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Replica symmetry breaking for a simple model of a quadrupolar glass
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The first stage of the replica symmetry breaking for a simple quadrupolar glass model using the Parisi ansatz
has been performed in a wide range of temperatures inclubing. It has been obtained that the entropy of
the system increases considerably compared to that calculated within the replica symmetric] 8&6g-
182996)05326-X

Much effort has been dedicated in recent years to théhe rotational quantum number of quadrupole-bearing mol-
clarification of the nature of nonmagnetic frustrated systemecule ofo—H,. However, as it was discussed in Ref. 10
such as Potts and quadrupolar glag§s’s).! Though these some insight into the nature of the quadrupolar glassy freez-
systems have been considered mostly within the replica syning of randomly distributed molecules of-H, in a matrix
metric (RS theory some attempts to study the replicaof spherical parahydrogen species can be obtained from the
symmetry-breakindRSB) mechanism have been matfé&®  model(1) [for the concentration ob—H, smaller than 55%
However, despite the success of the Parisi RSB schéme the system forms a Q@Refs. 10 and 1. Of course, the
magnetic systems with the spin-reversal symmétrg Ising ~Hamiltonian (1) does not describe exactly the situation in
and m-vector model a convincing theory does not exist for SO|.Id hydrogen but for its re_Iatlve S|mpI|C|ty is a good thep—
richer models of disordered systems. The analysis of th&etical laboratory for exploring some crucial aspects which
RSB problem for quadrupolar and Potts glasses has beé’?‘nou'd be _much harlder_t(#%ccess from the more realistic
performed using the simplified Landau free energy of thequ?rztgrr?];%%ﬁ?vmtg%zén ofl;: not necessarily equal to

. ) I
system expanded up to fourth order into the glassy ordef ") hoan'solved within the RS thebty In Ref. 15
parameter. Such an a}pproa_ch is limited to the_ range Whert‘ﬁe stability limit of the RS phase of the modé&) has been
the order parameter is sufficiently small, but it is not ad'studied. It has been found that above some temperature
equate for the study of the system at lower temperatures. I@C:L%ka the RS phase is stable, wheread atT, be-
general, the study of properties of such systems in the wholggmes unstable. This means that as the temperature is low-
range of temperaturewithout Landau expansionis rather & gred and reache, the system undergoes a transition from
complicated task because of the complexity of interactiongrgodic to nonergodic phase with multiple minima of free
which makes it difficult to express the free energy in a closetbnergy characteristic of the glassy state with the broken rep-
form. Nevertheless, it would be interesting and desirable tgica symmetry. However, this is not a phase transition in an
attempt to perform RSB investigations for a possible sim-usual thermodynamic sense since the QG order parameter
plest model. We have in mind the quadrupolar system withincreases  continuously ~ with  the decreasing of
strong anisotropy in the direction described by the follow- temperaturé®!4Such a situation is observed in solid ortho-

ing S=1 spin(or pseudospinHamiltonian: parahydrogen mixture®. The order parameter is not a small
quantity nearT.. Hence in order to study our system we
H=2 3. 0°0° (1) cannot use, in the region of temperatgegcept maybe very
< ~iji Y
i

high temperaturgs the Landau expansion for the free en-
) ergy. According to the knowledge of the authors, existing
whereJ;; denotes the coupling between quadrupoles locateghyestigations about RSB in QG’s have used the Landau
at sitesi ,j and expansioril-__7
P=3(H2_2 5 The aim of the present paper is to study the RSB theory
i =3(S) ' 2) for the model(1) in the wide region of temperature, that is
It is assumed thal,;’s are quenched random interactions of for 0=T<T,, using the Parisi ansafzSince an explicit
infinite range independently distributed according to theCalculation for an arbitrary stage of RSB is a difficult prob-

probability distribution: lem and rather unfeasible practically we restrict ourselves to
the first stage. We expect that even this simplest approach
N 2 1h12 will give us some insight into the RSB mechanism in QG's.
P(Jij)) =\ 532 &xp(—NJ;/23%), (3 Moreover, as it will be seen, even the theory with RSB at the
first level leads to essential improvements on the thermody-
whereN—co denotes the number of spigseudospins namic properties of the system compared to the RS
The short-ranged version of the Hamiltonién with the  approach®**

nonrandom couplingg;;’s, called otherwise the truncated  We start from the free energy calculated, using the replica
electric quadrupole-quadrupoléEQQ) Hamiltonian, has method in Ref. 15. At the first stage of RSB the elements
been used a number of years &¢ar formulation in a crude  q,,/ of the nxXn matrix, which are QG order parameters,
approximation of the theory of the order-disorder transitiontake only two different valueg, andq; .2 Proceeding in the

in solid orthohydrogend—H,). In this caseS=1 denotes strict analogy to the RSB schefhee get
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We assume that the quadrupolar long-ranged order parameterT(Qi—QSHX——zf_ quO(Y)mf_ dPq,—q,(2)Zg

(defined in Ref. 1bis the same for each replica, that is

m,=m. Finally, we obtain in the limih— 0 the free energy,
at the first stage of RSB, in the form

F BRI BJ?

N~ 2 (099~ - (a+m=2)(q;—m—2)

1 % 0 _
_ B_Yf“d qu(y)lnﬁwd qu_qo(z)Zé (6)
with
dP,(§)= ! exp(—g—2 dé¢ (7)
asr V2ma 2a
and
Zy=2e"+e %’ (8)
where
J)?
0=pyr- Bl -mea. (@

In Eq. (6) q;>q, andx is understood as a real number in the

interval between 0 and 1.
Stationarity ofF with respect to the variableg;, gp, m
andx gives the following set of self-consistent equations:

=4 dPyy)
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=0. (10d
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Obviously asq,=q, we get from Eqs(1039—(10d the
formulas of the RS theor{?** At T=0 Egs. (10a—(100d)
becomes ineffective to a numerical analysis because of inde-
terminate terms entering them. Nevertheless it is possible to
transform analytically108—(100d), in the limit T=0, to that
form which is suitable to numerical computations. It is con-
venient in this case to introduce the parametatefined as

J
U:%(Z_m—%)-

Lcd Pq,~a,(2Z8

(11)

It will be seen that al =0 o is finite. The variable¥ (9) can
be rewritten in the form

9=BIy+z—o0). (12

Combining (103 with (10¢) we get the equation

f dPy, o (2)Z3[€%%/(2*+1)?]

azgﬁaﬁ dPg(y) . —
f_ dPy, o (202}

(13
In the limit 83— we have
Z§= 2X0(y+z— o) efIXyrz-o)
+0(o—y—2z)e 2BIXy+z=0) (143
e3BIy+7-0) _ 1
WZEH(W'Z—U)—@(U—V—Z),
(14b)
and
INZo=[In2x+ BIX(y+z—0)]6(y+2— o)
—2BIX(y+z-0)0(0—y—2), (149
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and

B(y)=exf 2(d;—do)x*—2X(y — 0)]

o—y+ Z(ql_qO)XH
. (17b
Vv2(d:—do)

Here erf¢) denotes the error function. Solutions (@63 —
(16d) areq;=2.763,99=2.611,0=0.001, andk=4.709.

To study the effect of this first stage RSB on the thermo-
dynamic properties of the system we will calculate the en-

tropy

x[1+eﬁ

S a( F )
N__ﬁ kB_N (18)

Inserting into Eq.(18) F/N (6) with the help of Eqs(109
and (10b) one obtains

FIG. 1. The temperature dependence of the quadrupolar glass
order parameters; upper solid line,qy lower solid line, andq

v 2
(replica symmetric theopydashed line. S _ 3(BJ)“x (BJ)

oo B g+ P (qem-2)

where 6(¢) is the Heaviside step function. Concerning Eq.
(13) we must expand®?/(e?”+1)? into the power series
with respect toe 3? and €3 when y+z—0¢>0 and
y+z—0<0, respectively.

It turns out that a reasonable solution of our problem at
T=0 can be obtained assuming tixas proportional asymp-

X (3g;—3m+2)

1 o o _
+;4f quo(y)Infi qul_qo(z)Z(’)‘. (19

totically to T asT—0, that is we have

x=xT. (15)
With above simplifications the integration in Eq403),

(10b), (10d), and(13) over the variable can be performed

explicitly and one obtains fof =0

w B
q1=1+3J'deq0(y)A(y)+y|)3(y), (1639
= A(y)—2B(y)]?
= | mdp‘*o(y)[ AlY)+B(y) } - 1eb

3 J“ ( )eXF[—(y—U)z/Z(%_%)]
V2m(qi—gg) ) —= P A(y)+B(y) ’

(160

and

L In2 3 )
2 f APy, (IN[A(Y) +B(Y)]- 57— 7(ai— )

- <(2-30,)=0, (160
where
X2
A(Y):exf{(%_%)?"‘x(y_o')
Xil_erf o—y— (91— o)X ] 173
V2(d1—do)

At T=0 the expression for the entropy considerably simpli-
fies. With the help of Eq(10d we get

sT=0)_

4_
N —o°+ g

Lin2. (20)

From(20) it is seen that at =0 the entropy does not depend
on the parameteq,. The results of the RS theory for
entropy*>1*can be easily reproduced if in E49) and(20)

we putq;=(o=4d.
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FIG. 2. The|m| as a function of temperature. The first stage of
replica symmetry breakingsolid line) and replica symmetry theory
(dashed ling
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FIG. 3. A variation ofx with the temperature. FIG. 4. The temperature dependence of the ent@pjhe solid

and dashed lines refer to the replica symmetry broken and replica
symmetry solutions, respectively.

In order to obtain the temperature dependentcelg¢pen-

dence of the parameterss, go, M, andx we have solved Up to now for quadrupolar systems, where a glassy phase
numerically Egs.(10a—(10d) for the finite T<T. and  yansition takes place in the Landau sense, an investigation of
T~T. To these data we have included the zero-temperaturRsp theory has been performed only near the transition
results. A variation of QG parametegs andqo with T is point~7 but no explicit information for lower temperatures
presented in Fig. 1. For a comparision fhelependence of have been obtained because of the complexity of the ana-
the QG parameter obtained within the RS thédi}is also  |yzed models. The present paper contains an attempt to for-
given in this figure. In Fig. 2 the absolute value of the qua-mulate a theory of RSB at the first stage for a simple model
drupolarization(the quadrupolarization is always negajive of QG without the Landau expansion. In general, the ob-
as a function of the temperature is shown for the RSB as wellained results seem to be reasonable physically. Our solu-
as for RS theory>* Figure 3 contains thd dependence tions give the Parisi QG parameter function in the form:

of X. It is seen thak has physical non-negative values but as _ — —

T approachesT, this variable slightly oscillates. At the A(X) = Gof(X=X) + A (X X), (21)
present stage of the theory it is difficult to explain that be-where Osx<1. It has been shown for some models of QG's,
havior, however we have no clear physical reasons to exn Which a QG phase transition in the Landau sense takes
clude ita priori. Finally in Fig. 4 the entropies calculated Place, that such a type of solution is stable near the critical
within the RSB and RS theories are given. It is seen that th&0int.”" Therefore it would be interesting to perform a sta-
first stage of RSB leads to the considerable increasing ofility analysis of our RSB solution in the wide interval of
entropy, particularly at low temperatures, compared to thdemperature &T<T.. We hope to return to this problem in
RS result. This means that RSB solutions are closer to & future work.
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