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A theoretical calculation of time-dependent grain-size populations of an emerging phase driven by nucle-
ation and growth kinetics is performed. A statisticalmean-fieldmodel is presented for a completely degener-
ated system, based on the same assumptions as the Kolmogorov-Johnson–Mehl-Avrami~KJMA! model, that
is to say, randomly distributed active nucleation sites which grow isotropically and collision resulting in a
growth stop at the interface. Dependence of the kinetic parameters~nucleation and growth rates! on macro-
scopic and/or microscopic variables and on time is considered. The differential form of the KJMA model is
applied to each grain-size population, providing a detailed microstructure development. As a result of this
calculation, grain-size distributions are obtained. The validity of the model is tested by comparing the grain-
size distributions obtained for a kinetically controlled process with a numerical Monte Carlo simulation.
Imaging of the microstructure obtained by Monte Carlo is also shown. Finally, the model is computed with
different kinetic conditions and the results are presented.@S0163-1829~96!06929-9#

I. INTRODUCTION

Most of the technologically interesting new materials are
in a nonequilibrium state of condensed matter and their me-
chanical, magnetic, electric, thermal, and superconducting
properties are essentially controlled by the presence of small
particles. An optimized and controlled microstructure may
be obtained by several methods, such as precipitation of a
secondary phase from metastable systems under controlled
conditions~i.e., temperature, pressure!, or vapor deposition.
Therefore, the emerging microstructure depends not only on
the chemical composition but also on the mode of prepara-
tion and the previous history of the materials.

The knowledge of kinetics leading to a well defined mi-
crostructure is fundamental in order to obtain materials with
the desired properties. The kinetics of first order phase trans-
formation resulting in a microstructure formation is driven
by nucleation and growth in most cases. Fluctuations pro-
mote cluster formation and dissolution until stable nuclei are
formed, and further growth will give the final microstructure.
Transforming systems may be characterized by the degen-
eracy parameter (p), which acounts for the number of dis-
tinct degenerate stable states into which the metastable phase
transforms with equal probability. Nucleation may be homo-
geneous or heterogeneous, and time, temperature, or pressure
dependent, giving a nucleation rate ofI (X,t), whereX is any
of the macroscopic variables which may influence the nucle-
ation rate. Further growth of the nuclei may also be homo-
geneous, heterogeneous, diffusion controlled and also time,
temperature, pressure, and grain-size dependent, giving a
growth rate ofG(X,t).

Nucleation and growth kinetics in an infinite specimen,
which results in the calculation of the volume fraction trans-
formed at a given time, is well settled by Kolmogorov,1

Johnson and Mehl,2 and Avrami3–5 ~KJMA!. This theory
considers randomly distributed active nucleation sites which

grow to form grains, and during the growing process may
collide with other grains of neighboring sites, resulting in a
growth stop at the interface. To summarize, let us define a
control volumeV0 in which the growing phase occupies a
volume V(t); the transformed volume fraction is then
j(X,t)5V(t)/V0 . Avrami introduced the concept of ex-
tended volumeṼ(t), as the volume that the growing grains
would occupy if they were growing in isolation, establishing
that

dV

dṼ
5
V02V

V0
. ~1.1!

This relation means that each grain has a probability of
finding untransformed volume to continue growing equal to
the probability of randomly finding untransformed volume in
the whole volume. By integrating this equation we obtain

ln@12j~X,t !#5
2Ṽ~ t !

V0
. ~1.2!

Although some corrections to this approach have been
suggested,6 the KJMA theory is widely accepted and has
been generalized for grains of arbitrary shape.7–9 The main
reason for this is that the theory itself is based only on sta-
tistical considerations, as has been recently pointed out by
Cahn.10

The transformed volume fraction may be measured from
differential scanning calorimetry~DSC! analysis, based on
the construction ofT-T-T ~time-temperature-transformation!
curves11–13 and T-HR-T ~temperature–heating rate–
transformation! ~Refs. 13–15! curves, or by other tech-
niques. However, only the dependence ofI andG on the
controlled macroscopic parameters may be deduced from
these measurements.
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Further work on the kinetics of first order phase transi-
tions has been devoted to the characterization and evaluation
of correlation functions and their relationship with time-
dependent diffraction studies. Sekimoto16 evaluated an exact
expression of the two-point correlation functions for arbi-
trary values of the degeneration parameterp, provided that
the grain-size distribution is known, which is also related to
the crystallized fraction. This correlation function has been
related to the probability of magnetization greater than zero
in a kinetic Ising model.17

The evaluation of the correlation functions in this system
has usually been performed by means of the time-cone
method. Axe and Yamada18 obtained exact expressions of
the autocorrelation function in the case of a one-dimensional
system withp→` and constantI andG. In this case the
universal grain-size distribution is obtained fort→`. How-
ever, due to the lack of isotropy of the one-dimensional case,
the results obtained here cannot be generalized to higher di-
mensions. Exact formal expressions of the correlation func-
tions for a multiple-degenerate ground state inn dimensions
were deduced by Ohtaet al.19 under certain restrictions; the
most important of these is the fact that the growing rate must
not be an increasing function of time.

Axe and Yamada also calculated the dependence of the
x-ray-diffraction peak shape on the average radiusR(t) from
scaling relations, finding that the peak intensity depends on
R(t)5, while the linewidth depends onR(t)21. These depen-
dences indicate the main difficulties encountered in the
evaluation of time-dependent microstructure development
based on x-ray-diffraction peak broadening analysis.

There is a substantial difference between the two limits
usually studied, namely the nondegenerate case (p51) and
the absolutely degenerate case (p→`). In the nondegenerate
case the notion of individual grains becomes nonsense as the
transformed volume fraction increases, while in the degener-
ate case grains are distinguishable even after the transforma-
tion of the complete volume. Although the correlation func-
tions can be evaluated in both cases, it is clear that they are
much more useful in the nondegenerate than in the degener-
ate case, essentially because the concept of grain-size distri-
bution is lost in the nondegenerate case. This is the situation
in the study of ferromagnetic switching,20–22where the influ-
ence of the finite size of the nuclei has also been observed.23

However, in the degenerate case the measure of the micro-
structure developed at various stages of the phase transfor-
mation may also make it possible to determine the depen-
dence of the kinetic parameters on both microscopic and
macroscopic variables. Several techniques have also been de-
veloped for obtaining the microstructure, either by obtaining
images@i.e., transmission and scanning electron microscopy
~TEM and SEM!#,24 or by indirect measurement@i.e., small
angle scattering of x rays and neutrons~SAXS and SANS!#.

This paper presents a theoretical calculation of time-
dependent grain-size populations in a kinetically controlled
process of nucleation and growth. The model is based on the
same assumptions as the KJMA model, that is to say, ran-
domly distributed active nucleation sites which grow isotro-
pically and collide, resulting in a growth stop at the interface.
The model calculates the grain-size populations as a function
of I (X,t) andG(X,t) by defining the mean fraction of grow-
ing grains, and in this sense it is a kind of detailed integration

of the KJMA theory. Theoretical dependence on any of the
macroscopic and microscopic variables of the nucleation and
growth rates is considered in the model. The model is less
restrictive than previous work19 and the obtained results can
be used in the calculation of the correlation functions follow-
ing Ref. 16.

The validity of the statistical model is tested by compar-
ing the resulting grain-size populations with a Monte Carlo
simulation for a kinetically controlled process. Some ex-
amples of the microstructure obtained by the Monte Carlo
simulation are shown in a format equivalent to an SEM pic-
ture. Finally, grain-size distributions obtained under constant
and variable nucleation and growth rates are presented, and
their properties are discussed.

II. MODEL

A. Theoretical description

The evolution of grain populations with simultaneous
nucleation and growth will be modeled in order to obtain
grain-size distributions. In the proposed model the grains
grow in a control volumeV0 . The actual shape of this vol-
ume is not relevant, and for the sake of simplicity we will
assume that it is cubic. We will assume thatV0 is large
enough, that is to sayV0

1/3 is large compared with the average
distance between grainsR05(G/I )1/4 in three dimensions.16

This ensures that the system contains a sufficiently large
number of grains to be self-averaging.

We will consider that« is the initial radius of a nuclei.
Next, let us define a typical lengthh related to the resolution
available when looking at the sample. Therefore, we will
suppose that a grain of radiusr is distinguishable from an-
other of radiusr1h.

In order to work with dimensionless variables, a reduced
coordinate system will be defined usingh. Therefore, a re-
duced control volume will be defined as

v05
V0

h3 ~2.1!

and the reduced minimum grain sizee

e5
«

h
. ~2.2!

A variable time scalet(t) will also be defined consider-
ing that the growth ratio,G(X,t), in dimensionless form has
a value equal to unity. This can be achieved by setting the
increase of the radius of a grain in a time intervalt(t) to be
equal to the unit lengthh

h5E
t

t1t~ t !
G~X,t8!dt8. ~2.3!

Therefore, the nuclei will grow in time stepst(t). With
this assumption, an isolated grain having a dimen-
sionless radiusj at dimensionless timek will have a radius
j11 at timek11. We have to emphasize the importance of
the definition of this variable time scale because it supports
the statistical properties of the populations on which the
model is based.
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Finally, we must define the dimensionless nucleation rate
as

i ~ t !5h3E
t

t1t~ t !
I ~X,t8!dt8. ~2.4!

It is worth mentioning that we have explicitly suppressed
the dependence oft and i on X, because we consider that
X are known functions oft, and the growing process may be
parameterized only by the variable time. Moreover, due to
the fact that we will always use unit time steps, we can write
t(tk) and i (tk) in discrete form astk and i k , respectively.

Let Nj ,k be the population of grains of average radiusr
given by

j21,r< j ~2.5!

at time tk . The transformed dimensionless volume at time
tk may be written in terms ofNj ,k as

vk5(
j
Nj ,k

4

3
p j 3. ~2.6!

Now we will define some extended populationsÑj ,k in
Avrami’s sense, that is to say, those populations obtained
while all the grains grow in isolation.

The number of nuclei which appear in a unit time step is
different if we are considering the actual or the extended
populations. Actual grains can only appear in the untrans-
formed volume and then

Nnew~k!5 i k~v02vk!, ~2.7!

whereas the extended populations do not have this restric-
tion, so

Ñnew~k!5 i kv0 . ~2.8!

We base this statement on isotropic considerations. Each
grain belonging to the extended populations grows as if it
were completely isolated, and therefore does not use physical
space. Consequently, a new nucleus can effectively appear
inside the volume of any preexistent extended grain. On this
point, we explicitly follow KJMA and leave aside the hy-
potheses of Ref. 6.

Accordingly with the previous assumptions, the appearing
nuclei will belong to the populationsNe,k11 and Ñe,k11 .
Simultaneously, the preexisting grains are growing. The evo-
lution of the extended populations can be written as

Ñe,k115 i kv0 ,
~2.9!

Ñj11,k115Ñj ,k , j.e,

considering that in our reduced system of variables, the
growth rate is equal to unity.

To write similar equations for the evolution of the actual
transformed populations we must include the fact that some
grains of each population will grow at a reduced speed due to
collisions with neighboring grains. Due to this, only a frac-
tion ak of each population will reach a radius large enough
to migrate to the immediate population, so we have

Ne,k115~12ak!Ne,k1 i k~v02vk!,
~2.10!

Nj11,k115~12ak!Nj11,k1akNj ,k , j.e.

The introduction of the parameterak is the main point of
the model.ak is the probability that a grain has in its neigh-
borhood sufficient untransformed volume to increase its ra-
dius. For this reason we have indexeda on k, because ob-
viously a depends on time, but not on the grain radius
because due to isotropic considerations the probability of
finding untransformed volume is the same at each point of
the control volumev0 .

The physical meaning ofak is related to the mean growth
rateG(tk) of the grains. Axe and Yamada

18 have shown that
it is possible to obtain approximate autocorrelation functions
by integratingG(tk). They observe, however, that the reason
why this method gives inaccurate results is thatG(tk) do not
correspond to any particular grain. In factG(tk) is a statis-
tical value, andmust betreated as a statistical property. So in
our model the probabilityak is used in place of the mean
growth rateG(tk).

The above set of equations would offer us an iterative
method for determining the populationsNj ,k , provided that
the value ofak could be determined. This can be achieved
by defining the extended volume in Avrami’s sense—the
volume that the grains would occupy if they were isolated—
as

ṽ k5(
j
Ñ j ,k

4

3
p j 3 ~2.11!

and imposing that the transformed and extended volumes
satisfy Avrami’s relationship—Eq.~1.1!—at each iteration,
which is written in our model as

vk112vk21

ṽk112 ṽk21

5
v02vk
v0

. ~2.12!

It is interesting to notice that none of these equations de-
pend on the chosen value ofv0 , as it is only used to deter-
mine the transformed volume fraction. Therefore, the evolu-
tion of the grain-size population can be simulated iteratively
by successive computation of the system of Eqs.~2.9!,
~2.10!, and~2.12!, using an arbitrary value forv0 . It is also
useful to define specific populations

nj ,k5Nj ,k /v0 , ~2.13!

which are independent of the valuev0 used in the calcula-
tions.

The computation of the model is performed iteratively.
The initial conditions of the populations are

nj ,050, j51,M ,

~2.14!

ñ j ,050, j51,M ,

whereM is the arbitrarily large number of populations simu-
lated. At time stepk, Eqs. ~2.9! are computed giving the
extended populations at timek11. In fact, only the first
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k1e extended populations are nonzero at timek; this means
that the numberM of simulated populations must be larger
thank1e or, more suitably, that the model can be integrated
only while k,M2e.

Secondly, Eqs.~2.10! must be evaluated in order to obtain
the true populations, but the value ofak is still unknown. It
is determined self-consistently by imposing the validity of
~2.12!. The first trial is performed by settingak5ak21 , ob-
taining estimated values ofnj ,k11 , and thusVk11 . The true
value ofak is then determined by a Newton-Rapson method
to an accuracy of 10210. The process is repeated until the
untransformed volume fraction becomes negligible, typically
1023.

Under the above conditions computer time and memory
storage needed for the integration are negligible. Due to its
flexibility, it is possible to obtain the grain-size distribution
as a function of time for any nucleation process, provided
that the dependence ofG(X,t) and I (X,t) is previously
known. For the simplest case, with constantG(X,t) and
I (X,t), the time steptk and the reduced nucleation ratei k
are also constant.

B. Comparison with a Monte Carlo simulation

We have tested the validity of the model presented against
a Monte Carlo simulation in the simplest case of constant
G(X,t) and I (X,t). The nucleation sites are chosen ran-
domly and the subsequent constant-speed growth of the nu-
clei is stopped only by collision with neighboring grains.
This was performed in a 2563 lattice with periodic boundary
conditions. In order to obtain acceptable statistics the simu-
lation was performed 32 times and the populations obtained
were averaged. On an HP9000/720 workstation the whole
process consumed about 10 h of CPU time and 40 Mb of
RAM storage for the chosen values of the parameters.

Figure 1 shows the dependence of volume fraction on
time for i5105 and e51, showing an excellent agreement
between our model and the Monte Carlo simulation. The
value ofe was chosen equal to unity due to the limitations of
the Monte Carlo procedure; in fact with greater values ofe
the volume occupied by the nuclei just after nucleation is an

appreciable fraction of the total lattice volume, so Monte
Carlo results are affected by the lattice dimensions. The only
way to solve this problem is to increase the size of the lattice,
but then the amount of RAM storage needed becomes pro-
hibitive.

It is important to notice that the volume fraction calcu-
lated by the Monte Carlo method coincides with the integra-
tion of the KJMA equation—Eq.~1.2!—within an accuracy
of 1023, which confirms the validity of our assumption in
Eq. ~2.8!.

Figure 2 shows the bulk grain-size distribution in both
cases for several different transformed volume fractions;
again the agreement between the two methods is excellent. It
is important to notice that the scale used for the volume
populations is the same for both methods, showing that the

FIG. 1. Transformed volume fraction versus time fori5105 and
e51 measured in the Monte Carlo simulation~dots! and computed
from the statistical model~continuous line!.

FIG. 2. Bulk grain-size distribution measured in the Monte
Carlo simulation~black bars! and computed from the statistical
model ~white bars! for transformed volume fractions:~a! 5%, ~b!
20%, ~c! 40%, ~d! 60%, ~e! 80%, and~f! 95%. Vertical scale is the
same in all the plots.
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statistical model is quantitatively exact. Therefore, our as-
sumption that the KJMA theory in differential form is appli-
cable not only to the whole transformed volume but also to
each grain-size population is correct.

III. RELATIONSHIP WITH MEASURED
SURFACE POPULATIONS

The final goal of our work is to offer a tool which allows
us to compare the statistical predictions with results obtained
from image analysis of experimental data obtained by any
microscopic technique. In the case of SEM analysis and also
of TEM analysis of a negligible thickness sample, the obser-
vation of the sample is performed over a surface cut. Al-
though it is well known that the total surface and volume
fraction of the transformed phase are the same,25 this equal-
ity is not preserved for each population, thus giving different
bulk and surface grain-size distributions. In other words, we
will not observe the actual populations but their surface
tracks. This problem has been studied by different authors
showing that the surface distribution obtained is highly de-
pendent on the shape of the individual grains. In our model
the grains are assumed to be always spherical, a situation
which was studied by Saltykov.26

A grain will be cut at an unknown random distancey
from its center, so we have to average between all the pos-
sibilities in order to obtain the true grain-size distribution.

Let us study a grain of radiusR which is cut by a plane;
due to symmetry the probability of cutting the grain through
the upper half sphere is the same as through the lower half,
and so it is sufficient to calculate the average radius of the
circle obtained when cutting the upper half sphere. In par-
ticular, this means that a grain whose center is at a distance
d over the cutting plane shows the same section as one
whose center is at the same distanced below the cutting
plane.

Let y be the distance between the cutting plane and the
center of the grain; therefore, the radius of the resulting
circle r will satisfy

r5AR22y2, ~3.1!

y being a random variable, with constant probability density
p(y),

p~y!5
1

R
~3.2!

and by imposing the condition of probability conservation

p~y!dy5p~r !dr, ~3.3!

we can determine the probability density functionp(r )

p~r !5p~y!U dydr U5 1

RU dydr U. ~3.4!

The probability of having a value ofr betweenr 1 and
r 2 is

p~r 1<r<r 2!5E
r1

r21

RU dydr Udr5 1

R
uy~r 2!2y~r 1!u

5
1

RUAR22r 2
22AR22r 1

2U. ~3.5!

We must discretize this probability because our popula-
tions are discrete, so writingr 15r21 andr 25r we have

p~r21<r<r !5p1~r ,R!5
1

R
~AR22~r21!22AR22r 2!.

~3.6!

To obtain the observed grain distributionNj ,k
l of radius

j due to the populationnl ,k we must multiplyp1(r ,R) by the
probability of cutting any of the grains of this population.
This probability is the product of the value ofnl ,k , the di-
ameter of the population 2l and the surfaceS of the sample
considered, so we have

Nj ,k
l 52lSnl ,kp1~ j ,l !52S~Al 22~ j21!22Al 22 j 2!nl ,k

~3.7!

and the observed population of radiusj is obtained by adding
Nj ,k
l over all the possible values ofl

Nj ,k52S(
l5 j

`

~Al 22~ j21!22Al 22 j 2!nl ,k . ~3.8!

As the actual shape of the grains is not spherical, Eq.~3.8!
is only an approximation whose validity must be tested by
comparison with the Monte Carlo simulation. Therefore, Eq.
~3.8! has been applied to the populations obtained with our
model, and compared with the average grain-size distribution
determined over a surface cut in the Monte Carlo simulation.
In order to obtain a reasonable statistic for each grain popu-
lation, 10 planes were randomly chosen in each Monte Carlo
simulation and the size distribution was determined for each
of them. Figure 3 shows an example of one of the chosen
planes. In this calculation two assumptions were taken. First
we did not join contiguous grains, thus assuming that the
total number of grains remain unchanged. Second, aneffec-
tive radius r was given to each grain, corresponding to a
circle of equivalent surfaceSe , that is

r5ASe
p
. ~3.9!

Figure 4 shows the comparison between the measured
~Monte Carlo! and computed~statistical! resulting distribu-
tions. For the different values of the transformed volume
fraction, and again using the same scale for both populations,
the quantitative agreement is excellent. The main difference
is that small grain-size populations are slightly underesti-
mated in the statistical model due to the fact that grains are
not spherical, as considered in Eq.~3.8!.

The shape of the distributions obtained agrees with the
highly accurate TEM experimentally measured microstruc-
ture of a partially crystallized FINEMET material.24
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IV. APPLICATIONS

The statistical model presented here allows us to explore a
wide range of parameters and to compare the results with
experimentally measured grain-size distributions, thus deter-
mining indirectly the value of the interesting kinetic param-
eters. Next, we will present the results of the integrations of
the statistical model under different kinetic conditions.

A. Constant nucleation rate

The transformation at a constant nucleation rate corre-
sponds to a physical situation that is difficult to obtain, be-
cause the desired constant conditions usually need some time
to be set up and the effect of this transient procedure cannot
be ignored. However, it can be used as a test by comparing
with the general results obtained by existing theories.

Figure 5 shows the bulk grain-size distribution at increas-
ing transformed volume fractions fore51 and three values

of the nucleation ratei . The shape of the distributions after
adequate scaling is very close, showing the expected univer-
sal behavior.18 The natural length and time scales for this
system arehn5(I /G)21/4 and tn5(IG3)21/4, which indi-
cate that the average grain-size should scale asI21/4. The
average radius obtained has been fitted to a power law
^r &5kib in which k depends on the transformed volume
fraction, giving a value ofb520.2445 with a coefficient of
determination of 0.9997, and thus showing excellent agree-
ment with the above statement.

The main differences between the three plots in Fig. 5 are
in the shape of the grain-size distribution at large radius.
Larger dispersion around the mean values is obtained for
decreasing nucleation ratios due to the fact that grains are
growing for long periods, thus allowing larger dispersion
around the mean value for each population.

FIG. 3. Randomly chosen section of a Monte Carlo simulation,
equivalent to a SEM micrograph, for transformed volume fractions:
~a! 5%, ~b! 20%, ~c! 40%, ~d! 60%, ~e! 80%, and~f! 95%. Grains
are shown in dark and untransformed volume in white.

FIG. 4. Average surface grain-size distribution measured in the
Monte Carlo simulation and computed from the statistical model
and Eq.~3.8!. Transformed volume fractions are~a! 5%, ~b! 20%,
~c! 40%, ~d! 60%, ~e! 80%, and~f! 95%.
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Figure 6 shows the dependence of the grain-size distribu-
tion on e; now the width of the grain-size distribution be-
comes smaller ase increases, due to the restriction of the
whole volume. This figure shows that for a given value of
I the statistical method may give inaccurate results if the
chosen value forh is too small in relation with«.

The results obtained with this method must be interpreted
with care, due to the dimensionless parameters employed.
Thus, ash is used in the definition of the reduced nucleation
rate i , a change in the value ofe in a specific problem in-
volves an implicit change in the value ofi . Moreover, the
chosen value ofh establishes the uncertainty in the determi-
nation of the critical nucleation radiuse.

B. Variable nucleation rate

The potential of the statistical model presented here is that
a more realistic procedure for grain development may be
easily analyzed. The dependence ofI andG in any macro-
scopic variable dependent on time may be introduced by
determining the value ofi (t) and the appropriate time scale
for modeling the growth process. As an example of the ap-
plicability of the statistical model, we have studied a heat
treatment of a typical amorphous material which undergoes a
nanocrystalline structure in a selected range of tempera-
tures.27 The kinetic parameters of the material are shown in
Fig. 7.

The treatment considered consists of a constant heating
rate from room temperature~300 K! to 780 K and a subse-

quent constant cooling rate again to room temperature. We
have studied two possible processes: the first, labeled~a!,
heating at a constant rate of 1 K s21 and cooling at a rate of
0.2 K s21; and the opposite to it, labeled~b!, heating at a
constant rate of 0.2 K s21 and cooling at a rate of
1 K s21. The values chosen forh and« were 1 and 5 nm,
respectively.

The first difference between the two procedures arises
from the fact that the crystallized volume fraction is different

FIG. 5. Grain-size distributions obtained withe51 and ~a!
I51025, ~b! I51027, and ~c! I51029, plotted for transformed
volume fractions of 5%, 20%, 40%, 60%, 80%, and 95%. The solid
line in the plots corresponds to the lower volume fraction.

FIG. 6. Grain-size distributions obtained withI51025 and ~a!
e51, ~b! e55, and~c! e510, plotted for transformed volume frac-
tions of 5%, 20%, 40%, 60%, 80%, and 95%. The solid line in the
plots corresponds to the lower volume fraction.

FIG. 7. Logarithmic plot ofI (T) ~continuous line! andG(T)
~dashed line! used in Sec. IV B, after Ref. 27.
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after the two treatments. The computed crystallized volume
fractions are 66.0% and 62.1%, respectively. Moreover, the
final grain-size distribution is different in the two cases, as
can be seen in Fig. 8: treatment~a! results in an average
grain-size of 18.6 nm, while treatment~b! gives an average
grain-size of 18.0 nm, with a 3% difference. Finally, the
shape of the two grain-size distributions reflects the impor-
tance of the thermal history, because nucleation must pre-
cede any crystal growth.

The calculated surface grain-size distributions are shown
in Fig. 9. Differences are also visible here, although they are
less evident due to the fact that each bulk population contrib-
utes to all surface populations of a smaller radius.

V. CONCLUSIONS

A mean field model for evaluating grain-size populations
of a completely degenerated system with a nucleation and
growth kinetics has been developed. The main assumptions
are the same as those established by the KJMA model for
isotropic growth, considering that new nuclei can only ap-
pear and grow in the untransformed volume, whereas this
restriction is not imposed on the extended populations. The
differential form of the KJMA equation is applied in order to
determine the average fraction of growing grains as a func-
tion of time. This parameter is used to calculate the evolution
of each grain-size population.

A Monte Carlo simulation has been performed and some
pictures of the microstructure obtained are shown. The grain-
size populations and the transformed volume fractions calcu-
lated by this simulation completely agree with the ones ob-
tained by the statistical model using the same kinetic
parameters, confirming the applicability of the KJMA model
for the discrete populations. As a consequence, the statistical

model predicts the final specific grain-size populations from
given kinetic parameters.

The practical importance of the statistical model pre-
sented here comes from the fact that even in the simplest
case of constant nucleation and growth rates its computation
time is a negligible fraction of the time needed by an equiva-
lent Monte Carlo simulation. Moreover, it allows complex
processes to be studied due to its ability to include variable
nucleation and growth rates without increasing the comput-
ing time. The spatial correlation functions are easily calcu-
lable, thus allowing comparison of the results obtained with
experimental data from x-ray-diffraction analysis and similar
techniques.

Grain-size populations measured experimentally by any
direct imaging technique are different from the calculated
ones because of the geometry of the sample preparation. A
method for calculating the actual populations from experi-
mentally measured ones is also used. Therefore, in the
present study a method for evaluating the kinetic
parameters—nucleation and growth rates—directly from the
measured grain-size populations is given.

The definition of a reduced variable time scale allows the
evolution of grain populations to be modeled under varying
external conditions, thus offering a powerful method for
simulating true grain growth protocols.
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