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We have developed series expansions about the Ising limit for the ground state energy, magnetization,
susceptibility, and energy gap of the frustratedJ1-J2 antiferromagnet. We find that the Ne´el order vanishes at
J2 /J1.0.4 and collinear order sets in aroundJ2 /J1.0.6, in broad agreement with other recent work. We also
explore the nature of the phase diagram for the spin-anisotropic case.@S0163-1829~96!07730-2#

There is considerable current interest in the two-
dimensional spin-12 Heisenberg antiferromagnet with frus-
trating interactions. We consider specifically the square lat-
tice with both nearest neighbor and second neighbor
antiferromagnetic interactions, often referred to asJ1-J2
model. The Hamiltonian is

H5J1(̂
i j &

SW i•SW j1J2(
@ i j #

SW i•SW j . ~1!

It is known, from a variety of studies,1 that the pureJ1 model
has Néel order in the ground state, reduced by quantum fluc-
tuations. IncreasingJ2 will act to destabilitize the Ne´el order
and at some critical value ofJ2 /J1([y), a phase transition
to a different kind of state will occur, perhaps to a ‘‘spin
liquid.’’ For large J2 /J1, on the other hand, the system will
order in the collinear phase, with alternating rows~or col-
umns! of spins up and down, again with reduction of com-
plete order by quantum fluctuations. AsJ2 /J1 is reduced this
phase will become unstable at some critical ratio.

Previous studies have given conflicting estimates of the
two phase transition points. References to much of the early
work are given in a recent paper by Dotsenko and Sushkov,2

to which we refer the reader. The most detailed recent cal-
culations are based on exact diagonalizations of a 636
lattice,3–5 and suggest that the intermediate phase is stable
for 0.4,J2 /J1,0.6. The nature of this intermediate phase
remains unclear, despite many suggestions and
calculations.6–9

In this paper we use series expansion techniques to study
this system, to estimate the limit of stability of the Ne´el and
collinear phases and also to investigate the effects of spin
anisotropy. For this purpose we write the Hamiltonian in the
form
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y!#

1y(
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x1Si
ySj

y!#, ~2!

where we have chosenJ151. Our approach follows previ-
ous work10–12 in expanding about the Ising limitx50, and
we refer to these papers for a discussion of technical details.
In the present problem there is of course a second possible
expansion variable,y, and one could expand quantities of
interest in two variables.13 However we find it more conve-

nient to choose fixed values ofy and expand in powers of
x only. Apart from technical advantages this means thaty is
included to all orders in the final results.

We first consider the Ne´el region~small y). Carrying out
a spin rotation on sublatticeB allows the Hamiltonian to be
written as

H5H01xV11xV2 , ~3!

where the unperturbed Hamiltonian is

H052(̂
i j &

Si
zSj

z1y(
@ i j #

Si
zSj

z ~4!

and the two perturbing terms are
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1!.
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The ground state ofH0 is ferromagnetic and stable for

y, 1
2 . We compute the ground state energyE0, the parallel

and perpendicular susceptibility, the staggered magnetization
M1, the triplet energy gapD t and the singlet energy gap
Ds in powers ofx to order 10~order 9 forx' andD t , and
order 8 forDs). This requires consideration of 99357 distinct
connected clusters of up to 10 sites for the ground state prop-
erties, and 30336 connected and disconnected clusters of up
to 9 sites for the energy gap. We do not display the series
here but can provide them on request.

Turning now to the collinear phase~largey), we carry out
a spin rotation on every second row of spins, to transform the
Hamiltonian into

H5H01xV11xV21xV3 , ~6!

where the unperturbed Hamiltonian is

H05 (̂
i j &

~row!

Si
zSj

z2 (̂
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and the three perturbing terms are
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In this case we need to distinguish between vertical and hori-
zontal nearest neighbor bonds, and the resulting clusters have
3 bond types. We have obtained connected clusters up to 9
sites~61654 clusters! and connected and disconnected cluster
up to 8 sites~18137 clusters! and have computed series for
the same quantities as in the Ne´el phase, but to one order
less!.

Having obtained the series we attempt to identify critical
points and to determine the nature of the phase diagram in
the (x2y) plane. Naive Dlog Pade´ analysis reveals lines of
singularities, as shown in Fig. 1. These are obtained consis-
tently for the magnetization, perpendicular and parallel sus-
ceptibilities, and the energy gap. We note, in particular, that
for anyy there is a singularityxc

2,0 which lies closer to the
origin than the positive singularity. This is reflected directly
in the alternating sign of series coefficients. The singularity
xc

2 appears to correspond to the leading spin-wave predic-
tion. For the perpendicular susceptibility in the Ne´el region
spin wave theory gives

x';@12y1x~11y!#21, ~9!

which gives xc
252(12y)/(11y). This is shown as the

solid line in Fig. 1. The increasing deviation betweenxc
2

from the series and the spin wave result suggests that, unlike
the casey50, leading order spin wave theory does not give
xc exactly. To attempt a more precise analysis we have used
an Euler transformation

x85~12xc
2!x/~x2xc

2!. ~10!

The transformed series yield more accurate estimates of the
positive singularityxc

1 and the curves shown in Fig. 1 are
based on this analysis.

The singularityxc
2 can be removed and the series made

much more regular by adding a extra staggered/collinear
field to the Hamiltonian. In the smally region, we add the
following staggered field

DH5t~12x!(
i

~21! iSi
z ~11!

and in largey region, we can add the following collinear
field:

DH5t~12x!(
i

~21! i xSi
z ~12!

both of which vanish at the isotropic limitx51. Leading
order spin wave theory has the singularityxc

2 moved to
2` with t54S(11y).

Our first goal is to estimate the appropriate order param-
eter~magnetization! for the isotropic limitx51 as a function
of y using the above series with/without the extra field. In
order to do this we follow the Euler transformation if needed
by a second transformation

d512~12x!1/2, ~13!

to remove the singularity atx51 predicted by spin wave
theory. This was first proposed by Huse14 and was also used
in our earlier work on the nearest neighbor case.12 The pre-

FIG. 2. The staggered/collinear magnetizationM1 at x51
againsty.

FIG. 1. Singularities obtained from analysis of the series for
magnetizationM1 ~for both positive and negativexc), and the se-
ries for perpendicular and parallel susceptibilities~for negativexc
only!. The prediction ofxc

2 by the spin wave theory is also shown.
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cise form of the singularity in the case without the extra field
is in fact @12x/(12(12x)y)#1/2, but this reduces to the
above for x51. We have then used integrated first-order
inhomogeneous differential approximants15 to extrapolate
each series to the pointd51 ~or x51). The results for the
magnetization and ground state energy are shown in Figs. 2
and 3. We note that the magnetization vanishes in the region
0.4&y&0.6. This indicates that the Ne´el phase becomes un-
stable at a valuey.0.4 and the collinear phase becomes
unstable at a valuey.0.6. These critical end points are con-
sistent with previous recent estimates3–5 and thus provide
independent confirmation of those results. The perpendicular
susceptibilityx' show similar behavior to the magnetization.
The decrease ofM1 and x' to zero neary.0.6 is much
more rapid than that aty.0.4. This is consistent with the
prediction that the transition from the collinear phase is first
order.16 The parallel susceptibility appears to diverge at the
isotropic limit x51 for bothy&0.4 andy*0.6. In the inter-
mediate regionx i appears to diverge at smallerx values,
consistent with the singularity structure shown in Fig. 1.

We have also obtained series for both triplet and singlet
energy gaps (D t and Ds). In both the Ne´el and collinear
regions the triplet energy gap appears to be finite forx,1
and to approach zero at the isotropic limitx→1. In the in-
termediate region 0.4&y&0.6 the extrapolation tox51 is
inconclusive, consistent with either a gapless state or a small
gap of order 0.1. The series for the singlet gap is irregular
and we have been unable to make a consistent extrapolation
to x51. We have estimated the ratioDs /D t , shown in Fig.
4. At y50, we findDs /D t52.00(1), consistent with the spin
wave prediction, reducing with increasingy.

The nature of the intermediate phase remains unclear and
our methods, based on expansions about Ising ordered states,
are unable to probe this directly. In an effort to address this
question we have computed series for the second neighbor
~diagonal! and third neighbor~axial! ZZ correlations. These

correlations are nonzero in the spin-ordered phases and ap-
proach zero aty.0.4 andy.0.6 ~Fig. 5!. This is suggestive
of a spin-liquid phase with only short range~nearest neigh-
bor! correlations for 0.4&y&0.6.

Finally we have investigated the regionx!1. In the Ising
limit there exists a multiphase point aty51/2, separating the
Néel and collinear phases. An infinite number of ground

FIG. 3. The ground state energy per site atx51 as a function
of y.

FIG. 4. The ratio of energy gapDs /D t at x51 as a function
of y.

FIG. 5. The second neighbor correlationC2 ~filled symbols! and
the third neighbor correlationC3 ~open symbols! at x51 as a func-
tion of y.
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states are degenerate at this point. We consider the band
states, denoted bŷk& and shown in Fig. 6. Note that
k51,̀ correspond to the Ne´el and collinear states, respec-
tively. A simple calculation shows that the ground state en-
ergy is

Ek~x50!5@211~22k!y#/~2k! ~14!

which for y5 1
2 is independent ofk. This does not exhaust

the possible degenerate states. We have used perturbation
theory through third order to compute the energies of states
with k51,2,3,4,̀ . We find that along the line

x5A6h13h1O~h3/2! ~15!

with h[y21/2, all states remain degenerate with

E521/425h/21O~h2!. ~16!

This suggests that the Ne´el and collinear phases do not sepa-
rate until some finitex.

In Fig. 7 we show a schematic phase diagram for this
system, based on our results and conjectures. Forx51 there
is an intermediate phase with short range correlations be-
tween Néel and collinear phases, for 0.4&y&0.6. The nature
of this phase remains uncertain. For decreasingx the width
of intermediate phase also decreases until it terminates at an
estimatedx*.0.45. This point appears to occur at or close

to y5 1
2 . Forx,x* there is no intermediate phase separating

Néel and collinear phases.
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FIG. 6. Band statêk& in the Ising limit x50.

FIG. 7. Schematic phase diagram obtained from series and per-
turbation theory.

54 3025BRIEF REPORTS


