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Series expansion for thel;-J, Heisenberg antiferromagnet on a square lattice
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We have developed series expansions about the Ising limit for the ground state energy, magnetization,
susceptibility, and energy gap of the frustrafigel, antiferromagnet. We find that the Bleorder vanishes at
J,/J;=0.4 and collinear order sets in aroudg/J;=0.6, in broad agreement with other recent work. We also
explore the nature of the phase diagram for the spin-anisotropic [@&E63-18206)07730-3

There is considerable current interest in the two-nient to choose fixed values gf and expand in powers of
dimensional spirg Heisenberg antiferromagnet with frus- x only. Apart from technical advantages this means yhist
trating interactions. We consider specifically the square latincluded to all orders in the final results.
tice with both nearest neighbor and second neighbor We first consider the N region(smally). Carrying out
antiferromagnetic interactions, often referred to BsJ,  a spin rotation on sublattic® allows the Hamiltonian to be
model. The Hamiltonian is written as

H=J1<E> §.§j+J2[Z] S-S (1) H=Hg+XxV;+xV,, A3)
ij ij

It is known, from a variety of studiesthat the pure); model  where the unperturbed Hamiltonian is

has Nel order in the ground state, reduced by quantum fluc-

tuations. Increasing, will act to destabilitize the Nel order

and at some critical value df,/J;(=y), a phase transition Ho=—2> SIS+y>, SIS (4)
to a different kind of state will occur, perhaps to a *spin (i) (i}

liquid.” For large J,/J4, on the other hand, the system will )

order in the collinear phase, with alternating rows col-  and the two perturbing terms are

umng of spins up and down, again with reduction of com-

plete order by quantum fluctuations. 8g/J, is reduced this 1 I y P
phase will become unstable at some critical ratio. V1:§Z (S§'S+55), V2=§Z (S'S +5°§).
Previous studies have given conflicting estimates of the () [iil (5)

two phase transition points. References to much of the early

work are given in a recent paper by Dotsenko and Sushkov : :
to which we refer the reader. The most detailed recent calr—rhe1 ground state oH, is ferromagnetic and stable for
culations are based on exact diagonalizations of xa66 Y<2- We compute the ground state eneiy, the parallel

lattice® and suggest that the intermediate phase is stablénf perpendicular susceptibility, the stag_gered magnetization
for 0.4<J,/J;<0.6. The nature of this intermediate phaseM ", the triplet energy gap and the singlet energy gap
remains unclear, despite many suggestions anés in powers ofx to order 10(order 9 fory, andA, and
calculation$™° order 8 forAy). This requires consideration of 99357 distinct

In this paper we use series expansion techniques to stud§Pnnected clusters of up to 10 sites for the ground state prop-
this system, to estimate the limit of stability of thé land  €rties, and 30336 connected and disconnected clusters of up
collinear phases and also to investigate the effects of spifp 9 sites for the energy gap. We do not display the series

anisotropy. For this purpose we write the Hamiltonian in thehere but can provide them on request.
form Turning now to the collinear phagkargey), we carry out

a spin rotation on every second row of spins, to transform the
Hamiltonian into
H=2 [SISI+X(S'S'+S')]
(ij)
H=H0+XV1+XV2+XV3, (6)
+y2 [SIST+X(S'S+SS)], 2)
(il where the unperturbed Hamiltonian is
where we have choseh=1. Our approach follows previ-

ous work®~*2in expanding about the Ising limit=0, and (row) (col)

we refer to these papers for a discussion of technical details. Ho= >, S >, SS—y>, & (7)
. . 07 & =i & 9 = j

In the present problem there is of course a second possible {n (i) [ij]

expansion variabley, and one could expand quantities of
interest in two variables® However we find it more conve- and the three perturbing terms are
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FIG. 2. The staggered/collinear magnetizativh" at x=1
againsty.

FIG. 1. Singularities obtained from analysis of the series for
magnetizatiorM ™ (for both positive and negative.), and the se- o the series and the spin wave result suggests that, unlike
ries for perpendicular and parallel susceptibilitiésr negativex, the case/=0, leading order spin wave theory does not give
only). The prediction of_ by the spin wave theory is also shown. x. exactly. To attempt a more precise analysis we have used

an Euler transformation
(row)

Vl:i% (S'S7+57S)), X' =(1=Xg )X (X=X ). (10)
(col) The transformed series yield more accurate estimates of the
vV :_E (S'SF+57S) positive singularityxc+ and the curves shown in Fig. 1 are
P S B B based on this analysis.

The singularityx, can be removed and the series made
much more regular by adding a extra staggered/collinear
field to the Hamiltonian. In the smajl region, we add the

In this case we need to distinguish between vertical and horif-OIIOWIng staggered field

zontal nearest neighbor bonds, and the resulting clusters have .
3 bond types. We have obtained connected clusters up to 9 AH=t(1—x)2 (-1)'s (17
sites(61654 clustensand connected and disconnected cluster :
up to 8 sites(18137 clustersand have computed series for and in largey region, we can add the following collinear
the same quantities as in the &legphase, but to one order fjg|(d:
less.

Having obtained the series we attempt to identify critical .
points and to determine the nature of the phase diagram in AH=t(1—x)Ei (=1>§ (12
the (x—y) plane. Naive Dlog Padanalysis reveals lines of
singularities, as shown in Fig. 1. These are obtained considoth of which vanish at the isotropic limit=1. Leading
tently for the magnetization, perpendicular and parallel suserder spin wave theory has the singularity moved to
ceptibilities, and the energy gap. We note, in particular, that-c with t=4S(1+Yvy).
for anyy there is a singularitx. <0 which lies closer to the Our first goal is to estimate the appropriate order param-
origin than the positive singularity. This is reflected directly eter(magnetizatiopfor the isotropic limitx=1 as a function
in the alternating sign of series coefficients. The singularityof y using the above series with/without the extra field. In
X; appears to correspond to the leading spin-wave predicrder to do this we follow the Euler transformation if needed
tion. For the perpendicular susceptibility in thé éleegion by a second transformation
spin wave theory gives

Vo=2 S (STST+57S). ®
AT

5=1—-(1—-x)"2 (13

~[1-y+x(1+y)]7?, 9
X~ 1my+xaty)l ©) to remove the singularity at=1 predicted by spin wave
which givesx, =—(1-y)/(1+y). This is shown as the theory. This was first proposed by Hi$and was also used
solid line in Fig. 1. The increasing deviation between in our earlier work on the nearest neighbor cHs€he pre-
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FIG. 3. The ground state energy per sitexatl as a function

of y. . .
y FIG. 4. The ratio of energy gaps/A; at x=1 as a function

of y.

cise form of the singularity in the case without the extra field
is in fact [1—x/(1—(1—x)y)]*? but this reduces to the

_ak;}ove forx=1. V(\j/% hav$ 'ihen used ;r]:%esgrate(: ﬁrStl'otrderproaCh zero ay=0.4 andy=0.6 (Fig. 5. This is suggestive
Inhomogeneous difterential approxim 0 extrapolate ¢ 5 spin-liquid phase with only short rangeearest neigh-
each series to the poidt=1 (or x=1). The results for the Bor) correlations for 0.4y=<0.6.

magnetization and ground state energy are shown in Figs. Finally we have investigated the regiare 1. In the Ising

and 3. We note that the magnetization vanishes in the regiof} .+ ihere exists a multiphase point gt 1/2, separating the

0.4<y=0.6. This indicates that the N_bphase becomes un- Neel and collinear phases. An infinite number of ground
stable at a valug/=0.4 and the collinear phase becomes

unstable at a valug=0.6. These critical end points are con-

sistent with previous recent estimatesand thus provide L e L
independent confirmation of those results. The perpendicular o -
susceptibilityy, show similar behavior to the magnetization. i % %

The decrease o™ and y, to zero neary=0.6 is much

more rapid than that at=0.4. This is consistent with the 021 § } } 7

correlations are nonzero in the spin-ordered phases and ap-

prediction that the transition from the collinear phase is first -
order!® The parallel susceptibility appears to diverge at the L
isotropic limitx=1 for bothy=<0.4 andy=0.6. In the inter-
mediate regiony, appears to diverge at smallgrvalues, i 1 H |
consistent with the singularity structure shown in Fig. 1. 0 % \

We have also obtained series for both triplet and singlet -
energy gaps 4; and Ay). In both the Nel and collinear
regions the triplet energy gap appears to be finitextarl
and to approach zero at the isotropic limit>1. In the in-
termediate region 0”y=<0.6 the extrapolation tx=1 is -0.2 { N
inconclusive, consistent with either a gapless state or a small L | . .
gap of order 0.1. The series for the singlet gap is irregular Cz { { }

and we have been unable to make a consistent extrapolation * /' }

to x=1. We have estimated the ratlo,/A;, shown in Fig. i Cq |

4. Aty=0, we findA4/A;=2.00(1), consistent with the spin 041y e 1

wave prediction, reducing with increasiyg 0 0.2 0.4 0.6 0.8 1
The nature of the intermediate phase remains unclear and y

our methods, based on expansions about Ising ordered states,

are unable to probe this directly. In an effort to address this FIG. 5. The second neighbor correlatieg (filled symbolg and

guestion we have computed series for the second neighbeétie third neighbor correlatiof; (open symbolsatx=1 as a func-

(diagona) and third neighbofaxial) ZZ correlations. These tion of y.
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states are degenerate at this point. We consider the band
states, denoted byk) and shown in Fig. 6. Note that y

k=10 correspond to the Mg and collinear states, respec-

tively. A simple calculation shows that the ground state en- FIG. 7. Schematic phase diagram obtained from series and per-
ergy is turbation theory.

P In Fig. 7 we show a schematic phase diagram for this
B (x=0)=[~1+(2=kyyl/(2k) (14) system, based on our results and conjecturesxkEdr there
is an intermediate phase with short range correlations be-
een Nel and collinear phases, for 84/<0.6. The nature
this phase remains uncertain. For decreasirige width

which for y=3 is independent ok. This does not exhaust

the possible degenerate states. We have used perturbati
theory through third order to compute the energies of state¥

with k=1,2,3,4¢2. We find that along the line of intermediate phase also decreases until it terminates at an
R estimatedx* =0.45. This point appears to occur at or close
x=167+37+0(5*? (15 toy= 3. Forx<x* there is no intermediate phase separating

Neel and collinear phases.
with »=y—1/2, all states remain degenerate with

E=—1/4—575/2+0(7?). (16) This work forms part of a research project supported by a
grant from the Australian Research Council. We thank Dr.
This suggests that the'Beand collinear phases do not sepa-R.R.P. Singh for a number of valuble discussions and sug-

rate until some finitex. gestions.
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