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Radiation linewidth of a long Josephson junction in the flux-flow regime
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A theoretical model for the radiation linewidth in a multifluxon state of a long Josephson junction is
presented. Starting from a perturbed sine-Gordon model with a temperature-dependent noise term, we develop
a collective coordinate approach which allows us to calculate the finite radiation linewidth due to excitation of
the internal degrees of freedom in the moving fluxon chain. At low fluxon density, the radiation linewidth is
expected to be substantially larger than that of a lumped Josephson oscillator. With increasing the fluxon
density, a crossover to a much smaller linewidth corresponding to the lumped oscillator limit is predicted.
[S0163-18296)01020-X

A long Josephson junction is an example of a distributedpage in small and long junctions, the linewidth of the reso-
nonlinear oscillator, the time-dependent response of which igant single-fluxon radiation in a long junction is given by the
associated with its intrinsic spatial dynamics. An externallysame Eq.(1), except for a missing factor of 4 due to the
applied magnetic fieltH penetrates into the junction in the modified Josephson relationf =V/2d, at the ZFS.
form of Josephson fluxon@olitons, each of them carrying Experiment showed reasonable agreement with that theory,
one magnetic flux quanturd®,. As schematically shown in though some excess linewidth broadening has been seen. For
Fig. 1, fluxons move across the junction under the influencéh® multifluxon state which forms FFS's it can be argued that
of the bias current generating an electromagnetic radiation afternal degrees of freedom in the moving fluxon chain may
the junction boundary. The frequendyof the radiation is yield a significant contribution i#f. Here, in contrast to the

given by the Josephson relatiorVV/®,, whereV is the dc resonant single-fluxon case, local variations of the fluxon
voltage induced by the fluxon motiono., spacingd; change the radiation frequency. Recent FFS ra-

For a lumped(shor) Josephson junction, the linewidth diation linewidth measurements by Kosheletsal* showed
sf of the emitted radiation is determined by thermal fluctua-IN€ Scaling oféf g as predicted by Eq1) but with an effec-

tions of current passing through the junction. Assuming &€ temperatureTe being a factor of 8 larger than the
Nyquist noise spectrum, for a current-biased lumped Josepﬁ)_hysmal temperature of_thelr. experiment. Since therg was no
son tunnel junction the full linewidth at half power is given theory for the radiation linewidtiéf in the flux-flow regime,

by the expressior? the reason for the excess noise was not resolved.

In this paper we present a theoretical model for the radia-
4mksT R3 tion linewidth in the flux-flow regime for long Josephson
32 R (1)  junctions. We start from the perturbed sine-Gordon model

0 S with spatially and temporarily dependent noise current. Us-
wherekg is Boltzmann’s constant aril is the temperature. 1ng the collective coordinate approach we calculate the finite
The linewidth depends on the differential resistanceradiation_ linewidth due to the interngl degrees <_)f freedom _in
Rp,=dV/dI at the junction bias point and the static resis-the moving fluxon chain. The obtained analytical result is

tanceRs=V/I, wherel is the bias current flowing through evalgated for the relgvant parameter range of experimentally
the junction. studied flux-flow oscillators.

There are two main regimes which characterize fluxon

Sf=Af f=

motion in long junctions. First, a shuttlelikesonant fluxon I

motion gives rise to zero-field step&§ZFS’s) in the dc

current-voltage I(-V) characteristics of the junction. In this

regime fluxons and antifluxons undergo reflections from the v f
junction boundaries and the radiation frequency is deter- —

J \ veloo ® NS

mined by the junction length and the fluxon velocity as
f es=v/2L . Second, in the high magnetic field, the so-

called flux-flow regimeoccurs and is manifested by a flux-

flow step(FFS on thel-V curve. In this regime fluxons are

created at one boundary of the junction and annihilate at the I

other boundary. The radiation frequentyv/dy is deter-

mined by the spacing between moving fluxahis In gen- FIG. 1. Schematic cross section of a long Josephson junction in

eral, for both ZFS and FFS regimes, the radiation linewidthhe flux-flow state. The electromagnetic radiation emitted at the
of should be related to thermal fluctuations of the fluxonjunction boundary depends on the variations of the fluxon spacing
velocity v. Joergensert al® obtained the striking general due to temporaly and spatially dependent noise current through the
result that, in spite of the different nature of the phase slipjunction.
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First, we introduce the main characteristic quantities fory— 4 (x—yt—¢)  wheregy,(z)=m—2amz/ky1—v?).
the system. The mean frequency of Josephson oscillations (6)

for a long junction in the flux-flow regime is _ o ) _ _
Here amg) is the elliptic amplitudey is the velocity of the

v({H)A fluxon chain, and the slowly varying shig describes the
(f)= D, =B(H), (2 chain’s deformation. In the coordinate frame moving at the
) . _ _ velocity v, x' =(x—vt)/y1—v?, andt’=(t—vx)/J1-v?,
wherev is the velocity of the fluxon chaifH) is the aver-  he deformation is governed by the linear equation
age magnetic field, and =2\ +t is the effective magnetic

thickness of the _junction )\(,_. is the London pgnetration Eop—EogHakp=p In(x't"), (7
depth, and is the insulator thicknegsThe quantities essen- 5 _ _ _
tial for the linewidth problem are the mean square deviatiorvherep=4E(k)/k°K(k) is the density of the fluxon chain,

of the frequencyf, and the elliptic moduluk is related to the chain’s period
I"=2kK(k) in the moving frameK (k) andE(k) being the
V(6F2)=B([H—(H)]?) = BV(H?) — (H)?, complete elliptic integrals of the first and second kinds, re-

spectively. The average velocity of the fluxon chainnder

and reduced rms linewidth in the flux-flow regime, the external bias current is given by the Marcus-Imry per-

N \/<H2> turbation approachas
Afge= = -1. 3
=0 V(A ® [, 4a B0\ )
In addition to the thermal fluctuations of the fluxon velocity, v 7T_‘y k ' ®

there exists an additional mechanism of line broadening in_ . . )

the FFS regime. According to Eq3), this mechanism is This relation de.te_rm|r.1es the form of the current-voltage
directly related to the irregularities of the magnetic field dis-(! —V) characteristics in the flux-flow regime. In the labora-
tribution in the junction, i.e., to the fluxon density fluctua- Oy coordinate framék in Eq. (8) is determined by given
tions in the moving fluxon chain. The most general physicafluxon_spacingl as a root of the transcendental equation
origin for these fluctuations is the chain’s deformation undef/v1—v=2kK(k).® o o

the influence of thermal noise. Therefore, the thermal noise The local magnetic field in the junctid(x,t) is given by
causes two different contributions to the total linewidth inthe expression

the FFS regime. In the following, the dependence of the

fluxon chain deformations on the velocity and magnetic field h(X,) = (X —vt—&)(1— &)
and their contribution to the linewidth are calculated. , "
The magnetic field distribution in the junction is propor- =[en(X—vt) = er(Xx—v1)EN(1= &), (9

tional to the gradient of the phase differentéx,t) between where, using the smaliness éf we have Taylor expanded

superconducting electrodes|(x,t) = (Po/2mAN;) dx(X,1),  the first multiple in Eq(9), keeping the first two terms. Next
where\; is the Josephson penetration depth. In the follow-,q define the mean and mean squared magnetic fields as
ing we denote the normalized magnetic field as
h(x,t)=¢.(x,t). The phase evolution is governed by the hY=d' (x—ot h2Y=((d — b £— b £)2
perturbed sine-Gordon equatfofwritten in laboratory coor- ()= erx=v), (W) =((Pen et~ benti))- (10)
dinates
_ Substituting(10) into Eq. (3), we obtain the following rela-
Dxx— b= SiNp=y+ ad+n(xt), (4 tion between the reduced rms linewidth and the deformation

where the lengtlx and timet are normalized ta ; and to the of the fluxon chairg:

inverse plasma frequenay, 1 respectively. The first term )
on the right hand side of Ed4), y, represents the external Afoee \/<§2>+ gﬁ‘ (11)
bias current density normalized to the critical current den- FF X ¢én '

sity J;, « is the damping coefficient, and the temm(x,t) . ] )
represents the thermal fluctuatidngith the white-noise spa- Thus, in order to calculatA fgr we need to find the solution

tio temporal correlatér of Eq. (7) which can be done by means of the Fourier trans-
form. First, we write Eq.(7) in the laboratory reference
16akgT frame:
(N(Xq,t)N(xz,t5)) = O(X1—X2) 6(t1— 1)
av o !
EaT&(Xl_Xz)é(tl_tz). (5) gtt_gxx—i_ \/1—U2§X+ \/1_v2§t_P n(xat)' (12)

Here the bracketé. - -) stand for statistical averagir@ver ] ) o
the ensemble E,=8%J. W ,/2e is the rest energy of a Using the Fourier transformé(x,t)=[".£(q,»)explax

fluxon, W is the junction’s width, ande is the electron —iwt) dqdw itis straightforward to find the solution to Eq.
charge. (12

The phase distribution in the flux-flow regime is given by 1
the cnoidal-wave solution written in laboratory coordinates p "n(q,0) - (13)

g(qaw): q2

as —w’—ia(w—vq)(1—v?)
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wheren(q,w) is the Fourier transform of the thermal noise

-1
n(x,t)=f%n(g,0)expigx—iwt) dgdw which is subject to 10 i
the correlations
! ! aT ! !
(n(q,0)n(q", @ ))Z(ZT)z5(Q+q )0+ w'). (14 = 102
<
Il
Here, we consider only the case of a sufficiently dense 5
fluxon chain in the form -
S 10°¢
ber=(h)(x—vt) = (h)"2(1—v?) ~sin(H)(x—vt)], S
(15 2
[
which assumes £
10
(hY2(1-v?)>1. (16)
In chis, (‘éase, Ef;e coeszi_czient which enters _E(il) is 0.0 0.2 04 0.6 08 1.0
(e e =(h)"“(1—v°)~*. Note that according to Eq. )
(12) we havetZ/ €2~ a?v?(1—v?) 1. Itis easy to see that, if velocity, v
we add to the chain stiffness conditigh6) the additional
condition FIG. 2. Reduced flux-flow oscillations linewidti#f=Af/f
given by Eq.(20) (solid lineg and Eq.(1) (dashed linesas a func-
a2<h>20 2(1_02)<1: (17) tion of the fluxon chain velocity. Thick and thin lines correspond
to two typical parameter sets accounting for Refs. 9 and 4, respec-

the first term under the square root in Ef§il) may be ne-
glected as compared to the second term. The condifi@n
holds in the most practically important case of the under-
damped junction. Since?(1—v?) is always below its maxi-
mum value of 1/4, condition&l6) and(17) can be combined
as

tively.

Let us discuss the physical meaning of the res20).
First, the termkgT/E, is typically small, of the order of
magnitude 104-10 °. Therefore, a comparison of E¢L)
with Eqg. (20) shows that, due to the square-root dependence
4 of Afge on kgT/Eq, the linewidth in the flux-flow regime
> <(h)2< —. (18 can be essentially broader as compared to the resonant flux
1=v @ motion regime. Moreover, the flux-flow linewidth scales
For the region(18) we thus obtain with the junction length as/L, which means additional
broadening for longer junctions. Physically, this dependence
Afee=(h)"Y(1-0v?) " 1(EX(x.1), (19 s related to a formal divergence of the chain’s deformation
Iin the infinitely long junction.

According to Eq.(20), the linewidth is rapidly reduced
with an increase of the magnetic fieldwhich makes the
fluxon chain more stiff. In sufficiently high magnetic fields
h>h* the contribution determined by E0) may become
smaller than that due to thermal fluctuations of the chain
velocity given by Eq.(1). In this case the crossover to the

.p“C'.tl){' HO\?_/ever, we enclfnunter a d|v§rge_r|1_(r:](_a Véhen perforr'n'standard mechanism discussed in Ref. 3 takes place and the
ing integration over small wave numbegs This divergence .| jinewidth is determined by Ed).

i_s regularized by the fact that, in a Joseph;on juncti_on of a The crossover magnetic field* depends essentially on
finite lengthL, the smallest wave number ts/L. Taking the dimensionless ratioksT/aEy, L/\,, and the fluxon

this into account we finally obtain chain velocityv. We note that Eq1) and(20) predict quite
different dependences an Namely,Af; decreases with
4 L 1kgT . T )
AMpp=————am 3\ — — — (20) and becomes very small in the relativistic regime>1. In
m(1=v9)"5h)”> VAy a Eq contrast to thatAfrr increases with.
This expression provides the linewidth of a Josephson flux- N order to comparé fr andAfee it is useful to estimate

flow oscillator. It is related to the intrinsic mechanism of the them for typical parameters of practical Josephson tunnel
fluxon chain deformation under the influence of thermallunctions. Figure 2 shows the calculated reduced linewidths

noise. given by Eqgs(1) and(20) as functions of the fluxon velocity
The calculation of another noise contributidri due to for two typical sets of experimental parametefdn order to

the thermal motion of the fluxon chain as a whedamilar to ~ determineRp and Rs in Eq. (1), the form of the current-

that of Ref. 3 gives a result identical to that of E¢). Thus,  Voltage (-V) characteristics for the fluxon spacing

the total reduced linewidth of the Josephson flux-flow oscil-! = 27/h was calculated using the Marcus-Imry perturbation
lator is given by the expression formula (8) which with given parameters was independently

checked by numerical simulations for periodic boundary
Afs=Afr+Afge. (21 conditions. In both cases we took the dissipation coefficient

where we have inserted the above approximation fo
(e )2 For the stiff fluxon chain its elliptic moduluis
and mass density are given by particularly simple expres-
sionsk=2/(h)\J1—v? and p=(h)?(1—v?).

Now, what remains is to calculate the rms vakig?).
Using Eqgs.(13) and (14) this quantity can be calculated ex-
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a=0.02 and the normalized magnetic fidle=4 (which is  characteristic eigenfrequencies which determine the oscilla-
approximately twice the first critical field of the fluxon pen- tion amplitudeg13). In the resonant states the linewidth can
etration into the junctionat T=4.2 K. In the case of low- be expected to be narrowed by cavity resonarfkeewn as

Jc junctions (Jc=200 A/cn?) we used L=200 um,  Fiske stepkin the junction. Thus, the nonresonant flux-flow
W=10 um, and\ ;=35 um, and in the other case of high- frequency linewidth given by Eq20) can be taken as the
Jc junction$ (Jc=8000 Alcn?) the valuesL=450 um,  upper limit for the real flux-flow oscillator of the finite
W=3 um, and\ ;=4 um were used. In Fig. 2 one can see |ength.

that in both cases the effect of the spatially dependent fluxon Finally, we would like to mention that an additional

chain noise contribution f e given by Eq.(20) is dominat-  mechanism of the flux-flow oscillator linewidth broadening
ing, in particular at high fluxon velocities. At low velocities may arise from technological inhomogeneities in the junc-
the reduced linewidti\ fr (1) is formally diverging due to  tjon  Syuch a contribution is nonuniversal and depends
finite value of6fr atf=0, Whi|§ the intrinsic flgx-flow line- strongly on the particular type of disordépcal imperfec-
width AT saturates at the finite level acg:ordmg to E2)). tions in the tunnel barrier, the precision of the photolithog-
In tl?—,th cases the rest fluxon eneigyT/E, is of the order of raphy defined junction width, ed¢.and therefore this mecha-
10. J. For th_e used magnetic fiet=4 the stiff fluxon nism was not discussed in the present paper. This issue will
chain assumption(16) strictly holds only forv<wvs=0.6. be the subject of further investigation
Since atv >uv the fluxon chain can only become more soft, '
Eq. (20 gives the lowest limit for the expectellf . We would like to thank M. Cirillo and V. P. Koshelets for
We note, however, that in experiments the flux-flow os-useful discussions. One of the auth@BsA.M.) appreciates
cillators are often operated close to a resonant regime. Ithe hospitality of KFA Jlich. This work was partially sup-
such cases the junction frequency spectrum is modulated kgorted by INTAS Grant No. 94-1783.
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