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A theoretical model for the radiation linewidth in a multifluxon state of a long Josephson junction is
presented. Starting from a perturbed sine-Gordon model with a temperature-dependent noise term, we develop
a collective coordinate approach which allows us to calculate the finite radiation linewidth due to excitation of
the internal degrees of freedom in the moving fluxon chain. At low fluxon density, the radiation linewidth is
expected to be substantially larger than that of a lumped Josephson oscillator. With increasing the fluxon
density, a crossover to a much smaller linewidth corresponding to the lumped oscillator limit is predicted.
@S0163-1829~96!01020-X#

A long Josephson junction is an example of a distributed
nonlinear oscillator, the time-dependent response of which is
associated with its intrinsic spatial dynamics. An externally
applied magnetic fieldH penetrates into the junction in the
form of Josephson fluxons~solitons!, each of them carrying
one magnetic flux quantumF0 . As schematically shown in
Fig. 1, fluxons move across the junction under the influence
of the bias current generating an electromagnetic radiation at
the junction boundary. The frequencyf of the radiation is
given by the Josephson relationf5V/F0 , whereV is the dc
voltage induced by the fluxon motion.

For a lumped~short! Josephson junction, the linewidth
d f of the emitted radiation is determined by thermal fluctua-
tions of current passing through the junction. Assuming a
Nyquist noise spectrum, for a current-biased lumped Joseph-
son tunnel junction the full linewidth at half power is given
by the expression1,2
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wherekB is Boltzmann’s constant andT is the temperature.
The linewidth depends on the differential resistance
RD5dV/dI at the junction bias point and the static resis-
tanceRS5V/I , whereI is the bias current flowing through
the junction.

There are two main regimes which characterize fluxon
motion in long junctions. First, a shuttlelikeresonant fluxon
motion gives rise to zero-field steps~ZFS’s! in the dc
current-voltage (I -V) characteristics of the junction. In this
regime fluxons and antifluxons undergo reflections from the
junction boundaries and the radiation frequency is deter-
mined by the junction lengthL and the fluxon velocityv as
f ZFS5v/2L . Second, in the high magnetic field, the so-
called flux-flow regimeoccurs and is manifested by a flux-
flow step~FFS! on theI -V curve. In this regime fluxons are
created at one boundary of the junction and annihilate at the
other boundary. The radiation frequencyf5v/d fl is deter-
mined by the spacing between moving fluxonsdfl . In gen-
eral, for both ZFS and FFS regimes, the radiation linewidth
d f should be related to thermal fluctuations of the fluxon
velocity v. Joergensenet al.3 obtained the striking general
result that, in spite of the different nature of the phase slip-

page in small and long junctions, the linewidth of the reso-
nant single-fluxon radiation in a long junction is given by the
same Eq.~1!, except for a missing factor of 4 due to the
modified Josephson relationf5V/2F0 at the ZFS.
Experiment3 showed reasonable agreement with that theory,
though some excess linewidth broadening has been seen. For
the multifluxon state which forms FFS’s it can be argued that
internal degrees of freedom in the moving fluxon chain may
yield a significant contribution ind f . Here, in contrast to the
resonant single-fluxon case, local variations of the fluxon
spacingdfl change the radiation frequency. Recent FFS ra-
diation linewidth measurements by Kosheletset al.4 showed
the scaling ofd f FF as predicted by Eq.~1! but with an effec-
tive temperatureTeff being a factor of 8 larger than the
physical temperature of their experiment. Since there was no
theory for the radiation linewidthd f in the flux-flow regime,
the reason for the excess noise was not resolved.

In this paper we present a theoretical model for the radia-
tion linewidth in the flux-flow regime for long Josephson
junctions. We start from the perturbed sine-Gordon model
with spatially and temporarily dependent noise current. Us-
ing the collective coordinate approach we calculate the finite
radiation linewidth due to the internal degrees of freedom in
the moving fluxon chain. The obtained analytical result is
evaluated for the relevant parameter range of experimentally
studied flux-flow oscillators.

FIG. 1. Schematic cross section of a long Josephson junction in
the flux-flow state. The electromagnetic radiation emitted at the
junction boundary depends on the variations of the fluxon spacing
due to temporaly and spatially dependent noise current through the
junction.
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First, we introduce the main characteristic quantities for
the system. The mean frequency of Josephson oscillations
for a long junction in the flux-flow regime is

^ f &5
v^H&L
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[b^H&, ~2!

wherev is the velocity of the fluxon chain,̂H& is the aver-
age magnetic field, andL52lL1t is the effective magnetic
thickness of the junction (lL is the London penetration
depth, andt is the insulator thickness!. The quantities essen-
tial for the linewidth problem are the mean square deviation
of the frequencyf ,

A^d f 2&5bA^@H2^H&#2&5bA^H2&2^H&2,

and reduced rms linewidth in the flux-flow regime,
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In addition to the thermal fluctuations of the fluxon velocity,3

there exists an additional mechanism of line broadening in
the FFS regime. According to Eq.~3!, this mechanism is
directly related to the irregularities of the magnetic field dis-
tribution in the junction, i.e., to the fluxon density fluctua-
tions in the moving fluxon chain. The most general physical
origin for these fluctuations is the chain’s deformation under
the influence of thermal noise. Therefore, the thermal noise
causes two different contributions to the total linewidth in
the FFS regime. In the following, the dependence of the
fluxon chain deformations on the velocity and magnetic field
and their contribution to the linewidth are calculated.

The magnetic field distribution in the junction is propor-
tional to the gradient of the phase differencef(x,t) between
superconducting electrodes,H(x,t)5(F0/2pLlJ)fx(x,t),
wherelJ is the Josephson penetration depth. In the follow-
ing we denote the normalized magnetic field as
h(x,t)[fx(x,t). The phase evolution is governed by the
perturbed sine-Gordon equation5 ~written in laboratory coor-
dinates!

fxx2f tt2sinf5g1af t1n~x,t !, ~4!

where the lengthx and timet are normalized tolJ and to the
inverse plasma frequencyvp

21 , respectively. The first term
on the right hand side of Eq.~4!, g, represents the external
bias current densityJ normalized to the critical current den-
sity Jc , a is the damping coefficient, and the termn(x,t)
represents the thermal fluctuations3 with the white-noise spa-
tio temporal correlator6
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Here the bracketŝ•••& stand for statistical averaging~over
the ensemble!, E058\JcWlJ/2e is the rest energy of a
fluxon, W is the junction’s width, ande is the electron
charge.

The phase distribution in the flux-flow regime is given by
the cnoidal-wave solution written in laboratory coordinates
as

f5fcn~x2vt2j! wherefcn~z!5p22am~z/kA12v2!.
~6!

Here am(z) is the elliptic amplitude,v is the velocity of the
fluxon chain, and the slowly varying shiftj describes the
chain’s deformation. In the coordinate frame moving at the
velocity v, x85(x2vt)/A12v2, and t85(t2vx)/A12v2,
the deformation is governed by the linear equation7

j t8t82jx8x81aj t85r21n~x8,t8!, ~7!

wherer54E(k)/k2K(k) is the density of the fluxon chain,
and the elliptic modulusk is related to the chain’s period
l 852kK(k) in the moving frame,K(k) andE(k) being the
complete elliptic integrals of the first and second kinds, re-
spectively. The average velocity of the fluxon chainv under
the external bias currentg is given by the Marcus-Imry per-
turbation approach8 as

v5F11S 4a

pg

E~k!

k D 2G21/2

. ~8!

This relation determines the form of the current-voltage
(I2V) characteristics in the flux-flow regime. In the labora-
tory coordinate framek in Eq. ~8! is determined by given
fluxon spacingl as a root of the transcendental equation
l /A12v252kK(k).8

The local magnetic field in the junctionh(x,t) is given by
the expression

h~x,t !5fcn
8 ~x2vt2j!~12jx!
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where, using the smallness ofj, we have Taylor expanded
the first multiple in Eq.~9!, keeping the first two terms. Next
we define the mean and mean squared magnetic fields as
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Substituting~10! into Eq. ~3!, we obtain the following rela-
tion between the reduced rms linewidth and the deformation
of the fluxon chainj:

D f FF5A^jx
2&1K F j
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9
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Thus, in order to calculateD f FF we need to find the solution
of Eq. ~7! which can be done by means of the Fourier trans-
form. First, we write Eq.~7! in the laboratory reference
frame:

j tt2jxx1
av

A12v2
jx1

a

A12v2
j t5r21n~x,t !. ~12!

Using the Fourier transformj(x,t)5*2`
1`j(q,v)exp(iqx

2 ivt) dqdv it is straightforward to find the solution to Eq.
~12!:

j~q,v!5
r21n~q,v!

q22v22 ia~v2vq!~12v2!21/2, ~13!
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wheren(q,v) is the Fourier transform of the thermal noise
n(x,t)5*2`

1`n(q,v)exp(iqx2ivt) dqdv which is subject to
the correlations

^n~q,v!n~q8,v8!&5
at

~2p!2
d~q1q8!d~v1v8!. ~14!

Here, we consider only the case of a sufficiently dense
fluxon chain in the form

fcn.^h&~x2vt !2^h&22~12v2!21sin@^H&~x2vt !#,
~15!

which assumes

^h&2~12v2!@1. ~16!

In this case, the coefficient which enters Eq.~11! is
(fcn9 /fcn8 )

2.^h&22(12v2)22. Note that according to Eq.
~12! we havejx

2/j2;a2v2(12v2)21. It is easy to see that, if
we add to the chain stiffness condition~16! the additional
condition

a2^h&2v2~12v2!!1, ~17!

the first term under the square root in Eq.~11! may be ne-
glected as compared to the second term. The condition~17!
holds in the most practically important case of the under-
damped junction. Sincev2(12v2) is always below its maxi-
mum value of 1/4, conditions~16! and~17! can be combined
as

1

12v2
!^h&2!

4

a2 . ~18!

For the region~18! we thus obtain

D f FF5^h&21~12v2!21A^j2~x,t !&, ~19!

where we have inserted the above approximation for
(fcn9 /fcn8 )

2. For the stiff fluxon chain its elliptic modulusk
and mass densityr are given by particularly simple expres-
sionsk52/̂ h&A12v2 andr5^h&2(12v2).

Now, what remains is to calculate the rms valueA^j2&.
Using Eqs.~13! and ~14! this quantity can be calculated ex-
plicitly. However, we encounter a divergence when perform-
ing integration over small wave numbersq. This divergence
is regularized by the fact that, in a Josephson junction of a
finite lengthL, the smallest wave number isp/L. Taking
this into account we finally obtain

D f FF5
4

p~12v2!3/2^h&3
A L

lJ

1

a

kBT

E0
. ~20!

This expression provides the linewidth of a Josephson flux-
flow oscillator. It is related to the intrinsic mechanism of the
fluxon chain deformation under the influence of thermal
noise.

The calculation of another noise contributionD f T due to
the thermal motion of the fluxon chain as a whole~similar to
that of Ref. 3! gives a result identical to that of Eq.~1!. Thus,
the total reduced linewidth of the Josephson flux-flow oscil-
lator is given by the expression

D f S5D f T1D f FF. ~21!

Let us discuss the physical meaning of the result~20!.
First, the termkBT/E0 is typically small, of the order of
magnitude 1024–1025. Therefore, a comparison of Eq.~1!
with Eq. ~20! shows that, due to the square-root dependence
of D f FF on kBT/E0 , the linewidth in the flux-flow regime
can be essentially broader as compared to the resonant flux
motion regime. Moreover, the flux-flow linewidth scales
with the junction length asAL, which means additional
broadening for longer junctions. Physically, this dependence
is related to a formal divergence of the chain’s deformation
in the infinitely long junction.

According to Eq.~20!, the linewidth is rapidly reduced
with an increase of the magnetic fieldh which makes the
fluxon chain more stiff. In sufficiently high magnetic fields
h.h* the contribution determined by Eq.~20! may become
smaller than that due to thermal fluctuations of the chain
velocity given by Eq.~1!. In this case the crossover to the
standard mechanism discussed in Ref. 3 takes place and the
total linewidth is determined by Eq.~1!.

The crossover magnetic fieldh* depends essentially on
the dimensionless ratioskBT/aE0 , L/lJ , and the fluxon
chain velocityv. We note that Eqs.~1! and~20! predict quite
different dependences onv. Namely,D f T decreases withv
and becomes very small in the relativistic regimev→1. In
contrast to that,D f FF increases withv.

In order to compareD f T andD f FF it is useful to estimate
them for typical parameters of practical Josephson tunnel
junctions. Figure 2 shows the calculated reduced linewidths
given by Eqs.~1! and~20! as functions of the fluxon velocity
for two typical sets of experimental parameters.9,4 In order to
determineRD and RS in Eq. ~1!, the form of the current-
voltage (I -V) characteristics for the fluxon spacing
l52p/h was calculated using the Marcus-Imry perturbation
formula ~8! which with given parameters was independently
checked by numerical simulations for periodic boundary
conditions. In both cases we took the dissipation coefficient

FIG. 2. Reduced flux-flow oscillations linewidthd f[D f / f
given by Eq.~20! ~solid lines! and Eq.~1! ~dashed lines! as a func-
tion of the fluxon chain velocityv. Thick and thin lines correspond
to two typical parameter sets accounting for Refs. 9 and 4, respec-
tively.

54 3049BRIEF REPORTS



a50.02 and the normalized magnetic fieldh54 ~which is
approximately twice the first critical field of the fluxon pen-
etration into the junction! at T54.2 K. In the case of low-
JC junctions9 (JC5200 A/cm2) we used L5200 mm,
W510 mm, andlJ535 mm, and in the other case of high-
JC junctions4 (JC58000 A/cm2) the valuesL5450 mm,
W53 mm, andlJ54 mm were used. In Fig. 2 one can see
that in both cases the effect of the spatially dependent fluxon
chain noise contributionD f FF given by Eq.~20! is dominat-
ing, in particular at high fluxon velocities. At low velocities
the reduced linewidthD f T ~1! is formally diverging due to
finite value ofd f T at f50, while the intrinsic flux-flow line-
width D f FF saturates at the finite level according to Eq.~20!.
In both cases the rest fluxon energykBT/E0 is of the order of
1025 J. For the used magnetic fieldh54 the stiff fluxon
chain assumption~16! strictly holds only forv,vs50.6.
Since atv.vs the fluxon chain can only become more soft,
Eq. ~20! gives the lowest limit for the expectedD f FF.

We note, however, that in experiments the flux-flow os-
cillators are often operated close to a resonant regime. In
such cases the junction frequency spectrum is modulated by

characteristic eigenfrequencies which determine the oscilla-
tion amplitudes~13!. In the resonant states the linewidth can
be expected to be narrowed by cavity resonances~known as
Fiske steps! in the junction. Thus, the nonresonant flux-flow
frequency linewidth given by Eq.~20! can be taken as the
upper limit for the real flux-flow oscillator of the finite
length.

Finally, we would like to mention that an additional
mechanism of the flux-flow oscillator linewidth broadening
may arise from technological inhomogeneities in the junc-
tion. Such a contribution is nonuniversal and depends
strongly on the particular type of disorder~local imperfec-
tions in the tunnel barrier, the precision of the photolithog-
raphy defined junction width, etc.!, and therefore this mecha-
nism was not discussed in the present paper. This issue will
be the subject of further investigation.
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