On the temperature interval where the top
branch of^u& vs T is multivalued, the free energy also de-
velops a loop, similar to the free energy function in the van

der Waals theory of the nonideal gas.8 @The loop occurs near
the maximum in Fig. 8~a! and is shown on an expanded scale
in Fig. 8~b!.# Since the thermal equilibrium state is the one of
minimum f , the transition is at the temperatureTc where the
free energy graph intersects itself. At this temperature the
system undergoes a discontinuous change in^u&. The en-
tropy is s52] f /]T, and so it increases discontinuously at
the transition, as expected from the argument in the Introduc-
tion. The transition temperature is marked by a vertical line
on the^u& vs T graph~Fig. 7!; the line shows the disconti-
nuity in ^u&. For thisa value the jump is between two points
on the same solution branch of the SCMFT equations. The
arrows on the top branch of^u& vs T show the sequence of
equilibrium states followed by the system. For increasing
T, the system evolves out of the stable minimum of the
on-site potential, follows the curve until it reaches the verti-
cal line atTc , and then jumps to the lower part of the same
curve. The points on the loops cut off by the vertical line are
solutions of the SCMFT equations, but they are inaccessible
for thermal equilibrium states. Parts of these loops may be
metastable states achievable by superheating or supercool-
ing.

The bottom panel of Fig. 7 shows^u& vs T with an ex-
panded vertical scale and a compressed horizontal scale. In
contrast to the case in Fig. 6, the approach to the high-T
asymptote here is nonmonotonic;^u& goes belowu`(a)

FIG. 6. Average displacement vs temperature fora 5 0.045.
The three intercepts going up theT5 0 axis are at 0,umax, and
umin @Eq. ~5.14!#. The short horizontal line at the right is the high
temperature asymptoteu`(a) @Eq. ~5.34!#. The arrow shows the
equilibrium states followed by the system for increasingT.

FIG. 7. Average displacement vs temperature fora 5 0.0615.
The top panel shows the low-temperature range. The arrows on the
curve show the equilibrium states followed by the system for in-
creasingT. The vertical line cutting across the top branch shows the
discontinuity in ^u& at Tc . The bottom panel has a compressed
temperature scale, and an expanded scale for^u&. The short hori-
zontal line on the right is the high-temperature asymptoteu`(a)
@Eq. ~5.34!#, and the longer horizontal line isumax, the upper inter-
cept of the bottom branch atT 5 0 @Eq. ~5.14!#.
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~marked with the short horizontal line!, and then approaches
it from below. The longer horizontal line on the bottom panel
of Fig. 7 marksumax, the maximum of the on-site potential;
it may be considered the dividing point between the stable

and metastable wells. Since all points on the upper branch of
^u& vs T are greater thanumax, the jump in^u& at Tc occurs
between a position of low on-site potential energy and a
higher-energy position, and both are in the stable well of the
on-site potential. This observation is interesting from the
point of view of understanding the mechanism which drives
the transition. Even though this discontinuity in^u& for in-
creasingT results in the particles moving into a region of
higher on-site potential energy, this jump in^u& is thermo-
dynamically preferred. The reason that the transition is ther-
modynamically preferred must be that the entropy of the
system substantially increases with this jump.

The slope of thêu& vs T graph at the threeT 5 0 inter-
cepts is given in Eq.~5.24!. For the intercept atumax,
V19(umax) is negative, and for the value ofk used here,
Kmax @Eq. ~5.22!# is positive for alla. For increasinga, this
slope changes sign from negative to positive whenu2(a)
@Eq. ~5.26!# decreases throughumax, which occurs at
a50.0594 . . . . This change in slope atumax is evident in
Fig. 6 and the bottom panel of Fig. 7. The details of these
slope changes and the interplay of the asymptotic value
u`(a) with the extrema of the on-site potential is more in-
tricate in this self-consistent theory than was found in paper
II.

For further increases ina, the top branch of̂ u& vs T
bends back more sharply, and the high-temperature asymp-
tote u`(a) @Eq. ~5.34!# decreases. At another critical value,
which we call theswitchovervalue,as , the two branches of
the^u& vsT graph come into contact and then reconnect in a
different shape. Figures 9–11 show the situation just below
and just above this switchover. Just as forac , we have not
found an analytical evaluation ofas , but numerically we

FIG. 8. The free energy corresponding to the solution in Fig. 7.
~a! Free energy for both branches of Fig. 7. The solid curve corre-
sponds to the top branch of Fig. 7 and contains the equilibrium
solution. The dashed curve is a very narrow loop corresponding to
the lower branch of Fig. 7.~b! Expanded view near the maximum of
~a!, showing the loop in the free energy.Tc , the temperature at
which this curve intersects itself, is transferred to Fig. 7.

FIG. 9. Average displacement vs temperature fora 5 0.061 75,
just below the switchover value. The arrows on the top panel and
the horizontal lines on the bottom panel are defined as in Fig. 7.
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have found that it lies in the interval 0.061 76,as,
0.061 77~for the given values of the other parameters!. For
the average displacement curves, there is actually little
change in their ‘‘local’’ shapes, but they change ‘‘globally.’’
For a.as , the jump atTc is between different branches of
the solution, but the magnitude of the discontinuity in^u& is
a continuous function ofa through this switchover. The
change in the shape of the free energy graph is more pro-
nounced. Fora,as , there is a loop in one branch of the free
energy curve, and this loop has upper and lower stability
temperatures. Fora.as , there is no longer a loop, and there
is only an upper stability temperature. The authors of paper
II speculated that the existence of these stability temperatures
is related to the hysteresis seen in the computer simulations
in paper I. The more complicated self-consistent theory in
this paper has the same shapes for the solution curves and so
supports the same speculation.

The lower panels of Figs. 9 and 10 show the same non-
monotonic approach to the high-temperature asymptote that
was observed in Fig. 7. In Fig. 10 the region of the^u& vs
T graph near the point where the two branches approach
each other is multivalued in both directions, i.e., with either
T or ^u& considered as the independent variable.

The high-temperature asymptoteu`(a) @Eq. ~5.34!# de-
creases with increasinga, and so eventually it becomes less
thanumax; then the jump in̂ u& at Tc is between points in
different wells of the on-site potential. Figure 12 shows^u&
vs T for a 5 0.074, where this situation has occurred. As in
the previous figures, the arrows show the thermal equilib-
rium states followed for increasingT. The parts of the curves
not reached by following the arrows are solutions of the SC-
MFT equations, but are not accessible in thermal equilib-
rium.

For a final case, in Fig. 13 we shoŵu& vs T for a 5
0.28. At this value, the slope of the lower branch of^u& vs
T coming out of the^u& 5 0 intercept is negative@Eq.
~5.24!#, while the high-temperature asymptoteu`(a) is posi-
tive. This means that the jump in̂u& atTc is from the stable
well of the on-site potential to a point on the negative side of
the metastable well. Then̂u& moves across the metastable
well to the positive side asT is increased. Increasinga fur-
ther eventually decreasesu`(a) to negative values, and then
^u& remains negative for allT.Tc .

In Fig. 14 we show the dependence ofTc on a, along
with the results of the MD simulations from paper I.9 These
SCMFT results are shifted horizontally relative to the simu-
lation results, i.e., the critical value ofa according to the
simulations isac'0.124~this is the MD point at the smallest
a), whereas the SCMFT givesac50.0576 . . . . Thesimu-
lations were done before the existence of the switchover in
the shape of thêu& vs T graphs was known, and so there is
no comparison available for those values. The decrease in
Tc with increasinga is reasonable from the assertion that the

FIG. 10. Average displacement vs temperature fora 5
0.061 77, just above the switchover value, showing that pieces of
the solution curves have reconnected, and that the jump at the tran-
sition is now between different branches of the curves. The arrows
and horizontal lines have the same meaning as in Fig. 7, except that
umax is now the lower intercept of the top branch. The points on the
top branch which are lower than the highest point on the vertical
line showing the jump atTc are solutions of the SCMFT equations
but are not accessible in thermal equilibrium. The same is true of
the points on the bottom branch which are to the left of the vertical
line.

FIG. 11. The expanded piece of the free energy graph corre-
sponding to Fig. 10, showing how the curves for the two branches
cross at the transition. The solid curve corresponds to the top branch
of Fig. 10, and the dotted curve to the bottom branch. There is no
loop in the free energy graph fora above the switchover value.
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transition is entropy driven; an increase in the anharmonicity
strength allows the disordering effect to occur at a lower
temperature.

B. Displacement probability distribution functions

From the solutions of the SCMFT equations, we obtain
the displacement PDFP1(u) from Eq. ~3.10!. We show this
function fora 5 0.074 in Fig. 15. The results for all of the
othera values considered in this section have the same gen-
eral features. The arrows on the graph locate the three ex-
trema of the on-site potential@Eq. ~2.3!#. The graphs show
that the PDF is localized in the stable well at lowT. The
second and thirdT values are just below and just above
Tc , and so the distribution jumps, corresponding to the dis-
continuity in ^u& shown in Fig. 12.~The magnitude of this
jump increases with increasinga, as can be inferred from
the magnitude of the discontinuity in̂u& shown in Figs. 7, 9,
10, 12, and 13.! Sincea.as in Fig. 15, for highT values the
distribution shifts towards positive values, corresponding to
the increase in̂u& for T.Tc shown in Fig. 12. The bottom
curve in Fig. 15, at a considerably higherT, shows that the
maximum in the curve, which is the quantityup(T) dis-
cussed at length in Sec. V, continues to increase while the
average valuêu& remains finite@see Eqs.~5.33! and~5.34!#.

The shapes of these PDFs can be characterized by two of
their moments: the skewness

S@P1#5E
2`

`

duS u2^u&
s D 3P1~u! ~6.1!

and the kurtosis

K@P1#5E
2`

`

duS u2^u&
s D 4P1~u!23. ~6.2!

Here s is the standard deviation of the distribution. The
skewness measures the asymmetry of the distribution, and
the kurtosis measures its peakedness or flatness.10 Positive
skewness indicates an asymmetric tail extending toward
positiveu ~and the reverse for negative skewness!. Similarly,
positive kurtosis denotes a more peaked distribution,
whereas negative kurtosis denotes a flatter distribution~rela-
tive to a Gaussian, which has zero kurtosis!.

The skewness and kurtosis fora 5 0.074 are shown as
functions ofT in Fig. 16. The skewness shows that the dis-
tributions have substantially more weight towards smaller
displacements belowTc ; this feature indicates the tendency
of the particles to move away from the strongly repulsive
part of the on-site potential toward the less repulsive region.
Above Tc the distributions have a somewhat more weight
towards smaller displacements, but not to the degree as be-
low Tc . The kurtosis indicates that the distributions are more
peaked belowTc and flatter aboveTc .

From this PDF we can analyze the possibility of transfor-
mation precursors, i.e., clusters of particles displaced into the
structure which is ‘‘wrong’’ compared to the equilibrium
structure at the ambient temperature. Clusters which are suf-
ficiently large or numerous would produce multipeaked
PDF’s. However, only single-peaked PDF’s were found for
the parameter values and temperatures used in these calcula-
tions. But that does not mean there are no particles displaced
into such regions, and in fact Fig. 15 shows the PDF’s ex-
tending into both wells of the on-site potential for all but the
lowestT values. One characterization of this possibility is to

FIG. 12. Average displacement vs temperature fora 5 0.074,
whereu`(a)50.253 . . . isbelowumax50.254 . . . .

FIG. 13. Average displacement vs temperature fora 5 0.28.
For thisa value, the bottom branch starts from zero atT 5 0 with
negative slope@Eq. ~5.24!#, but u`(a)50.0292 . . . ispositive.
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consider the fraction of particles in one of the wells, e.g., the
metastable well. That fraction is

P~u,umax!5E
2`

umax
duP1~u!, ~6.3!

and is a function ofa andT. This number is given in Table
I for different a values and for two temperatures just below
and just above theTc value for thata. For T just belowTc
and for the rangeac,a,as , the fraction of particles in the
metastable well is around 0.15. ForT just aboveTc , the
fraction in the metastable well~the ‘‘correct’’ phase for this
T) increases to a value around 0.5 or more. However, we
found no situation where these fluctuations are large enough
to produce a second maximum inP1(u).

For a.as the fraction of particles in the ‘‘wrong’’ phase
~both below and aboveTc) decreases rapidly. This indicates
that the PDF’s narrow quite rapidly for increasing anharmo-
nicity strength. Partly this is because the transition tempera-
tureTc decreases with increasinga. However, the widths of
P1(u) decrease more rapidly thanTc does ~see Fig. 14!,

FIG. 14. Dependence of the transition temperature on the anhar-
monicity parametera. The SCMFT values for the minimum value
to have a transitionac and the switchover valueas are marked. The
approximate value ofac determined from the MD is also marked.
The three isolated points shown are the results from the MD calcu-
lations in paper I.

FIG. 15. Displacement probability distributions fora 5 0.074,
for different temperatures. The second and thirdT values are just
below and just aboveTc50.0439 . . . for thisa value. The vertical
arrows denote the three extrema of the on-site potential@Eq. ~2.3!.#

FIG. 16. Skewness and kurtosis of the displacement probability
distributions fora 5 0.074. The discontinuity occurs atTc .

TABLE I. P(u,umax), the probability that the displacements
are in the metastable well, for differenta values and for tempera-
tures just below and just aboveTc(a). ~E.g., the row fora 5 0.074
corresponds to the two curves in Fig. 15 atT 5 0.0435 and 0.0442.!

a T,Tc T.Tc

0.0615 0.155 0.489
0.06175 0.155 0.494
0.074 0.0669 0.648
0.28 7.2131027 0.985
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indicating that increasing the anharmonicity strength tends to
localize the particles into the ‘‘correct’’ well. The PDF’s
obtained in the simulation exhibit this same narrowing with
increasinga; see Figs. 14 and 15 of paper I.

Another characterization of the lack of transformation
precursors is obtained by applying to this system the crite-
rion used by Gooding and Morris.11 Their method, applied to
this model, is to follow the value ofP1(umin) as T ap-
proachesTc from above, i.e., to follow theT dependence of
the probability for a particle to be displaced into the low-
temperature structure when the system is in the high-
temperature phase and approaching the transition. Figure 15
shows thatP1(umin) decreasesfor T→Tc1. The probability
concentrates more into the metastable well, and fluctuations
into the low-temperature structure decrease asT decreases to
Tc . Gooding and Morris reached the same conclusion based
on their model and method of analysis. However, we note
that for our model this conclusion applies only to cooling.
Figure 15 shows that the probability of displacement to the
metastable minimumP1(ums) increases forT approaching
Tc from below.

In Sec. V A we argued that the system properties would
be different with a weaker force constantk. This change
would increase the importance of the on-site potential rela-
tive to the interparticle interactions, and so multipeaked
PDF’s seem to be more likely in this regime. Since the pa-
rameters were chosen to represent the experimentally rel-
evant case of Zr~see Sec. II!, we have not analyzed this other
possibility in this paper.

VII. SUMMARY

In this paper we have presented a self-consistent mean-
field theory for a lattice-dynamical model that exhibits a
first-order structural phase transition. The essential features
of the model are~i! each particle moves in an asymmetric
double-well on-site potential and~ii ! anharmonicity is in-
cluded in the interparticle interactions. The second feature is
crucial: Without this anharmonicity there is no phase transi-
tion. This anharmonicity provides a mechanism that in-
creases the entropy of the high-energy structure relative to
the low-energy structure and thereby achieves a lower free
energy at sufficiently high temperatures.

We obtained the mean field in the following way. In the
exact equation of motion for a particular particle, all occur-
rences of any quantity associated with a neighboring particle
are replaced by the average value of that quantity. This re-
placement is equivalent to assuming that the phase space
PDF factors into a product of single-particle PDF’s. It gives
rise to an effective potential governing~approximately! the
motion of any one particle. The averages are then obtained
self-consistently through the Gibbs distribution determined
by the effective potential. The resulting solutions are used to
survey thermodynamic properties in a portion of the param-
eter space. The regions of parameter space studied here cov-
ered a wide range of strength for the interparticle anharmo-
nicity but for only a single value for the harmonic force
constant. This value is in the so-called displacive regime
where local quantities change slowly with respect to lattice
site.

We summarize the results of this theory and compare

them with the simulations in paper I. All of the qualitative
features of the theory also appear in the simulations. The
results are the following.~1! A critical strengthac of the
interparticle anharmonicity is needed for a phase transition to
occur. This feature agrees with the simulations, but the MFT
and the simulations disagree about the value ofac . ~2! Ac-
cording to this MFT there are two intervals of interparticle
anharmonicity strength above the critical value, within which
the thermodynamic properties are different. For the interval
of weaker strength, the free energy has a van der Waals–type
loop in it. For the interval of greater strength~which is a
much larger interval! there is no such loop. The free energy
was not calculated in the simulations, but they exhibited a
feature which we speculate is related to this change in the
shape of the MFT free energy function. The simulations
were mostly performed for a large value ofa, and they
exhibited hysteresis. The hysteresis loops were ‘‘open,’’ in
the sense that a transition was obtained only for heating and
not for cooling~see Fig. 3 of paper I!. We speculate that this
feature is related to the presence or absence of a loop in the
free energy. The existence of a loop, as in Fig. 8~b!, implies
the existence of upper and lower stability limits for tempera-
ture. If the system is heated or cooled into the metastable
region beyondTc , it cannot be heated or cooled beyond the
end points of the loop without changing phase. Conversely,
if there is no loop, as in Fig. 11, then there is a stability limit
for heating the system from low temperature, but there is no
stability limit for cooling it from high temperature. This sec-
ond situation is the one that obtained in the simulations. We
are presently performing simulations at smallera values to
see if closed hysteresis loops are obtained.12 ~3! This theory
and the simulations agree that the displacement PDF’s are
nearly symmetric and have only one maximum for the pa-
rameter values used by both methods. The MFT indicates
that this feature persists over a wider range of anharmonicity
strength than was studied by the simulations. The possibility
to have multiple maxima is equivalent to having multiple
minima in the effective potential. Since this function is a
quartic polynomial with temperature-dependent coefficients,
having several extrema is possible, but we did not find such
a situation for the parameters studied here. However, we ar-
gued that such PDF’s might be found for weaker interparticle
forces where the effect of the on-site potential would be rela-
tively larger.~4! This MFT predicts that for quite large tem-
perature, the displacement PDF becomes asymmetric in a
particular way: The mean value of the distribution remains
finite whereas the most likely value moves out to infinity.
This feature depends only on the interparticle anharmonicity
controlled by the parametera. The simulations in paper I did
not go to high enoughT to see this effect.

Next we compare the results of the present theory with the
results in paper II, which also presented a MFT of this
model. That earlier MFT made an additional assumption that
the displacement PDF is Gaussian. The results of the present
theory show how accurate that assumption is~see Figs. 15
and 16!, for the parameter values used in both papers. The
quantitative results of this theory are similar to those in paper
II; e.g., there are only small shifts in the ‘‘critical’’ and
‘‘switchover’’ values ofa. The value ofac in the present
theory is somewhat closer to the simulation value. There are
two major qualitative differences between these two mean-
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field theories. The first, discussed in the paragraph above, is
that the present theory allows the possibility of double-
peaked PDF’s. The second is that the shapes of the^u& vs
T relation are more intricate in the present theory. The non-
monotonic approach to the high-temperature asymptote seen
in Fig. 9, the overlapping of the two branches of the relation
seen in the bottom panel of Fig. 10, and the change in sign of
^u& vs T seen in Fig. 13 are features that could not be ob-
tained with the method in paper II.

To conclude, we suggest a possible experimental mea-
surement based on the observation about the different behav-
ior of ^u& andup(T) at high temperature@item ~4! above#.
The Fourier transform of the displacement PDF is
^exp(iku)&, which is the Debye-Waller factor measured by
x-ray diffraction or Mössbauer spectroscopy. In principle,
the displacement PDF can be measured by these techniques.
If an experiment on a structurally transforming system ob-
tained a PDF with asymmetry as described above, that result
would be evidence that the mechanism driving the transition
is the one utilized in this model.
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APPENDIX

We mention briefly the numerical techniques we used to
solve the SCMFT equations, Eqs.~3.7! and ~3.8!. To evalu-
ate the integrals, we used the formula for the reduced mo-
ments obtained for the low-temperature expansion in Eq.
~5.7!. This form is suitable for numerical evaluation by the
Gauss-Hermite method. Similarly, the form used for the
high-temperature expansion in Eq.~5.28! is suitable for nu-
merical evaluation by the Gauss-Laguerre method. We
mostly used the former method, except for those parts of the
^u& vs T graphs that extend out to the highest temperatures.

For the Gauss-Hermite method we found that we could
achieve convergence of the integrals to higher temperatures
if we did not shift the origin of the integration variable to the
peak of the probability distribution, as we did for the asymp-
totic expansions in Sec. V@see Eq.~5.3!#. Instead we found
that a smaller shift works better. Such a shift leaves a linear
term in the exponent, but the Gauss-Hermite method is still
applicable.

We solved the SCMFT equations by Newton’s method.
For very low or very high temperatures, the initial guesses
were obtained from the asymptotic expansions in Sec. V. For
subsequent increments of the independent variable, the result
from the previous step was used as the guess for the new
step. Because of the nonmonotonicity of the^u& vsT curves,
~e.g., the bottom panel of Fig. 7! we found it useful to have
two procedures; one took̂u& as the independent variable
and solved forT, and the other reversed those variables.
Then the outputs were merged to produce the graphs.
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