
Conspicuous domination of polarization relaxation in kinetics
of first-order phase transitions in perovskites

Alex Gordon
Department of Mathematics and Physics, Haifa University at Oranim, 36006 Tivon, Israel

Simon Dorfman
Department of Physics, Technion-Israel Institute of Technology, 32000 Haifa, Israel

David Fuks
Materials Engineering Department, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer Sheva, Israel

~Received 28 March 1996!

We justify the application of the theory of the kink-type motion for interphase boundaries for perovskites at
first-order phase transitions and obtain a criterion for separating two mechanisms for the front motion—the
latent heat transfer and the relaxation of the order parameter. Calculations of the velocity of the interphase
boundary motion caused by latent heat transfer at ferroelectric phase transitions show the domination of
relaxation kinetics during the ferroelectric-paraelectric phase transitions in perovskites of theABO3 type. This
allows us to conclude that the dynamics of interphase boundaries in perovskites are governed by the polariza-
tion evolution.@S0163-1829~96!04130-6#

The transition from a metastable phase to a thermody-
namically stable phase takes place via fluctuations leading to
the formation of nuclei of the new phase~large-scale het-
erophase fluctuations!.1 The description of systems which
undergo a symmetry-breaking first-order phase transition
must account for the nucleation and growth processes. The
growth is associated with the propagation of interphase
boundaries separating the high-temperature parent phase
from the low-temperature product phase. In solid diffusion-
less transformations the growth may be slow enough for ob-
servation by the polarization microscope technique. In par-
ticular, in ferroelectrics sharp interphase boundaries can be
observed.2 Crystals with sharp interfaces most often have
kinetically controlled rather than diffusion-limited growth.
Usually the interphase dynamics are governed entirely by the
time evolution of the order parameter~see, e.g., Ref. 3 and
references therein!, and the temperature can be considered a
constant. Thus, the heat is assumed to be removed suffi-
ciently rapidly and no temperature change occurs as the la-
tent heat of the phase transition appears at the interphase
boundary. However, as the interface moves it acts as a heat
source with a strength proportional to the latent heat of fu-
sion and the forward rate of motion, giving rise to a leap in
the thermal gradient. The heat generated during the inter-
phase boundary motion can accelerate the interface which, in
turn, increases the heat production rate. A system involved in
this avalanchelike process can be stabilized by heat removal
via heat conductivity and heat exchange with the thermal
bath. This problem is less significant in metallic systems. If
one deals with substances which conduct heat very well, the
temperature may be treated as a constant, so no kinetic equa-
tion additional to one for the order parameter is necessary.
But for materials which do not conduct heat so well, we may
need a second equation to determine the temperature distri-
bution. The necessity to account for processes of dissipation

of energy released~or additionally absorbed! during the time
of transition has been discussed in Ref. 2.

In this paper we obtain a criterion that justifies the condi-
tions when the heat transfer effect on the interphase bound-
ary propagation has to be considered. We show here that at
first-order phase transitions in ferroelectric semiconductors
with perovskite structure the thermal conductivity is not a
controlling process and the interface movement is governed
by the kinetics of the phase transition.

The selection of the dominating process in the dynamics
of phase transition fronts inABO3 perovskites demands, first
of all, the development of the formalism for accounting for
the heat transfer influence. The heatq flowing across the
interphase boundary is

q5k•¹T•S•Dt,

where k is the thermal conductivity coefficient,¹T is the
temperature gradient,S is the square of the area of the inter-
face, andDt5DR/vT , whereDR is the change of size of the
new phase during the interface motion with a velocityvT .
This heat per unit mass is the latent heatL:
L5(k¹TDV)/(DmvT), where Dm/DV is the densityr.
Thus, the propagation rate of the phase transition front due to
latent heat transport is given by

vT5
k¹T

rL
. ~1!

Equation~1! represents the thermal balance between the heat
generated by the system during the phase transition and that
conducted away. The velocityvT is determined by the rate at
which heat is released at the advancing fronts, for example,
paraelectric-ferroelectric fronts in the case of ferroelectrics.
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The velocity of the interphase boundary movement
caused by the relaxation kinetic processv may be derived
from the time-dependent Ginzburg-Landau equation
~TGLE!.4 For a moving phase transition front the TGLE
holds at the interphase boundary provided the interphase
boundary widthD is considerably greater than the inter-
atomic distances. The TGLE cannot be solved exactly in the
three-dimensional case. Nevertheless, under the condition
that the size of clusters of the new phase inside the old one
R is much larger than the width of the interphase boundary
D, R@D, the exact solution can be obtained.3 Thus, the
theory works providedR@D@d, whered is the lattice pa-
rameter.

The relation between a critical sizeRc of the product
transformed region and the growth ratev may be found,
assuming that the spatial dependence of the polarization
P(r ) is approximately given by

P5PF at ur u<R,

P5PFA1

2 F12tanhS r2R

2D D G at R<r<R1D,

P50 at ur u>R1D, ~2!

PF
25

B

2C F11S 12
4AC

B2 D G .
HereA, B, andC are coefficients of the Ginzburg-Landau
functional~see below!, A5A8(T2T0), T0 is the temperature
stability limit of the paraelectric phase, andA8 is a constant.
Equation~2! gives a radially symmetric cluster of the nucle-
ating phase embedded in a spatially uniform, metastable
background. The profile for the front applied here is obtained
from the exact solution of the TGLE in the equilbrium limit
~see Ref. 3!. Using ~2! with boundary conditions
limr→`P50 and limr→0P5PF and integrating over volume
for R@D one obtains the free energy

F52
4pR3f ~PF!

3
1

pR2DPF
2

D
. ~3!

D is the inhomogeneity coefficient, and the free energy den-
sity functional is

f ~P!5
1

2
A~T!P22

1

4
BP41

1

6
CP6.

This means that the surface tensions5DPF
2/4D. In solids

the volume change associated with the phase transition leads
to the addition of the strain energy densityQ to the free
energy densityf , so that we have the first term in~3! as
2(4pR3/3)( f2Q). The strain energy reduces the effective
driving force of the phase transition. Clearly, nucleation will
not occur at all unlessf.Q. The latter formula reflects the
fact that at first-order phase transitions the volume and shape
change associated with the transition cause a strain energy
contribution to the free energy which can suppress the nucle-
ation process.5 According to the classical theory of nucle-
ation, the new phase nucleus whose radius corresponds to the
maximum of the free energy change is the critical nucleus
with radiusRc . Then after maximization of~3! we derive

Rc5
6D

D S U4A2BPF
2U2 12Q

PF
2 D 21

. ~4!

Combining the interface velocity expression~see Ref. 3! and
Eq. ~4! we obtain

v5
4GD

Rc
S 11

Q

DpD , ~5!

whereG is the Landau-Khalatnikov kinetic coefficient from
the TGLE, which is independent of temperature, and
Dp52s/Rc is the difference between pressures in two
phases according to the Laplace formula.4 Thus, the interface
dynamics are controlled by competition of the polarization
contribution to the free energy density and the relation be-
tween the strain energy density and the density of the energy
stored at the front.

The propagation of the interphase boundary is determined
by the kinetics of the order parameter, ifvT@v. Comparing
the expression for the velocity of the interphase boundary
mentioned above and Eq.~5! and supposing that
¹T'DT/Rc (DT is supercooling or superheating!, we ob-
tain the criterion of domination of the kinetics of polarization
over the thermal conduction-driven mechanism:

kDT

4rLGD S 1

11Q/DpD@1. ~6!

Now we can check criterion~6! for ferroelectric perovskite
semiconductors withABO3 stoichiometry. Many measure-
ments of the interphase boundary dynamics have been car-
ried out for these ferroelectrics.2 We take necessary material
parameters from the data of Ref. 6–11. The elastic coeffi-
cients forQ are taken from Ref. 12. The deformations ac-
companying the phase transformation are taken from Ref.
13: e xx 5 e yy 520.001 59,e zz 520.003 66. For esti-
mations of the strain energy the essential decrease of the
stiffness coefficientsci j caused by softening the lattice near
the phase transition should be taken into account.14 Then the
required ratio is about 53104. G should be estimated from
the slower dynamics leading to central peaks.9 They result
from the highly anharmonic terms in the free energy expres-
sions which are responsible for the formation of the product
phase.9 The nuclei near first-order phase transitions have
long lifetimes. The appearance of a long-range order is
caused by thermal hopping in the metastable states. The
width of the central peak in this case is controlled by the
time required for the formation and collapse of the clusters.
Therefore one can suppose thatG is determined by the width
of the central peak caused by nuclei of the product phase.
Their dynamics are much slower than those analyzed in Ref.
6. The central peak width is about three to four orders of
magnitude smaller than the width of other modes. This leads
to the value ofG about 107 Hz.9 For G used in Ref. 6
(G51.6131010 sec21) the criterion ~6! is also fulfilled.
Thus, after inserting the presented experimental values into
~6! we conclude that the heat transfer process is more rapid
than the kinetics of the order parameter relaxation. For this
reason, the latter process determines the interface propaga-
tion in the above ferroelectric semiconductors. Conse-
quently, the release of the latent heat of the phase transition
does not play an important part in the dynamics of interphase
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boundaries in the perovskites under consideration. However,
if ( kDT/4rLGD)@1/(11Q/Dp)#'1, the two processes
must be taken into account. The theory of the kink-type mo-
tion for interphase boundaries3 is therefore suitable for per-
ovskite ferroelectric semiconductors because it fulfills crite-
rion ~6!. The latter is caused by the comparatively high
thermal conductivity and comparatively low latent heat.

Additional evidence in favor of the conspicuous domina-
tion of polarization relaxation in kinetics of first-order phase
transitions in perovskites is the following.

~1! The kinetics observed in the review2 are not described
by the Arrhenius law as is seen from the temperature depen-
dence of the front velocity.3

~2! The same value of superheating and supercooling
leads to different velocities of the interphase boundary. The
velocity in the heating process is larger than in the cooling
one6 as follows from the exact solution of the time-
dependent Ginzburg-Landau equation.3

~3! The temperature dependence of the interface velocity
is characteristic of the overdamped motion described by the
relaxational kinetics of the order parameter.3

~4! The values of velocity calculated using~5! are in good
agreement with the measured ones.2

The most attractive feature of the suggested mean-field
consideration of the delicate balance between the relaxation
kinetics and the heat transfer in the phase growth process of
perovskites is the possibility of avoiding any analysis of the
influence of major defects of crystals on the growth. The

parameters of our approach were extracted from the experi-
mental measurements, which are produced on real crystals
with a polycrystalline structure and a rather high density of
defects. Thus the parameters of our estimations already in-
clude the information on the different types of defects as well
as polycrystallinity. A high density of defects is an inherent
property of perovskites and any kind of atomistic consider-
ation immediately leads to the necessity of consideration of
many types of defects: point, planar, linear, etc.

The consideration is valid for finite and polycrystalline
solids provided the sample or grain size is much larger than
the interphase boundary width. This condition is fulfilled in
the experimental studies of the interphase boundary motion
in the perovskites PbTiO3 and BaTiO3,

2 and even in the
nanocrystalline Pb~Sr/Ti!O3 system.15 The ferroelectric
phase transition disappears when the grain size decreases,
approaching some critical value.15 Under these conditions
our approach is inapplicable. Thus, our approach is suitable
for quite a wide range of sample and grain sizes.

The suggested analysis leads to an answer to the question
of the dominating process in the phase growth of ferroelec-
tric perovskites. The obtained result was not obvious and the
modern review2 left this question open.
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