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The first stage of the replica symmetry breaking for a simple quadrupolar glass model using the Parisi ansatz
has been performed in a wide range of temperatures includingT50. It has been obtained that the entropy of
the system increases considerably compared to that calculated within the replica symmetric theory.@S0163-
1829~96!05326-X#

Much effort has been dedicated in recent years to the
clarification of the nature of nonmagnetic frustrated systems
such as Potts and quadrupolar glasses~QG’s!.1 Though these
systems have been considered mostly within the replica sym-
metric ~RS! theory some attempts to study the replica
symmetry-breaking~RSB! mechanism have been made.1–6,8

However, despite the success of the Parisi RSB scheme8 for
magnetic systems with the spin-reversal symmetry~the Ising
andm-vector model! a convincing theory does not exist for
richer models of disordered systems. The analysis of the
RSB problem for quadrupolar and Potts glasses has been
performed using the simplified Landau free energy of the
system expanded up to fourth order into the glassy order
parameter. Such an approach is limited to the range where
the order parameter is sufficiently small, but it is not ad-
equate for the study of the system at lower temperatures. In
general, the study of properties of such systems in the whole
range of temperature~without Landau expansion! is rather a
complicated task because of the complexity of interactions
which makes it difficult to express the free energy in a closed
form. Nevertheless, it would be interesting and desirable to
attempt to perform RSB investigations for a possible sim-
plest model. We have in mind the quadrupolar system with
strong anisotropy in thez direction described by the follow-
ing S51 spin ~or pseudospin! Hamiltonian:

H5(
i , j

Ji jOi
0Oj

0 , ~1!

whereJi j denotes the coupling between quadrupoles located
at sitesi , j and

Oi
053~Si

z!222 . ~2!

It is assumed thatJi j ’s are quenched random interactions of
infinite range independently distributed according to the
probability distribution:

P~Ji j !5A N

2pJ2
exp~2NJi j

2 /2J2!, ~3!

whereN→` denotes the number of spins~pseudospins!.
The short-ranged version of the Hamiltonian~1! with the

nonrandom couplingsJi j ’s, called otherwise the truncated
electric quadrupole-quadrupole~EQQ! Hamiltonian, has
been used a number of years ago9 for formulation in a crude
approximation of the theory of the order-disorder transition
in solid orthohydrogen (o2H2). In this caseS51 denotes

the rotational quantum number of quadrupole-bearing mol-
ecule ofo2H2 . However, as it was discussed in Ref. 10
some insight into the nature of the quadrupolar glassy freez-
ing of randomly distributed molecules ofo2H2 in a matrix
of spherical parahydrogen species can be obtained from the
model~1! @for the concentration ofo2H2 smaller than 55%
the system forms a QG~Refs. 10 and 11!#. Of course, the
Hamiltonian ~1! does not describe exactly the situation in
solid hydrogen but for its relative simplicity is a good theo-
retical laboratory for exploring some crucial aspects which
would be much harder to access from the more realistic
quantum EQQ Hamiltonian.10,12

The model~1!, with a mean ofJi j not necessarily equal to
zero, has been solved within the RS theory.13,14 In Ref. 15
the stability limit of the RS phase of the model~1! has been
studied. It has been found that above some temperature
Tc51.367J/kB the RS phase is stable, whereas atT,Tc be-
comes unstable. This means that as the temperature is low-
ered and reachesTc the system undergoes a transition from
ergodic to nonergodic phase with multiple minima of free
energy characteristic of the glassy state with the broken rep-
lica symmetry. However, this is not a phase transition in an
usual thermodynamic sense since the QG order parameter
increases continuously with the decreasing of
temperature.13,14 Such a situation is observed in solid ortho-
parahydrogen mixtures.10 The order parameter is not a small
quantity nearTc . Hence in order to study our system we
cannot use, in the region of temperature~except maybe very
high temperatures!, the Landau expansion for the free en-
ergy. According to the knowledge of the authors, existing
investigations about RSB in QG’s have used the Landau
expansion.1–7

The aim of the present paper is to study the RSB theory
for the model~1! in the wide region of temperature, that is
for 0<T<Tc , using the Parisi ansatz.8 Since an explicit
calculation for an arbitrary stage of RSB is a difficult prob-
lem and rather unfeasible practically we restrict ourselves to
the first stage. We expect that even this simplest approach
will give us some insight into the RSB mechanism in QG’s.
Moreover, as it will be seen, even the theory with RSB at the
first level leads to essential improvements on the thermody-
namic properties of the system compared to the RS
approach.13,14

We start from the free energy calculated, using the replica
method in Ref. 15. At the first stage of RSB the elements
qaa8 of the n3n matrix, which are QG order parameters,
take only two different valuesq0 andq1 .

8 Proceeding in the
strict analogy to the RSB scheme8 we get
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We assume that the quadrupolar long-ranged order parameter
~defined in Ref. 15! is the same for each replica, that is
ma5m. Finally, we obtain in the limitn→0 the free energy,
at the first stage of RSB, in the form
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with
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and
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where

q5bJ~y1z!2
~bJ!2

2
~22m2q1!. ~9!

In Eq. ~6! q1.q0 andx̄ is understood as a real number in the
interval between 0 and 1.

Stationarity ofF with respect to the variablesq1 , q0 , m
and x̄ gives the following set of self-consistent equations:
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Obviously asq15q0 we get from Eqs.~10a!–~10d! the
formulas of the RS theory.13,14 At T50 Eqs. ~10a!–~10d!
becomes ineffective to a numerical analysis because of inde-
terminate terms entering them. Nevertheless it is possible to
transform analytically~10a!–~10d!, in the limit T50, to that
form which is suitable to numerical computations. It is con-
venient in this case to introduce the parameters defined as

s5
bJ

2
~22m2q1!. ~11!

It will be seen that atT50 s is finite. The variableq ~9! can
be rewritten in the form

q5bJ~y1z2s!. ~12!

Combining~10a! with ~10c! we get the equation
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In the limit b→` we have

Z0
x̄52 x̄u~y1z2s!ebJ x̄~y1z2s!

1u~s2y2z!e22bJ x̄~y1z2s!, ~14a!

e3bJ~y1z2s!21
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5
1

2
u~y1z2s!2u~s2y2z!,

~14b!

and

lnZ05@ ln2x̄1bJx̄~y1z2s!#u~y1z2s!

22bJx̄~y1z2s!u~s2y2z!, ~14c!
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whereu(j) is the Heaviside step function. Concerning Eq.
~13! we must expande3q/(e2q11)2 into the power series
with respect to e23q and e3q when y1z2s.0 and
y1z2s,0, respectively.

It turns out that a reasonable solution of our problem at
T50 can be obtained assuming thatx̄ is proportional asymp-
totically to T asT→0, that is we have

x̄5xT. ~15!

With above simplifications the integration in Eqs~10a!,
~10b!, ~10d!, and~13! over the variablez can be performed
explicitly and one obtains forT50
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where
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x2

2
1x~y2s!G

3H 12erfFs2y2~q12q0!x

A2~q12q0!
G J ~17a!

and

B~y!5exp@2~q12q0!x
222x~y2s!#

3H 11erfFs2y12~q12q0!x

A2~q12q0!
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Here erf(j) denotes the error function. Solutions of~16a! –
~16d! areq152.763,q052.611,s50.001, andx54.709.

To study the effect of this first stage RSB on the thermo-
dynamic properties of the system we will calculate the en-
tropy

S

N
52

]

]T S F

kBN
D . ~18!

Inserting into Eq.~18! F/N ~6! with the help of Eqs.~10a!
and ~10b! one obtains
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At T50 the expression for the entropy considerably simpli-
fies. With the help of Eq.~10d! we get

S~T50!

N
52s21

42q1
3

ln2. ~20!

From~20! it is seen that atT50 the entropy does not depend
on the parameterq0 . The results of the RS theory for
entropy13,14can be easily reproduced if in Eqs.~19! and~20!
we putq15q05q.

FIG. 1. The temperature dependence of the quadrupolar glass
order parametersq1 upper solid line,q0 lower solid line, andq
~replica symmetric theory! dashed line.

FIG. 2. Theumu as a function of temperature. The first stage of
replica symmetry breaking~solid line! and replica symmetry theory
~dashed line!.
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In order to obtain the temperature dependence (T depen-
dence! of the parametersq1 , q0 , m, and x̄ we have solved
numerically Eqs. ~10a!–~10d! for the finite T,Tc and
T'Tc . To these data we have included the zero-temperature
results. A variation of QG parametersq1 andq0 with T is
presented in Fig. 1. For a comparision theT dependence of
the QG parameter obtained within the RS theory13,14 is also
given in this figure. In Fig. 2 the absolute value of the qua-
drupolarization~the quadrupolarization is always negative!
as a function of the temperature is shown for the RSB as well
as for RS theory.13,14 Figure 3 contains theT dependence
of x̄. It is seen thatx̄ has physical non-negative values but as
T approachesTc this variable slightly oscillates. At the
present stage of the theory it is difficult to explain that be-
havior, however we have no clear physical reasons to ex-
clude it a priori. Finally in Fig. 4 the entropies calculated
within the RSB and RS theories are given. It is seen that the
first stage of RSB leads to the considerable increasing of
entropy, particularly at low temperatures, compared to the
RS result. This means that RSB solutions are closer to a
physical reality than the ones obtained within the RS
scheme.13,14

Up to now for quadrupolar systems, where a glassy phase
transition takes place in the Landau sense, an investigation of
RSB theory has been performed only near the transition
point,1–7 but no explicit information for lower temperatures
have been obtained because of the complexity of the ana-
lyzed models. The present paper contains an attempt to for-
mulate a theory of RSB at the first stage for a simple model
of QG without the Landau expansion. In general, the ob-
tained results seem to be reasonable physically. Our solu-
tions give the Parisi QG parameter function in the form:

q~x!5q0u~ x̄2x!1q1u~x2 x̄!, ~21!

where 0<x<1. It has been shown for some models of QG’s,
in which a QG phase transition in the Landau sense takes
place, that such a type of solution is stable near the critical
point.6,7 Therefore it would be interesting to perform a sta-
bility analysis of our RSB solution in the wide interval of
temperature 0<T<Tc . We hope to return to this problem in
a future work.
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