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Evaluation of time-dependent grain-size populations for nucleation and growth kinetics
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A theoretical calculation of time-dependent grain-size populations of an emerging phase driven by nucle-
ation and growth kinetics is performed. A statistioaan-fieldnodel is presented for a completely degener-
ated system, based on the same assumptions as the Kolmogorov-Johnson—Mehl¢{KyM#Al model, that
is to say, randomly distributed active nucleation sites which grow isotropically and collision resulting in a
growth stop at the interface. Dependence of the kinetic param@tecteation and growth ratesn macro-
scopic and/or microscopic variables and on time is considered. The differential form of the KIMA model is
applied to each grain-size population, providing a detailed microstructure development. As a result of this
calculation, grain-size distributions are obtained. The validity of the model is tested by comparing the grain-
size distributions obtained for a kinetically controlled process with a numerical Monte Carlo simulation.
Imaging of the microstructure obtained by Monte Carlo is also shown. Finally, the model is computed with
different kinetic conditions and the results are preseri®d163-18206)06929-9

[. INTRODUCTION grow to form grains, and during the growing process may
collide with other grains of neighboring sites, resulting in a
Most of the technologically interesting new materials aregrowth stop at the interface. To summarize, let us define a
in a nonequilibrium state of condensed matter and their mecontrol volumeV, in which the growing phase occupies a
chanical, magnetic, electric, thermal, and superconductingolume V(t); the transformed volume fraction is then
properties are essentially controlled by the presence of smafi(X,t) =V(t)/Vq. Avrami introduced the concept of ex-
particles. An optimized and controlled microstructure maytended volumeV(t), as the volume that the growing grains
be obtained by several methods, such as precipitation of would occupy if they were growing in isolation, establishing
secondary phase from metastable systems under controlléat
conditions(i.e., temperature, pressjy®r vapor deposition.

Therefore, the emerging microstructure depends not only on dv Vy—V
i iti . — = . 1.9
the chemical composition but also on the mode of prepara dv Vo

tion and the previous history of the materials.
The knowledge of kinetics leading to a well defined mi-

. . X the whole volume. By integrating this equation we obtain
by nucleation and growth in most cases. Fluctuations pro- y 9 9 d

mote cluster formation and dissolution until stable nuclei are ~
formed, and further growth will give the final microstructure. IN[1— &(X,t)]= —V _ (1.2
Transforming systems may be characterized by the degen- Vo
eracy parameterp(), which acounts for the number of dis-
tinct degenerate stable states into which the metastable phaseAlthough some corrections to this approach have been
transforms with equal probability. Nucleation may be homo-suggested, the KIMA theory is widely accepted and has
geneous or heterogeneous, and time, temperature, or pressb@en generalized for grains of arbitrary shdpeThe main
dependent, giving a nucleation ratel ¢X,t), whereX isany  reason for this is that the theory itself is based only on sta-
of the macroscopic variables which may influence the nucletistical considerations, as has been recently pointed out by
ation rate. Further growth of the nuclei may also be homoCahn®®
geneous, heterogeneous, diffusion controlled and also time, The transformed volume fraction may be measured from
temperature, pressure, and grain-size dependent, giving differential scanning calorimetryDSC) analysis, based on
growth rate ofG(X,t). the construction off-T-T (time-temperature-transformatipn
Nucleation and growth kinetics in an infinite specimen,curves’™® and T-HR-T (temperature—heating rate—
which results in the calculation of the volume fraction trans-transformationp (Refs. 13—1% curves, or by other tech-
formed at a given time, is well settled by Kolmogorbv, niques. However, only the dependencelofnd G on the
Johnson and MeHl,and Avrami~> (KJMA). This theory controlled macroscopic parameters may be deduced from
considers randomly distributed active nucleation sites whictthese measurements.
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Further work on the kinetics of first order phase transi-of the KIMA theory. Theoretical dependence on any of the
tions has been devoted to the characterization and evaluationacroscopic and microscopic variables of the nucleation and
of correlation functions and their relationship with time- growth rates is considered in the model. The model is less
dependent diffraction studies. Sekimttevaluated an exact restrictive than previous wotkand the obtained results can
expression of the two-point correlation functions for arbi- be used in the calculation of the correlation functions follow-
trary values of the degeneration paramatemprovided that ing Ref. 16. o _
the grain-size distribution is known, which is also related to_ The validity of the statistical model is tested by compar-
the crystallized fraction. This correlation function has beeriNd the resulting grain-size populations with a Monte Carlo
related to the probability of magnetization greater than zergimulation for a kinetically controlled process. Some ex-
in a kinetic Ising modet’ a_mples_ of the mlcrost_ructure obtalne_d by the Monte Ca_rlo

The evaluation of the correlation functions in this systemSimulation are shown in a format equivalent to an SEM pic-
has usually been performed by means of the time-con&re. Fujally, grain-size distributions obtained under constant
method. Axe and Yamadhobtained exact expressions of and_ varlable. nucleatlpn and growth rates are presented, and
the autocorrelation function in the case of a one-dimensiondf€ir properties are discussed.
system withp—o and constant and G. In this case the
universal grain-size distribution is obtained for . How- Il. MODEL
ever, due to the lack of isotropy of the one-dimensional case,
the results obtained here cannot be generalized to higher di-
mensions. Exact formal expressions of the correlation func- The evolution of grain populations with simultaneous
tions for a multiple-degenerate ground stataidimensions hucleation and growth will be modeled in order to obtain
were deduced by Ohtet al® under certain restrictions; the grain-size distributions. In the proposed model the grains
most important of these is the fact that the growing rate musgrow in a control volumeV,. The actual shape of this vol-
not be an increasing function of time. ume is not relevant, and for the sake of simplicity we will

Axe and Yamada also calculated the dependence of thassume that it is cubic. We will assume th&j is large
x-ray-diffraction peak shape on the average rafi(f from  enough, that is to sayg is large compared with the average
scaling relations, finding that the peak intensity depends oslistance between graii,=(G/1)** in three dimension¥’
R(t)°, while the linewidth depends dR(t) “*. These depen- This ensures that the system contains a sufficiently large
dences indicate the main difficulties encountered in thenumber of grains to be self-averaging.
evaluation of time-dependent microstructure development We will consider thate is the initial radius of a nuclei.
based on x-ray-diffraction peak broadening analysis. Next, let us define a typical length related to the resolution

There is a substantial difference between the two limitsavailable when looking at the sample. Therefore, we will
usually studied, namely the nondegenerate casel() and suppose that a grain of radiusis distinguishable from an-
the absolutely degenerate cage{). In the nondegenerate other of radius + 7.
case the notion of individual grains becomes nonsense as the In order to work with dimensionless variables, a reduced
transformed volume fraction increases, while in the degenercoordinate system will be defined usimg Therefore, a re-
ate case grains are distinguishable even after the transformduced control volume will be defined as
tion of the complete volume. Although the correlation func-
tions can be evaluated in both cases, it is clear that they are Vo
much more useful in the nondegenerate than in the degener- UO_F 2.1
ate case, essentially because the concept of grain-size distri- . o
bution is lost in the nondegenerate case. This is the situatioAnd the reduced minimum grain size
in the study of ferromagnetic switchirf§; ?*where the influ-
ence of the finite size of the nuclei has also been obsétved. e= £
However, in the degenerate case the measure of the micro- ua
structure developed at various stages of the phase transfor- ) . . i )
mation may also make it possible to determine the depen- A variable time sca!ea-(t) will also be defined consider-
dence of the kinetic parameters on both microscopic andnd that the growth ratio(X,t), in dimensionless form has
macroscopic variables. Several techniques have also been devalue equal to unity. This can be achieved by setting the
veloped for obtaining the microstructure, either by obtainingincrease of the radius of a grain in a time intervl) to be
images[i.e., transmission and scanning electron microscopyedual to the unit lengthy
(TEM and SEM],?* or by indirect measuremefite., small
angle scattering of x rays and neutrd@AXS and SANS). = JHT(OG(X tHdt’ 2.3

This paper presents a theoretical calculation of time- t ' ' '
dependent grain-size populations in a kinetically controlled
process of nucleation and growth. The model is based on the Therefore, the nuclei will grow in time stepgt). With
same assumptions as the KIMA model, that is to say, rarthis assumption, an isolated grain having a dimen-
domly distributed active nucleation sites which grow isotro-sionless radiug at dimensionless timk will have a radius
pically and collide, resulting in a growth stop at the interface.j +1 at timek+ 1. We have to emphasize the importance of
The model calculates the grain-size populations as a functiotine definition of this variable time scale because it supports
of 1(X,t) andG(X,t) by defining the mean fraction of grow- the statistical properties of the populations on which the
ing grains, and in this sense it is a kind of detailed integratiormodel is based.

A. Theoretical description

2.2
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Finally, we must define the dimensionless nucleation rate Nokr1=(1—a N Fi(vo—vy),
as (2.10

i(t):773ft+7-(t)|(x,t/)dt,. (24) Nj+1,k+1:(1_ak)Nj+1,k+akNj,k! j>E'
t The introduction of the parametey; is the main point of
It is worth mentioning that we have explicitly suppressedthe model.e is the probability that a grain has in its neigh-
the dependence of andi on X, because we consider that borhood sufficient untransformed volume to increase its ra-
X are known functions of, and the growing process may be dius. For this reason we have indexedon k, because ob-
parameterized only by the variable time. Moreover, due to/iously @ depends on time, but not on the grain radius
the fact that we will always use unit time steps, we can writébecause due to isotropic considerations the probability of
() andi(t,) in discrete form as andi,, respectively.  finding untransformed volume is the same at each point of
Let N; , be the population of grains of average radius the control volume.
given by The physical meaning af, is related to the mean growth
rateG(t,) of the grains. Axe and Yamatfshave shown that
j—1<r<j (2.5 it is possible to obtain approximate autocorrelation functions
at timet,. The transformed dimensionless volume at timePY INtegratingG(ty). They observe, however, that the reason
t, may be written in terms ol , as why this method gives inaccurate results is G4t,) do not
' correspond to any particular grain. In fa@{t,) is a statis-
tical value, andnust betreated as a statistical property. So in

Uk:; Nj,k§7713- (26 our model the probabilityy, is used in place of the mean
growth rateG(ty).
Now we will define some extended populatiorﬁ§,k in The above set _of_ equations WOL_JId offer us an iterative
Avrami’s sense, that is to say, those populations obtainefhethod for determining the populatioh§ \, provided that
while all the grains grow in isolation. the value ofe, could be determined. This can be achieved

The number of nuclei which appear in a unit time step isPy defining the extended volume in Avrami's sense—the
different if we are considering the actual or the extended/olume that the grains would occupy if they were isolated—
populations. Actual grains can only appear in the untransas
formed volume and then

. =S N (2.1
Npew(K) =1(vo—vi), 2.7 ko4 Tikg '
whereas the extended populations do not have this restrignd imposing that the transformed and extended volumes
tion, so satisfy Avrami’s relationship—Eq(1.1)—at each iteration,
~ ) which is written in our model as
Npew(K) =ixvo- (2.9
We base this statement on isotropic considerations. Each o (.12
grain belonging to the extended populations grows as if it Uk+17 Vk-1 Vo

were completely isolated, and therefore does not use physical ) ) )
Space_ Consequenﬂy, a new nucleus can effective'y appear Itis |nterest|ng to notice that none of these equa“ons de-

inside the volume of any preexistent extended grain. On thi§end on the chosen value 0§, as it is only used to deter-
point, we explicitly follow KIMA and leave aside the hy- Mine the transformed volume fraction. Therefore, the evolu-

potheses of Ref. 6. tion of the grain-size population can be simulated iteratively
Accordingly with the previous assumptions, the appearind®y successive computation of the system of EG59),
nuclei will belong to the populationdl, ,; and N, ;. (2.10, and(2.12, using an arbitrary value far,. It is also

Simultaneously, the preexisting grains are growing. The evotSeful to define specific populations
lution of the extended populations can be written as

nj,k:Nj'k/l)o, (213
Nek+1= k0o, which are independent of the valwg used in the calcula-
(2.9  tions.
- - ] The computation of the model is performed iteratively.
Njtik+1=Njk, J>e€ The initial conditions of the populations are
considering that in our reduced system of variables, the nio=0, j=1M,

growth rate is equal to unity.
To write similar equations for the evolution of the actual (2.14

transformed populations we must include the fact that some A =0, j=1M

grains of each population will grow at a reduced speed due to b Y

collisions with neighboring grains. Due to this, only a frac- whereM is the arbitrarily large number of populations simu-

tion «, of each population will reach a radius large enoughlated. At time stepk, Egs. (2.9 are computed giving the

to migrate to the immediate population, so we have extended populations at timle+1. In fact, only the first
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FIG. 1. Transformed volume fraction versus time ifer10° and
e=1 measured in the Monte Carlo simulati@otg and computed
from the statistical moddlcontinuous ling

(d)

k+ e extended populations are nonzero at tikpéhis means
that the numbeM of simulated populations must be larger 7
thank+ e or, more suitably, that the model can be integrated
only while k<M —e. L
Secondly, Eqs(2.10 must be evaluated in order to obtain — L orbeb b (e)
the true populations, but the value @f is still unknown. It | (
is determined self-consistently by imposing the validity of
(2.12. The first trial is performed by setting,= a,_,, ob-
taining estimated values of; ;. ,, and thusV,, ;. The true
value of ¢ is then determined by a Newton-Rapson method
to an accuracy of 10'°. The process is repeated until the — Fornbaher
untransformed volume fraction becomes negligible, typically

|
h

Number of grains
|

Under the above conditions computer time and memory
storage needed for the integration are negligible. Due to its
flexibility, it is possible to obtain the grain-size distribution
as a function of time for any nucleation process, provided !

that the dependence d&(X,t) and I(X,t) is previously 0 10 20

known. For the simplest case, with constaa(X,t) and m

[(X,t), the time stepr, and the reduced nucleation rdie o o _

are also constant. FIG. 2. Bulk grain-size distribution measured in the Monte

Carlo simulation(black bar$ and computed from the statistical
model (white bar$ for transformed volume fractionsa) 5%, (b)
B. Comparison with a Monte Carlo simulation 20%, (c) 40%, (d) 60%, (e) 80%, and(f) 95%. Vertical scale is the
We have tested the validity of the model presented againgi@me in all the plots.
a Monte Carlo simulation in the simplest case of constant
G(X,t) and I(X,t). The nucleation sites are chosen ran-appreciable fraction of the total lattice volume, so Monte
domly and the subsequent constant-speed growth of the niGarlo results are affected by the lattice dimensions. The only
clei is stopped only by collision with neighboring grains. way to solve this problem is to increase the size of the lattice,
This was performed in a 286attice with periodic boundary but then the amount of RAM storage needed becomes pro-
conditions. In order to obtain acceptable statistics the simuhibitive.
lation was performed 32 times and the populations obtained It is important to notice that the volume fraction calcu-
were averaged. On an HP9000/720 workstation the wholéated by the Monte Carlo method coincides with the integra-
process consumed about 10 h of CPU time and 40 Mb ofion of the KIMA equation—Eq(1.2—within an accuracy
RAM storage for the chosen values of the parameters. of 102, which confirms the validity of our assumption in
Figure 1 shows the dependence of volume fraction orkq. (2.8).

time for i=10° and e=1, showing an excellent agreement  Figure 2 shows the bulk grain-size distribution in both
between our model and the Monte Carlo simulation. Thecases for several different transformed volume fractions;
value ofe was chosen equal to unity due to the limitations ofagain the agreement between the two methods is excellent. It
the Monte Carlo procedure; in fact with greater values of is important to notice that the scale used for the volume
the volume occupied by the nuclei just after nucleation is arpopulations is the same for both methods, showing that the
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statistical model is quantitatively exact. Therefore, our as-
sumption that the KIMA theory in differential form is appli- p(f1$f$r2):f
r

cable not only to the whole transformed volume but also to
each grain-size population is correct.

r21|dy 1
dr= §|Y(r2)_Y(r1)|

R dr

1 |
=§‘\/R2—r§—\/R2—r§’. (3.5

IIl. RELATIONSHIP WITH MEASURED
SURFACE POPULATIONS We must discretize this probability because our popula-

. . . tions are discrete, so writingy=r—1 andr,=r we have
The final goal of our work is to offer a tool which allows % 2

us to compare the statistical predictions with results obtained 1
from image analysis of experimental data obtained by anyp(r—1<p<r)=p,(r,R)= ﬁ(\/RZ—(r—l)z— JRZ=r2),
microscopic technique. In the case of SEM analysis and also
of TEM analysis of a negligible thickness sample, the obser- 3.6
vation of the sample is performed over a surface cut. Al- ) S ]
though it is well known that the total surface and volume TO obtain the observed grain distributiod]  of radius
fraction of the transformed phase are the s&nthjs equal- | due to the population; , we must multiplyp,(r,R) by the
ity is not preserved for each population, thus giving differentProbability of cutting any of the grains of this population.
bulk and surface grain-size distributions. In other words, wel his probability is the product of the value of y, the di-
will not observe the actual populations but their surfaceameter of the populationl2zand the surfac& of the sample
tracks. This problem has been studied by different authorgonsidered, so we have
showing that the surface distribution obtained is highly de-
pendent on the shape of the individual grains. In our model Nj ,=21Sn yp;(j,1)=2S(V12=(j—1)>= V12— }?)n;
the grains are assumed to be always spherical, a situation 3.7
which was studied by Saltykd¥.
A grain will be cut at an unknown random distange and the observed population of radiuis obtained by adding
from its center, so we have to average between all the podV] x over all the possible values of
sibilities in order to obtain the true grain-size distribution.
Let us study a grain of radiuR which is cut by a plane; ~
due to symmetry the probability of cutting the grain through Nj,kZZSZ (VP=(-D*=17=}H)n;,. (39
the upper half sphere is the same as through the lower half, =

and so it is sufficient to calculate the average radius of the As th [sh fh . herical
circle obtained when cutting the upper half sphere. In par- s the actual shape of the grains is not spherical (E4)

ticular, this means that a grain whose center is at a distandg ONlY an approximation whose validity must be tested by
%)mpanson with the Monte Carlo simulation. Therefore, Eq.

6 over the cutting plane shows the same section as on 9 has b lied h lati btained with
whose center is at the same distantdelow the cutting -8 has been applie to the populations obtained with our
model, and compared with the average grain-size distribution

lane. . . . .
P hfetermlned over a surface cut in the Monte Carlo simulation.

Let y be the distance between the cutting plane and t . L .

center of the grain; therefore, the radius of the resultin n _order to obtain a reasonable statistic for each grain popu-
circle r will satisfy a_tlon, 1_0 planes were rar)do_mly_chosen in each Monte Carlo
simulation and the size distribution was determined for each
of them. Figure 3 shows an example of one of the chosen
r=\JR*-y?, 3.9 planes. In this calculation two assumptions were taken. First
we did not join contiguous grains, thus assuming that the

y being a random variable, with constant probability densitytotal number of grains remain unchanged. Secondzféec-

p(y). tive radiusr was given to each grain, corresponding to a
circle of equivalent surfacg,, that is
1
p(Y)=5 (3.2 5
R r= f (3.9

and by imposing the condition of probability conservation
Figure 4 shows the comparison between the measured

p(y)dy=p(r)dr, (3.3 (Monte Carlg and computedstatistical resulting distribu-
tions. For the different values of the transformed volume
we can determine the probability density functiofr) fraction, and again using the same scale for both populations,

the quantitative agreement is excellent. The main difference
is that small grain-size populations are slightly underesti-
_ (3.4  mated in the statistical model due to the fact that grains are
not spherical, as considered in E§.8).
The shape of the distributions obtained agrees with the
The probability of having a value af betweenr,; and highly accurate TEM experimentally measured microstruc-
ryis ture of a partially crystallized FINEMET materi&l.

R|dr

1’dy

d
p(r)=p(y)’d—3r/
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FIG. 3. Randomly chosen section of a Monte Carlo simulation, /m
equivalent to a SEM micrograph, for transformed volume fractions:
(a) 5%, (b) 20%, (c) 40%, (d) 60%, (e) 80%, and(f) 95%. Grains FIG. 4. Average surface grain-size distribution measured in the
are shown in dark and untransformed volume in white. Monte Carlo simulation and computed from the statistical model
and Eq.(3.9). Transformed volume fractions ate) 5%, (b) 20%,
IV. APPLICATIONS (c) 40%, (d) 60%, (e) 80%, and(f) 95%.

The statistical model presented here allows us to explore & the nucleation raté. The shape of the distributions after

wide range of parameters and to compare the results Withe uate scaling is very close, showing the expected univer-
experimentally measured grain-size distributions, thus deteri—‘aI gehavioﬂg Tﬁe natuyral Ien7 th and q[ime chles for this
mining indirectly the value of the interesting kinetic param- ' 9

— —1/4 — 3\—1/4 H H i

eters. Next, we will present the results of the integrations oisyftetmh ?rt?”_(”G) a_nd T”_(IhG )Id ' mh_'gg |_r|1_(r:i]|

the statistical model under different kinetic conditions. cate that the average grain-size shoud sca - 1he
average radius obtained has been fitted to a power law

(ry=ki? in which k depends on the transformed volume
fraction, giving a value of3= —0.2445 with a coefficient of
The transformation at a constant nucleation rate corredetermination of 0.9997, and thus showing excellent agree-
sponds to a physical situation that is difficult to obtain, be-ment with the above statement.
cause the desired constant conditions usually need some time The main differences between the three plots in Fig. 5 are
to be set up and the effect of this transient procedure cannat the shape of the grain-size distribution at large radius.
be ignored. However, it can be used as a test by comparingarger dispersion around the mean values is obtained for
with the general results obtained by existing theories. decreasing nucleation ratios due to the fact that grains are
Figure 5 shows the bulk grain-size distribution at increas-growing for long periods, thus allowing larger dispersion
ing transformed volume fractions fea=1 and three values around the mean value for each population.

A. Constant nucleation rate
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FIG. 5. Grain-size distributions obtained wid=1 and (a) . . . . 5
=105, (b) 1=107, and (c) 1=10"%, plotted for transformed FIG. 6. Grain-size distributions obtained with- 10~° and (a)

. . €=1,(b) e=5, and(c) e=10, plotted for transformed volume frac-
volume fractions of 5%, 20%, 40%, 60%, 80%, and 95%. The solid; " 'so, “3005, 409, 60%, 80%, and 95%. The solid line in the
line in the plots corresponds to the lower volume fraction. ’ ' ’ ' ’ L

plots corresponds to the lower volume fraction.

Figure 6 shows the dependence of the grain-size distribu-
tion on €; now the width of the grain-size distribution be- quent constant cooling rate again to room temperature. We
comes smaller ag increases, due to the restriction of the have studied two possible processes: the first, lab&gd
whole volume. This figure shows that for a given value ofheating at a constant rate of 1 K5and cooling at a rate of
| the statistical method may give inaccurate results if the0.2 K s™%; and the opposite to it, labele@), heating at a
chosen value for is too small in relation withe. constant rate of 0.2Ks' and cooling at a rate of
The results obtained with this method must be interpretedl K s ™. The values chosen fay ande were 1 and 5 nm,
with care, due to the dimensionless parameters employedespectively.
Thus, asy is used in the definition of the reduced nucleation The first difference between the two procedures arises
ratei, a change in the value af in a specific problem in- from the fact that the crystallized volume fraction is different
volves an implicit change in the value of Moreover, the
chosen value of; establishes the uncertainty in the determi-

nation of the critical nucleation radius L e L B o B T
B. Variable nucleation rate 10 = |

The potential of the statistical model presented here is that f: B | e
a more realistic procedure for grain development may be g §
easily analyzed. The dependencel dind G in any macro- = 9 Qe
scopic variable dependent on time may be introduced by = L -
determining the value df(t) and the appropriate time scale < 10— B S
for modeling the growth process. As an example of the ap- )
plicability of the statistical model, we have studied a heat = , -
treatment of a typical amorphous material which undergoes a ol b be v L
nanocrystalline structure in a selected range of tempera- 400 600 800 1000 1200 1400
tures?’ The kinetic parameters of the material are shown in Temperature(K)

Fig. 7.
The treatment considered consists of a constant heating FIG. 7. Logarithmic plot ofl (T) (continuous ling and G(T)
rate from room temperatur@00 K) to 780 K and a subse- (dashed lingused in Sec. IV B, after Ref. 27.
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IV B. See text for details.
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. model predicts the final specific grain-size populations from
after the two treatments. The computed crystallized volum P P g pop

. . iven kinetic parameters.
fractions are 66.0% and 62.1%, respectively. Moreover, th P

final n-size distribution is diff o th The practical importance of the statistical model pre-
inal grain-size distribution Is different in the twWo Cases, asgenieq here comes from the fact that even in the simplest
can be seen in Fig. 8: treatme(d results in an average

L ) . case of constant nucleation and growth rates its computation
grain-size of 18.6 nm, while treatme(ii) gives an average

e . ) : time is a negligible fraction of the time needed by an equiva-
- 0 . . .
grain-size of 18.0 nm, with a 3% difference. Finally, the jo¢ Monte Carlo simulation. Moreover, it allows complex
shape of the two grain-size distributions reflects the Impory,q esqes to be studied due to its ability to include variable

tance of the thermal history, because nucleation must préy,cieation and growth rates without increasing the comput-

cec_ireh any Icrylsttaldgrom;th. in-size distributi h ing time. The spatial correlation functions are easily calcu-
€ calculated surtace grain-size distributions areé Showihp e 15 allowing comparison of the results obtained with

in Fig. 9. Differences are also visible here, although they are,, o rimental data from x-ray-diffraction analysis and similar
less evident due to the fact that each bulk population contrlbt—

tes to all surf lations of ller radi echniques.
utes 1o all surface popuiations of a smalfler radius. Grain-size populations measured experimentally by any

direct imaging technique are different from the calculated
V. CONCLUSIONS ones because of the geometry of the sample preparation. A

A mean field model for evaluating grain-size populationsmethOd for calculating the _actual populations from ex_peri-
of a completely degenerated system with a nucleation anawentally measured ones is also used. _Therefore, n Fhe
growth kinetics has been developed. The main assumptior%resem study a T"eth"d for evaluatlng. the kinetic
are the same as those established by the KIMA model f&arameters—nuclgatlon and_growth r_ates—dlrectly from the
isotropic growth, considering that new nuclei can only ap_measured grain-size populations 1S given.
pear and grow in the untransformed volume, whereas this The_ def'”'“oﬂ of a redu_ced variable time scale allows fche
restriction is not imposed on the extended populations. ThSVOIUt'On of grain populations to be modeled under varying
differential form of the KIMA equation is applied in order to e_xternaﬂ condltlons, thus offering a powerful method for
determine the average fraction of growing grains as a func§'mUIatIng true grain growth protocols.
tion of time. This parameter is used to calculate the evolution
of each grain-size population.

A Monte Carlo simulation has been performed and some
pictures of the microstructure obtained are shown. The grain- The authors are indebted to N. Clavaguera and M.T.
size populations and the transformed volume fractions calcu€lavaguera-Mora, who suggested the subject and revised the
lated by this simulation completely agree with the ones obmanuscript, and also for many very stimulating discussions.
tained by the statistical model using the same kineticThis work was financed by DGICYT Grant No. PB94-1209,
parameters, confirming the applicability of the KIMA model UPC Grant No. PR9505, and CICYT Grant No. MAT96-
for the discrete populations. As a consequence, the statisticBb92.
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