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A number of methods have proven to be useful for extended x-ray-absorption fine-structure data analysis of
disordered systems. Regularization methods, which describe the radial distribution function nonparametrically,
have the advantages of eliminating bias caused by modeling the distribution with a specific functional form,
properly including spherical wave effects, and allowing the imposition of physical constraints in a systematic
way. In this work we find empirically that the regularization method reliably resolves subshells that are
unresolved by Fourier transforms and provide unbiased starting models for nonlinear least-squares fitting. The
method is demonstrated with experimental and simulated data.@S0163-1829~96!00526-7#

I. INTRODUCTION

Over the past two decades the extended x-ray-absorption
fine-structure ~EXAFS! technique of Sayers, Stern, and
Lytle1 has proven to be invaluable for characterizing the
short-range order in a wide variety of materials. Among its
recent applications are complex materials such as
metalloproteins,2 high-Tc superconductors3–5 and
catalysts.6–11 In general, for simple systems, Fourier
methods,1 ratio-cumulant methods,12 and nonlinear least-
squares fitting13 have provided satisfactory results when
done correctly.

The basic techniques require experience and sophistica-
tion to use reliably in difficult cases, as when two or more
subshells are poorly resolved or when any decomposition
into shells is ambiguous. Fourier methods have the problem
that the Fourier transforms are quite dependent on transform
range, weighting, and other parameters. A nonparametric
analysis of the radial distribution function by the cumulant-
ratio method14 and splice method is often useful in such
cases, but suffers from limited convergence properties in the
cumulant approach, and uncertainties owing to extrapolation
and nonpositive definite distributions in the splice method.
The cumulant expansion can be incorporated into extensions
of ordinary nonlinear least-squares fitting, but still suffers
from limited convergence in cases of large disorder. More
flexible parametric models have been proposed15 but still
suffer from the potential for biased estimates. The
maximum-entropy method,16 as originally applied, was
equivalent to a linear prediction,17 which essentially approxi-
mated the EXAFS oscillations as a sum of exponentially
damped sinusoids of minimal information content, in effect,
a parametric model. More sophisticated maximum-entropy
approaches have yet to be developed for EXAFS analysis.

The regularization approach of Erchovet al.18 was intro-
duced more than a decade ago, but has scarcely been used
since, despite its theoretical benefits, in principle, it has the
advantage of being nonparametric and relatively unbiased,
while permitting inclusion of spherical-wave effects and

physical constraints in a systematic way. It does not account
for multiple types of atoms in the distribution.

The hybrid regularization method described here is modi-
fied from the original in that we isolate the first shell contri-
bution from the higher shells by Fourier filtering, because the
possibility of multiple scattering effects in higher shells
would invalidate the method. Fourier filtering distortions
were neglected because they are localized near the end of the
filtering range and these regions were excluded from the
analysis. In cases where this approximation is insufficient the
experimental data and theoretical data can be filtered in the
same manner, which effectively eliminates the problem.

In this work we demonstrate a synthesis of the regulariza-
tion method18–23with conventional methods of data analysis.
The combined method provides effectively betterr -space
resolution than than Fourier transform analysis and provides
a robust starting point for least-squares fitting.

II. REGULARIZATION OF THE EXAFS INVERSION
PROBLEM

The EXAFS equation proposed by Stern and co-workers
is
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whereS0
2(k) is the many-electron overlap factor,F(k,r ) is

the effective backscattering amplitude,N is the coordination
number,R is the interatomic distance,l(k) is the energy-
dependent mean free path of the photoelectron,s is the
Debye-Waller parameter,w(k) is the phase shift due to the
atomic potentials, andk is the photoelectron wave vector.
Replacing the infinite upper limit of integration in Eq.~1! by
a finite limit, we have
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whereA is m3n matrix, g is a column vector, and
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This ‘‘ill-posed’’ problem is solved by the regularization
method introduced by Tikhonov.19,20 The solution ofgn is
obtained from the functional minimum condition18

C~g,a,b!5ix2Agi21aE
0

`

ug~r !u2dr

1bE
0

`U ddr g~r !U2dru1gig2ugu i2, ~4!

where a is a regularization parameter,b is a smoothness
parameter, andg is a positivity constant.

Without the penalty terms, inversion of the linear system
x5Ag is highly unstable. There exists a subspace of func-
tions that could be added tog(r ) without appreciably alter-
ing the correspondingx(k). For example, if an extremely
broad Gaussian function were added tog(r ), its contribution
to the data would only appear at very lowk, below the start
of usable data range, and therefore it would not alter the
quality of the fit. The regularization term with parametera
suppresses spurious of ‘‘gratuitous’’ contributions through
use of a penalty function: if a contribution tog(r ) is irrel-
evant in the sense that it does not improve the fit, it is sup-

pressed, analogously to maximum entropy methods, which
minimize the information content of the reconstructedg(r ).
In effect, the term applies Occam’s razor: the simplest model
consistent with the best data. This term also renders the in-
version procedure less sensitive to small variations in the
input data.

In addition, a penalty term is included that tends to render
g(r ) as smooth as possible, consistent with fitting the data
well. It is important to realize this isnot an aesthetic consid-
eration. The smoothness constraint tends to suppress high
spatial frequencyk modulations in the reconstructedg(r ), in
proportion tok2. This reduces the information content con-
sistent with adequately fitting the data, a feature at the heart
of maximum-entropy methods. Finally, the physical require-
ment of a positive definiteg(r ) is imposed through the pa-
rameterg.

From the minimum condition of Eq.~4!, we obtain alge-
braic equations18
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Sn5 H02 if gn>0
otherwise, ~6!

FIG. 1. Pair distributions reconstructed by the regularization method from the simulated spectra for iron with parametersN158,R152.5,
s150.06,N256, s250.07, andR252.7, 2.8, 2.9, 3.0 and the Fourier transform of spectra weighted byk3.
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where the matrix elementamn is determined from Eq.~3!
using the backscattering amplitude, phase differences, and
S0
3(k) calculated from the theoretical standard FEFF4,24 and

the matrixB is
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with t5Dr /Dk andh51/(DrDk). The optimal values of the
regularization parametersa andb are obtained by minimiz-
ing ix2Agi2. The positivity parameterg is determined by
the program to be just large enough to makeg(r ) be positive
definite. It is important to realize that the optimum parameter
values are determined automatically by the algorithm, mini-
mizing the operator bias.

III. COMPARISON OF THE RESOLUTION OF THE
FOURIER TRANSFORM AND REGULARIZATION

To compare the resolution of the Fourier transform tech-
nique and regularization method, several EXAFS spectra
containing two coordination shells of pure iron were simu-
lated using the FEFF4~Ref. 24! program on iron consisting
two close shells with parametersN158.0, R152.5 Å,
s150.06 Å,N256.0,s250.07 Å, andR252.7, 2.8, 2.9, and
3.0 Å separately, wheres is the Debye-Waller parameter. As
shown in Fig. 1, two close-shells whoseDR>0.5 Å were not
resolved in the Fourier transform. However, the regulariza-
tion method can resolve each shell definitely forDR>0.2 Å.
The magnitude and width of the distribution in the first shell
by the regularization method were not affected by the second
shell ~the regularization procedure is nearly linear! so that
the first shell information is not distorted by the second shell
for all simulations shown Fig. 1, whereas close shells in
Fourier transform modules interfere and the first shell peaks
are severely distorted. The average distance and the coordi-
nation number of each shell can be estimated from the dis-
tribution. A practical approach for this type of problem will
be presented in the next section.

IV. EXAMPLES WITH EXPERIMENTAL SPECTRA

An experimental EXAFS spectrum of pure iron was used
to test the resolution of two shells with small separation. The
sample preparation and experimental procedure have been
described elsewhere.25 According to the analysis of crystal
structure,26 bcc iron has the eight nearest neighbors at
R152.59 Å and six second-nearest neighbor atR252.87 Å.
However, the two shells were not resolved in the Fourier
transform of the EXAFS spectrum measured at 77 K shown

FIG. 2. Experimental XAFS spectrum and Fourier transform of
pure iron thin film at 80 K.

FIG. 3. Pair distribution determined by the regularization
method from the spectrum filtered in ther range~1.8–2.9 Å! in
Fourier transform.

TABLE I. Fit parameters of the iron XAFS specturm using the combined method.

First shell Second shell
N R ~Å! s ~Å! N R ~Å! s ~Å! «2

true 8.0 2.48 6.0 2.87
fit 7.761.4 2.4860.01 0.0660.01 4.363.0 2.8660.02 0.0660.03 1.04e12
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in Fig. 2. However, these two shells are well resolved by the
regularization procedure, as shown in Fig. 3. With the initial
guesses of the EXAFS parameters estimated from the pair
distribution obtained by the regularization method, the final
values were obtained by a nonlinear square fitting of the
filtered spectra using two shell fittings. As shown in Table I,
the local structural information of pure iron can be obtained
very precisely by the regularization method. Tests with other
compounds have shown that integrated peak areas are not
always reliable, presumably because, while increasing the
peak height and increasing the width of the distribution tend
to have opposite effects ink space~changing the scale of the
amplitude!, they both increase the area~coordination num-
ber! of the peaks ofg(r ).

V. DISCUSSION AND SUMMARY

In the cases examined, the pair distribution obtained by
the regularization method yields an apparent improvement in
spatial resolution over the Fourier transform method. This
study has shown the regularization method combined with
Fourier filtering and nonlinear least-squares fitting. The point
of filtering is to eliminate higher shell contributions that may
contain multiple-scattering contributions, which would ren-
der the method inapplicable. As shown in an experimental
example of bcc iron, the combined method provided very
precise results on the first shell without any further informa-
tion or ad hocassumptions by the user. Error estimates are
obtained by conventional means in the least-squares fitting
process.
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